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Abstract

We study a free energy computation procedure, introduced in [E, ﬂ], which relies on the long-time
behavior of a nonlinear stochastic differential equation. This nonlinearity comes from a conditional
expectation computed with respect to one coordinate of the solution. The long-time convergence
of the solutions to this equation has been proved in [E], under some existence and regularity
assumptions.

In this paper, we prove existence and uniqueness under suitable conditions for the nonlinear
equation, and we study a particle approximation technique based on a Nadaraya-Watson estimator
of the conditional expectation. The particle system converges to the solution of the nonlinear
equation as the number of particles goes to infinity and the kernel used in the Nadaraya-Watson
approximation tends to a Dirac mass.

We derive a rate for this convergence, and illustrate it by numerical examples on a toy model.

Introduction

Free energy computations are an important problem in the field of molecular simulation (see @])
The difficulty of those computations lies in the fact that most problems in molecular simulations
are highly metastable: many energy barriers prevent a good sampling. We study here the adaptive
biasing force (ABF) method, which was introduced in [§, ﬂ to get rid of those metastabilities.

The typical problems one can think about are the study of a structural angle in the conformation
of a protein, or the measure of the evolution of a chemical reaction. Mathematically, each configu-
ration of the system is modelized by an element of a high-dimensional state space D, typically an
open subset of R?, which is endowed with a probability measure, called the canonical measure. This
measure is given by (f,D tfﬁv(”)dac)7167‘3‘/(”)d:€7 where V' denotes the potential energy undergone
by the physical system, and [ is proportional to the inverse of the temperature of the system.

For some z in the state space, one is interested in a particular quantity, denoted by &(x), &
being assumed to be a smooth function from D to R. The quantity £(x) has to be understood as a
coarse-grained information on the system, which is the relevant information for the practitioner. In
the examples above, {(z) would be a structural angle in a protein with conformation z, or a number
measuring the evolution of a chemical system in state x.

We call free energy the effective energy associated to the quantity £(z), that is, the function A(z)
such that e #4(*)dz is the image measure of the canonical measure by the function £&. Our objective
is to compute numerically the function A. When D = R?, a naive method to do so is to simulate,
for a given random variable Xy and an independent R?—valued Brownian motion W, the process



defined by the (overdamped) Langevin dynamics

dX, = —VV(X,)dt + /28 L1dW, (0.1)

which, under some regularity assumptions on the potential, is ergodic and admits the canonical
measure as unique invariant measure. This approach appears to be untractable in practice, since
the convergence to equilibrium is very slow, due to multiple metastabilities appearing in most
problems: typically, a molecule moves microscopically within times of order 107'® seconds, while
the typical time scale of the macroscopic moves is of order 10~° seconds.

The idea of the ABF method is to prevent the process X; from staying in metastable states by
introducing a biasing force which repel X; from the states where it stayed for too long a time. To
do this, we use the following representation of A, that can be deduced from the co-area formula

(see [E] ):

A'(2) =E[F(X)|§(X) = 4], (0.2)
where X is a random variable distributed according to the canonical measure, and F' is the function
defined by

veE-vvooo1 < \Y%3 )
Flz) = ——— — =div| =5 | - 0.3
@ ="wer ~ 5" \[vep (0

The function A’ is called the mean force. Actually, (@) also holds when X is distributed according
to the measure

—1
(/ e—ﬁ(V(z>+Wos(z>>dx> AV @+ Wog(@) g,
D

which is the canonical measure associated with the biased potential V + W o & where W is any
smooth function.

Equation (@) leads us to consider the following dynamics, which should get rid of metastabilities
for a well chosen & since it “flattens” the energy landscape in the £ direction (see [E] and Lemma
below for more precise statements):
dXt = —V (V—Atof) (Xt)dt+ \/Qﬂflth, (0 4)

Ai(z) =E[F(X:)[§(Xe) = 2]. '

The second equality in (@) shows that if X; is distributed according to the canonical measure
associated with the potential V — A o £, then the biasing force A} is actually the derivative A’ of
the free energy, and the first equation in ) consists in a Langevin dynamics associated to the
potential V' — A o £&. Consequently, the dynamics (@) admits a stationary point: A; = A’ and
Law(X:) = ([ e~ VAt g)Tlem VAL,

If we actually have convergence to this stationnary state, we have a method, that should be
efficient (i.e. that should not see the metastabilities), to sample the canonical measure up to a
known perturbation e4°¢. This algorithm has thus two applications: it allows the computation of
the free energy A, and it can be used as an adaptative importance sampling method for the canonical
measure.

The long time behavior of Equation (@) has been studied in [E]7 where it has been proven
that for a sufficiently regular solution, one has, in some sense, an exponential convergence to the
stationary state, with a rate that is better (for a well chosen &) than the rate of convergence to
equilibrium for (E)

The practical difficulty in simulating @) is to compute the conditional expectation, which is
a highly nonlinear term. Stochastic differential equations involving conditional expectations have
already been studied, in a case where the conditional expectation is computed with respect to
a random initial condition (see , E]) or where the variable whose conditional expectation is



computed is fixed (see [ﬂ]) Our situation is much more complex since both the conditioning and
the conditioned variables change with time and are affected by the previous conditional expectations.

In this paper, we prove that existence and uniqueness hold for Equation (@) under suitable
conditions, and we study an approximation of X; by an interacting particle system (see Theorems E
and B below).

The paper is organized as follows. In Section m we state our main results.

Section E is devoted to some uniqueness and regularity results. More precisely, we prove that
the time marginals of a solution to Equation (D.4)) satisfy some partial differential equation. Then,
under an integrability condition on the initial condition, we prove uniqueness for the solutions to
this equation, so that the nonlinear term in (@) is reduced to a bounded drift coefficient. We thus
prove pathwise uniqueness and uniqueness in distribution for the solutions of (@)

Section f is devoted to existence results. More precisely, we introduce a regularization of the
dynamics (p.4) involving two parameters « and ¢, which is another nonlinear stochastic differential
equation whose nonlinearity is less singular. We prove that strong existence, pathwise unique-
ness and uniqueness in distribution hold for this equation and then we show that the solutions
to this stochastic differential equation converge to some process which satisfies (@) in the limit
(a, €)rightarrow(0,0), yielding strong existence. We also prove that this convergence holds with
rate O(a + 1/2).

In Section é we introduce an interacting particle system to approximate the regularized dynam-
ics, and we prove a propagation-of-chaos result for this particle system. We also derive a rate of
convergence for this propagation of chaos.

In Section 57 we illustrate the efficiency of the particle approximation of the ABF method and
the rate of those convergences with some numerical examples in small dimension.

Notation

We denote by T = R/Z the one dimensional torus, and for « € R, we denote by {z} € T its
projection on T. In the following, we will work in two different domains D: T x R?~! or T¢. The
case D = T x R4 ! will be called the non compact case, and the case D = T¢ will be called the
compat case. For z € R?, depending on the case considered, we will also denote by {z} the element
of T x R4™! (resp. T%) defined by {z} = ({z'},22,...,2%) (resp. {z} = ({z'},..., {z%)})).

In the following, we will call “function defined on T” (resp. on T X R9!, resp. on ’]I‘d), a
Z—periodical (resp. Z—periodical in the first coordinate, resp. Zd-periodical) function defined on R
(resp on R?). Integrals on T, T x R¢"* or T¢ mean integrals on [0, 1), [0,1) x R¥~! or [0,1)%.

We denote by L*(T%) the space of functions on T? whose square is integrable on T¢, and by
H*(T?) the space of functions in L?(T%) whose weak gradient is square integrable on T*. We use
similar notations on T x R?! and T.

For two functions f and g defined on T x R?~! or T¢, we denote f*g the convolution with respect
to the first coordinate, that is,

frola) = [ £t =o' at Nl 2y
T
If f is defined on T, we also use the notation f % g to denote
fro) = [ £ =gl oty
T

When f and g are defined on D = T x R¢"! or T¢, the convolution in all the coordinates is denoted
f*y:
frglx)= / flat =yt e =y gy y? )yt dy*
D



In the following, we call “probability measure on T” (resp. on T X R 'JI‘d) a nonnegative
Z-periodical (resp. Z-periodical with respect to the first coordinate, Zd—periodical) measure y such
that ([0,1)) = 1 (resp u([0,1) x R*™1) =1, u([0,1)%) = 1).

When {X} is a random variable taking values in T (resp. in T x R, T¢), we call “distribution
of {X}” or “law of {X}” the probability measure p on T (resp. on T x R¢™! T?) such that

E[f({X})] = / F(@)u(da).

For a given probability measure p on T X R%-! (resp. a probability density u) and a given
bounded function g, we denote u9 (resp. u?(z')dz') the marginal on T of the measure g.u (resp.

g(z)u(z)dz). Namely:
n(A) = /A Rdilgdu

ug(acl) = / g(ac17x2"'d)u(x1,m2"'d)dac2"'d.
Rd—1

In particular, p' is the first coordinate marginal of . When we do not specify the measure in an
integral, it is the Lebesgue measure.
We will need the weighted spaces

and

P _ 2 d—1 def P L
LP(w) = 4 4 € LA(T x R%) st [hllurmy 2 / Wlrw) <ot
TxRI—1

for 1 < p < oo, and

1/2
H' (w) = {1/) € HY(T x R st [[9sgn () (/T o (I ? + IVy[?) w) < 00}

with w(z) = (1 + |z*~%?)*, for some A > (d — 1)/2. Notice that w does not depend on the first
coordinate z', and that there is a positive constant K such that

d
Vo € T xR, [Vw(z)| < 201+ [«* )2 e’ < Kuw(a). (0.5)
i=2
We will use several times the following statement:
Lemma 0.1. For a bounded function g, and u € L*(w) one has
lw/llez(ry < Nglliee (rxra—1yllwllLe w)-
If moreover, g has bounded derivatives and v € H(w), then
”ug”Hl(T) < ”g”Wl’“’(Tde*l)“U“Hl(w)-

The same inequalities hold with the non weighted norms in the right-hand side, for u respectively in
L*(T%) and H'(T?).



