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In this paper, an algorithm for image coding based on a sparse 3-dimensional Discrete Cosine Transform (3D DCT) is studied. The algorithm is essentially a method for achieving a sufficiently sparse representation using 3D DCT. The experimental results obtained by the algorithm are compared to the 2D DCT (used in JPEG standard) and wavelet db9/7 (used in JPEG2000 standard). It is experimentally shown that the algorithm, that only uses DCT but in 3 dimensions, outperforms the DCT used in JPEG standard and achieves comparable results (but still less than) the wavelet transform.

Introduction

In data compression reducing or removing redundancy or irrelevancy in the data is of great importance. An image can be lossy compressed by removing irrelevant information even if the original image does not have any redundancy [START_REF] Salomon | Data Compression, The Complete Reference[END_REF]. The JPEG standard [START_REF] Wallace | The JPEG still Picture Compression Standard[END_REF] which is based on Discrete Cosine Transform (DCT) [START_REF] Rao | Discrete Cosine Transform, Algorithms , Advantages, Applications[END_REF], is widely used for both lossy and lossless image compression, especially in web pages. However, the use of the DCT on 8×8 blocks of pixels results sometimes in a reconstructed image that contains blocking effects (especially when the JPEG parameters are set for large compression ratios). Consequently, JPEG2000 was proposed based on Discrete Wavelet Transform (DWT) [START_REF] Taubman | JPEG2000: Image Compression Fundamentals, Standards and Practice[END_REF][START_REF] Topiwala | Wavelet Image and Video Compression[END_REF] which provides more compression ratios than JPEG for comparable values of Peak Signal-to-Noise Ratio (PSNR).

Compression systems are typically based on the assumption that the signal can be well approximated by a linear combination of a few basis elements in the transform domain. In other words, the signal is sparsely represented in the transform domain, and hence by preserving a few high magnitude transform coefficients that convey most of information of the signal and discarding the rest, the signal can be effectively estimated. The sparsity of representation depends on the type of the transform used and also the signal properties. In fact the great variety in natural images makes impossible for any fixed 2D transform to achieve good sparsity for all cases [START_REF] Salomon | Data Compression, The Complete Reference[END_REF]. Thus, the commonly used orthogonal transforms can achieve sparse representations only for particular image patterns.

In this article an image coding strategy based on an enhanced sparse representation in transform domain is studied which is based on a recently proposed approach [START_REF] Dabov | Image Denoising by Sparse 3D Transform-Domain Collaborative Filtering[END_REF] for image denoising. Based on this approach an enhanced sparse representation can be achieved by grouping similar 2D fragments of input image (blocks) into 3D data arrays. We have used this approach with a 3D DCT transform for image coding purposes. The procedure includes three steps: 3D DCT transformation of a 3D array, shrinkage of the transform domain coefficients, and inverse 3D DCT transformation. Due to the similarity between blocks in a 3D array, the 3D DCT transform can achieve a highly sparse representation. Experimental results demonstrate that it achieves outstanding performance in terms of both PSNR and sparsity.

The paper is organized as follows. The next section describes the main idea and discusses its effectiveness. The algorithm is then stated in Section 3. Finally, Section 4 provides some experimental results of algorithm and its comparison with DWT.

The Basic Idea

The basic idea of this article is achieving an enhanced sparse representation by grouping similar 2D fragments of the input image into 3D arrays, and then using a 3D DCT transformation to transform 3D arrays. In fact this idea has been introduced in [START_REF] Dabov | Image Denoising by Sparse 3D Transform-Domain Collaborative Filtering[END_REF] for image denoising and has been shown to outperform state of the art denoising algorithms [START_REF] Dabov | Image Denoising by Sparse 3D Transform-Domain Collaborative Filtering[END_REF]. Then, in this article, we consider applying an approximately similar idea for image compression and study its performance.

