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We study the first vanishing time for solutions of the Cauchy-Dirichlet problem to the semilinear 2m-order (m ≥ 1) parabolic equation u t + Lu + a(x)|u| q-1 u = 0, 0 < q < 1 with a(x) ≥ 0 bounded in the bounded domain Ω ⊂ R N . We prove that if N > 2m and

2m N ds < +∞, then the solution u vanishes in a finite time. When N = 2m, the condition becomes 1 0 s -1 (meas{x ∈ Ω : |a(x)| ≤ s}) (-ln meas{x ∈ Ω : |a(x)| ≤ s}) ds < +∞.

Introduction and main results

Let Ω ⊆ R N , N ≥ 1, be arbitrary bounded domain. In cylindrical domain Ω × (0, ∞) we consider the following Cauchy-Dirichlet problem u t + L(u) + a(x)f (u) = 0 in Ω × (0, ∞), f (u) = f 1 (u) := |u| q-1 u, 0 < q < 1, (1.1)

D α x u(x, t) = 0 on ∂Ω × (0, ∞), ∀α : |α| ≤ m -1, (1.2) u(x, 0) = u 0 (x) ∈ L 2 (Ω). (1.3)
Here L is a divergent differential 2m-order operator of the form :

L(u) = (-1) m |α|=m D α
x a α (x, u, D x u, . . . , D m x u), m 1, (1.4) with Caratheodory functions a α (x, ξ) (continuous with respect ξ and measurable with respect to x) satisfying sublinear growth condition:

(1.5) |a α (x, ξ)| c |γ|=m |ξ γ | ∀ ξ = {ξ γ } ∈ R M (m) , |α| m, x ∈ Ω; c = const,
where M (m) is the number of different multi-indices γ = (γ 1 , γ 2 , . . . γ N ) of the length |γ| := γ 1 +• • •+γ N m, and the absorptional potential a(x) is nonnegative, measurable, bounded function in Ω.

Our main condition on the operator L is the following coercivity condition:

(1.6) (L(v), v) := Ω |α|=m a α (x, v, . . . , D m x v)D α x v dx C Ω |D m x v| 2 dx ∀v ∈ W m,2 0 (Ω), C = const > 0,
where W m,2 0 (Ω) is the closure in the norm W m,2 0 (Ω) of the space C m 0 (Ω). Remark 1.1 Well known sufficient condition of (1.6) 

is |α|=m a α (x, ξ)ξ α C |γ|=m |ξ γ | 2 ∀ ξ = {ξ β } ∈ R M (m) , ∀ x ∈ Ω. (1.7)
Remark 1.2 In the linear case for operator L = |α|=|β|=m D α a αβ D β with constant coefficients a αβ as it is easy to check by using of Plancherel theorem, property (1.6) is guaranteed by ellipticity condition: 3) has the extinction in finite time (EFT) property if for arbitrary solution u, there exists some positive T 0 such that u(x, t) = 0 a.e. in Ω, ∀t ≥ T 0 .

Firstly EFT-property for simplest semilinear heat equation with strong absorption was observed by A. S. Kalashnikov [START_REF] Kalashnikov | The propagation of disturbances of nonlinear heat equation with absorption[END_REF]. Later mentioned property (conditions of occurence of extinction, estimates of extinction time, asymptotic of solution near to the extinction time and so on) was investigated for different classes of second order semilinear and quasilinear parabolic equations of diffusion-absorption type by many authors (see [START_REF] Kersner | Nonlinear heat conduction with absorption: space localization and extinction in finite time[END_REF][START_REF] Straughau | Instability, nonexistence and weighted energy methods in fluid dynamics and related theories[END_REF][START_REF] Payne | Improperly posed problems in partial differential equations[END_REF][START_REF] Knerr | The behaviour of the support of solution of the equation of nonlinear heatconduction with absorption in one dimension[END_REF][START_REF] Xu-Yan | Finite point extinction and continity of interfaces in nonlinear diffusion equations with strong absorption[END_REF][START_REF] Bandle | The formation of the dead core in parabolic reactiondiffusion problems[END_REF][START_REF] Friedman | Extinction properties of semilinear heat equation with strong absorption[END_REF]). F. Bernis [START_REF] Bernis | Finite speed of propagation and asymptotic rates for some nonlinear higher order parabolic equations with absorption[END_REF] proved the EFT-property for energy solutions to higher order semilinear and quasilinear parabolic equations with strong absorption. Dependence of extinction properties of energy solutions to mentioned higher order equations on local structure of initial function was studied in [START_REF] Shishkov | Dead cores and instantaneous compactification of the supports of energy solutions of quasilinear parabolic equations of arbitrary order[END_REF]. Extinction properties for second order semilinear parabolic equations of diffusion-absorption type with nondegenerate (x, t)dependent absorptional potential was studied in [START_REF] Kalashnikov | Instantaneous shinking of the support for solutions to certain parabolic equations and systems[END_REF][START_REF] Kersner | The nonlinear heat equation with absorption: effect of vaicable coefficients[END_REF][START_REF] Li | Qualitative properties for solutions of semilinear heat equations with strong absorption[END_REF][START_REF] Li | Qualitative properties for solutions to semilinear heat equations with singular initial data[END_REF].

V. Kondratiev, L. Veron [START_REF] Kondratiev | Asymptotic behaviour of solutions of some nonlinear parabolic or elliptic equations[END_REF] firstly initiated the study of EFT-property for second order equation (1.1) (m = 1) in the case of degenerate absorptional potential a(x):

(1.9) inf{a(x) : x ∈ Ω} = 0.

It happens that occurence of mentioned property depends essentially on the structure of the set of degeneration and on the behaviour of potential a(x) in the neighbourhood of this set. They in [START_REF] Kondratiev | Asymptotic behaviour of solutions of some nonlinear parabolic or elliptic equations[END_REF] considered homogeneous Neumann problem for second order equation (1.1) (m = 1) and proved the following general sufficient condition for EFTproperty:

(1.10)

∞ i=1 µ -1 i < ∞, µ k := inf Ω N i,j=1 (a ij v x i v x j + 2 k a(x)v 2 )dx : v ∈ W 1,2 (Ω), Ω v 2 dx = 1 , ∀ k 1.
Method from [START_REF] Kondratiev | Asymptotic behaviour of solutions of some nonlinear parabolic or elliptic equations[END_REF] (semiclassical or KV-method) was developed in [START_REF] Belaud | Long-time vanishing properties of solutions of sublinear parabolic equations and semi-classical limit of Schrödinger operator[END_REF] and the following explicit sufficient condition of EFT-property for Dirichlet and Neumann boundary problem for second order equation (1.1) was established:

(1.11) ln a(x) -1 ∈ L p (Ω) for some p > N 2 .
As a consequence, if {0} ∈ Ω, then arbitrary potential (1.11) by arbitrary α < 2. On the other hand, for potential a α (x) with α > 2 EFT-property fails [START_REF] Belaud | Long-time vanishing properties of solutions of sublinear parabolic equations and semi-classical limit of Schrödinger operator[END_REF].

