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THE INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY QUADRATIC

INTEGERS OF CLASS NUMBER TWO

ALEXANDER RAHM AND MATHIAS FUCHS

Abstract. We calculate the integral homology of the non-Euclidean Bianchi groups PSL2

`

O
Q[

√−m ]
´

for m = 5, 6, 10, 13 and 15, making essential use of an equivariant cellular decomposition of a retract
of hyperbolic three-space due to Flöge.
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1. Introduction

The object of study of this paper are the PSL2-groups Γ−m of the ring of integers O of an imaginary
quadratic number field Q[

√−m ], where m is a square-free positive integer. We have OQ[
√
−m ] = Z[ω]

with ω =
√−m for m congruent to 1 or 2 modulo 4, and ω = −1

2 + 1
2

√−m for m congruent to 3
modulo 4. The arithmetic groups under study have often been called Bianchi groups, because their
study began with the works of Bianchi [4] back in 1892. These groups have since been extensively
studied, see for instance the monographs [6, 7, 12].
A space that lends itself naturally to the study of these 2-by-2-matrix groups is the associated sym-
metric space, hyperbolic three-space H. We use the upper-half-space model of H and identify its
boundary with C ∪∞ ∼= CP 1. Bianchi exposed a fundamental domain for the action of Γ−m on the
space H. However, the virtual cohomological dimension of arithmetic groups which are lattices in
SL2(C) is two, so it is desirable to define a proper action on a contractible cellular two-dimensional
space. Moreover, this space should be cofinite. In principle, this has been achieved by Mendoza [13]
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2 RAHM AND FUCHS

and Flöge [8] using the reduction theory for binary Hermitian forms of Minkowski, Bianchi, Hum-
bert, Harder and others. These two approaches have in common that they consider two-dimensional
Γ−m-equivariant retracts which are cocompact and are endowed with a natural CW-structure such
that the action of Γ−m is cellular and the quotient is a finite CW-complex.
In the cases of non-trivial ideal class group, there is a difference between the approaches of Mendoza
and Flöge. The elements of the class group of the number field are in bijection with the Γ−m-orbits
of the cusps, where the cusps are the elements of the number field Q

[√
−d

]
and ∞ thought of as

elements of the canonical boundary CP 1. The cusps which represent a non-trivial element of the
class group are commonly called singular points. Whilst Mendoza retracts away from all cusps, Flöge
retracts away only from the non-singular ones. Rather than the space H itself, he considers the

space Ĥ obtained from H by adjoining the Γ−m-orbits of the singular points. This has the effect
that it is possible to retract away only from the non-singular cusps, but onto the singular ones in the
appropriate way. It turns out that this gives a suitable contractible 2-dimensional Γ−m-complex also
in the case of non-trivial class group.
Using Mendoza’s complex, Schwermer and Vogtmann [15] showed how to calculate the integral group
homology in the cases of trivial class group m = 1, 2, 3, 7, 11. Vogtmann [19] computed the rational
homology as the homology of the quotient in many cases of non-trivial class group. The integral
cohomology in the cases m = 2, 3, 5, 6, 7, 10, 11 has been determined by Berkove [3], based on Flöge’s
presentation of the groups with generators and relations.
It is the purpose of the present paper to show how to calculate the integral homology of Bianchi groups
with non-trivial class group using Flöge’s complex. In the cases considered, Bianchi has computed the
fundamental polyhedron. With an implementation in Pari/GP [2], due to the first named author, of
Swan’s algorithm [18] we re-obtain this polyhedron. In the cases m = 5, 6, 10, Flöge has computed the
cell stabilizers and cell identifications; and with our Pari/GP program, we redo Flöge’s computations
and do the same computation in the case m = 13. We use the equivariant Euler characteristic to
check our computations. Then we follow the lines of Schwermer and Vogtmann [15], encountering a
spectral sequence which degenerates on the E3-page and not already on the E2-page as it does in
the cases of trivial class group. This is because we have adjoined to our complex the singular points,
which have infinite stabilizers. So we have some additional use of homological algebra to obtain the
homology of the Bianchi group. Our results are as follows:

Hq(Γ−5; Z) ∼=






Z2 ⊕ Z/3⊕ (Z/2)2 q = 1,

Z⊕ Z/4⊕ Z/3⊕ Z/2 q = 2,

Z/3⊕ (Z/2)q q > 3;

Hq(Γ−10, Z) ∼=






Z3 ⊕ (Z/2)2, q = 1,

Z2 ⊕ Z/4⊕ Z/3⊕ Z/2, q = 2,

Z/3⊕ (Z/2)q , q > 3;

Hq(Γ−15; Z) ∼=






Z2 ⊕ Z/3⊕ Z/2, q = 1,

Z⊕ Z/3⊕ Z/2, q = 2,

Z/3⊕ Z/2, q > 3.

Hq(Γ−13, Z) ∼=






Z3 ⊕ (Z/2)2, q = 1,

Z2 ⊕ Z/4⊕ (Z/3)2 ⊕ Z/2, q = 2,

(Z/2)q ⊕ (Z/3)2, q = 4k + 3, k > 0,

(Z/2)q, q = 4k + 4, k > 0,

(Z/2)q, q = 4k + 1, k > 1,

(Z/2)q ⊕ (Z/3)2, q = 4k + 2, k > 1.
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Hq(Γ−6; Z) ∼=






Z2 ⊕ Z/3⊕ Z/2, q = 1,

Z⊕ Z/4⊕ Z/3⊕ (Z/2)2, q = 2,

Z/3⊕ (Z/2)2k+2, q = 6k + 3,

Z/3⊕ (Z/2)2k+1, q = 6k + 4,

Z/3⊕ (Z/2)2k+4, q = 6k + 5,

Z/3⊕ (Z/2)2k+1, q = 6k + 6,

Z/3⊕ (Z/2)2k , q = 6k + 1, q > 7,

Z/3⊕ (Z/2)2k+3, q = 6k + 2, q > 8;

Thus for q > 2, the torsion in H∗(Γ−5; Z) is the same as in H∗(Γ−10; Z), analogously to the cohomology
results of Berkove [3]. The free part of these homology groups is in accordance with the rational
homology results of Vogtmann [19]. We give the full details for our homology computation in the
case m = 13. We then give slightly less details in the cases m = 5, 6, 10, 15.
The authors would like to thank Philippe Elbaz-Vincent for his inspiration and advice, and the first
named author would like to thank Bill Allombert for his help with programming in Pari/GP.

2. Flöge’s complex, contractibility and the spectral sequence

From now on, we will fix m and just write Γ for Γ−m. Denote the hyperbolic three-space by
H = C × R∗

+. We will not use its smooth structure, only its structure as a homogeneous SL2(C)-
space. The action is given by the formula

(
a b
c d

)
· (z, r) :=

(
(d− cz)(az − b)− r2ca

|cz − d|2 + r2 |c|2
,

r

|cz − d|2 + r2 |c|2
)

;

where
(

a b
c d

)
∈ SL2(C). As usual, we extend the action of SL2(C) to the boundary CP 1 which we

identify with {r = 0}∪∞ = C∪∞. The action passes continuously to the boundary, where it reduces
to the usual action by Möbius transformations

(
a b
c d

)
· z = az−b

−cz+d . As −1 ∈ SL2(C) acts trivially,

the action passes to PSL2(C). Let now m ∈ N be square-free, and let R = OQ[
√
−m ], Γ = PSL2(R).

When the class number of K = Q[
√−m ] is one, then classical reduction theory provides a natural

equivariant deformation retract of H which is a CW-complex. This complex is defined as follows.
One first considers the union of all hemispheres

Sµ,λ :=

{
(z, r) :

∣∣∣∣z −
λ

µ

∣∣∣∣
2

+ r2 =
1

|µ|2

}
⊂ H,

for any two µ, λ with Rµ + λR = R. Then one considers the “space above the hemispheres”

B :=
{
(z, r) : |cz − d|2 + r2 |c|2 > 1 for all c, d ∈ R, c 6= 0 such that Rc + Rd = R

}

and its boundary ∂B inside H. For nontrivial class group, the following definition comes to work.

Definition 1. A point s ∈ CP 1−{∞} is called a singular point if for all c, d ∈ R, c 6= 0, Rc+Rd = R
we have |cs − d| > 1.

The singular points modulo the action of Γ on CP 1 are in bijection with the nontrivial elements

of the class group [17]. In [8], Flöge extends the hyperbolic space H to a larger space Ĥ as follows.

Definition 2. As a set, Ĥ ⊂ C × R>0 is the closure under the Γ-action of the union B̂ :=
B ∪ {singular points}. The topology is generated by the topology of H together with the following
neighborhoods of the translates s of singular points:

Ûǫ(s) := {s} ∪
(

s 0
−1 s−1

)
·
{
(z, r) ∈ H : r > ǫ−1

}
.
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Remark 3. The matrix
(

s 0
−1 s−1

)
maps the point at infinity into s, thus giving the point s the

topology of ∞. The neighborhood Ûǫ(s) is sometimes called a “horoball” because in the upper-half
space model it is a Euclidean ball, but with the hyperbolic metric it has “infinite radius”.

The space Ĥ is endowed with the natural Γ-action. Now the essential aspect of Flöge’s construction
is the following consequence of Flöge’s theorem [9, 6.6], which we append as theorem 24.

Corollary 4. There is a retraction ρ from Ĥ onto the set X ⊂ Ĥ of all Γ-translates of ∂B̂, i. e.

there is a continuous map ρ : Ĥ → X such that ρ(p) = p for all p ∈ X. The set X admits a natural
structure as a cellular complex X•, such that Γ acts cellularly on X•.

Remark 5. (1) We show with the below lemma that ρ is a homotopy equivalence, without giving

a continuous path of maps Ĥ → Ĥ connecting ρ to the identity on Ĥ.
(2) The map ρ is Γ-equivariant because its fibers are geodesics. But we do not make use of this

fact, as we do not need to show that the homotopy type of Γ\Ĥ is the same as that of Γ\X.
This would be useful in the case of trivial class group, i. e. the case of a proper action, to
compute the rational homology H∗(Γ; Q) ∼= H∗(Γ\H; Q).

(3) We will provide X• with a cellular structure which is fine enough to make the cell stabilizers
fix the cells pointwise.

Lemma 6. Let Y be a CW-complex which admits an inclusion i into a contractible topological space
A, such that i is a homeomorphism between Y with its cellular topology and the image i(Y ) with the
subset topology of A. Let p : A → Y be a continuous map with p ◦ i = idY . Then p is a homotopy
equivalence.

Proof. For all n ∈ N, the induced maps on the homotopy groups (idY )∗ = (p ◦ i)∗ : πn(Y ) → πn(Y )
factor through πn(A) = 0, hence are the zero map; and πn(Y ) = 0. Denote by c the constant map
from A to the one-point space. Then c ◦ i is a morphism of CW-complexes, and the zero maps it
induces on the homotopy groups are isomorphisms. Thus by Whitehead’s Theorem [11], c ◦ i is a
homotopy equivalence. As A is contractible, the composition (c◦ i)◦p = c is a homotopy equivalence,
so the same holds already for p. �

Together with the lemma below, we obtain a crucial fact underlying this paper.

Corollary 7. X• is contractible.

The following is an observation on Flöge’s construction.

Lemma 8. The space Ĥ is contractible.