A simple justification for the effectiveness of the proposed idea is as follow [START_REF] Dabov | Image Denoising by Sparse 3D Transform-Domain Collaborative Filtering[END_REF]:

• Assume that the grouping is done, i.e. similar blocks are placed in groups and a 2D DCT transformation is used for each group. • In each group we have similar blocks and hence after transformation we will have the same number of high-magnitude coefficients for each block in a group, say α high-magnitude coefficients for each block. • Assuming n blocks in each group, we will have nα high-magnitude coefficients in that group. In other words this group can be represented by nα coefficients. • Now we should perform a 1D DCT transform on the third dimension (along each row) of each group.

• Components of this row are similar (because only similar blocks are in this group), i.e. there is a kind of similarity for all members of the row. • As an example, after using 1D DCT transform the first or second coefficients of this row will be high-magnitude (because of the compaction property of DCT transform). This means that the whole group can be represented by highly less than nα coefficients instead of nα coefficients (i.e., a much more sparse representation).

The Algorithm

Based on the main idea of the previous section, the algorithm is as follows:

-Grouping: Remark 1. For image blocking we have used (as suggested in [START_REF] Dabov | Image Denoising by Sparse 3D Transform-Domain Collaborative Filtering[END_REF]) blocks with one pixel overlap to increase PSNR and also overcome the blocking effects resulted from image blocking. Remark 2. Grouping can be realized by various techniques; e.g., K-means clustering, self-organizing maps, fuzzy clustering, vector quantization and others.

A complete overview of these approaches can be found in [START_REF] Jain | Data Clustering: A Review[END_REF]. A much simpler and effective grouping of mutually similar signal fragments can be realized by matching as discussed in [START_REF] Dabov | Image Denoising by Sparse 3D Transform-Domain Collaborative Filtering[END_REF]. In matching we want to find blocks which are similar to a reference block. It needs a search between all blocks to find blocks similar to a given reference block. The fragments whose distance from the reference block is smaller than a grouping threshold are stacked in a group. Any image fragment can be used as a reference block and thus a group can be constructed for it. The similarity between image fragments is typically computed as the inverse of some distance measure. Hence, a smaller distance implies higher similarity. In particular, we use the same distance proposed in [START_REF] Dabov | Image Denoising by Sparse 3D Transform-Domain Collaborative Filtering[END_REF] which is defined below as a measure of dissimilarity.

d(Y r , Y i ) = Y r -Y i 2 2 N 2 (1) 
In ( 1), Y r is the reference block from which the distance of the i th block (Y i ) is calculated. N is the size of the chosen blocks (for all our simulations 8 × 8 blocks are used, that is N = 8). This distance can also be computed in the transform domain; i.e., we can do the grouping after 2D transformation (transform domain grouping) and then perform a 1D DCT on third dimension along the rows. This idea was tested and the changes in PSNR were in the order of 10 -2 with the same sparsity. Remark 3. Note that in the 3D DCT transformation at first a 2D DCT transform is applied on groups and then a 1D DCT transform is performed on the third dimension, which is on the rows of every group. Both of the used DCT transformations are complete DCT transforms. Remark 4. In the shrinkage we have used a hard thresholding methodology;

i.e., we have simply discarded those coefficients in the transform domain whose magnitude is less than some fixed threshold. Remark 5. Obviously a straightforward implementation of this algorithm is highly computationally demanding. In order to realize a practical and efficient algorithm, some constraints should be considered. For example to reduce the number of processed blocks we can only use a limited number of reference blocks by choosing reference blocks between every N 1 blocks. In this way we will have (Total Number Of Blocks)/N 1 reference blocks. A complete set of such ideas to reduce the computational complexity and increase the speed of the algorithm can be found in [START_REF] Dabov | Image Denoising by Sparse 3D Transform-Domain Collaborative Filtering[END_REF].