(1.12) a(x) : a(x) ≥ a α (|x|) := exp(- 1 |x| α ) ∀x ∈ Ω satisfies condition
In [START_REF] Belaud | Long-time extinction of solutions of some semilinear parabolic equations[END_REF] there was elaborated the adaptation of local energy method from [START_REF] Kersner | Instantaneous shrinking of the support of energy solutions[END_REF][START_REF] Shishkov | Dead cores and instantaneous compactification of the supports of energy solutions of quasilinear parabolic equations of arbitrary order[END_REF] to the study of extinction properties of energy solution to second order parabolic equations with radial degenerate absorptional potential. As result the following sharp Dini-like sufficient condition of EFT-property was obtained:

(1.13) a(x) ≥ exp(- ω(|x|) |x| 2 ), where ω(s) > 0 ∀ s > 0 : ω(0) = 0, 1 0 ω(s) s ds < ∞.
The drawback of using regularizing effects does not enable the KV-method to be extended to higher order operators but for small dimensions (continuous injection of W m,2 (Ω) into L ∞ (Ω)). Moreover, the the local energy estimate method from [START_REF] Belaud | Long-time extinction of solutions of some semilinear parabolic equations[END_REF] is developed till now for radial potentials a(|x|) only. These reasons lead us to construct some new variant of semiclassical method. On the contrary with [START_REF] Kondratiev | Asymptotic behaviour of solutions of some nonlinear parabolic or elliptic equations[END_REF], we consider a family of first eigenvalues of non-linear Schrödinger operator directly connected with equation (1.1), instead of eigenvalues µ i (1.10) of auxiliary linear Schrödinger operator. As a consequence, we do not need regularizing effects for solutions of problem (1.1)- (1.3). But this means also that we can not use Lieb-Thirring formula [START_REF] Lieb | Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relations to Sobolev Inequalities[END_REF] to estimate the first eigenvalue. Therefore, we provide estimations of eigenvalues thanks to suitable Sobolev embedding inequalities.

Thus let us denote for arbitrary potential a(x) 0 the function

(1.14) M a (s) := meas{x ∈ Ω : a(x) ≤ s}.
Then main assumptions on the degeneration of a(x) are:

1 0 s -1 M a (s) θ ds < +∞, θ = min 2m N , 1 , N = 2m, (1.15) and 1 0 s -1 M a (s) (-ln M a (s)) ds < +∞ for N = 2m. (1.16)
For a function a(x) satisfying (1.15) or (1.16) the set where it takes small values is small enough. For instance, if a(x) ≥ γ > 0 then M a (s) = 0 ∀ s < γ and, as consequence, integrals are finite. On the contrary, if a(x) = 0 on a set of positive measure, integrals becomes infinite. Additionally, for second order equation (m = 1), we improved the KV-method for the Dirichlet problem and the results holds as follows: The general principle is to find a lower bound for the function

Definition 1.2 A function u belonging to the space C([0, ∞), L 2 (Ω)) L 2 loc ([0, ∞), W m,2 0 (Ω)) is a weak solution of problem (1.1)-(1.3) if initial condition (1.3) holds and if for any ζ ∈ L 2 loc ([0, +∞), W m,2 0 (Ω)), there holds T 0   u t (t, .), ζ(t, .) + Ω   |α|=m a α (x, u, . . . , D m x u)D α x ζ + a(x)|u| q-1 uζ   dx   dt = 0, (1.
U (t) := Ω (|D m
x u| 2 + a(x)|u| 1+q )dx, with the help of the function

(2.1) λ 1 (h) = inf Ω (|D m x v| 2 + a(x)|v| 1+q )dx, v ∈ W m,2 0 (Ω), ||v|| 2 L 2 (Ω) = h
The key-stone of this section is the following :

Proposition 2.1 If (2.
2)

1 0 1 λ 1 (h) dh < +∞,
then all solutions of problem (1.1)-(1.3) vanish in a finite time and in this case,

(2.3) T ≤ 1 2 ||u 0 || 2 L 2 (Ω) 0 1 λ 1 (h)
dh.

Proof: Using ζ = u in (1.17) gives for all 0 ≤ s < t, t s   u τ (τ, .), u(τ, .)

+ Ω   |α|=m a α (x, u, . . . , D m x u)D α x u(x, τ ) + a(x)|u| q+1   dx   dτ = 0,
which implies by formula of integration by parts (see [START_REF] Bernis | Finite speed of propagation and asymptotic rates for some nonlinear higher order parabolic equations with absorption[END_REF]),

1 2 Ω |u(t, .)| 2 -|u(0, .)| 2 dx+ t 0 Ω   |α|=m a α (x, u, . . . , D m x u)D α x u + a(x)|u| q+1   dxdτ = 0.
But the second term is absolutely continuous with respect to time. Therefore the first term is also absolutely continous and has derivative a.e. with respect to time which leads to

1 2 d dt (||u|| 2 L 2 (Ω) ) + Ω   |α|=m a α (x, u, . . . , D m x u)D α x u + a(x)|u| q+1   dx = 0.
Clearly, from the property (1.6) and the definition (2.1) of λ 1 (h), a.e.,

c Ω   |α|=m a α (x, u, . . . , D m x u)D α x u + a(x)|u| q+1   dx ≥ λ 1 (||u(., t)|| 2 L 2 (Ω) ),
where c = max(C, 1), C from (1.6). As a consequence, a.e., 1 2

d dt (||u(., t)|| 2 L 2 (Ω) ) + cλ 1 (||u(., t)|| 2 L 2 (Ω) ) ≤ 0, c > 0.
We have an ordinary differential inequality for the function y(t) = ||u(., t)|| 2 L 2 (Ω) . Therefore the end of the proof is straightforward by solving of obtained differential inequality. Now, from Proposition 2.1, we need an estimate for λ 1 (h) from below. For this purpose, rough estimates of v h in L ∞ -norm and λ 1 (h) by above are indispensable. But (1.15) (or (1.16)) does not give directly an a-priori estimate of λ 1 (h). It is why we use a trick. Suppose that O belongs to Ω. We define

(2.4) a(x) := a(x) exp - 1 |x| α , α > 0.
In a same way,

λ 1 (h) = inf Ω (|D m x v| 2 + a(x)|v| 1+q ) dx, v ∈ W m,2 0 (Ω), ||v|| 2 L 2 (Ω) = h . Since 0 ≤ a(x) ≤ a(x), λ 1 (h) ≤ λ 1 (h) for all h > 0. Hence, 1 0 1 λ 1 (h) dh ≤ 1 0 1 λ 1 (h) dh. So, if 1 0 1 λ 1 (h)
dh < +∞, we get a finite extinction time.