Proof. Recall that we assumed A > %7 so that % is integrable on R% : fRd %d:c < 0o. Consequently,
we have the estimation

e = [ | [, o0
T Rd—1

S Y

- (Tx ) T Rd—1 Rrd—1 W

2 2
< KHQHLOO(Tdefl)HUHHP(U;)-

2

The proof is similar in the space H*(w). a

In the following, K will denote some positive constant, whose value can change from line to line.

1 Assumptions and statement of the main results

In this paper, we consider a particular case of Equation (@) to simplify the argumentation: we
assume = 1 (this can be realized by a change of variable), D = T x R4! or D = T?. We consider as
reaction coordinate the first coordinate function £ : D — R defined by £(z) = £(z*, 22, ..., z%) = z'.
This should not change the theoretical results, but will simplify the proofs. The definition @) of
F' is then reduced to

F =0V,

where V is defined on T% or T x R4~

The two settings D = T and D = T x R*! will be respectively called the compact and the
non-compact case. Our results hold in both settings, and the proofs are mostly identical, with some
slight additional difficulties in the non compact case. Thus, in those situations, we only give the
proofs in the non-compact case.

With those assumptions, Equation (@) rewrites

dX: = (= VV(Xe) + E [0:V(Xe){ X/} }] er)dt + V2dWe, (1.1)

e1 denoting the first vector in the canonical basis of R?. We will call solution to Equation (@) a
process { X; } where X; satisfies (@) The initial condition of (B) is a random variable denoted Xo,
and is supposed to be independent of the Brownian motion W. We denote by Py the law of {Xo},
which is a probability measure on D.

To ensure the integrability of 01V (X¢), we make the following assumption :

Assumption i. V is a twice continuously differentiable function, which has bounded first and second
order partial derivatives.

Notice that Assumption I yields boundedness of the drift coefficient in (m) In the compact
case, assumption I is satisfied as soon as V is a twice differentiable function.

We have to make some assumptions on the initial condition Xo. What is needed to prove our
results will depend on whether we consider the compact or the non compact case. In the compact
case, we consider the following assumption:

Assumption ii. The probability measure Py has a density po lying in L*(T%) and whose first
coordinate marginal py is bounded from below by a positive constant. (Notice that Py is a probability
density on T.)

In the non compact case, we will need a stronger assumption: we have to control the decay of
the initial condition at infinity, so we work in the weighted space L?(w). We will use, in addition to
Assumption E, the following one:



Assumption iii. The density po of Py lies in both L' (w) and L*(w).

Notice that Assumptions ji] implies that {Xo} has finite moments of order less than 2\, and that
Assumptionﬂ then yields a control on the corresponding moments of any solution to (E), uniformly
inteR:

Lemma 1.1. Under Assumptions H and lid], on any bounded time interval [0,T], the moments of
order less than 2X of any solution X of (1)) are bounded:

sup E[|X:[*] < oc.
0<t<T

Proof. This comes from the boundedness of the drift coeficient bs(z) = —VV (z) + E[0V (X)| X' =
x'], which holds in regard of Assumption ﬂ Indeed, we have E[|X;|*}] = E[|Xo + fot bs(Xs)ds +
V2Wi*] < K (E[| Xo|**] + t** +¢*), which is bounded on [0, 7. O

According to the following fundamental lemma, the solution to (@) is going to sample efficiently
the coordinate reaction state space T.

Lemma 1.2. Denote by P; the law of {X:}, where X is a solution to Equation ([L.1). Then, p}
has a density pt, such that p' satisfies the heat equation on T with initial condition py. Thus, p* is
uniquely defined on T x [0,00), and smooth on T x (0, 00).

Proof of Lemma @ Let f be a smooth function on T. One has, by Ito’s formula
QE [f(X1)] = —E[f'(X)aV(X0)] +E [/ (XDE [0V (X)X ] +E [ (X0)] -

But, f being a function on T, f'(X}) only depends on {X}}, so that the two first terms in the right
hand side cancel. Then, it holds

OE [f(X)] =E [f"(X})],

which is exactly the heat equation in the weak sense for ¢ — p{, p; being the distribution of {X}}.
For uniqueness and regularity of this solution, see [ﬂ, Chapter XIV]. O

Lemma D allows us to rewrite equation (DI) using the distribution of {X}}. Indeed, since P}
has a density, the measure given for A C [0,1) by P1V(A) = E [01V(X1)1a({X/})] also has a

density p?". We can thus write

pr (X))

P = distribution of {X;}.

o1V
dx, = <—VV(Xt) 4o ) “‘f”el) dt + v2dW,, (1.2)

Moreover, under Assumptionﬂ the density pi satisfies 0 < infr pg < pi, uniformly in time, thanks to
the maximum principle. This assumption will consequently prevent the denominator in the second
term of (E) from vanishing.

In view of Equation (E), a natural particle approximation of X; is then obtained using the
Nadaraya-Watson estimator of a conditional expectation (see [E])7 given, for some parameter 7 and
for a positive integer IV, by the system of N stochastic differential equations

N 7, s
I D me1 P (th,ri,N - X?,viL,N)alv(sz,N)
N ,1 7,1
Zm:l ¢W(X27L,N - th,m,N)

dX7, v = <—VV(X;’)”'N) e1> dt+vV2dW', 1 <n< N

(1.3)
where (W) is a sequence of independent Brownian motions, and ¢, is a smooth approximation
for the Dirac measure at the origin on T. For the initial condition, we work with the following
assumption



Assumption iv. The initial condition of Equation (E) is (X p.n)o<n<n = (Xo,n)o<n<n, where
(Xo,n)nen is a sequence of i.i.d random variables with density po, and independent of the Brownian
motions (W{")i>o.

We also need an assumption on the shape of ¢,. The parameter n = (a,&) will be chosen
in (0,00)?, and ¢, will have the form

en(x) = o+ e (x), (1.4)

where 1. is a sequence of mollifiers on T as ¢ — 0. Namely, assuming ¢ < 1/2, 1. is a smooth
non-negative Z-periodical function, such that ¢ = 0 on [—1/2,1/2] \ [—¢, ¢] and such that

1/2
e = 1.
—1/2
A simple way to construct such a sequence is to consider a smooth non-negative function v defined
on R, with support in [—1,1] such that fRL/) = 1, and then consider the Z-periodization . of
Pe = %1/)(;) (1< is well defined for e < 1/2). This example makes the following assumption natural:

Assumption v. The function ¥. satisfies

K

K
/
P and ”wsH]LOO(T) < 5_2

[[¢ellLoe () <
The reason for adding a positive constant a to the mollifier is to avoid singularities at the
denominator in the right-hand side of (@) Notice that (@) yields strong existence and uniqueness
for (B), since the drift is globally Lipschitz continuous.
We are going to prove the following two results:

Theorem 1.3. [Exzistence and uniqueness of the solution] In both the compact and non compact
cases, under Assumption H, weak existence holds for Equation (DI) If P denotes the distribution
of a solution, then for all s > 0 the time marginals Ps of P admits a density ps, such that for all
0<t<T,
oo 2 2 1
p € L¥((t,T),L*(D)) (\L*((t,T), H' (D)). (1.5)

Moreover, under both Assumptionsﬂ andﬂ for the compact case, and under Assumptions H, B and
for the mon compact case, strong existence, pathwise uniqueness and uniqueness in distribution also
hold, and one can take t =0 in @)

Theorem 1.4. [Particle approzimation of the process Xi] In the compact case, under Assump-
tions l, , H, and [§ or in the non-compact case under the additional Assumption , define the
processes Xen,n by (L.3). Then, it holds that, for any positive T, and for a and € small enough,
N m 7,1
Zn:l 81V(th,n,N)(p’7(' B th,n,N)

T
=\
0 25:1 ol — thnlN)

Theorem E is a consequence of Theorem @ and Corollary below, and Theorem @ is a
consequence of Theorems and below.

The convergence rate in Theorem is a pretty bad one, since for a given N it explodes as € goes
to 0. Consequently, the size € of the window has to be chosen carefully depending on the number
N of particles. This is discussed more precisely in Section E

—AQ

1 &
dt| = O (a+ Ve + eocs?).
< ve VN

Loo (T)




2 Notion of solution, regularity and uniqueness results

In this section we consider the Fokker-Planck equation associated to the nonlinear stochastic differ-
ential equation (E) and prove that uniqueness holds for weak solutions of this partial differential
equation. From this uniqueness result, the study of Equation (E) can be reduced to the study of
a linear stochastic differential equation. We can thus prove uniqueness for Equation (@)

Let us derive the Fokker-Planck equation associated to Equation (JL.1). Let ¢ be a twice contin-
uously differentiable function. Applying 1t6’s formula and taking the expectation, we obtain that
the law P; of a weak solution {X:} to equation (EI) satisfies

/Dz/; )dPr(z /w )dPo(x / /v¢ )WV (2)dPi(z )dt+/OT/DAz/)(m)dPt(m)dt (2.1)

+/O /Dalw(:c) <p;7(:c1)) dP.dt,

which is a weak formulation of the following partial differential equation

81V
BtPt :dIV(PtVV—FVPt) —8 <Pt p ) 5 (22)
t

with initial condition Py. Using integration by parts, we introduce a stronger definition for solutions
to (E) which will allow us to prove existence and uniqueness.