Simulation Results

In this section, we study the performance of the presented approach and compare it with 2D DCT and wavelet transform for image compression. The wavelet transform that we have used in this comparison is db9/7 which is used in JPEG2000 standard [START_REF] Antonini | Image Coding using Wavelet Transforms[END_REF]. This wavelet transform is also used in FBI fingerprint database [START_REF] Wickerhauser | Adapted wavelet analysis from theory to software algorithms[END_REF]. The images which have been used for all simulations are 441 × 358 Tracy and Barbara images. Our criterion to measure sparsity is simply the 0 norm, that is, the number of nonzero coefficients. The simulation results are as presented in Table 1 (note that all transforms mentioned in this table are complete). In this table d G stands for distance used for grouping and th C stands for the hard threshold used to shrinkage the coefficients. As it can be seen in Table 1, generally the performance of 3D DCT is better than 2D DCT (an improvement about 2dB in PSNR with the same degree of sparsity). Note that in the last row of the table for Tracy image the results of 2D DCT and 3D DCT are very close to each other. The reason is that in this case the distance threshold used for grouping is very high (245) and therefore we don't have an exact grouping; i.e., similarity of the third dimension is not high and this yields weak results with 3D DCT. Generally it can be deduced from the table that with more precise grouping we will have better results but only in terms of PSNR. If we want to achieve high sparsity at the same time, we would need some sort of balance between the number of nonzero elements ( 0 norm as a criterion to measure sparsity) and PSNR. This result was expected because the main idea was based on the similarity between blocks and if this similarity increases then the similarity that exists in the third dimension of every array will increase and therefore more compaction can be achieved. The best result from 3D DCT idea has been shown in bold in the table. It should also be noted that generally 3D DCT results are weaker than results obtained by wavelet transform in terms of PSNR with the same sparsity for Tracy image. It is interesting to note the results for Barbara image. In this case results of 3D DCT are closer to (or even better than) those of the Wavelet transform.

Although the complexity of wavelet transforms depends on the size of filters and the use of floating point vs integer filters, wavelet transforms are generally more computationally complex than the current block-based DCT transforms [START_REF] Mcdowell | Why Do We Care About JPEG 2000?[END_REF].

Figures 1 and3 show the original images and their decoded versions using wavelet db9/7, DCT and 3D DCT for the bold rows of Table 1. As it can be seen from these figures, the blocking effect when 2D DCT is used is clearly visible. But when 3D DCT is used there is almost no blocking effect. In Figs. 2 and4, a comparison between the performances of these three transforms is made for both test images. 
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 1 Fig. 1. The zoomed results of using various transforms for Tracy test image (a) The original image (b) Decoded image after compression using wavelet db9/7 (c) Decoded image after compression using 2D DCT (d) Decoded Image after compression using 3D DCT.
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 234 Fig. 2. Comparison between DCT, 3D DCT and wavelet db9/7 for Tracy test image

Table 1 .

 1 3D DCT Versus 2D DCT and Wavelet db9/7

	T estImage d G th C	0 Norm		PSNR in dB
				2D DCT 4 Level Wavelet db 9/7 3D DCT
		10 50	3327	32.8294	38.2536	36.7798
		10 30	4703	36.3101	39.8067	38.2879
	Tracy	10 20	6175 37.9671	40.9493	39.3012
		20 20	5608	37.3384	40.5386	39.0774
		50 20	5189	36.8697	40.1906	38.7131
		245 20	6009	37.8331	40.8519	38.1795
		10 50	9027	27.5271	29.4975	29.3795
		10 30 15068 30.3920	32.0041	32.2399
	Barbara 10 20 22138 33.9195	34.5035	34.6991
		20 20 21758 33.6757	34.5024	34.6826
		50 20 21205 33.5548	34.4704	34.6386
		245 20 20273 33.1230	34.1353	33.9469
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Conclusions

In this article the idea of a recently proposed approach for image denoising was studied to be used for image compression. This idea is based on 3D DCT transform to enhance the sparsity of the coefficients. Our simulations show that the usage of this idea enhances the results compared to 2D DCT transform (used in JPEG), and gives the results comparable (but still below) what is obtained using wavelet transform (used in JPEG2000).