For N = 2m, if α > 0 is small enough, x → exp -1 |x| α satisfies (1.15) by Proposition 4.2. By Theorem 4.1, both a(x) and a(x) satisfy the same condition (1.15) but a(x) holds the a-priori estimate [START_REF] Lieb | Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relations to Sobolev Inequalities[END_REF]. In a same way, by Theorem 4.1, both a(x) and a(x) satisfy the same condition (1.16) but a(x) holds also estimate (2.5). With estimate (2.5), we get Lemma 2.1 There exists some C > 0 such that for h > 0 small enough, (2.5) implies

(2.5) a(x) ≤ C exp - 1 |x| α . For N = 2m, by Proposition 4.4, if α > 0 is small enough, x → exp - 1 |x| α satisfies (1.
(2.6) λ 1 (h) ≤ C h (-ln h) 2m α .
Proof: The proof is an adaptation of [START_REF] Belaud | Asymptotic estimates for a variational problem involving a quasilinear operator in the semi-classical limit[END_REF]

. Let v ∈ C ∞ 0 (B) (B is the unit-ball of R N ) with v ≥ 0 and ||v|| L 2 (Ω) = 1, so by homogeneity, λ 1 (h) ≤ h Ω |D m v| 2 dx + h 1+q 2 Ω a(x)|v(x)| 1+q dx. Let 0 < r ≤ r 0 . We set v r (x) = v x r . Then, Ω v 2 r (x) dx = Br v 2 r (x) dx = Br v 2 x r dx = r N B v 2 (y) dy = r N , with a translation. As a consequence, v r r N 2 L 2 (Ω)
= 1. On the other hand,

D α x v r (x) = r -|α| D α ξ v x r
. As a consequence, there exists C > 0 such that

Ω |D m x v r | 2 dx = Br |D m x v r | 2 dx ≤ r N C r 2m .
Then by using

v r r N 2
in the definition of λ 1 (h),

λ 1 (h) ≤ C h r 2m + h 1+q 2 r N r N (1+q) 2 B a(ry)|v(y)| 1+q dy. If we estimate B a(ry)|v(y)| 1+q dy by C exp - 1 r α B |v(y)| 1+q dy, then λ 1 (h) ≤ C ′ h r 2m + h 1+q 2 r N (1-q) 2 exp - 1 r α .
To balance both terms, we choose r = 1 (-ln h)

1 α
. By substituting r,

λ 1 (h) ≤ C h (-ln h) 2m α + h 1+q 2 +1 1 (-ln h) N(1-q) 2α ≤ C ′ h (-ln h) 2m α ,
for h small enough which completes the proof.

We introduce the functional

(2.7) F (v) = Ω (|D m v| 2 + a(x)|v| 1+q ) dx, for all v ∈ W m,2 0 (Ω). Hence, there exists for all h > 0, a function v h ∈ W m,2 0 (Ω) such that (2.8) || v h || 2 L 2 (Ω) = h and λ 1 (h) ≤ F ( v h ) ≤ 2 λ 1 (h),
since λ 1 (h) > 0. We prove Theorem 1.1 by estimating λ 1 (h) from below. First, we deal with N = 2m.

Proposition 2.2 Under assumptions (1.4), (1.7) and (1.15), for N = 2m, there exist C > 0, C ′ > 0 and η > 0 such that for h small enough,

(2.9) C ≤ λ 1 (h) h meas C ′ h η ≥ a(x) θ , θ = min 2m N , 1 . Proof: Let v ∈ W m,2 0 (Ω) with ||v|| L 2 (Ω) > 0. From Definition (2.7) of functional F , it follows (2.10) Ω |D m v| 2 dx dx = {x:|v|>0} |v| 2 H(v, x) dx, H(v, x) = F (v) ||v|| 2 L 2 (Ω) - a(x) |v| 1-q , which yields (2.11) C 1 ||D m x v|| 2 L 2 (Ω) ≤ {x:|v|>0} |v| 2 H(v, x) + dx, H(v, x) + := max(0, H(v, x)).
Since v ∈ W m,2 0 (Ω), from the Sobolev imbedding, it follows :

(2.12)

||v|| 2 L p * (Ω) ≤ C 3 D m x v 2 L 2 (Ω) ,
where constant C 3 does not depend on v and p * is defined by

(2.13) p * = 2N N -2m if N > 2m +∞ if N < 2m .
Combining estimate (2.12) and equality (2.10) we obtain:

C 4 ||v|| 2 L p * (Ω) ≤ {x:|v|>0} |v| 2 H(v, x) + dx,
Using Hölder's inequality for estimating term in right-hand side of last inequality, we obtain

C 4 ||v|| 2 L p * (Ω) ≤ ||v|| 2 L p * (Ω) {x:|v|>0} H(v, x) + p * p * -2 dx p * -2 p * , where p * p * -2 = p * -2 p * = 1 if p * = +∞. This last inequality yields to 0 < C 4 ≤ {x:|v|>0} H(v, x) + p * p * -2 dx p * -2 p *
.

where H is from (2.10). From this estimate follows easily

(2.14) 0 < C 4 F (v) ||v|| 2 L 2 (Ω) meas {x : |v| > 0} {H(v, x) ≥ 0} p * -2 p * .
As a consequence, we obtain

C 4 ≤ F (v) ||v|| 2 L 2 (Ω) meas {x : |v| > 0} {H(v, x) ≥ 0} 2m N , N -2m > 0, C 4 ≤ F (v) ||v|| 2 L 2 (Ω) meas {x : |v| > 0} {H(v, x) ≥ 0} , N -2m < 0. Therefore, for v = v h , (2.15) C 4 ≤ 2 λ 1 (h) h [meas {x : Γ(h, x) ≥ 0}] 2m N , N -2m > 0, where Γ(h, x) = 2 λ 1 (h) h | v h | 1-q -a(x), C 4 ≤ 2 λ 1 (h) h [meas {x : Γ(h, x) ≥ 0}] , N -2m < 0. Now, we have to estimate | v h | 1-q from above. By definition, we know that || v h || 2 L 2 = h so for all ε > 0, Ω v 2 h dx ≥ {x:e v 2 h ≥ε} v 2 h dx ≥ ε meas{x : v 2 h ≥ ε}.
By setting ε = h γ with 0 < γ < 1, we get

(2.16) h 1-γ ≥ meas{x : v 2 h ≥ h γ } = meas {x : R(h, x) ≥ 0} , R(h, x) = | v h | 1-q -h γ(1-q) 2
.