Definition 2.1. In the compact case, a function u is said to be a solution to (E) if, for any
positive T,

e u belongs to L°°((0,T),L2(T%) N L2((0,T), H (T%)) ;
o for any function ¢ € H'(T?), we have:

vV
Bt/ Uti/}:—/ utVVVz/;—/ VutV;/;—t-/ Ututl 811/), (23)
D D D D Uy

in the sense of distributions in time ;
® Up = Po-
In the non compact case, u is said to be a solution to (E), if, for any positive T,
e u belongs to L™=((0,T),L%(w)) NL2((0, T), H' (w)) ;
o for any ¢ € H'(w)

"V

at/ utPpw = —/ utVV-(de)—H/;Vw)—/ Vut~(wV1/)+z/;Vw)+/ g 2t
D D D

D t

(O1Y)w, (2.4)

holds in the sense of distributions in time ;
® Uy = Po-

Notice that (E) is a variational formulation of (@) in the space L*(T¢) and that (@) is a
variational formulation of (@) in the space L?(w).

These conditions make sense. Indeed, in both cases, the conditions on u and 1 are such that
the variational formulations (@) and (@) are well defined (notice that one has |Vw| < Kw).
Moreover, for the compact case, if u lies in L2((0,7),H'(T%)), and satisfies (@) then Owu lies in
L2((0,T),H *(T%)), so that (see [@, page 23]) u lies in C([0, T],L?(T%)), allowing us to define the
value of u at time ¢t = 0. The same argument holds for the non compact case.



2.1 Existence of regular densities for solutions to the nonlinear

equation

In this section, we consider a solution X to Equation (B) and we denote by P; the law of {X;}. We
show that P; has a density p:, and that p is a solution to Equation (@) in the sense of Definition @

Lemma 2.2. Consider both the compact and the mon compact cases. Under Assumption H, for
any t > 0, P, admits a density p: with respect to the Lebesgue measure satisfying the following mild

representation

t t palv
pr =G x Py + / VGi—sx (VVps)ds — / Gr_s* < ; ) ds,
0 0

s

where Gy is the density of \/2 times the Brownian motion on D, namely

1 _lz—keq)?
Gi(z) = @) doe
keZ

for the non-compact case, and

lz—k|?

1 _
Gt(ll?) = W Z e 4t
kezd

for the compact case.

(2.5)

Proof. Let x be a smooth function with compact support on T x R4"! and T > 0. Then, for

t € [0, 77, the function ¢ defined by

Ps = Gi—s ¥ X,
is the unique smooth solution to the following problem
859 = —At on (0,t) x T x R,
e =x onTxRIL

Computing 1, (Xs) by Itd’s formula and using (@) we get

t t
/ Ped Py :/ YodPo —/ / Az/)sdPst—l-/ / AvsdPsds
TxRd—1 TxR4—1 TxRd—1 0 Tde 1

t
—// VVdes+// 811/)5 des
0 Tdefl TxRI—1

:/ wodpo—// VVdes+// aﬂpsps dP,ds.
TxRI—1 0 TxRﬁFl TxRd—1 s

Using the expression of ¢, and Fubini’s Theorem, we have:

t
/ xdP: = / X (Gt * Po) + / X/ VGi—sx (PsVV)ds
TxRI—1 TxRI—1 TxRI—1

palv
—/ /81Gts*<51 P)ds.
TxRd—1 Ps

This last equation being true for any smooth function x with compact support, then P; is given
by the right-hand side of @), which is an integrable function, so that for any positive ¢, P; has a

density p: satisfying (E)

O



In regard of the following lemma, p necessarily satisfies some integrability conditions.

Lemma 2.3. In both the compact and the non compact case, under Assumptions H and ﬂ, p lies in
L>((0,T),L*(D)) for any T > 0, and we have ||p|li(o,7) 120y < C, where C is some constant
only depending on Py, VV and T.

In the non compact case, under Assumptions I, B and , p lies in L°°((0,T),L*(w)) for any
T > 0, and we have a bound Hp”]]_ao((oyT)’H_?(w)) < C, where C is some constant only depending on
Po, VV and T.

We only give the proof of Lemma E in the non compact case, the one in the compact case being
similar.

Proof. The mild formulation (@) will allow us to prove that u € 1L.°°((0,7),L*(w)). Since po lies
in both L' (w) and L?(w), it lies in L(w), for any 1 < ¢ < 2. We first prove that we have a uniform
in time estimate in LY (w), 1 < ¢ < 2, for py.

From equation (@), it follows

ds. (2.7)
L9 (w)

Vv
81Gt s* (p 1 pS)

Ps

pella ey < lpollusce) + / IVGr—e 5 (VV) o) +\

It holds, from Jensen’s inequality,

IVGeen (VP <K [ (9G] wpa)
TxRI—1

<K (IVGe—s|? * ps)w
TxRI—1

K[ VG W)~ y)ue)dedy.
TxRI—1 JTxRI—1

Now, notice that w(z) < K(1 4+ [y> ¢ w(z —y) et m(y)w(z — y), so that

IVGims ok (VD)2 ) <K / / VG o) (9)ps (& — (e — y)dady
TxRI—1 JTxRd—1
— K||psllus o) / Vi () "m(y)dy.
TxRI—1

In view of Lemma EI, [Ips]lL1 (w) is bounded. Moreover, one has for 0 <s <t < T,

q
y—key _lv—keil?
——€

(4m(t — 8))7d/2 S 5) I(i—s)

keZ

1+|Z/2 S Z|y kel | ,m
5)A /4 Ji=s :

2...d|2A)

IVGi—s(y)|*n(y) = (1+ly

K
— (t— s)q(d+1)/2

Then, since a function f with polynomial growth satisfies f(:c)e*””2 < Ke~""/2 for some constant K,

10



using Holder’s inequality, we deduce,

_ly—key|?
6 8(t—s)

K
(t — s)a(d+1)/2

IVGis(y)"n(y) <

keZ

il
K aly—kep|? _dly—keq|® \y k€1\2 a

= (t — s)a(@+1)/2 Ze e Z

keZ

K —qly—key|?
= T sy 2 Z‘f R
where ¢’ satisfies % + % = 1. Consequently, it holds, for 0 < s <t < T,
1/q K
q
</1er6171 IVGi—s(v)l w(y)dy) < (t — s)(@+)/2=d/2q" (28)

The last term in (E) can be bounded in the same way, so we deduce that fot IVGi—sx(VVps)|lLa(w) +
‘ 81Gt73 * (

—Ps ds is finite as soon as
Ps L9 (w)

d
1< _— 2.9
¢< o7 (2.9)
In view of @)7 p lies in L°°((0, ), LY(T x R*1)) for all T and all q satisfying (E), and we have
a bound on its norm depending only on Py, VV and T. We now bootstrap this estimate to reach a
uniform-in-time L?(w) bound for p.
Let no be an integer large enough so that
no + 1 d

mo 112 S d-1

and define for n = 0,...n0, ¢ = n:)”jj% and ¢, = ( +n (— — 1)) . Notice that (gn)n=0...no
satisfies qo = ¢, qn, = 2 and

1 1 1
1+ =—+-,
gn+1 qn q
so that, according to Young’s Inequality, convolution continuously maps L9 x ¢ to L9+1. Conse-

quently, we have for n < ng

1/qnt1
VG (TVplnssy <K ([ (VG xp)™ huads )

TxRd—1

An41 1/qn+t1
~([ ([ veedwp =) )
TxRd—1 TxRd—1

We have w(z) < w(z — y)n(y) < w(x — y)q"“/q"ﬂ'(y)7 since ¢n < @n+1, yielding, by Young’s
inequality and the polynomial growth of 7,

Anit1
[VGe—s* (VVPs)llLant1(w) < </ (/ VG| ()m () "+ ps(a — y)w(@ — y) /™ dy> dm)
TxRd—1 TxRd—1

=V Gemslm' /151 5 (s T ) o (rrema-1)

VG | L (rsema—1y 1Ps Lo ()

< K
=t — 5)[@+D/2=d/(2) [1Pslan (w)-

11



the last inequality being proved in the same way as (E) is. As a result, for n < ng,

g ||psH1an (w)
|‘pt||Lq"+1(w) < ||pOH]an+l (w) + K/() (t — s)(d+1)/2,d/(2q) ds.

By induction on n, since m is integrable on [0, ], this estimate shows that p lies in

L>°((0,T),1L*(w)), for all positive T. Since we control SuP;eo,77 IPtllLa0 () by & constant depending
only on Py, VV and T', we also have such a control on sup,¢ g 7 HptHHp(w).
|

Now, we prove that p is a solution to Equation (@) in the sense of Definition a First, we
show that it satisfies the regularity condition.

Lemma 2.4. In the compact case, under Assumptionsﬂ and B, one has
pel® ((07 T)7]L2(?I‘d)) ML ((07 T)7]H11(?I‘d)) . (2.10)

Moreover ||p|luos (o,7),12(vdy) + IPll2(0,7)m1 (re)) < K, where K only depends on VV', Py and T.
In the non compact case, with the additional Assumption , one has

p € L ((0,7),L2(w)) (L2 ((0,T), H' (w)) . (2.11)
Moreover ||plliee (o,1,L2(w)) + IPIlL2((0,7),11 (w)) < K, where K only depends on VV, Py and T.

Proof. According to Assumption ﬂ7 po lies in L2(D). Consequently, from Lemma @, we know

that P; has a density p; such that p € 1.°°((0,T),L*(D)). We now prove that p lies in L2((0, T'), H' (D)).