Proof. One can identify the boundary ofH ∼= {(z, r) ∈ C×R | r > 0} with CP 1 ∼= C∪∞ ∼= {r = 0}∪∞.

By viewing the singular points as part of the boundary, we arrive at an upper half-space model of Ĥ.

Now consider H1 := {(z, r) ∈ Ĥ : r > 1} with the subspace topology of Ĥ. The idea of the proof is to
consider a vertical retraction onto H1, and to show by an explicit argument that preimages of open
sets are open. Flöge [9, Korollar 5.8] suggests to use the map

φ : Ĥ × [0, 1]→ Ĥ, ((z, r), t) 7→
{

(z, r) for all t ∈ [0, 1], if r > 1

(z, r + t(1− r)), if r < 1.

Let us now check that this is a continuous family of continuous maps. Consider the collection of open
balls with respect to the Euclidean metric on C×R+ as soon as they are either contained in C×R∗

+,

or touch the boundary C × {0} in a cusp in Ĥ − H. This is a basis for the topology of Ĥ. Consider
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one such open ball B, and its preimage under some φt, t ∈ [0, 1). This either lies entirely in H, and

is open, or it has boundary points. In the latter case, consider the inverse of φt on Ĥ −H1, given by

φ−1
t =

(
z, r−t

1−t

)
,

if this is in Ĥ. Suppose there is a cusp s with s ∈ Ĥ − H and φt(s, 0) ∈ B. As B is open, we find
β > 0 and δ > 0 such that (s, t + β) and (s + δ, t) are in B. Since

{
φt

(
s, β

1−t

)
= (s, t + β) ∈ B

φt(s + δ, 0) = (s + δ, t) ∈ B,

we know that (s, β
1−t) and (s + δ, 0) are in the preimage of B under φt. We deduce that the whole

horosphere of Euclidean diameter min {β, δ} touching at the cusp s is included in the preimage of
B. Thus each point of the preimage has a neighborhood entirely contained in the preimage, which
therefore also is open. The continuity at t = 1 as well as the continuity in the variable t follow from
very similar arguments. The space H1 is homeomorphic to C× R+, thus contractible. �

2.0.1. The spectral sequence.
Corollary 7 gives us a contractible complex X• on which Γ acts cellularly. As a consequence, the
integral homology H∗(Γ; Z) can be computed as the hyperhomology H∗(Γ;C•(X)) of Γ with coeffi-
cients in the cellular chain complex associated to X. This hyperhomology is computable because
there is a spectral sequence as in [5, VII] which is also the one used in [15]. It is the spectral sequence
associated to the double complex ΘΓ

• ⊗ZΓ C•(X) computing the hyperhomology, where we denote by
ΘΓ

• the bar resolution of the group Γ. This spectral sequence can be rewritten (see [15, 1.1]) to yield

E1
p,q =

⊕

σ ∈Γ\Xp

Hq(Γσ; Z) =⇒ Hp+q(Γ; Z),

where Γσ denotes the stabilizer of (the chosen representative for) the p-cell σ. We have stated the
above E1-term with trivial Z-coefficients in Hq(Γσ; Z), because we use a fundamental domain which
is strict enough to give X a cell structure on which Γ acts without inversion of cells. We shall also
make extensive use of the description of the d1-differential given in [15].
The technical difference to the cases of trivial class group, treated by [15], is that the stabilizers of the
singular points are free abelian groups of rank two. In particular, the Γ-action on our complex X• is
not a proper action in the sense that all stabilizers would be finite. As a consequence, the considered
spectral sequence does not degenerate on the E2-level as it does in Schwermer and Vogtmann’s cases.
So we compute a nontrivial differential d2, making some additional use of homological algebra, in
particular the below lemma and its corollary.

Remark 9. It would be possible to shift the technical difficulty away from homological algebra, using
a topological modification of our complex. In our cases of class number two, there is one singular point
in the fundamental domain, representing the nontrivial element of the class group. Its stabilizer is
free abelian of rank two, and contributes the homology of a torus to the zeroth column of the E2-term
of our spectral sequence: H1(Z

2; Z) ∼= Z2, H2(Z
2; Z) ∼= Z and Hq(Z

2; Z) = 0 for q > 2. One could
modify our complex in order to make the Γ-action on it proper, by replacing each singular point by
an R2 with the former stabilizer Z2 now acting properly. Then the nontriviality of our differential is
equivalent to the existence of a nontrivial homology relation induced by adjoining the torus R2/Z2

to the fundamental domain.

The following lemma will be useful for computing our d2-differential. In order to state it, let Γσ

be a finite subgroup of Γ, let M be a ZΓσ-module, and ℓ : Γ/Γσ → Γ a set-theoretical section of the
quotient map π : Γ → Γ/Γσ. Further, denote the standard bar resolution of a discrete group Γ by
ΘΓ

• .
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Lemma 10. The section ℓ defines a map of ZΓσ-complexes

ε̂ℓ : ΘΓ
• −→ ΘΓσ

•

of degree zero which is a retraction of the resolution ΘΓ
• of the group Γ to the resolution ΘΓσ• of Γσ.

The map ε̂ℓ is induced on ΘΓ
0 = ZΓ by

Γ
εℓ−−→ ZΓσ,

γ 7→ (ℓ(π(γ)))−1γ

and is continued as a tensor product ε̂ℓ = εℓ ⊗ ...⊗ εℓ = ε
⊗(n+1)
ℓ on ΘΓ

n.

Remark 11. (1) Attention: εℓ is a ZΓσ-linear map because Γσ acts from the right.
(2) Note that the resulting isomorphism in homology from H∗(ΘΓ

• ⊗ZΓσ M) to H∗(ΘΓσ• ⊗ZΓσ M) is
independent of the choice of ℓ, and consistent with the canonical isomorphisms of both sides
with H∗(Γσ;M).

(3) Note that in the above lemma, it is not necessary to require ℓ(π(1)) = 1. This would imply
that εℓ is the identity on ΘΓσ• . However, we will choose ℓ(π(1)) = 1 for simplicity.

(4) In explicit terms, the map εℓ is described as follows:

εℓ : ZΓ→ ZΓσ,

∑

γ∈Γ

aγγ =
∑

γσ∈Γσ

∑

ρ∈Γ/Γσ

aγσℓ(ρ)γσℓ(ρ) 7→
∑

γσ∈Γσ

( ∑

ρ∈Γ/Γσ

aγσℓ(ρ)

)
γσ,

where the aγ are coefficients from Z. The map εℓ restricts to the identity on ZΓσ and gives
an isomorphism of Z-modules from Z[ℓ(ρ)Γσ] to ZΓσ for every Γσ-orbit ℓ(ρ)Γσ.

Proof (of the lemma). In fact, the statement holds for any chain map ε̂ in the place of ε̂ℓ that satisfies
the following conditions. They are easily checked to hold for the maps ε̂ℓ.

(1) ε̂ is ZΓσ-linear.

(2) The augmentation ΘΓ
0 → Z is the composition of ε̂ with the augmentation ΘΓσ

0 → Z.

Then the statement follows from the comparison theorem [20, 2.2.6] of fundamental homological
algebra. In fact, the properties imply that ε̂ is a chain map of resolutions lifting the identity on Z.
An inverse is given by the canonical inclusion ΘΓσ• → ΘΓ

• , and since the composition is unique up to
chain homotopy equivalence, it must be homotopic to the identity. �

The group Γσ acts diagonally on ΘΓ
1
∼= ZΓ⊗Z ZΓ, and trivially on Z, so we can consider ΘΓ

1 ⊗ZΓσ Z.

Corollary 12. Let a cycle (
∑

i(ai ⊗Z bi)⊗ZΓσ 1) ∈ ΘΓ
1⊗ZΓσ Z be given, where ai, bi ∈ Γ. The ensuing

element in H1(Γσ, Z) is then given by
∑

i

ε(ai) εℓ(ai)−1εℓ(bi),

where ε is the augmentation from ZΓ to Z.

This expression makes sense because εℓ(ai) is invertible in ZΓσ.
Note that the cycle condition on

∑
i
(ai ⊗Z bi) ⊗ZΓσ 1 says that

∑
i
(bi − ai) ⊗ZΓσ 1 = 0, which means

that
∑

i ai is equivalent to
∑

i bi modulo ZΓσ.

Proof. Using the lemma 10, we just need to apply the map

(εℓ ⊗Z εℓ)⊗ZΓσ 1 : (ZΓ⊗Z ZΓ)⊗ZΓσ Z→ (ZΓσ ⊗Z ZΓσ)⊗ZΓσ Z
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to get
∑

(εℓ ⊗Z εℓ ⊗ZΓσ 1)(ai ⊗Z bi ⊗ZΓσ 1) =
∑

(εℓ(ai)⊗Z εℓ(bi))⊗ZΓσ 1

=
∑

(1⊗Z εℓ(ai)
−1εℓ(bi))⊗ZΓσ ε(ai).

In bar notation, this is
∑ [

εℓ(ai)
−1εℓ(bi)

]
⊗ZΓσ ε(ai), and is mapped to

∑

i

ε(ai) εℓ(ai)−1εℓ(bi) ∈ H1(Γσ, Z),

and to ∑

i

ε(ai) εℓ(ai)
−1εℓ(bi) mod [Γσ,Γσ]

by the isomorphism into the abelianization of Γσ described in [5, page 36]. �

2.0.2. The mass formula for the Euler characteristic.
We will use the Euler characteristic to check the geometry of the quotient Γ\X. Recall the following
definitions and proposition, which we include for the reader’s convenience.

Definition 13 (Euler characteristic). Suppose Γ′ is a torsion-free group. Then we define its Euler
characteristic as

χ(Γ′) =
∑

i

(−1)i dim Hi(Γ
′; Q).

Suppose further that Γ′ is a torsion-free subgroup of finite index in a group Γ. Then we define the
Euler characteristic of Γ as

χ(Γ) =
χ(Γ′)
[Γ : Γ′]

.

This is well-defined because of [5, IX.6.3].

Definition 14 (Equivariant Euler characteristic). Suppose X is a Γ-complex such that

(1) every isotropy group Γσ is of finite homological type;
(2) X has only finitely many cells mod Γ.

Then we define the Γ-equivariant Euler characteristic of X as

χΓ(X) :=
∑

σ

(−1)dimσχ(Γσ),

where σ runs over the orbit representatives of cells of X.

Proposition 15 ([5, IX.7.3 e’]). Suppose X is a Γ-complex such that χΓ(X) is defined. If Γ is
virtually torsion-free, then Γ is of finite homological type and χ(Γ) = χΓ(X).

Let now Γ be PSL2

(
O

Q[
√
−m ]

)
. Then the above proposition applies to X taken to be Flöge’s (or

still, Mendoza’s) Γ-equivariant deformation retract of H. Using χ(Γσ) = 1
card(Γσ) for Γσ finite, the

fact that the singular points have stabilizer Z2, and the torsion-free Euler characteristic

χ(Z2) =
∑

i

(−1)irankZ(Hi Z2) = 1− 2 + 1 = 0,

we get the formula

χ(Γ) =
∑

σ

(−1)dimσ 1

card(Γσ)
,

where σ runs over the orbit representatives of cells of X with finite stabilizers.

Proposition 16. The Euler characteristic χ(Γ) vanishes.
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Remark 17. This, together with the formula

0 = χ(Γ) = χΓ(X) =
∑

σ

(−1)dimσ 1

card(Γσ)
,

allows to check the joint data of the geometry of the fundamental domain, cell stabilizers and cell
identifications.