With this inequality, it follows

meas {x : Γ(h, x) ≥ 0} = meas {x : Γ(h, x) ≥ 0} {x : R(h, x) ≥ 0} +meas {x : Γ(h, x) ≥ 0} {x : R(h, x) < 0} .
But, on one hand,

meas {x : Γ(h, x) ≥ 0} {x : R(h, x) ≥ 0} ≤ meas {x : R(h, x) ≥ 0} ≤ h 1-γ ,
and on the other hand,

meas {x : Γ(h, x) ≥ 0} {x : R(h, x) < 0} ≤ meas x : 2 λ 1 (h) h h γ(1-q) 2 ≥ a(x) .
As a consequence, we have

(2.17) meas {x : Γ(h, x) ≥ 0} ≤ h 1-γ + meas x : 2 λ 1 (h) h h γ(1-q) 2 ≥ a(x) .
Hence,

C 4 ≤ 2 λ 1 (h) h N 2m h 1-γ + meas x : 2 λ 1 (h) h h γ(1-q) 2 ≥ a(x) , N -2m > 0. From (2.6), λ 1 (h) h ≤ C (-ln h) 2m
α which yields for h small enough,

2 λ 1 (h) h N 2m h 1-γ ≤ 3C h 1-γ (-ln h) N α → 0,
when h → 0. So there exists C 5 > 0 such that for h small enough,

C 5 ≤ 2 λ 1 (h) h N 2m meas x : 2 λ 1 (h) h h γ(1-q) 2 ≥ a(x) , N -2m > 0.
Since γ > 0, there exists C ′ > 0 and η > 0 such that for h small enough,

2 λ 1 (h) h h γ(1-q) 2 ≤ C ′ h η . Consequently, (2.18) C 5 ≤ 2 λ 1 (h) h N 2m meas x : C ′ h η ≥ a(x) .
If N -2m < 0, we have in a very similar way,

(2.19) C 5 ≤ 2 λ 1 (h) h meas x : C ′ h η ≥ a(x) ,
which leads to the conclusion.

Proof of Theorem 1.1 for N = 2m. Clearly, from (2.9),

1 0 dh λ 1 (h) ≤ 1 0 meas {x : C ′ h η ≥ a(x)} θ h dh,
where θ is from (1.15). If we set s = C ′ h η , ds s = η dh h and so

1 0 dh λ 1 (h) ≤ 1 η C ′ 0 meas {x : s ≥ a(x)} θ s ds. Since 1 0 dh λ 1 (h) ≤ 1 0 dh λ 1 (h) ,
we get the conclusion thank to Proposition 2.1.

Proposition 2.3 Under assumptions (1.4), (1.7) and (1.16), for N = 2m, there exists C > 0 such that for h small enough,

(2.20) C ≤ λ 1 (h) h   B -1 meas x : | v h | 1-q 2 λ 1 (h) h ≥ a(x) -1   -1
.

where B(s) = (s + 1) ln(s + 1)s is the complementary function of B(t) = e t -1t in the sense of Orlicz space (see [START_REF] Kranosel | Convex Functions and Orlicz spaces[END_REF]).

Proof:

Let v ∈ W m,2 0 (Ω) with ||v|| L 2 (Ω) > 0.
We return to the functional F from (2.7) again. Let ṽh ∈ W m,2 0 (Ω) is from (2.8). Due to optimal imbedding (see [27]) the following estimate holds:

(2.21) || v h || L A (Ω) ≤ C 3 ||D m x v h || 2 L 2 (Ω) ,
where L A (Ω) is the Orlicz space related to A(t) = exp t p p-1

(see [START_REF] Kranosel | Convex Functions and Orlicz spaces[END_REF]) and C 3 is a positive constant which does not depend on v h . Thus, we deduce from (2.21) and (2.11)

for v = v h : C 4 || v h || 2 L A (Ω) ≤ {x:|e v h |>0} | v h | 2 Γ(h, x) | v h | 1-q dx,
where Γ(h, x) is from (2.15). So,

C 4 || v h || 2 L A (Ω) ≤ {x:|e v h |>0} | v h | 2 Γ(h, x) | v h | 1-q + dx.
By setting B(t) = e t -1t and using the generalized version of Hölder's inequality (4.1),

C 4 || v h || 2 L A (Ω) ≤ || v 2 h || L B ({x:|e v h |>0}) Γ(h, x) | v h | 1-q + L b B({x:|e v h |>0})
.

By Proposition 4.5, || v h || 2 L A (Ω) = || v 2 h || L M (Ω) . But B(t) = e t -1 -t ≤ e t -1 = A( √ t) = M (t) implies by Proposition 4.6, || v 2 h || L B (Ω) ≤ || v 2 h || L M (Ω)
and so,

C 4 || v 2 h || L B (Ω) ≤ || v 2 h || L B ({x:|e v h |>0}) Γ(h, x) | v h | 1-q + L b B({x:|e v h |>0}) . Furthermore, || v 2 h || L B ({x:|e v h |>0}) ≤ || v 2 h || L B (Ω)
and as a consequence,

C 4 ≤ Γ(h, x) | v h | 1-q + L b B({x:|e v h |>0})
.

We have

Γ(h, x) | v h | 1-q + L b B({x:|e v h |>0}) = Γ(h, x) | v h | 1-q + L b B({x:|e v h |>0} T {x:Γ(h,x)≥0}) ≤ Γ(h, x) | v h | 1-q + L b B({x:Γ(h,x)≥0})
, by Proposition 4.7. With Proposition 4.8, we get

C 4 ≤ Γ(h, x) | v h | 1-q + L ∞ (E) B -1 (meas {x : Γ(h, x) ≥ 0}) -1 -1 .
We have

Γ(h, x) | v h | 1-q + L ∞ (E) ≤ λ 1 (h) h , so C 4 ≤ 2 λ 1 (h) h B -1 (meas {x : Γ(h, x) ≥ 0}) -1 -1 ,
when h is small enough which leads to the conclusion. , i.e., D -1 (s) ∼ s C 0 ln s . So there exists some positive K such that for

s large enough, B -1 (s) ≥ D -1 (s) ≥ K s ln s
. From (2.20), for h small enough,

C ≤ λ 1 (h) h (-ln meas {x : Γ(h, x) ≥ 0}) (meas {x : Γ(h, x) ≥ 0}) .
If 0 < γ < 1 then estimate (2.17) is true, i.e.,

meas {x : Γ(h, x) ≥ 0} ≤ h 1-γ + meas x : 2 λ 1 (h) h h γ(1-q) 2 ≥ a(x) ,
which implies together with estimate (2.6) that meas {x : Γ(h, x) ≥ 0} → 0 when h → 0.

If for all positive s, we set

(2.22) E(s) = s(-ln s), then C ≤ λ 1 (h) h E (meas {x : Γ(h, x) ≥ 0}).
The function E is increasing in a neighbourhood of zero so,

E -1 Ch λ 1 (h) ≤ meas {x : Γ(h, x) ≥ 0} .
By (2.17),

E -1 Ch λ 1 (h) ≤ h 1-γ + meas x : 2 λ 1 (h) h h γ(1-q) 2 ≥ a(x) , i.e., 1 ≤ h 1-γ E -1 Ch( λ 1 (h)) -1 + meas x : 2 e λ 1 (h) h h γ(1-q) 2 ≥ a(x) E -1 Ch( λ 1 (h)) -1
.