We know that p lies in L ((0,T),L(D)) ¢ L2((0,T),L(D)), and that 227 is in L=([0, T] x D),
P

so that the function f defined by

0V
f=div(pVV) — & (p - p>
p

lies in L2((0, T'), H'(D)). Consequently, it can be shown, for example using a Galerkin approxima-
tion (see [fJ, Chapter XVIII]) that the problem

{a“’_A” = ) (2.12)

Vo = Ppo,

admits a unique weak solution v in the space L°((0,T),L*(D) N L2((0,T),H'(D)). Here, “weak
solution” means that for any 1 in H'(D),

at/Dwuﬁ/Dwvm:/Dwf (2.13)

holds. Thanks to an a priori estimate, we can find a bound K depending only on VV, Py and T,
such that this weak solution lies in the ball of radius C in the spaces L°°((0,T),L*(D)) and
L2((0,T),H'(D)). For the non compact case, notice that under Assumption , f satisfies for
any 1 € H! (),

palv
/ fww‘:/ PVV - V(gpw) - 1p81(¢w)‘
TxRA—1 TxRA—1 p
<K PVolw + K / Il
TxRI—1 TxRd—1
SK”'M}HHl(w):

12



the last bound being deduced from Lemma E From the following a priori estimate,

1
—8t||vt||i2(w) = —/ VvtV(wvt) +/ fvtw
2 TxRI—1

TxRd—1

< —/ Vo |*w + K [v: Ve |w + K |[oe] g ()
TxRd—1 1

TxRA—

1 2 2
< = 5 IVUeliie ) + KllvellLe ) + K

standard arguments show that v also lies in 1L.>°((0, '), L% (w)) N L2((0, T), H (w)), if po € L*(w).

We are now going to show that v is actually equal to the function p. For a fixed ¢ in [0,7],
consider s = Gi_s x X, solution to the problem (@), where y is some test function, and compute
s fD svs. From [16, page 261, Lemma 1.2], we obtain

aS/szsus:/Dwsf,

in the sense of distributions. Using the expression of s, this equation rewrites

as/ (ths *X)Us = / (Gt*S*X)fv
D D
which is equivalent to
83/ X(Gi—s * vs) :/ X(Gi—s * f). (2.14)
D D

Since v € L2((0,7), H'(D)), and dsv € L2((0,T),H (D)), then v lies in C((0,7),L*(D)) (see [,
Chapter XVIII, §1, Theorem 1], so that the left hand side in ) is the derivative with respect ot
s of a function which is continuous in s. Moreover, one has

2,V

Giox [ =VGisx(pVV) — 1Gi_s * <pp1 p) e L'((0,t),L*(D)),

so that the right hand side in () is integrable in time. Consequently, integrating on [0, t], one

finds
t t MV
/ XVt = / X(Gt * po) +/ / X(VGi—s % (VVps))ds —/ / X (3101575 * <ps I ps)) ds.
D D DJo pJo Ps
¢ t ERY%
v = Gy % po + / VGi—sx (VVps)ds — / 01Gi—s % <p;1 ps> ds. (2.15)
0 0

Identifying in the sense of distribution, one has

The right hand side in (P.15) is exactly the right hand side in (@), and ( holds for all t > 0,
so that v = p, and the regularity we wanted on p actually holds.
O

We finish this section by proving;:
Lemma 2.5. The function p satisfies Equation (@) in the sense of Definition @

Proof. According to Lemma @, in the compact case (resp. in the non compact case), for any ¢ >
0, p lies in 1L°°((0,7),L3(T%) N L2((0,T), H*(T4)) (resp. in L°°((0,7),L%(w) NL2((0,T), H (w))).
Moreover, thanks to Itd’s Formula, p satisfies Equation (R.1)) for any smooth test function . But,
according to the regularity of p;, and by the density of smooth functions in H*(T¢) (resp. in H'(w)),
Equation @) holds for any ¢ in H'(T?) (resp. (R.4) holds for any ¢ in H'(w)). This means that
pt is a solution to (E) in the sense of Definition P.1. |
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2.2 Uniqueness results

In this section we prove that uniqueness holds for solutions of Equation E) in the sense of Defi-
nition EI, yielding uniqueness for solutions of the nonlinear equation ([L.1).

2.2.1 Uniqueness for the Fokker-Planck Equation

Theorem 2.6. In the compact case, under Assumptions I andﬂ or in the non compact case under
Assumptions H, ﬂ and [iif, uniqueness holds for the solutions to the Fokker-Planck equation (E) n
the sense of Definition [2.1.

Proof. We only give the proof in the non compact case, which can be adapted straightforwardly
for the compact case by performing the same computations in the space L2 (Td). Let u and v be
two solutions of (@) in the sense of Definition with same initial condition uo = vg. _We use
Gronwall’s Lemma to prove that [lus — vt|lp2(,) = 0 for all £ > 0. Adapting the proof of [E7 page
261, Lemma 1.2], one has 20| u: — thEg y = foRd,l(ut — v¢)0¢(ur — ve)w. Consequently, since u
and v satisfy Definition ﬁ, and using (ﬁ) and Assumption I, it holds that

1
50t lur — Oel[P2 () < Kllur = vellf2 ) + Klltr — velliz ) IVue — Voilliz ) — 1Vue — Vel )
W1V Ualv)

+/ 51(ut—vt)<ut tl —vttl
TxRd—1 Ui Uy

We want to estimate the last term. Notice that, thanks to Lemma E7 u! =o', so that

W1V W1V W1V _ 21V
/ O (up — vg) | ue—L — — Ut L T w = / O1(us — ve)ue %w
TxRd—1 Ui Uy TxRd—1 Ui

valv

+/ O (ut — vt) (ug — ve) =L —w.
TxRd—1 u

t

Since 01V is bounded, the second term in the right-hand side is smaller than
Kllut — vellL2 () | Ve — VoellLz

and the first term is smaller than

2 1/2
Ut av oav)?
Vus — Vo w — (u P — ot ) w .
H ' t”L2( ) <Ade1 <u%) ! ‘ )

(o () G mye) = (L () (), wre)

1 av  av
HT(“ et llwe |2 (w)-
¢ Loo(1)

Then,

2

IN

The function ¢ + |[u]|2(,) is bounded on [0, T], and, thanks to Lemma @, Assumption H and the
maximum principle, u! is bounded from below by some positive constant, so that

2 ) 1/2
Ut % NV nV %
/ <—1) (utl — vyt w < Klug'”" =o' oo (ry-
TxRd—1 \ Ut
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To conclude, notice that, for any positive ~, Hl/%'y(ﬂ‘) continuously imbeds in C(T) (see [ﬂ, page

217]). Consequently, interpolating H'(T) and L?(T) (see [@, Page 49], we obtain for a function f
in H'(T) and v € (0, 2),

1/2— 1/2
1l o) < KNl ey < KIS AL (2.16)

All the previous inequalities give us

%&Hut —vellf2 () + VU = Vollfz ) < Kllue — velli2 gy I Ve — Vorlliz ) + Kllue — vellf2 )
+ Kl — ol [0 g = oY [ 1V — Vel -
We finally obtain, from Lemma @ and Young’s inequality
Fllue — vellfzuy + Ve = Voelfay < Kllue = vellf2 (),

yielding uniqueness through Gronwall’s lemma. O

Remark 2.7. A more natural, but not completely rigourous proof can be performed, using an
entropy estimate. In particular, this proof does not require the introduction of the weighted spaces.

Uniqueness actually holds in the subspace of solutions such that the following computations make
sense.

Let u and v be two solutions of (R.9) in the sense of Definition E with same initial condition
uo = vo. Notice that from Lemmal|l.8, the functions u' and v' are equal. Define the relative entropy

of u with respect to v:
E(t) = / ulog =y
TxRd—1 v

If all quantities involved are finite, it holds that

E'(t) = O / N +/ o logE —/ v v
TxRI—1 TxRd—1 v TxRI—1 v
u u uV u
=0-— uVV Vlog — — Vu Vlog — + u——0 log —
TxRI—1 v TxRA—1 v TxRA—1 u (%
u u WV
+/ vVVV—+/ VUV——/ v— Oh—
TxRA—1 v TxRA—1 v TxRA—1 u v

2
__/ v_‘vz‘2+/ (ualv_valv) P
TxRd—1 U v TxRd—1 ul v

But, using Csiszdr-Kullback inequality, it holds

vl U . u ull u v
/ (ualv—fual ) —01- <K v‘31— -
TxRA—1 u v TxRA—1 v u us v (Rd-1)

u u u /2
<K v‘&—‘(/ (—llog—)) .
TxRA—1 v rRd—1 \U v

In conclusion, we find

2 2 2 2 1/2
E'(t)g—/ Z vl +K</ = o] > (B2,
TxRrd—1 U v TxRrd—1 U v

We can conclude the proof using Young’s inequality and then Gronwall’s Lemma.
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2.2.2 Uniqueness for the nonlinear process

Theorem 2.8. Pathwise uniqueness and uniqueness in law hold for Equation (E) in the compact
case under Assumptionsﬂ and [i{, and in the non compact case under Assumptions H, H and idd.

Proof. As stated in Lemma @, if X solves ), then {X;} admits a density p; such that p
satisfies @) in the sense of Definition R.1|. Thus, in regard of Theorem R.6, p: is uniquely defined.
Consequently, Equation ([L.1]) rewrites

0V (vl
dx, = (—VV(Xt)—&-pt (Xt)

t t

where p; is the unique solution to Equation (E) in the sense of Definition EI Notice that the drift

o1V 1
Pt (@)
b =-VV
¢ () VV(x) + oI el
in Equation () is bounded, so that pathwise uniqueness holds (see [E]), as well as uniqueness in
law, from the Girsanov Theorem. |

3 A regularized approximate dynamics

To estimate the difference between the nonlinear process defined by Equation (@) and its particle
approximation (E)7 we introduce an intermediate process, called the regularized nonlinear process,
which is the natural expected limit as N goes to infinity of the particle approximation (B) The
nonlinear term in this equation is more regular than the one in (@), so that we can show existence
and uniqueness for this process.

The aim of this section will be, in a first time, to prove existence and uniqueness for the regular-
ized nonlinear process, see Theorem E, and in a second time to show that the regularized nonlinear
process converges to the nonlinear process solution to (EI) as € and a go to zero, and to estimate
the rate of this convergence, see Theorem B.11| below. This will yield an existence result for the
nonlinear process.