Proof of proposition 16. Denote by ζK the Dedekind ζ-function associated to the number field
K := Q

[√−m
]
. Brown [5, below (IX.8.7)] deduces the following from Harder’s result [10, p. 453]:

χ(SLn(OK)) =
n∏

j=2

ζK(1− j),

so especially we have χ(SL2(OK)) = ζK(−1). As any cell σ in the interior of hyperbolic space has a
stabilizer SL2(OK)σ of twice the cardinality of Γσ, it follows that

χ(Γ) =
1

2
χ(SL2(OK)) =

1

2
ζK(−1).

Using the functional equation of ζK [14] and the fact that K has no real places because it is imaginary
quadratic, we get ζK(−1) = 0. �

Remark 18. One can prove the above proposition without using the Dedekind zeta function. This
alternative proof applies to any cofinite arithmetically defined subgroup Γ of PSL(2, C). It is the
main theorem of Harder’s article on the Gauss-Bonnet theorem [10] that the Euler characteristic is
the covolume of Γ with respect to the Euler-Poincaré form µ on H, i. e. χ(Γ) =

∫
Y dµ, where Y is

a fundamental domain for the action of Γ on H. This extends the classical Gauss-Bonnet theorem
from the theory of the Euler-Poincaré form, see [16, paragraph 3] (here the theorem is hidden as the
existence assertion of the Euler-Poincaré measure) to non-cocompact but cofinite discrete subgroups.
The measure µ is a fundamental datum associated to the symmetric space, without reference to any
discrete group. In [16, paragraph 3,2a] it is shown that µ = 0 on any odd-dimensional space. Since
dim H = 3, we have χ(Γ) = 0.

3. Computations of the integral homology of PSL2

(
O

Q[
√
−m ]

)

Throughout this section, we assume the action on the homology coefficients to be trivial, which is
realized by our cell structure. We mean Z-coefficients wherever we do not mention the coefficients.
We will always label the singular point in the fundamental domain by s; and we use the notation

⊗σ := ⊗Z[Γσ ].

We have Γ = PSL2(OQ[
√
−m ]) = PSL2(Z[ω]) with ω :=

√−m in the cases m = 5, 6, 10, 13. The

coordinates in Hyperbolic space of the vertices of the fundamental domains have been computed by
Bianchi [4]. There, they are listed up to complex conjugation for m = 5, 6, 15; and for m = 10, 13,
the reader has to divide out the reflection called riflessione impropria by Bianchi.
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3.1. m = 13.

We make the following definitions.

A := ±
„

9 7ω
ω −10

«

, B := ±
„

−2 − ω 2 − ω
4 2 + 1ω

«

,

C := ±
„

−1 − ω 8 − ω
3 1 + 2ω

«

, D := ±
„

5 2ω
ω −5

«

,

E := ±
„

−ω 6
2 ω

«

, J := ±
„

1
−1

«

,

S := ±
„

−1
1 1

«

, K := ±
„

11 + 4ω −17 + 7ω
−8 + ω −10 − 3ω

«

,

M := ±
„

4 − 2ω 12 + ω
4 + ω −4 + 2ω

«

, U := ±
„

1 ω
1

«

,

V := ±
„

−ω 6 − ω
2 2 + ω

«

, W := ±
„

14 − ω 13 + 6ω
2ω −12 + ω

«

,

P := V −1D, T := P−1S2,

R := TU−1S2U.

o′ j ′

v′

y′

z′a′′

b′′

x′

u′

a′

b′

c′′

v′

y′

c′

o

e

f

g

h

j

s

t

u

v

w

x

y

z

a

b

c

Figure 1. The fundamental do-
main for m = 13

We observe the relations T = CKCA(CKC)−1, V −1 = CAC−1M and S2 = BS−1BS. The matrix
U acts as a vertical translation by −ω on this fundamental domain. There are seventeen orbits of
vertices, which have the following stabilizers.

Γo = 〈J |J2 = 1〉 ∼= Z/2,
Γe = 〈A, U−1JU |A3 = (U−1JU)2 = (AU−1JU)2 = 1〉 ∼= S3,
Γf = 〈D, E|D2 = E2 = (DE)2 = 1〉 ∼= D2,
Γg = 〈J, T |J2 = T 3 = (JT )2 = 1〉 ∼= S3,
Γh = 〈E, AU−1JU |E2 = (AU−1JU)2 = (EAU−1JU)2 = 1〉 ∼= D2,
Γj = 〈S|S3 = 1〉 ∼= Z/3,
Γs = 〈V, W |V W = WV 〉 ∼= Z2,
Γt = 〈R, U−1SU |R2 = (U−1SU)3 = (RU−1SU)2 = 1〉 ∼= S3,
Γu = 〈B|B2 = 1〉 ∼= Z/2,
Γv = 〈D|D2 = 1〉 ∼= Z/2,
Γw = 〈B, S|B2 = S3 = (BS)2 = 1〉 ∼= S3,
Γx = Γz = 〈CAC−1|(CAC−1)3 = 1〉 ∼= Z/3,

Γa = 〈S−1BS|(S−1BS)2 = 1〉 ∼= Z/2,
Γb = Γc = 〈M |M2 = 1〉 ∼= Z/2,
Γy = 〈T |T 3 = 1〉 ∼= Z/3.

There are twenty-eight orbits of edges. The edge stabilizers of isomorphy type Z/2 are given on the
chosen edge orbit representatives as

Γ(f,v) = 〈D|D2 = 1〉 ∼= Z/2,

Γ(h,u′) = 〈EAU−1JU |(EAU−1JU)2 = 1〉 ∼= Z/2,

Γ(t,b′′) = 〈R|R2 = 1〉 ∼= Z/2,

Γ(w,a) = 〈S−1BS|(S−1BS)2 = 1〉 ∼= Z/2,

Γ(b,c) = 〈M |M2 = 1〉 ∼= Z/2,

Γ(a′′,c′′) = 〈C−1S−1BSC|(C−1S−1BSC)2 = 1〉 ∼= Z/2,

Γ(v′,t) = 〈RU−1SU |(RU−1SU)2 = 1〉 ∼= Z/2,

Γ(w,u) = 〈B|B2 = 1〉 ∼= Z/2,

Γ(h,e) = 〈AU−1JU |(AU−1JU)2 = 1〉 ∼= Z/2,

Γ(g,f) = 〈DE|(DE)2 = 1〉 ∼= Z/2,

Γ(f,h) = 〈E|E2 = 1〉 ∼= Z/2,

Γ(o,g) = 〈J |J2 = 1〉 ∼= Z/2,

Γ(o′,e) = 〈U−1JU |(U−1JU)2 = 1〉 ∼= Z/2.
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and the edge stabilizers of isomorphy type Z/3 are given on the chosen edge orbit representatives as

Γ(e,x′) = 〈A|A3 = 1〉 ∼= Z/3,

Γ(x,z) = 〈CAC−1|(CAC−1)3 = 1〉 ∼= Z/3,

Γ(g,y) = 〈T |T 3 = 1〉 ∼= Z/3,

Γ(j,w) = 〈S|S3 = 1〉 ∼= Z/3,

Γ(t,j′) = 〈U−1SU |(U−1SU)3 = 1〉 ∼= Z/3,

Γ(y′,z′) = 〈KCA(KC)−1|(KCA(KC)−1)3 = 1〉 ∼= Z/3.

We use the identifications C · x′ = x, U · j′ = j, C · y′ = y and K · z = z′. We find nine edge
orbits with the trivial stabilizer, thirteen edge orbit representatives with stabilizer type Z/2, and six
with stabilizer type Z/3. The singular vertex has stabilizer type Z2, and there are six vertex orbit
representatives with stabilizer type Z/2, two with D2, four with S3 and four with Z/3. Furthermore,
there are twelve orbits of faces with trivial stabilizers. The above data gives the Γ-equivariant Euler
characteristic of X, in accordance with remark 17:

χΓ(X) = 6 · 1
2

+ 4 · 1
3

+ 2 · 1
4

+ 4 · 1
6
− 9− 13 · 1

2
− 6 · 1

3
+ 12 = 0.

3.1.1. E1-page for m = 13.
We obtain for the row q = 0 in the columns p = 0, 1, 2:

Z17
d1
1,0←−−− Z28

d1
2,0←−−− Z12,

where the only occurring elementary divisor is 1, with multiplicity sixteen for d1
1,0, and with multi-

plicity ten for d1
2,0.

3.1.2. Odd rows of the E1-term.
For odd q, the morphism

⊕

σ∈Γ\X0

Hq(Γσ)
d1
1,q←−−−

⊕

σ∈Γ\X1

Hq(Γσ)

is on the 2-primary part a homomorphism

(Z/2)q+13 ←− (Z/2)13

given by the q+13-by-13 matrix

(d1
1,q)(2) =





1 1

.

.

.
1 1

1 1

.

.

.
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1





,

where we replace each occurence of the dots “
.
.. ” by q−1

2 lines with a “1” in the column of the dots
and zeroes elsewhere. This is due to the diagonal map

(Z/2)
q+3
2 ∼= Hq(D2)← Hq(Z/2) ∼= Z/2,




1
..
.
1



← 1,
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which is induced by the inclusion D2 ← Z/2 hitting the product of the two fixed generators of D2.
Therefore, we have to distinguish the case q = 1, where d1

1,q has rank 12, and the case q > 3, where
it has rank 13.
On the 3-primary part, d1

1,q is a homomorphism
{

(Z/3)4 ←− (Z/3)6 for q congruent 1 modulo 4,
(Z/3)8 ←− (Z/3)6 for q congruent 3 modulo 4.

It is given by the matrix

(d1
1,q)(3) =

(e, x′) (g, y) (x, z) (y′, z′) (j, w) (t, j′)
e −α 0 0 0 0 0
x 1 0 −1 0 0 0
g 0 −α 0 0 0 0
y 0 1 0 −1 0 0
z 0 0 1 1 0 0
j 0 0 0 0 −1 1
w 0 0 0 0 α 0
t 0 0 0 0 0 −α,

where α = 1 for q congruent 3 modulo 4 and α = 0 else. This matrix has full rank 6 (injectivity) for
q congruent 3 modulo 4, and rank 4 (surjectivity) for q congruent 1 modulo 4. For q = 1, there is an
additional module H1(Γs) ∼= Z2 on the target side, which can not be hit because the edge stabilizers
are only torsion.

Remark 19. So, the 3-torsion in H1(Γ) has already been killed by the d1 differential. This shows
that there is no injection

H1(PSL2(Z))→ H1(Γ).

We verify this fact by considering the generator of the 3-torsion in H1(PSL2(Z)), which is induced
by the matrix S. In the group Γ for m = 13, the matrix S of order three is subject to the relation
S2 = BS−1BS where B is a matrix of order two defined above. The right hand side of this equation
can be simplified to the unit element when we pass it to Γab ∼= H1(Γ). So, the above non-injectivity
is based on the fact that S does not survive abelianizing Γ whilst it survives abelianizing PSL2(Z).

3.1.3. The rows with q even.
There is a zero map arriving at

⊕

σ∈Γ\X0

Hq(Γσ) = (Z/2)q for q bigger than 2, and respectively at

⊕

σ∈Γ\X0

H2(Γσ) = Z⊕ (Z/2)2.