But from (2.6),

h 1-γ E -1 Ch( λ 1 (h)) -1 ≤ h 1-γ E -1 C ′′ (-ln h) -2m α → 0, since when s → 0, E -1 (s) ∼ s -ln s
. Consequently, for h small enough,

E -1 Ch( λ 1 (h)) -1 ≤ 2 meas x : 2 λ 1 (h) h h γ(1-q) 2 ≥ a(x) .
Always from (2.6), there exist C ′ > 0 and η > 0 such that,

meas x : 2 λ 1 (h) h h γ(1-q) 2 ≥ a(x) ≤ meas x : C ′ h η ≥ a(x) , which gives C ≤ λ 1 (h) h E 2 meas x : C ′ h η ≥ a(x) .
We easily deduce that there exist some K > 0 and δ > 0 such that

K δ 0 dh λ 1 (h) ≤ δ 0 meas x : C ′ h η ≥ a(x) -ln meas x : C ′ h η ≥ a(x) dh h .
If we set s = C ′ h η , ds s = η dh h and so

K δ 0 dh λ 1 (h) ≤ 1 η δC ′ 0 (meas {x : s ≥ a(x)}) (-ln (meas {x : s ≥ a(x)})) ds s .
Since

1 0 dh λ 1 (h) ≤ 1 0 dh λ 1 (h)
, we get the conclusion thank to Proposition 2.1.

We can derive some useful corollaries. Corollary 2.2 Let f : (0, +∞) → (0, +∞) be a continuous nonincreasing function such that f (a(x)) ∈ L 1 (Ω) and

1 0 s -1 f (s) -1 ln f (s) ds < +∞. (2.23)
Then, under assumptions (1.4) and 1.7, for N = 2m, all solutions of problem (1.1)-(1.3) vanish in a finite time.

Proof: The function f has a limit when t tends to zero. By (2.23), this limit is +∞. If s > 0 is small enough, as in the previous proof,

meas {x : a(x) ≤ s} ≤ f (s) -1 Ω f (a(x)) dx.
We set E(s) = s(-ln s) for all positive s and since E is an increasing function in a neighbourhood of zero, there exists some δ > 0 such that

δ 0 s -1 E (M a (s)) ds ≤ δ 0 s -1 E f (s) -1 Ω f (a(x)) dx ds, which leads to δ 0 s -1 E (M a (s)) ds ≤ Ω f (a(x)) dx δ 0 s -1 f (s) -1 ln f (s) -ln Ω f (a(x)) dx ds.
But, as f (s) → +∞ when s → 0, there exists some C > 0 such that,

δ 0 s -1 E (M a (s)) ds ≤ C δ 0 s -1 f (s) -1 ln f (s) ds,
and we conclude with Theorem 1.1.

There is a balance between both assumptions, i.e., f has to get the right behaviour. For instance, in [START_REF] Belaud | Long-time vanishing properties of solutions of sublinear parabolic equations and semi-classical limit of Schrödinger operator[END_REF], they prove that for m = 1, We can also find a Dini-like condition in the radial case in the spirit of [START_REF] Belaud | Long-time extinction of solutions of some semilinear parabolic equations[END_REF]. Proof: For s > 0, meas{x : a(x) ≤ s} = meas x :

ω(|x|) |x| N θ ≥ -ln s . We take x such that ω(|x|) |x| N θ ≥ -ln s. Since ω is bounded, x satisfies ω 0 |x| N θ ≥ -ln s which leads to |x| ≤ ω 0 -ln s 1 Nθ . By monotonicity of ω, ω(|x|) ≤ ω ω 0 -ln s 1 Nθ . Hence, meas{x : a(x) ≤ s} ≤ meas x : |x| N θ ≤ ω ω 0 -ln s 1 Nθ (-ln s) -1 . But meas x : |x| N θ ≤ ω ω 0 -ln s 1 Nθ (-ln s) -1 = C N ω ω 0 -ln s 1 Nθ (-ln s) -1 1 θ . So, meas{x : a(x) ≤ s} θ ≤ C θ N ω ω 0 -ln s 1 min(2m,N) (-ln s) -1 ,
which yields

1 e 0 s -1 M a (s) θ ds ≤ C θ N 1 e 0 s -1 (-ln s) -1 ω ω 0 -ln s 1 Nθ ds.
By the change of variable τ = ω 0 (-ln s) -1 , that is, τ -1 dτ = (-ln s) -1 s -1 ds,

1 e 0 s -1 M a (s) θ ds ≤ C θ N ω 0 0 ω τ 1 Nθ τ -1 dτ.
By the last change of variable s = τ

1 , that is, s -1 ds = 1 N θ τ -1 dτ , 1 e 0 s -1 M a (s) θ ds ≤ N θ C θ N ω 1 Nθ 0 0 s -1 ω(s) ds.
Theorem 1.1 completes the proof. 

Proof:

For s > 0, meas{x : a(x) ≤ s} = meas x : ω(|x|) |x| N ≥ -ln s . We take x such that ω(|x|) |x| N ≥ -ln s. Since ω is bounded, x satisfies ω 0 |x| N ≥ -ln s which leads to |x| ≤ ω 0 -ln s 1 N . By monotonicity of ω, ω(|x|) ≤ ω ω 0 -ln s 1 N . Hence, meas{x : a(x) ≤ s} ≤ meas x : |x| N ≤ ω ω 0 -ln s 1 N (-ln s) -1 . But meas x : |x| N ≤ ω w 0 -ln s 1 N (-ln s) -1 = C N ω ω 0 -ln s 1 N (-ln s) -1 . So, meas{x : a(x) ≤ s} ≤ C N ω ω 0 -ln s 1 N (-ln s) -1 . If we set E(s) = s(-ln s) for all positive s, we get E (M a (s)) ≤ E C N ω ω 0 -ln s 1 N (-ln s) -1 for s small
enough since E is an increasing function in a neighbourhood of zero. As a consequence, there exists some δ > 0 such that

δ 0 s -1 E (M a (s)) ds ≤ δ 0 s -1 E C N ω ω -ln s 1 N (-ln s) -1 ds, which gives δ 0 s -1 E (M a (s)) ds ≤ δ 0 C N s ω ω 0 -ln s 1 N (-ln s) -1 -ln C N -ln ω ω 0 -ln s 1 N
+ ln (-ln s) ds.

But ω satisfies (2.25) which means that by monotonicity, ω(s) → 0 when s → 0. So for

s small enough, -ln C N -ln ω ω 0 -ln s 1 N + ln (-ln s) ≤ 2 -ln ω ω 0 -ln s 1 N
+ ln (-ln s) .

Consequently, for some 0 < δ ′ < δ, we get

δ ′ 0 s -1 E (M a (s)) ds ≤ 2 C N δ ′ 0 ω ω 0 -ln s 1 N -ln ω ω 0 -ln s 1 N
+ ln (-ln s) (-s ln s) -1 ds.