Under Assumption E on the initial condition, for a fixed positive integer n, we expect the
sequence of processes (X,] y)n>o defined by (E) to converge to a solution to

_ _ pmrov. .
ax/, = (—VV(Xan) + %(XZ{’J)@) dt + V24w, 51)
n* 1 .
Py = distribution of {X}'}

with initial condition (Xo,x).

3.1 Existence and uniqueness for the regularized problem

In this section, we show that pathwise uniqueness, uniqueness in distribution and strong existence
hold for the regularized dynamics.
We first show existence and uniqueness of a solution to (@), using a fixed point method.

Theorem 3.1. Consider both the compact and the non compact cases. Under Assumptions H and E,
strong existence and uniqueness hold for Equation (@)
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Here we follow [[14]: we show that a measure on the space of continuous paths from [0, 7] to
R? is the law of a solution to (Ell) if and only if it is a fixed point of some function ®7. Then
we show existence and uniqueness of this fixed point by a contraction argument. This cannot be
done directly for Equation (@, since its nonlinear term is too ill-behaved, so that we do not have
contraction in that case.

For a probability measure u on the set Cr = C([0,T],R%) we denote by ®7(u) the distribution
on Cr of the process X defined by

/ gon(th —:c%)(%V(xt)d,u(:c)
dx, = | -VV(X,) + 22 er | dt +v2dW, (3.2)

/ on(X2 — 2})dp(e)
Cr

whose initial condition X has law Py and is independent of W. The distribution ®r(u) is well
defined since Equation (@), having global Lipschitz coefficients, has a unique strong solution.
Notice that, since

onx ptY _ Jop n( — 20V (@) du(z)
Pn * Je, on (- — xd)du(z)

u is the distribution of a solution to (a) up to time T if, and only if ®7(u) = pu. We will show
that such a p exists and is unique using Picard’s Theorem.

The Wasserstein metric D7 (i1, p2) between two probability distributions pi and pe on Cr is
defined by

Dr (i, p2) = in / 1Az = yllepdn(a, ),
mell CrxCrp

where 11 = {m € P(Cr x Cr), ™ having u1 and p2 as marginal distributions} is the set of all cou-
pling of p1 and w2, and ||.|le, is the uniform norm on Cr:

Ilf —glley = sup [f(t) —g(t)].
te[0,T)

Endowed with the Wasserstein metric, the space P(Cr) of probability measures on Cr is complete.
In order to apply a fixed point argument, we will need the following contraction lemma.

Lemma 3.2. Consider both the compact and non compact case. Let T be a positive time. Under
Assumption ﬂ, there is a positive constant K, not depending on t, satisfying

D(®(u2). @1(2)) < K [ Do),

for all t in [0, T] and for all probability measures p1 and p2 in P(Cr).

Proof. Let u1 and p2 be two probability measures on Cr. For ¢ = 1,2, define Xy ; by

/ ‘Pn(th,z‘ - f%)&V(:ct)d,ui(:c)
= er | dt+ vV2dw,

dXt,i = —VV(Xtyi) +

[ entxts = abdus(a)
Cr

with given initial condition Xo; = Xo, for ¢ =1, 2.

Notice that 1 5
fCT on(- = x3)01V (ze)dpi(z) _ Pn* ,“i,ltv
Jo n(- = aD)dpi () A

(3.3)
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and that from (@) and Assumption I7 the numerator and the denominator of (@) are respectively
bounded from above and from below by positive constants depending only on n and V. Then, for
any z,y and 0 < s < T,

v v
P * [y g ©n * Ho g

= (x) — “—(y)| < K (lz =yl A1+ Ds(pa, p2)) -
O * B On * 13

Consequently,

t t
BIA X = Xalle] < K ([ EIAIN - XalleJas+ [ D, )as)
0 0

for all t <7T'. Using Gronwall’s Lemma, we then find, for any ¢t < T,

t
B(LA X0~ Xalle) < K [ D.(ur,)ds.
0

But
De(®e(p1), Pe(p2)) SE[LA [ X1 — Xaflc,]

since X1 and X, respectively have ®;(u1) and ®+(u2) as distributions, finishing the proof. O

Proof of Theorem @ Iterating Lemma @, we find existence and uniqueness of a fixed point of
®r, given Xy, which yields uniqueness of the distribution P of the solution to (@) on [0, 7.

The law_P of any solution being unique, we can substitute the marginal of P at time ¢ in
Equation (B.]f), and we obtain a linear stochastic differential equation with Lipschitz continuous
coefficients. Pathwise uniqueness holds for that kind of equation, so that weak existence and path-
wise uniqueness hold for (h) Consequently, from Yamada-Watanabe Theorem, it admits a unique
strong solution.

O

3.2 Convergence to the nonlinear process

We are now going to let € and « go to 0 in (@)

We denote by X! the unique strong solution to @), with initial condition X and Brownian
motion W™ replaced with W. The distribution of {X;'} will be denoted P". We expect a possible
limit X of X" as 7 goes to 0 to be a solution to (|L.]]). To this aim, we define the following martingale
problem:

Definition 3.3. We say that a probability measure P on the space Cr of continuous paths is a
solution to the martingale problem associated to (E]I) if its time marginals Py admit a density p:
with respect to the Lebesgue measure, and if, under the measure P,

e the canonical process x € Cr is such that for any twice differentiable function which is bounded
as well as its first and second derivatives, the process

t t t NV (g,
mt:w(:ct)—w(:co)—i—/(; Vl/)(:cs)VV(:cs)ds—/(; Az/)(xs)ds—/o 81¢(xs)”;)T;:t))ds7 (3.4)

is a martingale.
e {zo} has law Po.

Notice that, since the drift coefficient is bounded, the Girsanov theorem shows that it is not
restrictive to assume that P; has a density.
We deduce from Theorem @ the following result:
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Proposition 3.4. In the compact case under Assumptionsﬂ and B, or in the non compact case under
Asumptions I], H and , uniqueness holds for the martingale problem defined in Definition @

Our aim in this section will be to prove the following results:

Theorem 3.5. Let Assumptions H and E hold.
In the compact case, (P")y>0 converges as n goes to 0 to the solution of the martingale problem.
In the non compact case, the family of probability measures (P")y>o is tight, and any converging
subsequence converges to a solution of the martingale problem defined in Definition . Under the
additional Assumption , (Pp)n>o0 actually converges to the unique solution.

As a corollary of Theorem @, one has existence of solutions to (DI) (under regularity assump-
tions on the initial condition).

From Proposition E, in order to prove Theorem @, it is enough to prove that the family
(PM)yn>o0 is tight, and that any converging subsequence converges to a solution of the martingale
problem.

Our first step will be to derive the Fokker-Planck equation satisfied by the distribution of {X'}.
Let ¢ be a smooth bounded function on D, with bounded derivatives. Applying 1t6’s formula to
¥(X}) and taking the expectation, we find that

T T 7,01V
[wari= [ om@dct [ [ @o-vo-vvyarras [ [ o P apra 35
D D o Jp o Jp on x P
Equation (@) is a weak formulation of the following partial differential equation
o * pnory
O P =div(P'VV + VP — Pt”"it1 . (3.6)
on * P"

We are going to show that P}, or more precisely, its density, is actually a solution to equation (@)
in the following stronger sense.

Definition 3.6. A function u is said to be a solution to (@) with initial condition po if, in the
compact case,

e u belongs to L°°((0,T),L2(T%) NL2((0,T), H* (T%)) ;
o for any function ¢ € H(T?), we have:

v
at/ et = _/ WSV T — / Ve - Vb + / (Orpyuy L1 (3.7)
D D D D P * U
in the sense of distributions in time ;
® Up = po-
In the non compact case these conditions are replaced by
e u belongs to L™=((0,T),L*(w)) NL2((0, T), H' (w)) ;
o for any function ¢ € H'(w), we have:
® *utV
8t/ upw = —/ wVV - (wVY + pVw) — / Vug - (wVy + pVw) +/ (O uy ——w
D D D D Pn * “(t3 g)

in the sense of distributions in time ;

® Up = Po-
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As for Definition E7 these conditions make sense.
With this definition, one has the following result:

Lemma 3.7. Consider both the compact and the non compact cases. Under Assumptions H and B,
the distribution P]' of {X]'} has a density p} with respect to the Lebesque measure such that p"
satisfies (@) in the sense of Definition [3.4.

Moreover, the family (p")y>o is bounded in L°°((0,T),L%(D))NL?((0,T), H' (D)) and, in the non
compact case, under Assumption iif, (p")y>0 is bounded in L=°((0,T),L*(w)) NL2((0,T), H' (w)).

Proof. Since the drift coefficient in (@) is bounded, following the proof of Lemmas %&nd @, we
obtain that P/’ has a density pj, where p” satisfies the first condition in Definition B.6 Applying
Ito’s formula to 1(X;') for some smooth 1, we find that (@) ((E) in the non compact case) holds
for a smooth 1. Using the density of smooth functions in H*(T x R%™!), it holds for any v in H*(T¢),
and the same is true for H'(w) in the non compact case.

To prove that p” is bounded independently of 7, notice that from the boundedness of VV,

7,01V
Gnap 1
wpl 1

n t
Cauchy-Schwarz inequality,

the function is bounded from above uniformly with respect to 7. Consequently, from

1 : : : Y
L oY 122 a1y = — IVP7 2 crma—) — / PIVE VIV + / T it
2 TxRA—1 TxRd—1 ©n * Dy’

2
<- “vP?”L?(TXRd*l) + KHP?HHP(TXRGL*U”vP?Hﬂﬂ(Tde*l)'

where, the constant K does not depend on 7. We finish the proof using Young’s inequality, and then
Gronwall’s Lemma.
The proof is similar in the non compact case. O

Thanks to Lemma @, we can prove the relative compactness of the family p” in a nice sense.
Lemma 3.8. Consider both the compact and the non compact cases. Under Assumptions H and B,
for any bounded open domain O in D, the set (p”|o)n>0 of restrictions of the functions p” to O is

relatively compact in the space IL*((0,T),1L%(0)). Moreover, the set (P")yo of laws of the solution
is tight.