3.1.4. The E2-page for m = 13. In the rows with q > 2, E2
p,q is concentrated in the columns p = 0

and p = 1 given as follows:
q = 4k + 1, q > 5 (Z/2)q (Z/3)2

q even, q > 4 (Z/2)q 0
q = 4k + 3, q > 3 (Z/3)2 ⊕ (Z/2)q 0
. . . . . . . . .
q = 2 Z ⊕ (Z/2)2 0

In the rows q = 0 and q = 1, E2
p,q is concentrated in the columns p = 0, 1, 2:

q = 1 Z2 ⊕ (Z/2)2 (Z/3)2 ⊕ Z/2 0

q = 0 Z Z2 Z2

d2

kkVVVVVVVVVVVVVVVVVVVVVV
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3.1.5. Computation of the differential d2.
The only nontrivial d2-arrow is determined on the E0-level by the following maps connecting E0

2,0

with E0
0,1:

L

σ∈Γ\X0

Θ1 ⊗σ Z
L

σ∈Γ\X1

Θ1 ⊗σ Z1⊗δoo

dΘ⊗1

��
L

σ∈Γ\X1

Θ0 ⊗σ Z
L

σ∈Γ\X2

Θ0 ⊗σ Z1⊗δoo

where dΘ is the differential of the bar resolution Θ• for Γ, and δ is the differential of Flöge’s cellular
complex. The generators of the abelian group E2

2,0
∼= Z2 are represented by the face (c, s, c′, z)

and the union of two faces (b, x, b′, v′, y′, a′, u, a, y, v) =: F , whose quotients by Γ are homeomorphic
to 2-spheres. We observe the edge identifications CAC−1 · (c, z) = (c′, z), V −1 · (s, c) = (s, c′),
CAC−1 · (b, x) = (b′, x), V −1 · (b, v) = (b′, v′), P · (y, v) = (y′, v′), S2 · (a, y) = (a′, y′), and
B · (a, u) = (a′, u).
The above d2-arrow is induced by

δ
(
(c, s, c′, z)

)
= (CAC−1 − 1) · (c, z) + (V −1 − 1) · (s, c)

and

δ
(
(b, x, b′, v′, y′, a′, u, a, y, v)

)
= (CAC−1 − 1) · (x, b) + (V −1 − 1) · (b, v)

+ (P − 1) · (v, y) + (S2 − 1) · (y, a) + (B − 1) · (a, u).

The lift 1⊗F 1 in E0
2,0 of the generator of E2

2,0 represented by

F = (b, x, b′, v′, y′, a′, u, a, y, v) is mapped as follows:

(1, CAC−1) ⊗b 1 − (1, CAC−1) ⊗x 1
+(1, V −1) ⊗v 1 − (1, V −1) ⊗b 1

+(1, P ) ⊗y 1 − (1, P ) ⊗v 1
+(1, S2) ⊗a 1 − (1, S2) ⊗y 1
+(1, B) ⊗u 1 − (1, B) ⊗a 1

(1, CAC−1) ⊗(x,b) 1

+(1, V −1) ⊗(b,v) 1

+(1, P ) ⊗(v,y) 1

+(1, S2) ⊗(y,a) 1

+(1, B) ⊗(a,u) 1

1⊗δoo

dΘ⊗1

��
(CAC−1 − 1) ⊗(x,b) 1

+(V −1 − 1) ⊗(b,v) 1

+(P − 1) ⊗(v,y) 1

+(S2 − 1) ⊗(y,a) 1

+(B − 1) ⊗(a,u) 1

1 ⊗F 1
1⊗δoo

The passage to E1. We attribute the symbols tσ to the part of this sum lying in Θ1 ⊗σ Z:

tx := −(1, CAC−1)⊗x 1,
tb := (1, CAC−1)⊗b 1− (1, V −1)⊗b 1,
tv := (1, V −1)⊗v 1− (1, P ) ⊗v 1,
ty := (1, P ) ⊗y 1− (1, S2)⊗y 1,
ta := (1, S2)⊗a 1− (1, B)⊗a 1,
tu := (1, B) ⊗u .

With the formula in our corollary 12, we find the classes t̄σ in H1(Θ∗ ⊗σ Z) as follows: As V −1M =
CAC−1 and Γb = 〈M | M2 = 1〉,

tb = [CAC−1]⊗b 1− [V −1]⊗b 1 = [V −1M ]⊗b 1− [V −1]⊗b 1
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gives the cycle
V V −1M − V V −1 = M ∈ 〈M | 2M = 0〉 ∼= H1(Γb, Z).

As V −1 = PD and Γv = 〈D| D2 = 1〉,
tv = [V −1]⊗v 1− [P ]⊗v 1 = [PD]⊗v 1− [P ]⊗v 1

gives the cycle

P−1PD − P−1P = D ∈ 〈D| 2D = 0〉 ∼= H1(Γv, Z).

As S2 = BS−1BS and Γa = 〈S−1BS| (S−1BS)2 = 1〉,
ta = [S2]⊗a 1− [B]⊗a 1 = [BS−1BS]⊗a 1− [B]⊗a 1

gives the cycle

B−1BS−1BS −B−1B = S−1BS ∈ 〈S−1BS| 2S−1BS = 0〉 ∼= H1(Γa, Z).

Finally, tu = [B]⊗u 1 gives the cycle

B ∈ 〈B| 2B = 0〉 ∼= H1(Γu, Z).

The term E2
0,1 having no 3-torsion, the 3-torsion part t̄x+t̄y of the above sum makes no contribution

to the image of d2.
The 2-torsion part, tb + ta + tv + tu, equals the image d1

1,1(t(b,c) + t(c′′,a′′) + t(v,f) + t(f,h) + t(h,u′)),

where tσ stands for the generator of H1(Γσ, Z) ∼= Z/2. Hence it makes no contribution neither, and
we obtain d2(F ) = 0.
The lift 1⊗(c,s,c′,z) 1 of the generator (c, s, c′, z) is mapped as follows:

(1, CAC−1) ⊗z 1
−(1, CAC−1) ⊗c 1

+(1, V −1) ⊗c 1
−(1, V −1) ⊗s 1

(1, CAC−1) ⊗(c,z) 1

+(1, V −1) ⊗(s,c) 1

1⊗δoo

dΘ⊗1

��
(CAC−1 − 1) ⊗(c,z) 1

+(V −1 − 1) ⊗(s,c) 1
1 ⊗(c,s,c′,z) 1

1⊗δoo

The passage to E1. We attribute the symbols tσ to the part of this sum lying in Θ1 ⊗σ Z:

tz := (1, CAC−1)⊗z 1,
tc := (1, V −1)⊗c 1− (1, CAC−1)⊗c 1,
ts := −(1, V −1)⊗s 1.

With the formula in our corollary 12, we find the classes t̄σ in H1(Θ∗ ⊗σ Z) as follows:

tz = [CAC−1]⊗z 1

gives the cycle

CAC−1 ∈ 〈CAC−1| 3CAC−1 = 0〉 ∼= H1(Γz, Z).

As V −1M = CAC−1 and Γc = 〈M | M2 = 1〉,
tc = [V −1]⊗c 1− [CAC−1]⊗c 1 = [V −1]⊗c 1− [V −1M ]⊗c 1

gives the cycle

V V −1 − V V −1M = −M ∈ 〈M | 2M = 0〉 ∼= H1(Γc, Z).

Finally,
ts = −[V −1]⊗s 1

gives the cycle
V ∈ 〈V ,W 〉 ∼= H1(Γs, Z) ∼= Z2.
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The term E2
0,1 having no 3-torsion, the 3-torsion part tz of the above sum makes no contribution to

the image of d2.
However the 2-torsion part, tc = M , passes to the E2-page because no chain of edges can have
the single point c as its boundary. Furthermore, V is one of the generators of the free part of
E2

0,1
∼= Z2 ⊕ (Z/2)2, so we obtain d2 ((c, s, c′, z)) = M + V , which is of infinite order and has the

following property: There is no element η ∈ E2
0,1 with kη = M + V for an integer k > 1. As we have

seen that d2(F ) = 0, we obtain the quotient

E3
0,1
∼= Z⊕ (Z/2)2.

Hence we obtain for integral homology the following short exact sequences:





0→ (Z/2)q → Hq(Γ; Z)→ (Z/3)2 → 0, q = 4k + 2,

0→ (Z/2)q → Hq(Γ; Z)→ 0, q = 4k + 1,

0→ (Z/2)q → Hq(Γ; Z)→ 0, q = 4k + 4,

0→ (Z/3)2 ⊕ (Z/2)q → Hq(Γ; Z)→ 0, q = 4k + 3,

0→ Z⊕ (Z/2)2 → H2(Γ; Z)→ Z⊕ (Z/3)2 ⊕ Z/2→ 0,

0→ Z⊕ (Z/2)2 → H1(Γ; Z)→ Z2 → 0.

3.1.6. The spectral sequence for m = 13 with Z/2-coefficients.
From [15, lemma 4.2(3)] we compute by elementary means that Hq(S3; Z/2) ∼= Z/2,
Hq(Z/2; Z/2) ∼= Z/2 and Hq(D2; Z/2) ∼= (Z/2)q+1 for all q > 0. Also by elementary means, we get

Hq(Z
2; Z/2) ∼=

{
0, q > 3,

Z/2, q = 2,

(Z/2)2, q = 1.

3.1.7. The E1-page with Z/2-coefficients.
We can apply the functor −⊗ Z/2 to the row q = 0 and obtain in the columns p = 0, 1, 2:

(Z/2)17
d1
1,0←−−− (Z/2)28

d1
2,0←−−− (Z/2)12.

The rest of this row are zeroes. The matrix d1
1,0 has rank 16 and the matrix d1

2,0 has rank 10.

In the rows with q > 0, the differential d1 is given by a single arrow d1
1,q from

E1
1,q = (Hq(Z/2; Z/2))13 ⊕ (Hq(Z/3; Z/2))6 ∼= (Z/2)13 to

E1
0,q = Hq(Z

2; Z/2) ⊕ (Hq(Z/2; Z/2))6 ⊕ (Hq(D2; Z/2))2 ⊕ (Hq(S3; Z/2))4,

and the rest of these rows are zeroes. For q = 1, we have d1
1,1 of rank 12 arriving at E1

0,1
∼= (Z/2)16.

For q > 3, we have d1
1,q of rank 13 arriving at E1

0,q
∼= (Z/2)12+2q . For q = 2, we have d1

1,2 of

rank 13 arriving at E1
0,2
∼= (Z/2)17. The only difficulty in seeing this is to compute the maps from

Hq(Z/2; Z/2) to Hq(D2; Z/2) induced by the inclusions f : Z/2 → D2. For this task we take the
resolutions of Z/2 ∼= 〈t | t2 = 1〉 and D2

∼= 〈D,E |D2 = E2 = (DE)2 = 1〉 proposed by [15] and
compute the chain map induced by extending f to a ring homomorphism f : Z[Z/2] → Z[D2]. We
can then apply the functor −⊗Z[G] Z/2 to this chain map (where Z/2 is the trivial Z[G]-module for
G = Z/2,D2 ).