By the change of variable τ = ω 0 (-ln s) -1 , that is, τ -1 dτ = (-s ln s) -1 ds,

δ ′ 0 s -1 E (M a (s)) ds ≤ C N ω 0 -ln δ ′ 0 ω τ 1 N -ln ω τ 1 N -ln τ + ln ω 0 τ -1 dτ.
Hence, there exists δ ′′ < δ ′ such that the following estimate holds :

δ ′′ 0 s -1 E (M a (s)) ds ≤ 3N C N ω 0 -ln δ ′′ 0 ω τ 1 N -ln ω τ 1 N -ln τ 1 N τ -1 dτ.

By the last change of variable

s = τ 1 N , that is, s -1 ds = 1 N τ -1 dτ , δ ′′ 0 s -1 E (M a (s)) ds ≤ 3N 2 C N " ω 0 -ln δ ′′ " 1 N 0 s -1 ω(s) (-ln (ω(s)) -ln s) ds.
This time also, Theorem 1.1 completes the proof.

Second order case

Here we prove Theorem 1.2. Our proof is a detailed analysis of sufficient condition of extinction of solutions obtained in [START_REF] Belaud | Long-time vanishing properties of solutions of sublinear parabolic equations and semi-classical limit of Schrödinger operator[END_REF] (see condition (4.2) in Theorem 4.2 from Appendix). They introduce the quantity

(3.1) λ 1,2 (h) = inf Ω |∇v| 2 + 1 h 2 a(x) v 2 dx : v ∈ W 1,2 0 (Ω), Ω v 2 dx = 1 , h > 0.
As in the previous section, for α > 0 small enough, changing function a into

a(x) = a(x) exp - 1 |x| α ,
does not change (1.18) but by defining in a very similar way

λ 1,2 (h) = inf Ω |∇v| 2 + 1 h 2 a(x) v 2 dx : v ∈ W 1,2 0 (Ω) ,
we have the a-priori estimate by Corollary 2.23 in [START_REF] Belaud | Asymptotic estimates for a variational problem involving a quasilinear operator in the semi-classical limit[END_REF],

(3.2) λ 1,2 (h) ≤ C (-ln h) 2 α .
Since λ 1,2 (h) ≤ λ 1,2 (h) and t → ln t t is a decreasing function for t large enough, condition (4.2) from Theorem 4.2 (Appendix) is implied by

(3.3) ∞ n=1 1 λ 1,2 α 1-q 2 n ln λ 1,2 α 1-q 2 n + ln α n α n+1 + 1 < +∞,
As in [START_REF] Belaud | Long-time vanishing properties of solutions of sublinear parabolic equations and semi-classical limit of Schrödinger operator[END_REF], we transform condition (3.3) into a simpler form. The following theorem is an adaptation of Theorem 2.3 in [START_REF] Belaud | Long-time vanishing properties of solutions of sublinear parabolic equations and semi-classical limit of Schrödinger operator[END_REF].

Proposition 3.1 Condition (3.3) is equivalent to (3.4) 1 0 1 h λ 1,2 (h) dh < ∞.
Proof: By changing the sequence {α n } into {α

2 1-q n }, (3.3) is equivalent to ∞ n=1 1 λ 1,2 (α n ) ln λ 1,2 (α n ) + ln α n α n+1 + 1 < +∞.
Suppose that (3.3) holds. Then, it implies that α n → 0 and that λ 1,2 (α n ) → ∞ as n tends to infinity. Clearly, h → λ 1,2 (h) is a nonincreasing function which means that { λ 1,2 (α n )} is a nondecreasing sequence. We use estimate of Theorem 2.3 in [START_REF] Belaud | Long-time vanishing properties of solutions of sublinear parabolic equations and semi-classical limit of Schrödinger operator[END_REF].

αn α n+1 1 h λ 1,2 (h) dh ≤ 1 λ 1,2 (α n ) ln α n α n+1 , ∀n ≥ 1,
which yields

α 1 0 1 h λ 1,2 (h) dh ≤ ∞ n=1 1 λ 1,2 (α n ) ln α n α n+1 < +∞.
Conversely, suppose that (3.4) holds. We take the sequence α n = n -n as in [START_REF] Belaud | Long-time extinction of solutions of some semilinear parabolic equations[END_REF]. Indeed,

λ 1,2 (α n ) ≤ C (n ln n) 2 α leads to ln λ 1,2 (α n ) ≤ C ln n for n large enough. Moreover, (3.5) ln α n α n+1 ∼ ln n =⇒ ln λ 1,2 (α n ) ≤ C ln α n α n+1 ,
always for n large enough (C is a generic positive constant). Clearly, by monotonicity,

αn α n+1 1 h λ 1,2 (h) dh ≥ 1 λ 1,2 (α n+1 ) ln α n α n+1 , ∀n ≥ 1.
Hence, thanks to (3.5), there exists C > 0 such that for n large enough,

αn α n+1 1 h λ 1,2 (h) dh ≥ C 1 λ 1,2 (α n+1 ) ln α n+1 α n+2 .
So we get

∞ n=1 1 λ 1,2 (α n ) ln α n α n+1 < +∞. This implies (3.3).
Proof of Theorem 1.2. For h small enough, we have the following estimate for λ 1,2 (h) [START_REF] Belaud | Long-time vanishing properties of solutions of sublinear parabolic equations and semi-classical limit of Schrödinger operator[END_REF],

0 < C ≤ meas{x ∈ Ω : h -2 a(x) ≤ 3 λ 1,2 (h)} ( λ 1,2 (h)) N 2 .
For this estimate, they use the Leib-Thirring formula about the counting number with some properties of semi-classical analysis [START_REF] Helffer | Semi-classical analysis for the Schrödinger operator and applications[END_REF]. By (3.2),

0 < C ≤ meas{x ∈ Ω : a(x) ≤ C h 2 (-ln h) 2 α } ( λ 1,2 (h)) N 2 .
So, for h small enough, C h 2 (-ln h)

2 α ≤ h which gives 1 λ 1,2 (h) ≤ C meas{x ∈ Ω : a(x) ≤ h} 2 N .
As a consequence, for some h 0 > 0 small enough,

h 0 0 1 h λ 1,2 (h) dh ≤ C h 0 0 meas{x ∈ Ω : a(x) ≤ h} 2 N h dh.
We conclude with the following arguments :

1 0 meas{x ∈ Ω : |a(x)| ≤ t} 2 N t dt < ∞,
implies by Theorem 4.1 and Proposition 4.2,

1 0 meas{x ∈ Ω : | a(x)| ≤ t} 2 N t dt < ∞ which yields 1 0 1 h λ 1,2 (h)
dh < ∞ and then by proposition 3.1,

∞ n=1 1 λ 1,2 α 1-q 2 n ln λ 1,2 α 1-q 2 n + ln α n α n+1 + 1 < ∞.
This last inequality means that Let ϕ a function defined on [0, γ] for some γ > 0 which holds the following properties :

∞ n=1 1 λ 1,2 α 1-q 2 n ln λ 1,
1) ϕ(0) = 0, 2) ϕ is a nondecreasing function on [0, γ],

3) ϕ(t) > 0, ∀t ∈ (0, γ],

4) there exist C > 0 and γ ′ ∈ (0, γ] such that for all α, β in [0, γ ′ ],

ϕ(α + β) ≤ C (ϕ(α) + ϕ(β)) .
We set

S ϕ = a ∈ L ∞ (Ω) | ∃c > 0 : c 0 ϕ (meas{x ∈ Ω : |a(x)| ≤ t}) t dt < +∞ .
We start with some basic properties. 