Proof. We first prove the relative compactness of p7 in L2((0,T),L?(©)). We use the fact that for
a bounded open domain O and for p, q € (1, 00), the space

Ep = {w e L”((0,T),H"(0)), such that d;w € LI((0,T),H *(0))}

imbeds compactly in LP((0,7),L3(O)) (see [@, page 57]). We already know that the set (p");>0 is
bounded in L2((0,T),H" (D)), so that the set (p”|)n>o0 is bounded in L*((0,T),H'(0)). Thus, it
is enough to show that (9ip” 0)n>0 is bounded in L7((0, T),H1(0)), for some q € (1,00) to finish
the proof. The following equation holds

1,01V
dip" = div(p"VV) + Ap” — 8, <p’7 EnEPe___ ) :

onxp}!
showing, since (p"),>o is bounded in L2((0, T), H* (D)), that (8:p")y>0 is bounded in L2((0, T), H™ (D)),
thus, 9p” | is bounded in L2((0,7),H"*(0)). This shows that (p‘n@)n>o is relatively compact in
L*((0,7),L*(0)).
Now we prove the relative compactness of (P"),>0 in P(Cr). For this aim, we use Kolmogorov
compactness criterion. At time ¢ = 0, X is equal to Xo, independently of 7. Consequently, the
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family (X{')n>o is tight. To conclude the proof, it is enough to show that for some positive constants
a, band K,

sup B [| X7 — X7|"] < K|t — s

n>0
for 0 < s,t <T. Since VV is bounded, we have, for 0 < s,t < T and p > 1,

pq1/p pq1/p
} +E[|Wt—Ws|P]1/P+IE{ T ]

t 7,01V Xn,l
EHXZI_X;IlP]l/PSE[ / Pn * Uz ( T )d

Pn * uz’l(X:]'l)

t
/ VV(XD)dr

gK(|t—s|+|t—s|1/2).

This rewrites
B[ X7 — XI|P] < K|t — "2,

for some positive K. Taking p = 3, Lemma @ follows. O

As a consequence of Lemma @, using a diagonal argument, we can extract a subsequence of
n — 0, still denoted n such that:

e p" converges almost everywhere on (0,7) x D and in L?((0,T),L*(0)) = L*((0,T) x O) as n
goes to 0, for any bounded open domain O to a function p°.

e P converges in P(C([0,T])) as n goes to 0 to a probability measure P°.
To let ) go to zero in (@), we finally need the following lemma.

Lemma 3.9. Consider both the compact and the non compact cases. Under Assumptions H and B,
the limit p° of p” is such that p¥ is the density of the time marginal of P° for almost all times t.

Moreover, the convergence of p to p° also holds in L' ((0,T) x D) and up to a second subsequence
O * pn,81V 0,01V
- converges almost everywhere on (0,T) x T to

extraction,
on * pit

pOT as n goes to zero.

Proof. We first prove that p" converges to p° in IL*((0,7) x D). It holds

/oT/D|pn_p0|:/OT/D(p7’—p°)+2/OT/D(pn_po),
ZQ/OT/D(P"—pO)*.

But p" converges almost everywhere to p°, and (p” — p®)~ is bounded from above by the integrable
function p°. Consequently, by the Lebesgue theorem, p” converges to p° in L'((0,T) x D).

A consequence of this convergence and of the boudedness of V' is that the sequences (p"’alv)
and (p™'),>0 converge in L' ((0,T) x T) respectively to p*%1" and p°*.

As a consequence, @, * p™* and @, * p7%1V also converge in L}((0,7) x T) to the same limits.

Therefore, up to the extraction of a second subsequence, we have pointwise convergence almost
* pn,BlV

n>0

everywhere for the denominator and the numerator of n o
Pn *ph

Now we show that p? is for almost all ¢ the density of the time marginal PP of P°. Since P"
converges to P° as n goes to 0 in P(Cr), then E [¥(X")] converges to E [¥(X?)] as n goes to 0, for

any bounded continuous functional ¥ on Cr. Taking a function of the form ¥(Y) = fOT 0(t)¥(Ye)dt

where W and 6 are bounded and continuous, one has

E[W(X")] = /OT 0(t) </Tde—1 \izp,’z) dt.
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Moreover, since p” converges to p° in L'((0,T) x T x R*™'), one has

T T
/ (0(15)/ \pr;’> dt —,—0 / 0(t) </ \ifp?) dt.
0 TxRd—1 0 TxRd—1

As a result,
T _ T ~
]EU H(t)\I/(X,?)dt] :/ 0(t) </ fop?) dt,
0 0 TxRd—1
so that, almost everywhere, p? is the time marginal of P°. |
We can now prove Theorem . We want to prove that P° is a solution to the martingale
problem defined in Definition . It is enough to show that for 0 < s; < ... < s, <5 < ¢, any

bounded continuous function g and any twice differentiable function ¥ with bounded derivatives,
one has fCT 9(Tsy,. .., xs,) (M —ms)dP® = 0.
Under the probability measure P”, the canonical process = € C([0,T7]) is such that

: t t o * Y (a)
7ﬁ=wm—wm—AAwmm+lVmewmm—A&wmi;JFQTm

is a martingale. We thus have
/ g(x‘Sl?“'JmSn)(m? _mg)dPn :0‘
Cr

Consequently, denoting 7 = (€, &)

<

/ g(x‘Sl?"'Jan)(mt_ms)dPO / g(x517"'7$5n)(m?_msﬁ)dPn
Cr Cr

+

[ g on] = mDAP — P
Cr

+ /(; g(xsu...,acsn)((mf—mg)—(mt—ms))dPo

Taking lim sup;_,, limsup,_,,, we obtain:

/ 9(Tsyy .y Ts, ) (me — ms)dPO‘ < lim sup lim sup / 9(Tsy, ...z, )(m] —mDdP"|. (3.9)
Cr n—0 n—0|Jcr
Indeed, g(zs,,...,xs,)(m] —m?) is a bounded continuous function of z, and P" converges to P°.

Moreover, we have

/c 9(zsy,-- .,1’%)((771;7 — mi’) — (me — ms))dPO

T
t SxphOAV 00V
= / / g(msl7« .. 7$52)81w(x7—) |:§01 71 — 0,1 :| (17}-) dr dPO(JZ)
Cr Js 7 * Pr pr
t _ 7,01V 0,0,V
Y * Pr Pr
SK/ / [ - 10,1 :| (v) p?-(y) dy dr.
s D P * Pr Dr

22



w01V 0,00V
This last integral goes to 0 as 7 goes to 0, since the function [‘P” Pr T — ”Toyll } converges almost
eaxplt pr
everywhere to 0 on [s,t] X D, and is bounded fom above by some positive constant. To conclude,

we estimate the right hand side in @)

/ 9(Tsy,. .z, )(m] —mD)AP"(z)
Cr

- / G arr . ) ((md — mT) — (m] — m?))dP"(x)

7,01V 7,01V
:/ ICR /8110 @ (‘p"*p N <t )(xi)deP"(x)
Son*p‘r 9077*1)7—

<K// oo * () gy xpd V(e
Cr

@y * p' (21) o5 * pit(ah)
<[]

on x PPV (y)  pq *pTMY ()

e * PP (y) i+ p7 (y)
This last integral tends to 0 as 1 and 7 go to 0, since p™' converges in L*((s,t) x T), and since
¢n *p”’alv(y) _ eV (y)

o+ PP @i * ()
Theorem

dP"(z)dr

PP (y)dydr.

is bounded and converges almost everywhere to 0. We then obtain

3.3 Another existence result for the nonlinear process

From Theorem @, we know that existence holds for (@) under some regularity assumptions on the
initial condition. Indeed, if P° is the limit of some subsequence of P", then the canonical process
defined on the canonical space (Cz, P°) is a solution to Equation (m) By approximating the initial
condition by regular densities, one can relax the regularity assumption.

Theorem 3.10. Consider both the compact and non compact cases. Under Assumption H, weak
existence holds for Equation (@) with given initial condition Xo. Moreover, for positive s, the law
of {Xs} has a density ps such that, for 0 <t < T,

p € L®((t,T7),L3(D)) [\ L((t,T), H' (D)).
Notice that, under the hypotheses of Theorem , we have no uniqueness result.

Proof. Theorem @ yields existence for (B) when the initial condition satisfies Assumption ﬂ To
prove existence without assumption on the initial condition, we use approximations of the initial
condition. Let (plg)keN be a sequence of probability densities satisfying AssumptionB and converging
to p° in P(D) (for example, this sequence can be obtained by convolution with a gaussian kernel).
From Theorem B.J, there exists a solution (X}) to Equation (EI) driven by a Brownian motion W
defined on some probability space (2, F,P), such that X% admits pf as density.

As in the proof of Lemma B.§, we can apply Kolmogorov criterion, so that the family of distribu-
tions P* of ({XJ})o<t<r is tight. Consequently, we can extract from (P¥) a converging subsequence
whose limit is denoted P. To prove that P satisfies the martingale problem defined in Definition
we need some estimate on the time marginals of P*, uniformly in k.