3.1.8. The E2-page for m = 13 with Z/2-coefficients. We obtain in the rows with q > 2 the E2-term
concentrated in the column p = 0,

q > 3 (Z/2)2q−1

q = 2 (Z/2)4,



INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY QUADRATIC INTEGERS OF CLASS NUMBER TWO 15

and in the rows q = 0, q = 1 it is concentrated in the columns p = 0, 1, 2:

q = 1 (Z/2)4 Z/2 0

q = 0 Z/2 (Z/2)2 (Z/2)2.

d2

2,0

iiTTTTTTTTTTTTTTTTT

Computation of the differential d2
2,0. The basis {(c, s, c′, z), F} of E2

2,0 with Z-coefficients induces a

basis of E2
2,0 with Z/2-coefficients. The Universal Coefficient Theorem gives us an isomorphism from

H1(Γσ; Z)⊗Z Z/2 to H1(Γσ; Z/2), which we will use to transfer the elements tσ ∈ H1(Γσ; Z) computed
in subsection 3.1.5 to H1(Γσ; Z/2). For d2

2,0((c, s, c
′, z)) the computation is as follows. As tc generates

H1(Γc; Z) ∼= Z/2, it is transferred to the generator of H1(Γc; Z/2) ∼= Z/2. Since ts can be completed
with a second element to a Z-basis of H1(Γs; Z) ∼= Z2, it is transferred to a nontrivial element of
H1(Γs; Z/2) ∼= (Z/2)2. The element tz vanishes because H1(Γz; Z)⊗ Z/2 ∼= Z/3⊗ Z/2 = 0. The sum
tc + ts is quotiented to a nontrivial element on the E2-page because H1(Γs; Z/2) is not hit by the
d1-differential. So d2

2,0(〈(c, s, c′, z)〉) ∼= Z/2. For d2
2,0(F ), the computation is as follows. The 3-torsion

vanishing when tensoring with Z/2, the 3-torsion part t̄x + t̄y of the sum makes no contribution to
the image of d2. The 2-torsion part, tb + ta + tv + tu, equals the image

d1
1,1(t(b,c) + t(c′′,a′′) + t(v,f) + t(f,h) + t(h,u′)),

where tσ, σ ∈ {b, a, v, u, (b, c), (c′′ , a′′), (v, f), (f, h), (h, u′)} is the generator of H1(Γσ; Z/2) ∼= Z/2.
Hence it makes no contribution neither, and we obtain d2(F ) = 0. Thus d2

2,0 has rank 1.

So the E3 = E∞-page gives us immediately Hq(Γ, Z/2) ∼=
{

(Z/2)2q−1 , q > 3,

(Z/2)6, q = 2,

(Z/2)5, q = 1,

and we conclude

Hq(Γ, Z) ∼=






Z3 ⊕ (Z/2)2, q = 1,

Z2 ⊕ Z/4⊕ (Z/3)2 ⊕ Z/2, q = 2,

(Z/2)q ⊕ (Z/3)2, q = 4k + 3, k > 0,

(Z/2)q, q = 4k + 4, k > 0,

(Z/2)q, q = 4k + 1, k > 1,

(Z/2)q ⊕ (Z/3)2, q = 4k + 2, k > 1.

3.2. m = 5.

We will make use of the following matrices:

A := ±
„

−1
1

«

, B := ±
„

−ω 2
2 ω

«

,

M := ±
„

−ω 4
1 ω

«

, S := ±
„

−1
1 1

«

,

U := ±
„

1 ω
1

«

, V := ±
„

−ω 2 − ω
2 2 + ω

«

,

W := ±
„

6 − ω 5 + 2ω
2ω ω − 4

«

,

which are subject to the relations UMU−1 = A,
UWS(UW )−1 = S, WABW−1 = MB and S =
ABV .

v1

a3

a1

a2b

u

u1

s

v

a

Figure 2. The fundamental do-
main for m = 5
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There are five orbits of vertices, with stabilizers

Γb = 〈A, B|A2 = B2 = 1〉 ∼= D2,
Γu = 〈B, M |B2 = M2 = 1〉 ∼= D2,
Γa = 〈AB|AB2 = 1〉 ∼= Z/2,
Γv = 〈S|S3 = 1〉 ∼= Z/3,
Γs = 〈V, W |V W = WV 〉 ∼= Z2

and identifications UW · a = a1, V −1 · a = a2, S2 · a = a2, U · u = u1 and UW · v = v1. There are
seven orbits of edges, with stabilizers

Γ(b,a) = 〈AB|AB2 = 1〉 ∼= Z/2,

Γ(v,v1) = 〈S|S3 = 1〉 ∼= Z/3,

Γ(a3,u) = 〈MB|MB2 = 1〉 ∼= Z/2,

Γ(u,b) = 〈B|B2 = 1〉 ∼= Z/2,

Γ(u1,b) = 〈A|A2 = 1〉 ∼= Z/2;

(a, v) and (a, s) having the trivial stabilizer. There are three orbits of faces, with trivial stabilizers.
The above data gives the Γ-equivariant Euler characteristic of X:

χΓ(X) =
1

2
+

1

3
+ 2 · 1

4
− 2− 4 · 1

2
− 1

3
+ 3 = 0,

in accordance with remark 17.

3.2.1. The zeroth row of the E1-page. This row identifies with the cellular chain complex of the
quotient complex Γ\X.
We obtain for the row q = 0 in the columns p = 0, 1, 2:

Z5
d1
1,0←−−− Z7

d1
2,0←−−− Z3

where 1 is the only elementary divisor of the differential matrices, with multiplicity four for d1
1,0, and

multiplicity two for d1
2,0. The homology of Γ\X is generated in degree 1 by the loop represented by

the edge (v, v1), and in degree 2 by the quotient of the face (a2, s, a, v), which is homeomorphic to a
2-sphere.

3.2.2. Odd rows of the E1-page. We start by investigating the morphism

Z2 ⊕ Z/3⊕ (Z/2)5
d1
1,1←−−−−− Z/3⊕ (Z/2)4

and the morphism

Z/3⊕ (Z/2)q+4
d1
1,q←−−−−− Z/3⊕ (Z/2)4

for q > 3. On the 3-torsion, d1
1,q is zero.

On the 2-torsion, d1
1,q it is given by the matrix

(d1
1,q)(2) =

(b, a) (a3, u) (u, b) (u1, b)

a 1 −1 0 0
b −1 0 0 1
... ... ... ... ...
b −1 0 1 0
u 0 1 −1 0
... ... ... ... ...
u 0 1 0 −1,

where we fill in q−1
2 zero rows into each dotted line, except that in the columns with a “-1” both

above and below the dots, we write “-1” into all entries of this column which are between the two
“-1”’s.
Thus d1

1,1 has rank 3 and d1
1,q has rank 4 for q > 3.
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3.2.3. Even rows of the E1-term. There is a zero map arriving at E1
0,2
∼= Z⊕ (Z/2)2.

For q > 4, there is a zero map arriving at E1
0,q
∼= (Z/2)q .

The rest of the E1-page are zeroes.

3.2.4. The E2-page for m = 5.
In the rows with q > 2, the E2-page is concentrated in the columns p = 0 and p = 1:

q > 4 even (Z/2)q 0
q > 3 odd (Z/2)q ⊕ Z/3 Z/3
q = 2 Z ⊕ (Z/2)2 0

Its lowest two rows are concentrated in the columns p = 0, 1, 2:

q = 1 Z2 ⊕ (Z/2)2 ⊕ Z/3 Z/2 ⊕ Z/3 0

q = 0 Z Z Z

d2

kkVVVVVVVVVVVVVVVVVVVVVV

Let us compute the only nontrivial d2-arrow. The generator of E2
2,0 comes from the 2-cell (a2, s, a, v).

Among its vertices, we have the identifications S2 · a = a2 and V −1 · a = a2, where the matrices V of
infinite order stabilizes the singular point s, and the matrix S of order three stabilizes the point v.
The lift 1⊗(a2,s,a,v) 1 of the generator of E2

2,0 is mapped as follows in the E0-page:

(V −1, 1) ⊗s 1 − (V −1, 1) ⊗a 1
+(1, S2) ⊗v 1 − (1, S2) ⊗a 1

(V −1, 1) ⊗(a,s) 1

+(1, S2) ⊗(a,v) 1

1⊗δoo

dΘ⊗1

��
1 ⊗(a,s) 1 − V −1 ⊗(a,s) 1

+S2 ⊗(a,v) 1 − 1 ⊗(a,v) 1
1 ⊗(a2,s,a,v) 1

1⊗δoo

It passes to

(V , 2S,AB) ∈ 〈V ,W 〉 ⊕ 〈S | 3S = 0〉 ⊕ (Z/2)2 ∼= E2
0,1,

which is of infinite order and has the following property: There is no element η ∈ E2
0,1 with kη =

(V , 2S,AB) for an integer k > 1. So,

E3
0,1
∼= Z⊕ (Z/2)2 ⊕ Z/3.

Thus the E∞-page gives us the following short exact sequences:





0 → (Z/2)q → Hq(Γ; Z) → Z/3 → 0 q > 4 even,

0 → Z/3 ⊕ (Z/2)q → Hq(Γ; Z) → 0 q > 3 odd,

0 → Z ⊕ (Z/2)2 → H2(Γ; Z) → Z/3 ⊕ Z/2 → 0,

0 → Z ⊕ Z/3 ⊕ (Z/2)2 → H1(Γ; Z) → Z → 0.

The result

Hq(Γ; Z) ∼=






Z2 ⊕ Z/3⊕ (Z/2)2 q = 1

Z⊕ Z/4⊕ Z/3⊕ Z/2 q = 2

Z/3⊕ (Z/2)q q > 3

is obtained after resolving the ambiguity of the extension H2(Γ, Z) by a reflection like the one on
[15, page 587], for which we have to recompute the spectral sequence with Z/2-coefficients, giving us

Hq(Γ; Z/2) ∼=

{
(Z/2)4 q = 1

(Z/2)5 q = 2

(Z/2)2q−1 q > 3.
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Remark 20. There are the following checks of the computations we made. Let us look at the low
term short exact sequence

0 // E∞
0,1

// Γab
ρ // E∞

1,0
// 0

of the spectral sequence. We have E∞
1,0 = H1(Γ\X) = (π1(Γ\X))ab, and the projection ρ is the

abelianization of the map Γ→ π1(Γ\X) given as follows. Choose a fixed base point x ∈ X. For every
γ ∈ Γ, choose a continuous path in X from x to γx. This gives a well-defined loop in Γ\X since X
is contractible. As Flöge shows, an inspection of the complex X and the associated stabilizer groups
and identifications yields, together with [1, theorem 4.5], a presentation of Γ by means of generators
and relations. In order to get Γab, we use the presentation computed by Flöge for m = 5, 6, 10, and
the presentation computed by Swan [18] for m = 15. Then, we compute the group E∞

0,1 = E3
0,1 as the

kernel of the projection ρ.
For m = 5, this check looks as follows.
The abelianization is Γab ∼= 〈A,B, S,U, V : 2A = 0, 2B = 0, 3S = 0〉. The fundamental group of
the quotient space being free, only the parabolic elements U and V can define nontrivial loops in the
quotient space. The element U generates a nontrivial loop, whilst V generates a trivial loop.
So it follows that E∞

0,1
∼= Z⊕ (Z/2)2 ⊕ Z/3, generated by V ,A,B and S. This is consistent with the

computation above, involving the detailed analysis of the d2-differential.

3.3. m = 10.