ϕ (meas{x ∈ Ω : |a(x)| κ ≤ t}) t dt = κ c 1 κ 0 ϕ (meas{x ∈ Ω : |a(x)| ≤ τ }) τ dτ.
The proof is complete.

Clearly, power functions satisfy (1), ( 2), ( 3) and (4).

Proposition 4.2 For α > 0 small enough, the function w(x) = exp -1 |x| α belongs to S ϕ where ϕ(x) = x β with β > 0.

Proof: By direct calculations,

ϕ(meas{x ∈ Ω : |w(x)| ≤ t}) = ϕ(meas{x ∈ Ω : |x| α ≤ (-ln t)}) = C N 1 (-ln t) Nβ α
.

The main property of the set S ϕ is its stability with respect to the product. Clearly,

{x ∈ Ω : |a(x)b(x)| ≤ t} {x ∈ Ω : |a(x)| < η} ⊂ {x ∈ Ω : |a(x)| ≤ η} . As a consequence, for η = √ t, meas{x ∈ Ω : |a(x)b(x)| ≤ t} ≤ meas{x ∈ Ω : |b(x)| ≤ √ t} + meas x ∈ Ω : |a(x)| ≤ √ t . So, since ϕ is a nondecreasing function on [0, γ], ϕ (meas{x ∈ Ω : |a(x)b(x)| ≤ t}) ≤ ϕ meas{x ∈ Ω : |b(x)| 2 ≤ t} + meas x ∈ Ω : |a(x)| 2 ≤ t .
But by 4),

ϕ (meas{x ∈ Ω : |a(x)b(x)| ≤ t}) ≤ C ϕ meas{x ∈ Ω : |b(x)| 2 ≤ t} + ϕ meas x ∈ Ω : |a(x)| 2 ≤ t .
By the previous proposition, a 2 and b 2 belong to S ϕ hence for some c > 0 small enough,

c 0 ϕ (meas{x ∈ Ω : |a(x)b(x)| ≤ t}) t dt ≤ C c 0 ϕ meas{x ∈ Ω : |a(x)| 2 ≤ t} t dt + c 0 ϕ meas{x ∈ Ω : |b(x)| 2 ≤ t} t dt .
As a conclusion, ab is in S ϕ .

The next step is to find a new class of functions satisfying properties 1), 2), 3) and 4).

Proposition 4.3 Let ϕ be a function defined on [0, γ] for some γ > 0 which satisfies 1), 2), 3) and 4') ϕ is a convex function on [0, γ] with lim sup

t→0 + ϕ(2t) ϕ(t) < +∞. Then ϕ satisfies 4). Proof: Since ϕ is convex on [0, γ], for all α, β in 0, γ 2 , ϕ(α + β) ≤ ϕ(2α) + ϕ(2β) 2 
. It remains to prove that for all t > 0 some enough, ϕ(2t) ≤ C ϕ(t) for some C > 0.

Always by convexity of ϕ, the function t → ϕ(2t) ϕ(t) is continuous on 0, γ 2 and bounded in a neighbourhood of zero (this function is nonnegative).

As a consequence, it is bounded on 0, γ 2 .

Proposition 4.4 The function ϕ(t) = t(-ln t) satisfies 1), 2), 3) and 4 ′ ) for γ = e -1 .

Moreover, the function w(x) = exp -

1 |x| N 2
belongs to S ϕ .

Proof: 1), 2), 3) are clear. For all t ∈ (0, e -1 ], ϕ ′ (t) = 1 (-ln t) + 1 (-ln t) 2 so ϕ ′ is an increasing function, hence, ϕ is strictly convex. Clearly, lim

t→0 + ϕ(2t) ϕ(t) = 2.
With the estimate ϕ(t) ≤ t for t ∈ [0, e -1 ], we have 

Orlicz spaces

Let A be an N -function [START_REF] Kranosel | Convex Functions and Orlicz spaces[END_REF]. When the derivative of A called a is increasing, the N -functions A and A given by 

|α|=|β|=ma 8 ) 1 . 1

 811 αβ ζ α ζ β C|ζ| 2m ∀ ζ = (ζ 1 , . . . ζ N ) ∈ R N , ζ α := ζ α 1 ζ α 2 . . . ζ α N . (1.Definition We will say that problem (1.1)-(1.
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 1113 for all T > 0, where ., . is the paring of elements from (W m,2 0 (Ω)) * and W m,2 0 (Ω), W m,2 0 (Ω) being the closure in the norm W m,2 (Ω) of the space C m 0 (Ω). Main results are the following : Under assumptions (1.4) and (1.7), a) if N = 2m and (1.15) holds, then all weak solutions of problem (1.1)-(1.3) have the EFT-property, b) if N = 2m and (1.16) holds, then all solutions of problem (1.1)-(1.3) have the EFT-property. Condition (1.15) by m = 1, N > 2 in the case of radial potential a(|x|) implies condition (1.13).

Theorem 1 . 2 1 0s - 1 M a (s) 2 N

 12112 Let m = 1 in equation (1.1) and ds < +∞, (1.18) then all solutions of problem (1.1)-(1.3) have the EFT-property. 2 Proof of Theorem 1.1

Proof of Theorem 1 . 0 b - 1

 101 1 for N = 2m . If b is the derivative of B then b -1 (s) = ln(s + 1) and B(s) = s (σ) dσ ∼ s ln s, when s → +∞. So there exists C 0 > 0 such that for s large enough, B(s) ≤ C 0 s ln s = D(s). Hence by Proposition 4.9, B -1 (s) ≥ D -1 (s) always for s large enough. Moreover, estimate ln D(s) = ln C 0 + ln s + ln(ln s) ∼ ln s gives s ∼ D(s) C 0 ln D(s)

Corollary 2 . 1 1 0s - 1 f 1 Ωf

 21111 Let f : (0, +∞) → (0, +∞) be a continuous nonincreasing function such that f (a(x)) ∈ L 1 (Ω) and (s) -θ ds < +∞ where θ is defined in(1.15). Then, under assumptions (1.4) and (1.7), for N = 2m, all solutions of problem (1.1)-(1.3) vanish in a finite time. Proof: If s > 0, meas {x : a(x) ≤ s} = meas {x : f (a(x)) ≥ f (s)} and so, meas {x : a(x) ≤ s} ≤ f (s) -(a(x)) dx, and we conclude with Theorem 1.1.

  in a finite time for the Laplacian. From the previous corollary, for more general operators, Corollary 2.3 Under assumptions (1.4), (1.7) and (2.24) for N = 2m and p > θ, all solutions of problem (1.1)-(1.3) vanish in a finite time.