According to Lemma @ the law of {X/} has a density p{ such that p* lies in L°>°((0, T),L*(D))

and L2((0, T), H'(D)). Notice that the drift coefficient b¥(X;) = —VV(X:) + E[0:1V(Xe)|{ X} e

23



in Equation (@) is bounded, so that we can apply the Girsanov Theorem. Indeed, define

Lf:exp< N bE(XEyaw, ——/ o5 (XE)| ds)

Novikov’s Condition is satisfied for this process, so that the formula
Qi(A) = E[14Ly],

for A € 0(Ws)s<t, defines a probability distribution Qg on € such that, under Qg, the process

/ ( = / :
— ) + — b (
VAN t
is a Brownian motion. Denote fyf the law of {Xf} under Q. Notice that since, under Qx, X¥ is

the sum of v/2 times a Brownian motion at time ¢t and an independent random variable X¥, fyf has
a density with respect to the Lebesgue measure which is bounded by td% where K is a constant

not depending on k and t. As a result, for a given function v in L?(D), one has

[ v@ari@)| =[e[v (x£)]]
e beer]
( A wzdwaE[(Lf)*z]m

/4 |‘¢||]1,2(D)7

IN

where K is a positive constant, which does not depend on k since ‘bk‘ is bounded from above
by ||[VV|lee. Consequently, for any 0 < t < T, ||p¥|l.2(p) is bounded uniformly in k and in
s € [t,T]. Moreover, since p* is a solution to Equation (E) in the sense of Definition @ it holds,

from
() k2 k2 k2
Ollps iz (py < =IIVPslliz(p) + Kllps iz (o),

so that (p")ren is also bounded in L2((t,T), H'(D)). Adapting the proof of Lemma @, we find
that the family (p‘ko) is compact in L2((¢,T),1L%(0)) for any open subset O of D. By a diagonal
argument, and using the proof of Lemma we can thus construct a subsequence k, such that

o Pkn converges to a probability measure P° whose time marginals P, have a density p¢, for
all ¢t > 0,

e pFn converges almost everywhere on (0,7) x D and in L'((0,T) x D) to p°,

kn,01V p0,81V

0,1
p

N converges almost everywhere on (0,7") x D to

pk’ﬂvl
Then, adapting the proof of Theorem @, we see that P° solves the martingale problem. O

3.4 Rate of convergence

We are going to exhibit a control on the rate of the convergence of p” to p. Moreover, we give
17,01V 0%

W% and the biasing force A} = Pt
* >

an estimate of the difference between which is the

t
quantity one is interested in in practice.
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Theorem 3.11. Under Assumptionsﬂ and B, it holds, in the compact case,

1P = Plluss (0,12 7y + 12" = Plliz o,y m (ray) < K(a+ VE),
and, in the non compact case, under the additional Assumption

" = pllLoe (0.1 .L2(w)) + [IP" = PllLz(0,1).80 (wy) < K+ VE),

for some positive constant K not depending on « and €. Moreover, we have the following bound on
the estimation of the biasing force:

01V oV
©n * py Dy
cphl  pl K (O‘ + \/E) :
Pn * D to L2 (0,1 ,Loe (1))

Proof. We give the proof in the non compact case, the one in the compact case being very similar.
Similar calculations as in the proof of Theorem @ yield:

1 2 2 2
§3t||Pt =iz T 1IVPe = VD! i2(0) < Kllpt — DY lIL2 () [ VDe = VDY |12 (0) + KDt — DY 22 ()

E% 0,01V
p *Q
+ IVD! = Vpilliz(w) ||pe=— — P = ’
Py pt * $n L2 (w)
We now estimate the last term.
NV 7,01V
p P * Pt (o ,
Dt tl P n’ ¥n S‘ t (ptlv Oy * ! 1v)
Dy * On 2 pi L2 (w)
L2 (w)
01V
,0 1 1 p”l
+‘pt Py * P 1V< T 77;1) + || — ) PR
by Pn * Py L2 (w Pn * Py 2
(w) L2 (w)
) a
< Ipdingo | e (682 = 002
Py Lee (T)
1,01V 17,01V
Pn *P , 1 On * Py
+ Hpt”]L2(w) 17(7 ; ) (‘Pn n _pt) +{|(pt — p}) BECE!
D (pn * D Leo (T) n *py L2 (w)

From Lemma , pi is bounded from below uniformly in time. Using this together with the facts
that 9,V is bounded and p € L>=((0,T),L*(w)), one obtains

pdtY %Y ko o oV . .

Pt — P <K (Hpt1 — 0 * " lioe (ry + e — @ # Y [lLoo (n) + [Ipe —pl’llmz(m)-
by P *¥n L2 (w)

Consequently, we have to estimate ||p; — @, * p{"' [l (z) and [[p{"" — @y * p*”*Y [|Loe (). It holds,
for v € (0,1/2),

oV 01V NV 01V NV NV
Ilpe'" = @n* D los ey < llgn * (07 =07 Mleos oy + Dy — @n * 05" |lLos ()

< Ka+ [[p"Y = p® V|l ) + 1p7Y = @n # 7Y llLoe ()

oV ,01V 11/2+ "V , 01V 11/2— "V 1S0%
<K (a+ 7Y = oV I 62 =l i) + I = x5 ey

1/2 1/2— oV oV
<K (a + [lpe — p? IIH/l(ﬁllpt - p?l\mé(m”) + Pt = on xpyt [lLee(m)-
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Likewise, we have

1 1 1/2+ nl/2— 1 1
Pt = 0 * P} ey < Ko+ Kllpe — 7o) e = pE11A5n " + pE = @0 % Pi [l ().

To conclude, notice that, in view of Lemma @, p?lv lies in H* (T). Thus p?lv is Holder continuous
with exponent 1/2 and constant, C|[p2*" [lez 7y (see @7 Corollaire I1X.13]). Consequently, since 1. = 0
outside [—¢,¢],

9,V

— « 2V ()| = | NV (r)da . ?lvx—?lvcc—
P (@) = V@) = o [ o @de+ [ a6 @) =5 0= )

o+ 1 ocry [ ¢e(y)\/§dy>
T
@ " s s,V zps(y)dy)
T

< K (a+ Vellpellut w)) - (3.10)

e
e

The same inequality holds for p*

pt () — o * i (2)] < K (a+ VElpelle ) -

Gathering all the previous inequalities, we obtain,

1 2 2 2
§3t||Pt =iz T 1IVPe = VD! i2(0) < Kllpt — DY lIL2 () [ VDe = VDY |12 (0) + KDt — DY 22 ()
1/2 1/2—
+ K|lp: — p?HH{(I;HPt - p?HILé(T)”Wpt = Vi Iz (w)

+ K (o + Velpellur ) Ve — VP 12 (w)
+ Kal|Vp: = V! |12 (w)-

Consequently, from Young’s inequality,
2 2 2 2 2
Oellpe — P 2wy + IVD] — Vpelliz ) < K (IIpe — pP 12y + & + €llptllin ) -

Gronwall’s Lemma yields the first statement of Theorem 7 noticing that p lies in L2((0, T), H' (w)).
For the second statement, arguing as we did above, it holds that

7,01V YV
©n * Dy - Py - < K <Hp% . *p?’lHLw(T) + “¢n *p;},(hv _p?lvH )
Pn * Py pi Los (T) Lo° (T)
< K (a+ Velpella ey + lpe — 27l (w)) -
We finish the proof by squaring this inequality and then integrating. |

4 An interacting particle system approximation

In this section, we prove the convergence of the interacting particle system to the regularized non-

n,01V
%n*Pt’ 1
1
(Pn*P:”

linear processes, and we estimate the difference between the regularized biasing force and

its particle approximation.
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Theorem 4.1. Let T be a positive time. Under Assumptions H, E, E and ﬂ, the solution (th,n,N)NZl
of (E) with initial condition X, n = Xon converges to the solution X7, to (@) with initial
condition Xo n in the following sense: for all1 <n < N, and fore,a <1,

1 x
E| sup |X/, — X/ < eac?
|:te[0T ‘ b t’"'N|:| \/N
K being some constant not depending on o, € and N.
Moreover, one has

N
en xp™Y _ 2in=1 on(a! X:'r: NV (X] ton,N)
®n * pn,l Zn:l (pn( — XZ;L»N)

Notice that the the right hand side of (@) explodes when ¢ goes to 0 for a fixed value of N, so
that the size of € has to be chosen carefully depending on the value of N. We will also investigate
this point numerically in the next section.

To simplify notation, we omit the subscript N and the superscript n. We first establish the
following inequality:

E sup
€[0,T],z1€T

1 &
:| S ﬁ@af . (41)

Lemma 4.2. We have, for e,a < 1, and for any t in (0,7,

_ K t n,
Xt,n _Xt,n‘ S @A <|Xs,n - .sn‘ + Z ‘X.s m .sm‘) d3+K/ A Nd87

where K does not depend on «, € and t, and Af’N is defined by

APN = (

N
N Z Xsln - Xslm) ®n *pg’l()?sl,n)

Z (Xl = X200V (Xam) — o +p2 1Y (XL,)

> :

Proof. From the definition of X , and Xt,m we have

t
|Xon — Kol < ‘ / (VV(Xs,n) CUV(Xen)) ds

m= 1 SO’? X.sl n X.sl m)alv( Sym)ds _ /t ¥n *pg’alv()?sl,n)ds
Yt Pn(Xn — X1,0) o enxpl (XL, |

First, ¢ (VV(XS,,L) — VV(XS,,L)) ds’ is bounded from above by Kfot | Xsn — Xs,n|ds7 since VV is
Lipschitz continuous. Now, we decompose

’Zm 1% (Xin = Xim)OV(Xsim) 1 *p”alv(X1 )

N (XL, — XLm) o P (XL,)
| (X — XDV (Xem) Yy 0n(Kin = X3n)O1V (Xim)
- Yoy (X — XL.0) S en(XL, = XL)
Sy 00 (Kon = Xe)OV (Xam) oy 92V (Xi) (42)
Sy on(Xd = XL,0) on *pPH(XL,)




Using Assumptions I and H, the first term in the right hand-side of (@) can be bounded by
K (‘Xsyn - X’S,n’ + % Zﬁzl [ Xs,m — Xs’m|) , and the second term in the right hand side of (@)

ae?

can be bounded by KA™Y . O

Proof of Theorem D As a consequence of Lemma @, we get, for a,e <1,

B K T B 1 N B T N
sup [Xen—Xin| < —5 sup |Xs,n — Xs,n| + = Z sup | Xs,m — Xo,m| dt+K/ AP de.
te[0,T] ag® Jo  \seo,1 N s€[0,t] 0

m=1

Taking the expectation, and using the exchangeability of the couples (Xn, Xn)1<n<n, We get

E |: sup | Xe,n — Xtnl
te[0,T]

K [T -
<— E |: sup |Xon — Xsn
ag? [,

s€[0,t]

T

dt + K/ E [A;“N} dt.
0

By Gronwall’s lemma, one obtains

_ _K_p T N
E| sup [Xin — Xin|| < Keas? / E [A?’ } dt.
t€(0,T] o

To conclude, we estimate fOT E[A7N]dt. Let
O} = oy (Xt = Xim)OLV (Xem) — 0n x 0]V (Xi)

and ~ ~ ~
vt = ‘Pn(th,l - th,m) — ¥n *p?'l(th,l)«
We have, for t < T', using again the exchangeability of the couples (Xy, Xn)1<n<n,

[BAr™]" < B[(ap)]
N 2 N 2
g% E (%mz_l@") +E (%;w::l)
- S (slorer] s sferer]).