We will use the following definitions:

A := ±
„

−1
1

«

, B := ±
„

−ω 3
3 ω

«

,

C := ±
„

−1 − ω 4 − ω
2 1 + ω

«

, D := ±
„

ω − 1 −4
3 1 + ω

«

,

L := ±
„

ω 3
3 −ω

«

, R := ±
„

5 + ω 2ω − 3
ω − 3 −4 − ω

«

,

S := ±
„

−1
1 1

«

, U := ±
„

1 ω
1

«

,

V := ±
„

1 − ω 5
2 1 + ω

«

, W := ±
„

11 5ω
2ω −9

«

,

Y := ±
„

ω − 2 −5
3 2 + ω

«

.

x1

a2

a1

b1

v2w2

w1

r1

a3

b2

v1

s

u

x

y

a
b

r

v
w

Figure 3. The fundamental do-
main for m = 10

The matrix U acts as a vertical translation by −ω on this fundamental domain. There are nine
orbits of vertices, labelled a, b, r, u, v, w, x, y, s. We have the following identifications: UWa = a1,
Wa = a2, V a = a3; S−1v = v1, U−1Dv = v2; Dw = w1, U−1Dw = w2; Db = b1,
Cb = b2; Dr = r1; UWx = x1. The stabilizers of the vertex orbit representatives are

Γa = Γb =
˙

R| R3 = 1
¸ ∼= Z/3,

Γw =
˙

S | S3 = 1
¸ ∼= Z/3,

Γy =
˙

A, L| A2 = L2 = (AL)2 = 1
¸ ∼= D2,

Γu =
˙

A, B | A2 = B2 = (AB)2 = 1
¸ ∼= D2,

Γr =
˙

C| C2 = 1
¸ ∼= Z/2,

Γv =
˙

AB| (AB)2 = 1
¸ ∼= Z/2,

Γx =
˙

B | B2 = 1
¸ ∼= Z/2,

Γs = 〈V, W | V W = WV 〉 ∼= Z2.

There are fifteen orbits of edges, labelled (b, v), (r, w), (b, r), (v, w), (a2 , w2),
(y, r1), (x, a), (u, y), (a, b), (u, v), (a, s), (w, b1), (r, v2), (y, x1), (x, u).
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Amongst their stabilizers only

Γ(a2,w2) = Γa2
= W−1ΓaW =

˙

W−1RW
˛

˛ (W−1RW )3 = 1
¸ ∼= Z/3,

Γ(a,b) = Γa = Γb =
˙

R| R3 = 1
¸ ∼= Z/3,

Γ(w,b1) = Γb1 = Γw =
˙

S | S3 = 1
¸ ∼= Z/3,

Γ(y,r1) = Γr1
= DΓrD−1 =

˙

AL = DCD−1
˛

˛ (DCD−1)2 = 1
¸ ∼= Z/2,

Γ(u,v) = Γv =
˙

AB | (AB)2 = 1
¸ ∼= Z/2,

Γ(r,v2) = Γv2
= Γr =

˙

C| C2 = 1
¸ ∼= Z/2,

Γ(y,x1) = Γx1
= UWΓx(UW )−1 =

˙

L | L2 = 1
¸ ∼= Z/2,

Γ(x,u) = Γx =
˙

B | B2 = 1
¸ ∼= Z/2,

Γ(u,y) =
˙

A | A2 = 1
¸ ∼= Z/2

are nontrivial. Furthermore, there are seven orbits of faces, with trivial stabilizers.
With the above information on the isomorphy types of the cell stabilizers, we get the Γ-equivariant
Euler characteristic of X:

χΓ(X) = 3 · 1
3

+ 2 · 1
4

+ 3 · 1
2
− 3 · 1

3
− 6 · 1

2
− 6 + 7 = 0,

in accordance with remark 17.

3.3.1. The row q = 0 in the E1-page for m = 10.
We obtain for the row q = 0 in the columns p = 0, 1, 2:

Z9
d1
1,0←−−− Z15

d1
2,0←−−− Z7,

where 1 is the only elementary divisor of the differential matrices, with multiplicity eight for d1
1,0, and

multiplicity five for d1
2,0. The rest of this row are zeroes.

3.3.2. Odd rows of the E1-term.
For odd q, the morphism

⊕

σ∈Γ\X0

Hq(Γσ)
d1
1,q←−−−

⊕

σ∈Γ\X1

Hq(Γσ)

is for q > 3 of the form

(Z/3)3 ⊕ (Z/2)q+6 ←− (Z/3)3 ⊕ (Z/2)6.

For q = 1, we have to add H1(Γs) ∼= Z2 on the target side of the morphism d1
1,q, but the incoming

torsion must reach it trivially.
On the 3-primary part, d1

1,q is given by the matrix

(d1
1,q)(3) =

(a, b) (Db, w) (Wa, U−1Dw)

a −1 0 −1
w 0 1 1
b 1 −1 0.

This matrix has rank 2, so its image is isomorphic to (Z/3)2 and its kernel is of type Z/3.
On the 2-primary part, d1

1,q is for odd q given by the matrix

(d1
1,q)(2) =

(y, r1) (u, v) (r, v2) (y, x1) (x, u) (u, y)

u 0 −1 0 0 0 −1
...

...
...

...
...

...
...

u 0 −1 0 0 1 0
y −1 0 0 0 0 1
.
..

.

..
.
..

.

..
.
..

.

..
.
..

y −1 0 0 −1 0 0
x 0 0 0 1 −1 0
r 1 0 −1 0 0 0
v 0 1 1 0 0 0,
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where, as in the computation for m = 13, we fill in q−1
2 zero rows into each of the two dotted lines,

except that in the columns with a “-1” both above and below the dots, we write “-1” into all entries
of this column which are between the two “-1”’s. The above matrix (d1

1,q)(2) has rank 5 for q = 1,
and full rank 6 for q > 3.

3.3.3. The rows with q even. These rows are given by zero maps into
⊕

σ∈Γ\X0

Hq(Γσ) ∼= (Z/2)q for

q > 2, respectively into
⊕

σ∈Γ\X0

H2(Γσ) ∼= Z⊕ (Z/2)2.

3.3.4. The E2-page for m = 10.
In the rows with q > 2, the E2-page is concentrated in the columns p = 0 and p = 1:

q > 4 even (Z/2)q 0
q > 3 odd (Z/2)q ⊕ Z/3 Z/3
q = 2 Z ⊕ (Z/2)2 0

Its lowest two rows are concentrated in the columns p = 0, 1, 2:

q = 1 Z2 ⊕ (Z/2)2 ⊕ Z/3 Z/2 ⊕ Z/3 0

q = 0 Z Z2 Z2

d2

kkVVVVVVVVVVVVVVVVVVVVVV

3.3.5. Computation of the differential d2.
The generators of the abelian group E2

2,0
∼= Z2 are represented by the 2-cell (a, s, a3, x) and the union

of two 2-cells (v1, b2, r, b, v, w), whose quotients by Γ are homeomorphic to 2-spheres. On the vertices
of (a, s, a3, x) , we have the identifications B · a = a3 and V · a = a3, where the matrix B fixes x and
the matrix V fixes s. For (v1, b2, r, b, v, w), we have the identifications of vertices Cb = b2, Cr = r,
S2v = v1 and S2w = w; and we pay particular attention to the matrix CR = S2AB identifying the
edge (b, v) ∼= (b2, v1). Thus the only nontrivial d2-arrow is induced by

δ((a, s, a3, x)) = (a, s) + V · (s, a) + B · (a, x) + (x, a)

and

δ((v1, b2, r, b, v, w)) = (b, r)− C · (b, r) + CR · (b, v) + S2 · (v,w) − (v,w) − (b, v).

The lift 1⊗(v1,b2,r,b,v,w) 1 of the generator obtained from (v1, b2, r, b, v, w) is mapped as follows:

(C, 1) ⊗r 1 − (C, 1) ⊗b 1
+(1, CR) ⊗v 1 − (1, CR) ⊗b 1
+(1, S2) ⊗w 1 − (1, S2) ⊗v 1

(C, 1) ⊗(b,r) 1

+(1, CR) ⊗(b,v) 1

+(1, S2) ⊗(v,w) 1

1⊗δoo

dΘ⊗1

��
1 ⊗(b,r) 1 − C ⊗(b,r) 1

+CR ⊗(b,v) 1 − 1 ⊗(b,v) 1

+S2 ⊗(v,w) 1 − 1 ⊗(v,w) 1

1 ⊗(v1,b2,r,b,v,w) 1
1⊗δoo

We obtain d2
2,0(〈(v1, b2, r, b, v, w)〉) ∼= Z/3.
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The lift 1⊗(a,s,a3,x) 1 of the generator obtained from (a, s, a3, x) is mapped

(V, 1) ⊗s 1 − (V, 1) ⊗a 1
+(1, B) ⊗x 1 − (1, B) ⊗a 1

(V, 1) ⊗(a,s) 1

+(1, B) ⊗(a,x) 1

1⊗δoo

dΘ⊗1

��
1 ⊗(a,s) 1 − V ⊗(a,s) 1

+B ⊗(a,x) 1 − 1 ⊗(a,x) 1
1 ⊗(a,s,a3,x) 1

1⊗δoo

We attribute the symbols tσ to the part of this sum lying in Θ1 ⊗σ Z,

ts := (V, 1) ⊗s 1,
tx := (1, B) ⊗x 1,
ta := −(V, 1) ⊗a 1 − (1, B) ⊗a 1.

We find the class ts = −V ∈ 〈V ,W 〉 = Γab
s
∼= H1(Γs, Z) ∼= Z2, which is a generator of the free part

of E1
0,1. It can not be the image of a torsion element from E1

1,1 = (Z/3)3 ⊕ (Z/2)2. Therefore, it is

preserved when passing from E1
0,1 to E2

0,1. The cycles tx and ta are torsion, so the fact that ts is a

generator of the free part determines that the image d2
2,0(〈(a, s, a3, x)〉) is of infinite order and has the

following property: There is no element η ∈ E2
0,1
∼= Z2 ⊕ Z/3 ⊕ (Z/2)2 with kη = d2

2,0(〈(a, s, a3, x)〉)
for an integer k > 1. Together with the isomorphy d2

2,0(〈(v1, b2, r, b, v, w)〉) ∼= Z/3, we obtain

E3
0,1
∼= Z⊕ (Z/2)2.

Thus the E∞-page gives the following short exact sequences:





0 → (Z/2)q → Hq(Γ; Z) → Z/3 → 0, for q > 4 even,

0 → Z/3 ⊕ (Z/2)q → Hq(Γ; Z) → 0, for q > 3 odd,

0 → Z ⊕ (Z/2)2 → H2(Γ; Z) → Z ⊕ Z/3 ⊕ Z/2 → 0,

0 → Z ⊕ (Z/2)2 → H1(Γ; Z) → Z2 → 0.

From here, we easily see the results,

Hq(Γ, Z) ∼=






Z3 ⊕ (Z/2)2, q = 1,

Z2 ⊕ Z/4⊕ Z/3⊕ Z/2, q = 2,

Z/3⊕ (Z/2)q, q > 3;

except for the ambiguity in the 3-torsion and the 2-torsion of the short exact sequence for H2(Γ; Z).
To resolve it, we will compute homology with Z/2-coefficients,

Hq(Γ, Z/2) ∼=

{
(Z/2)2q−1 , q > 3

(Z/2)6, q = 2,

(Z/2)5, q = 1,

and then use the Universal Coefficient Theorem in the form

H2(Γ, Z/2) ∼= H2(Γ; Z)⊗ (Z/2) ⊕ TorZ
1 (H1(Γ; Z), Z/2).