Corollary 2 . 4 1 0s

 241 Assume that a(x) = exp -ω(|x|) |x| N θ with ω a non decreasing and nonnegative function on (0, 1] and ω(s) ≤ ω 0 , ∀s ∈ [0, 1]. If ω satisfies -1 ω(s) ds < +∞, under assumptions (1.4) and (1.8), for N = 2m, one have a finite extinction time for all solutions of problem (1.1)-(1.3).

Corollary 2 . 5 1 0s

 251 Assume that a(x) = exp -ω(|x|) |x| N with ω a nondecreasing and nonnegative function on (0, 1] and ω(s) ≤ ω 0 , ∀s ∈ [0, 1]. If ω satisfies -1 ω(s) (-ln (ω(s))ln s) ds < +∞, (2.25) under assumptions (1.4) and (1.7), for N = 2m, one has a finite extinction time for all solutions of problem (1.1)-(1.3).

Proposition 4. 1 1 0 ϕ= c |λ| 0 ϕ

 100 . a ∈ S ϕ ⇐⇒ |a| ∈ S ϕ , 2. 1 ∈ S ϕ (1 stands for the constant function equal to 1 on whole Ω), 3. if ψ satisfies (1), (2), (3) and ϕ ≤ ψ then S ϕ ⊃ S ψ , 4. a ∈ S ϕ ⇐⇒ ∀λ ∈ R * , λa ∈ S ϕ . 5. a ∈ S ϕ ⇐⇒ ∀κ > 0, |a| κ ∈ S ϕ . Proof: Let a ∈ S ϕ and λ ∈ R * . By the change of variable t = |λ|τ , c (meas{x ∈ Ω : |λa(x)| ≤ t}) t dt (meas{x ∈ Ω : |a(x)| ≤ τ }) τ dτ, which concludes the fourth assertion. Let a ∈ S ϕ and κ > 0. In a same way, by the change of variable t = τ κ , c 0

Theorem 4 . 1

 41 If a and b belong to S ϕ then ab ∈ S ϕ . Proof: The assumption a, b ∈ S ϕ implies that a(x) > 0 and b(x) > 0 a.e. on Ω so lim t→0 meas{x ∈Ω : |b(x)| 2 ≤ t} + meas x ∈ Ω : |a(x)| 2 ≤ t = 0. Let t > 0 small enough, i.e, meas{x ∈ Ω : |b(x)| 2 ≤ t} + meas x ∈ Ω : |a(x)| 2 ≤ t ≤ γ ′ .Let us consider {x ∈ Ω : |a(x)b(x)| ≤ t}. Pick up η > 0. Then we make a partition in the following way,{x ∈ Ω : |a(x)b(x)| ≤ t} = ({x ∈ Ω : |a(x)b(x)| ≤ t} {x ∈ Ω : |a(x)| ≥ η}) ({x ∈ Ω : |a(x)b(x)| ≤ t} {x ∈ Ω : |a(x)| < η}).For the first subset, if x in Ω satisfies both conditions |a(x)b(x)| ≤ t and |a(x)| ≥ η then |b(x)| ≤ t η which means that {x ∈ Ω : |a(x)b(x)| ≤ t} {x ∈ Ω : |a(x)| ≥ η} ⊂ x ∈ Ω : |b(x)| ≤ t η .

e - 1 0ϕ

 1 (meas{x ∈ Ω : |w(x)| ≤ t}) ln t) 2 dt < +∞.

≤ 1 , 1 - 1 .≤ 1 , 2 LProposition 4 . 7 Proposition 4 . 8 ,

 111124748 ) dτ, A(t) = t 0 a -1 (τ ) dτ, are said to be complementary. The Orlicz space connected to A is denoted by L A (Ω). If E is a measurable set of positive measure, the Luxemburg norm is||u|| L A (E) = inf k > 0 :if the previous set is not empty and also we have a generalized version of Hölder's inequality,E u(t) v(t) dt ≤ 2 ||u|| L A (E) ||v|| L b A (E) . (4.1)Theorem 4.2[START_REF] Trudinger | On imbeddings into Orlicz spaces and some applications[END_REF] Let Ω be a bounded domain of R N having the cone property and mp = N where p > 1. Set A(t) = exp t p p-Then there exists the imbeddingW m,p (Ω) ֒→ L A (Ω). Even if A is an N -function, M (t) = A( √ t) is not necessary an N -function but the quantity ||u|| L M (E) = inf k > 0 :is well defined for a measurable set E of positive measure ifE A |u(x)| k dx ≤ 1for some positive k. With this extended notation, we have the following standart propositions :Proposition 4.5 ||v|| 2 L A (E) = ||v 2 || L M (E)when the quantity in the left-hand side is well defined.Proof: From the definition, ||v|| 2 L A (E) = inf k > 0 : A (E) = ||v 2 || L M (E) .Proposition 4.6 If B ≤ A then ||v|| L B (E) ≤ ||v|| L A (E) when the quantity in the righthand side is well defined. If E ⊂ F are two measurable sets of positive measure, ||v|| L B (E) ≤ ||v|| L B (F ) when the quantity in the right-hand side is well defined. If B is an N -function and E a measurable set of positive measure then ||v|| L B (E) ≤ ||v|| L ∞ (E) ∀v ∈ L ∞ (E) Proposition 4.9 Let f and g be two increasing functions defined on a neighbourhood of +∞ with lim x→+∞ f (x) = lim x→+∞ g(x) = +∞. If f (x) ≤ g(x) for x large enough then f -1 (x) ≥ g -1 (x) for x large enough.

4. 3

 3 Previous result for the second order case Theorem 4.2 ( [2]) Under assumptions (1.6) and (1.5) with m = 1, if there exists a decreasing sequence {α n } of positive real numbers such that (solution of problem (1.1)-(1.3) vanishes in a finite time.

  2 α If we assume that a(x) is greater than a positive constant in a neighbourhood of the boundary of Ω then the related Neumann problem can be reduced to the former Dirichlet problem. Indeed, the solution of the Neumann problem vanishes in a finite time in a neighbourhood of the boundary of Ω and up to a shift in time, the solution satisfies the Dirichlet boundary condition.

	1-q 2 n	+ ln	α n α n+1	+ 1 < +∞,
	for some sequence {α n }. By Theorem 4.2 in Appendix, all solution vanish in a finite time.
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