But the ®}* and ¥}" are centered for m > 2, and, for m # m/, ®* and <I>,’5”,, (as well as ¥}"
and \I/;”/) are independent conditionally on X; 1. Therefore the double products vanish, and, by
exchangeability

(E[(@)*] +E[(¥D)?]) +

(E [(®0)°] +E [(¥7)?]).

[EA?’N]ZgK(N_l) K

a2N? a2N?

But one has E [(®7)*] +E [(¥7)*] < Ke™? and E [(®;)?] +E [(¥;)?] < Ke?, and the first assertion
in Theorem follows.
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For the estimation of the force, adapting the proof of Lemma @7 we see that

on Y 1 S (@t = XL 8OV (X n)
’ 0 ot v ) a N 1 1
te(0.7]| @y * Py > ne1 (@t — Xt,n,N)
_ ~ ,
< E |:tes[%l?1“ N z 8077 th,n)(%V(Xt’n) ©n *p"? 1V( ) :|
1 h N
AL le” —nxplt(ah)|| + E | sup Xin — X
a |telo,1) Z‘p'l tn) = o xpl(T7) a2 N tE[O,T]nz::l| tin tn|
K
< eae?

Indeed, (cp,,(:cl — thyn)&V(Xt,n) — o * p"’alv(:tcl))n,g{l,,,j\;}7 as well as (4,07,(1:1 — thn) — on *
py ’1(371))”6{1'“ N}, are iid. centered random variables whose variance is bounded by 552, uniformly
in time. |

5 Numerical results

In this section we give some numerical simulations to illustrate our previous results. Here, the
parameter «, which was introduced to enable theoretical estimations, is taken to be 0.

Notice that the simulation used here is not exactly the one actually used in applications. In
particular, in those simulations time averages are used in order to smooth the problem : first the
equation on A¢ given in (@) can be replaced by

DAY (=) = T (BIF(X)[E(X) = 2] — A1)

which makes A; vary more smoothly. Second, one can use, in addition of the particle approximation,
an ergodic average for the computation of the conditional expectation in (ﬁl)

In order to accelerate the convergence, one can also use a selection mechanism that gives more
weight to particles located in less explored areas (see [E])

5.1 Efficiency of the ABF method

Let us introduce a low dimensional example to illustrate the efficiency of the ABF method and its
particle approximation.

In this first example, we simulated the particle approximation with 1000 particles, in the potential
defined for (z,y) in [—2,2] x R by

Viz,y) = be ™ 7" — pem @V _5e—@tD*=v® | g oxt | 0.2y4 (5.1)

and extended periodically in the = direction with period 4. The level sets of Vi are depicted on
Figure m

On Figure m we also plotted the position of the particles after 2000 iteration of an Euler-
Maruyama approximation of Equation (E) with a time step of 0.01. The value of the parameters
are ¢ = 0.01, 6 = 10 and N = 1000. On Figure E, we plotted the graph of the mean force (computed
by numerical integration, which is still possible due to the low dimensionnality), and the value of the
approximate mean force computed on a regular grid. The L'—distance between the two functions
is 6.93 x 102, while the L' —norm of the function A’ is 12.9.

29



Notice that without biasing force, one obtains a very poor sampling, since the particles do not
escape from the well they started in: see Figure E, where we plotted 200 independent simulations of
a Langevin dynamics (EI) using 2000 iterations of an Euler-Maruyama scheme of time step 0.01.

Figure 2: Particle approximation of the mean force. The smooth curve is the actual value of the mean
force, the rough one is the approximation.

On Figure H we show the L' distance between the actual value of the mean force A’ and its
approximation at time 20, obtained for one simulation of the system, as a function of the number of
particles used in the simulation. Using a least square regression, we find that the slope of the curve
is approximatively —0.59, which matches with the theoretical rate of N -2,
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Figure 3: 200 independent realizations of a Langevin dynamics at time ¢ = 20.

0.4+

T T T — T L T T T
2 50 150 400 1000 3000

Figure 4: Error as a function of N (logarithmic scale).
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5.2 Tuning of the parameters

In Theorem @, we showed that the particle approximation converges as € goes to 0 and N goes to
infinity, provided that € does not go to zero too fast compared to N. The practical difficulty that
one encounters to apply this result is to choose a good scaling for € in term of N.

On Figure [|, we can see the L' error between the mean force and its aproximation at time 20,
as a function of the parameter ¢, using N = 1500 particles.

1.09

0.8

0.6

0.4

0.2+

Figure 5: Error as a function of ¢.

Actually, for a fixed value of N, there is only a small range of values for e for which the error is
small.

First, the limit of the error as e goes to 0 does not even vanish as N tends to infinity. The reason
is that, since the particles interact with each other in a range of €, the number of particles which
interact with a given particle is of order e N. Hence, when € tends to 0 while N is fixed, the particles
cannot see each other. Therefore, the natural limit of the particle system in the limit ¢ — 0, N
fixed, should be a system of independent particles following the dynamics

dX; = (-VV(Xi) + 101 V(Xy)) dt + /28~ dW,.

Unfortunately, in the general case, the drift in the above dynamics is not obtained as the gradient
of a potential, so that no invariant measure for X; is known. This would consequently induce a non
vanishing bias in the estimation of A.

For example, for the potential V(z,y) = %(y — sin(272))?, one can prove that the dynamics
obtained by canceling the force on the reaction coordinate x, namely the couple ({X:},Y;) defined
by the dynamics

dX, = V2dW{,

dY; = (=Y; +sin(2rXy)) dt + 2dW2
converges in law to the couple (¢, [~ e™* sin(2m (£ + V2Ws))ds + G), where W is a standard Brow-
nian motion, £ is uniformly distributed on T, and G is a standard normal random variable, indepen-
dent of W. This is not the correct limit distribution, since the law of Y conditionned to the value
of {X} should be Gaussian, which is not the case here.
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For a large value of &, the behavior of the particle system can be really different from the expected
behavior of the dynamic (@) In the following example, the particles, instead of freely visiting the
x axis, keep stuck in the local minima they started in. Indeed, the large value of € made that the
biasing term is close to the mean of 01 V(Xi) on all particles, whose value is close to 0. Consequently,
the biasing force is not large enough to prevent the particle from being trapped in the local minima.

In the following example we considered the potential Vi defined in (EI), took ¢ = 1, and
simulated 200 particles during 2000 iterations of time step 0.01. The result can be seen on Figure E

Figure 6: Bad sampling due to a too large value of €.

5.3 Limitations of the ABF method

We now give another example to illustrate the limitations of the ABF method. We consider the
4-periodical potential (in the z-direction) defined for (z,y) in [-2,2] X R by

Va(a,y) = 3e ™% ~W=1/37 _3em#*~(w=5/3)" _5o~(@-1"—v* _g5~(@+1*=v’ | gopt 4 02>y —1/3)%,
(5.2)
whose level sets are depicted on Figure ﬁ This potential has been introduced in [E]

The potential V5 displays two deep minima approximately located at (£1,0). There is a maxi-
mum located at (0,0.5), so that there are two possible paths between the main minima. The first
one is a direct path meeting a saddle point approximately at (0, —0.3). The other path goes through
two saddle points at (£0.5,1) and a small minima at (0,1.5). Even if the first path is more direct
than the second one, the prefered path in low temperature regimes will be the second one, since its
energy barrier is smaller.

We simulated the particle approximation of the ABF method with N = 1000 particles, window
width € = 0.01, after 2000 iterations of an Euler-Maruyama scheme of time step 0.01, and plotted
the positions of the particles on Figure ﬂ

At the low temperature § = 10, the particles are expected to hop from one well to the other
mainly through the upper channel, which is not the case here. This is due to a bad choice of the
reaction coordinate. Indeed, the biasing force only acts in the z direction, so that a particle trapped
in the left side well will naturally escape through a horizontal path, and will take the lower channel.
As a result, the computation of the force is clearly biased, because of the poor sampling of the upper
channel, see Figure E, the L' —distance between the two functions is of 0.4.
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Figure 7: Poor sampling due to a bad choice of the reaction coordinate.

Figure 8: Biased evaluation of the biasing force due to a bad choice of the reaction coordinate. The
smooth curve is the value of the mean force. The rough curve is the approximation. Here, the approxi-
mation does not see the variations of the mean force around 0.

34



We still have convergence to the correct mean force, but at a slow rate, since the reaction
coordinate has not been chosen in an optimal way. Indeed, with the same parameters, but after
2.10% iterations, the result is much better, see Figures E and E The L!—distance between the mean
force and its approximation is of 0.15, while the function A’ has L'—norm 10.9.

Figure 10: Approximation of the free energy corresponding to Figure E The smooth curve is the free
energy, the rough one is the approximation.
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