We do the same for Z/3-coefficients.

Remark 21. For m = 10, the check introduced in remark 20 takes the following form. The abelian-
ization is the group

Γab ∼= 〈A,B,D,U,W : 2A = 2B = 0〉.
The elements of infinite order are D, U and W . The elements U and U−1D give the cycles generating
H1(Γ\X), whilst W generates a trivial loop. So it follows that E∞

0,1 = Z⊕ (Z/2)2, generated by W,A

and B. This is consistent with the computation above.
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3.4. m = 6.

The matrix U := ± ( 1 ω
1 ) performs a vertical

translation by −ω of the fundamental domain for
Γ. The following matrices occur in the cell stabi-
lizers.

A := ±
„

−1
1

«

, B := ±
„

−1 − ω 2 − ω
2 1 + ω

«

,

R := ±
„

−ω 5 − ω
1 1 + ω

«

, S := ±
„

−1
1 1

«

,

V := ±
„

1 − ω 3
3 1 + ω

«

, W := ±
„

7 3ω
2ω −5

«

.

b1 a1

a2

a3

s

b
a

u

v

v1

Figure 4. The fundamental do-
main for m = 6

There are five orbits of vertices, labelled b, a, u, v, s, with stabilizers

Γu =
˙

B, S| B2 = S3 = (BS)3 = 1
¸ ∼= A4,

Γv =
˙

B, R| B2 = R3 = (BR)3 = 1
¸ ∼= A4,

Γv1
=

˙

UBU−1, S
˛

˛ (UBU−1)2 = S3 = (UBU−1S)3 = 1
¸ ∼= A4,

Γa =
˙

SB | (SB)3 = 1
¸ ∼= Z/3,

Γa2
=

˙

RB | (RB)3 = 1
¸ ∼= Z/3,

Γb =
˙

A| A2 = 1
¸ ∼= Z/2,

Γs = 〈V, W | V W = WV 〉 ∼= Z2,

and identifications UW · a = a1, W · a = a2, V · a = a3, A · a = a3, UW · b = b1 and U · v = v1. There
are seven orbits of edges, labelled (b, a), (a, s), (a, u), (u, v), (a2, v), (b, b1) and (u, v1), amongst whose
stabilizers only

Γ(a2,v) =
˙

RB | (RB)3 = 1
¸

= Γa2
∼= Z/3,

Γ(u,v1) =
˙

S | S3 = 1
¸ ∼= Z/3,

Γ(a,u) =
˙

SB | (SB)3 = 1
¸

= Γa
∼= Z/3,

Γ(u,v) =
˙

B | B2 = 1
¸ ∼= Z/2,

Γ(b,b1) =
˙

A | A2 = 1
¸

= Γb = Γb1
∼= Z/2

are nontrivial; and three orbits of faces with trivial stabilizers. The above data gives the Γ-equivariant
Euler characteristic of X:

χΓ(X) =
1

12
+

1

12
+

1

3
+

1

2
− 1− 1− 1

3
− 1

3
− 1

3
− 1

2
− 1

2
+ 3 = 0,

in accordance with remark 17.

3.4.1. Zeroth row of the E1-term.
We obtain in the columns p = 0, 1, 2:

Z5
d1
1,0←−−− Z7

d1
2,0←−−− Z3

where 1 is the only occurring elementary divisor of the differential matrices, with multiplicity four
for d1

1,0, and multiplicity two for d1
2,0. The homology of this sequence is generated by the cycle (b, b1)

in degree one and by the face (a, s, a3, b) in degree two.

3.4.2. Even rows of the E1-term.
The even rows are the zero map to E1

0,2
∼= Z⊕ (Z/2)2, and to E1

0,q
∼= (Hq(A4))

2 for the degree q > 4.
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3.4.3. Odd rows of the E1-term.
The map d1

1,q is on the 2-primary part induced by the inclusion of Γ(u,v)
∼= Z/2 into Γv and Γu which

are of isomorphy type A4. By [15, lemma 4.5(2)], every inclusion of Z/2 into A4 induces injections
on homology in degrees greater than 1, and is zero on H1. So the morphism

Z2 ⊕ Z/2⊕ (Z/3)3
d1
1,1←−−− (Z/2)2 ⊕ (Z/3)3

has Z/2-rank 0 on the 2-primary part, and

Z/3⊕ Z/2⊕ (Hq(A4))
2

d1
1,q←−−− (Z/2)2 ⊕ (Z/3)3

in the odd rows of degree q > 3 has Z/2-rank 1 on the 2-primary part.

On the 3-primary part, d1
1,q is for all odd q given by the following rank 2 matrix.

(d1
1,q)(3) =

(a, u) (a2, v) (u, v1)

a −1 −1 0
u 1 0 −1
v 0 1 1.

In order to determine it, we make use of the following facts.
First, by [15, lemma 4.5], each of the occurring group inclusions induces an injection in homology.
So we have to determine the relative positions of the images coming from the edges in each direct
summand over the points. In order to find out if cancelling occurs between terms with positive and
negative signs, let us look at the following diagram. The symbol ∆W denotes the isomorphism given
by conjugation with W , δ denotes an inner automorphism, ι denotes any canonical inclusion, and the
arrows emanating from Z/3 are labeled with the image of the canonical generator.

Γ(a2,v)

id

uujjjjjjjjjjjjjjjjjjj
ι

**UUUUUUUUUUUUUUUUUUUUUU

Γa2

∆W
��

Z/3

RB

OO

RB
oo

RB
//

SB
uujjjjjjjjjjjjjjjjjjjjj

SUBU−1 **UUUUUUUUUUUUUUUUUUUUUUU

SB

zzuuuuuuuuuuuuuuuuuuuuuuu

S

��:
::

::
::

::
::

::
::

::

SB

����
��

��
��

��
��

��
��

�

S

%%KKKKKKKKKKKKKKKKKKKKKKKKKK

S

��

Γv

∆U
��

Γa Γv1

Γ(a,u)

id

OO

ι
// Γu

δ
// Γu Γ(u,v1) ι

//
ι

oo Γv1

δ

OO

Applying homology Hq for odd q and taking into account that the fact that inner automorphisms
act trivially on homology, we get a similar slightly smaller commutative diagram. One can then
unambiguously identify all occurring groups Hq(Z/3) ∼= Z/3 and its images in Hq(A4) with the
“abstract” Hq(Z/3) ∼= Z/3 in the middle. This gives a basis for the 3-primary parts of the source and
a subspace of the image. In this basis, the 3-primary map is given by the following matrix, followed
by an injection which does not influence the homology.
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3.4.4. The E2-page for m = 6.
In the rows with q > 2, the E2-page is concentrated in the columns p = 0 and p = 1:

q = 6k + 2, q > 8 (Z/2)2k+2 0
q = 6k + 1, q > 7 (Z/2)2k ⊕ Z/3 Z/2 ⊕ Z/3
q = 6k + 6 (Z/2)2k 0
q = 6k + 5 (Z/2)2k+4 ⊕ Z/3 Z/2 ⊕ Z/3
q = 6k + 4 (Z/2)2k 0
q = 6k + 3 (Z/2)2k+2 ⊕ Z/3 Z/2 ⊕ Z/3
q = 2 Z ⊕ (Z/2)2 0

Its lowest two rows are concentrated in the columns p = 0, 1, 2:

q = 1 Z2 ⊕ Z/2 ⊕ Z/3 (Z/2)2 ⊕ Z/3 0

q = 0 Z Z Z

kkVVVVVVVVVVVVVVVVVVVVVVV

3.4.5. The E3 = E∞-term. For the calculation of the d2-differential, we have

δ(a, s, a3, b) = (a3, s) + (s, a) + (a, b) + (b, a3)

= (V · a, s) + (s, a) + (a, b) + (b, A · a)

= V · (a, s)− (a, s)− (b, a) + A · (b, a),

(1 ⊗ δ)(1⊗(a,s,a3,b) 1) = 1⊗V ·(a,s) 1− 1⊗(a,s) 1− 1⊗(b,a) 1 + 1⊗A·(b,a) 1

= (V − 1)⊗(a,s) 1 + (A− 1)⊗(b,a) 1

= (dΘ ⊗ 1)
(
(1, V )⊗(a,s) 1 + (1, A)⊗(b,a) 1

)

= (dΘ ⊗ 1)
(
[V ]⊗(a,s) 1 + [A]⊗(b,a) 1

)
.

We then get

(1⊗ δ)
(
[V ]⊗(a,s) 1 + [A]⊗(b,a) 1

)
= [V ]⊗s 1− [V ]⊗a 1 + [A]⊗a 1− [A]⊗b 1.

As [V ]⊗s 1 and [W ]⊗s 1 represent the generators of the torsion-free part of E2
0,1
∼= Z2 ⊕ Z/2⊕ Z/3,

we see that the above computed element of E0
0,1 represents an element ν ∈ E2

0,1 of infinite order

with the following property: There is no element η ∈ E2
0,1 with kη = ν for an integer k > 1. So,

E3
0,1
∼= Z⊕ Z/3⊕ Z/2 and E3

2,0 = 0.

3.4.6. The short exact sequences.
We thus obtain for integral homology the following short exact sequences:






0 → (Z/2)2k+2 → Hq(Γ; Z) → Z/3 ⊕ Z/2 → 0, q = 6k + 2, q > 8

0 → (Z/2)2k ⊕ Z/3 → Hq(Γ; Z) → 0, q = 6k + 1, q > 7

0 → (Z/2)2k → Hq(Γ; Z) → Z/3 ⊕ Z/2 → 0, q = 6k + 6,

0 → (Z/2)2k+4 ⊕ Z/3 → Hq(Γ; Z) → 0, q = 6k + 5,

0 → (Z/2)2k → Hq(Γ; Z) → Z/3 ⊕ Z/2 → 0, q = 6k + 4,

0 → (Z/2)2k+2 ⊕ Z/3 → Hq(Γ; Z) → 0, q = 6k + 3,

0 → Z ⊕ (Z/2)2 → H2(Γ; Z) → Z/3 ⊕ (Z/2)2 → 0,

0 → Z ⊕ Z/3 ⊕ Z/2 → H1(Γ; Z) → Z → 0.
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Summarizing, we obtain:

Hq(Γ; Z) ∼=






Z2 ⊕ Z/3⊕ Z/2, q = 1,

Z⊕ Z/4⊕ Z/3⊕ (Z/2)2, q = 2,

Z/3⊕ (Z/2)2k+2, q = 6k + 3,

Z/3⊕ (Z/2)2k+1, q = 6k + 4,

Z/3⊕ (Z/2)2k+4, q = 6k + 5,

Z/3⊕ (Z/2)2k+1, q = 6k + 6,

Z/3⊕ (Z/2)2k, q = 6k + 1, q > 7,

Z/3⊕ (Z/2)2k+3, q = 6k + 2, q > 8.

We easily see these results except for the ambiguity in the 3-torsion of the short exact sequence
for H2(Γ; Z) and in the 2-torsion for all even degrees. To resolve it, we compute homology with
Z/2-coefficients,

Hq(Γ; Z/2) ∼=






(Z/2)3, q = 1,

(Z/2)5, q = 2,

(Z/2)4k+5, q = 6k + 3,

(Z/2)4k+3, q = 6k + 4,

(Z/2)4k+5, q = 6k + 5,

(Z/2)4k+5, q = 6k + 6,

(Z/2)4k−2, q = 6k + 1, q > 7

(Z/2)4k+3, q = 6k + 2, q > 8.

and then use the Universal Coefficient Theorem in the form

Hq+1(Γ; Z/2) ∼= Hq+1(Γ; Z)⊗ (Z/2)⊕ TorZ
1 (Hq(Γ; Z), Z/2).

We do the same for Z/3-coefficients.

Remark 22. For m = 6, the check introduced in remark 20 takes the following form. The abelian-
ization is Γab ∼= 〈A,R,U,W : 2A = 0, 3R = 0〉. The parabolic element U gives the cycle generating
H1(Γ\X), whilst the parabolic element W generates a trivial loop in the quotient space. So it follows
that E∞

0,1
∼= Z⊕Z/2⊕Z/3, generated by W,A and R. This is consistent with the computation above.

3.5. m = 15. We have O
Q[

√
−15 ] = Z[ω] with ω := −1

2 + 1
2

√
−15.

Writing

A := ±
„

−1
1

«

, S := ±
„

−1
1 1

«

, C := ±
„

4 −1 − 2ω
1 + 2ω 4

«

,

T := ±
„

−3 + ω −3 − 2ω
−1 − 2ω 4

«

, U := ±
„

1 1 + ω
1

«

,

V := ±
„

−1 − 2ω 3 − ω
4 3 + 2ω

«

, W := ±
„

−1 − 2ω 4
4 + ω −1 + 2ω

«

,

we have the identifications U−1A · (o, c) = (o′, c′),
T · (a, b′) = (a′, b), W · (s, b′) = (s, b), and
V −1 · (s, a) = (s, a′).

o′c′

b′

a′

o c

s
a

b

Figure 5. The fundamental do-
main Γ := PSL2(Z[ω])
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There is no identification between the edges (b, c) and (b′, c′), nor between the edges (a, o) and
(a′, o′). Thus the quotient by the Γ-action is homeomorphic to the sum of a Möbius band and a 2-
sphere, with a disk amalgamated. There are five orbits of vertices, labelled o, a, b, c, s, with stabilizers

Γo = Γa =
˙

A | A2 = 1
¸ ∼= Z/2,

Γc = Γb =
˙

S | S3 = 1
¸ ∼= Z/3,

Γs = 〈V, W | V W = WV 〉 ∼= Z2.

There are eight orbits of edges, labelled (o, a), (o′, a′),(a, s), (a, b′), (b, s), (b, c), (b′, c′) and (o, c),
amongst whose stabilizers only

Γ(o,a) =
˙

A | A2 = 1
¸

= Γo = Γa
∼= Z/2,

Γ(o′,a′) =
˙

V −1AV
˛

˛ (V −1AV )2 = 1
¸

= Γo′ = Γa′
∼= Z/2,

Γ(b,c) =
˙

S | S3 = 1
¸

= Γb = Γc
∼= Z/3,

Γ(b′,c′) =
˙

U−1ASA−1U
˛

˛ (U−1ASA−1U)3 = 1
¸

= Γb′ = Γc′
∼= Z/3

are nontrivial; and four orbits of faces with trivial stabilizers. The above data gives the Γ-equivariant
Euler characteristic of X, in accordance with remark 17:

χΓ(X) = 2 · 1
2

+ 2 · 1
3
− 4− 2 · 1

2
− 2 · 1

3
+ 4 = 0.

3.5.1. Zeroth row of the E1-term.
We obtain in the columns p = 0, 1, 2:

Z5
d1
1,0←−−− Z8

d1
2,0←−−− Z4

where 1 is the only occurring elementary divisor of the differential matrices, with multiplicity four
for d1

1,0, and multiplicity three for d1
2,0. The homology of this sequence is generated by the cycle

(o, a) + (a, b′) + (b′, c′) + (c′, o′) in degree one and by the cycle (a, s, b′)− (a′, s, b) in degree two.

3.5.2. Even rows of the E1-term.
The even rows are the zero map to E1

0,2
∼= Z, and to E1

0,q = 0 for q > 4.

3.5.3. Odd rows of the E1-term.
The maps

(Z/2)2 ⊕ (Z/3)2
d1
1,q←−−− (Z/2)2 ⊕ (Z/3)2

for q > 3, and

Z2 ⊕ (Z/2)2 ⊕ (Z/3)2
d1
1,1←−−− (Z/2)2 ⊕ (Z/3)2

are on the 2-primary part induced by the identity maps Γ(o,a) = Γo = Γa and Γ(o′,a′) = Γo′ = Γa′ . So,
we obtain the following rank 1 matrix for the 2-primary part:

(d1
1,q)(2) =

(o, a) (o′, a′)
a −1 −1
o 1 1

.

On the 3-primary part, they are induced by the identity maps Γ(b,c) = Γb = Γc and Γ(b′,c′) = Γb′ = Γc′ .
So, we obtain the following rank 1 matrix for the 3-primary part:

(d1
1,q)(3) =

(b, c) (b′, c′)
b −1 −1
c 1 1

.
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3.5.4. The E2-page for m = 15.
In the rows with q > 2, the E2-page is concentrated in the columns p = 0 and p = 1:

q > 4 even 0 0
q > 3 odd Z/2 ⊕ Z/3 Z/2 ⊕ Z/3
q = 2 Z 0

Its lowest two rows are concentrated in the columns p = 0, 1, 2:

q = 1 Z2 ⊕ Z/2 ⊕ Z/3 Z/2 ⊕ Z/3 0

q = 0 Z Z Z

d2

2,0

jjVVVVVVVVVVVVVVVVVVVVV

3.5.5. The E3 = E∞-term. For the calculation of the d2-differential, we have

δ
`

(a, s, b′) − (a′, s, b)
´

= (a, s) + (s, b′) + (b′, a) − (a′, s) − (s, b) − (b, a′)

= (a, s) + W−1 · (s, b) + (b′, a) − V −1 · (a, s) − (s, b) − T · (b′, a),

(1 ⊗ δ)(1 ⊗(a,s,b′)−(a′,s,b) 1) = −(V −1 − 1) ⊗(a,s) 1 + (W−1 − 1) ⊗(s,b) 1 − (T − 1) ⊗(b′,a) 1

= (dΘ ⊗ 1)
`

−(1, V −1) ⊗(a,s) 1 + (1, W−1) ⊗(s,b) 1 − (1, T ) ⊗(b′,a) 1
´

= (dΘ ⊗ 1)
`

−[V −1] ⊗(a,s) 1 + [W−1] ⊗(s,b) 1 − [T ] ⊗(b′,a) 1
´

.

We then get

1⊗δ
`

−[V −1] ⊗(a,s) 1 + [W−1] ⊗(s,b) 1 − [T ] ⊗(b′,a) 1
´

= [V −1]⊗a1−[V −1]⊗s1+[W−1]⊗b1−[W−1]⊗s1+[T ]⊗b′ 1−[T ]⊗a1.

As the generators of the torsion-free part of E2
0,1
∼= Z2 ⊕ Z/2⊕ Z/3 are represented by −[V −1]⊗s 1

and −[W−1]⊗s 1, we see that the above computed element of E0
0,1 represents an element ν ∈ E2

0,1 of

infinite order with the following property: There is no element η ∈ E2
0,1 with kη = ν for an integer

k > 1. So, E3
0,1
∼= Z⊕ Z/3⊕ Z/2 and E3

2,0 = 0.

3.5.6. The short exact sequences.
We thus obtain for integral homology the following short exact sequences:

{
0 → Z/2 ⊕ Z/3 → Hq(Γ; Z) → 0, q > 3,

0 → Z → H2(Γ; Z) → Z/2 ⊕ Z/3 → 0,

0 → Z ⊕ Z/2 ⊕ Z/3 → H1(Γ; Z) → Z → 0.

We obtain:

Hq(Γ; Z) ∼=






Z2 ⊕ Z/3⊕ Z/2, q = 1,

Z⊕ Z/3⊕ Z/2, q = 2,

Z/3⊕ Z/2, q > 3.

We easily see these results except for the ambiguity in the 2-torsion and 3-torsion of the short exact
sequence for H2(Γ; Z). To resolve it, we compute homology with Z/2- and Z/3-coefficients,

Hq(Γ; Z/2) ∼=
{

(Z/2)3 , q = 1or 2,

(Z/2)2 , q > 3.
Hq(Γ; Z/3) ∼=

{
(Z/3)3 , q = 1or 2,

(Z/3)2 , q > 3.

and then use the Universal Coefficient Theorem to compare.

Remark 23. For m = 15, the check introduced in remark 20 takes the following form. The abelian-
ization is Γab ∼= 〈AS,C,U : 6AS = 0〉. The elements of infinite order U and C−1 give the same cycle,
which generates H1(Γ\X). But the element U−1C−1 also has infinite order, and generates a trivial
loop in the quotient space.
So it follows that E∞

0,1
∼= Z⊕ Z/2⊕ Z/3, generated by U−1C−1 and AS. This is consistent with the

computation above.
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4. Appendix: The equivariant retraction

In this section, we give Flöge’s proof of the existence of a retraction ρ from Ĥ to the cell complex
X•. We do not show the fact that ρ is Γ-equivariant, which can be observed since the fibers of ρ are
geodesics.

Theorem 24 ([9, theorem 6.6]). X is a retract of Ĥ, i. e. there is a continuous map ρ : Ĥ → X
such that ρ(p) = p for all p ∈ X.

The map ρ is first defined as the orthogonal projection π from B̂ to ∂B̂, and is then continued to

the whole of Ĥ by Γ. Bianchi [4] has shown that a nearly strict fundamental domain for the action
of Γ on H can be chosen in the form of a Euclidean vertical column D inside B. Define

D̂ := {(z, r) ∈ B̂ | 0 6 Re(z) 6 1, 0 6 Im(z) 6
√

m},
and denote by S the set of singular points in D̂. Finally, D := D̂ − S.

Remark 25 ([9], D is Γ-normal). For every p ∈ H, there exists a neighborhood U of p in H such
that there are at most finitely many g ∈ Γ with gD ∩ U 6= ∅.

We will use the following lemmas to prove the theorem 24.

Lemma 26 ([9, lemma 6.5]). For any subset A ⊂ D which is closed in H and any p ∈ H, there exists
an open neighborhood Up of p such that we have for all g ∈ Γ: gA ∩ Up 6= ∅ if and only if p ∈ gA.

Proof. By the above remark, there is a neighborhood U of p in H for which {g ∈ Γ | gD ∩ U 6= ∅ } is
finite. So especially its subset

Γo := {g ∈ Γ | gA ∩ U 6= ∅ and p /∈ gA }
is finite. Therefore, A being closed,

⋃
g∈Γo

gA is closed in H. Thus Up := U − (
⋃

g∈Γo

gA) is open in H

and satisfies to the requested condition. �

Lemma 27 ([9, lemma 6.3]). There is an ε0 > 0 such that for all singular points s, s′ ∈ S, for all

ε 6 ε0 and g ∈ Γ we have the following statement: gÛε(s) ∩ Ûε(s
′) 6= ∅ implies gs = s′.

For class number two, as we obtain a fundamental domain for the action of Γ on Ĥ (stricter than

D̂) containing just one singular point, this lemma states only that Γ acts discontinuously on Ĥ (with
respect to its topology which is finer than the subset topology of R3); and we skip Flöge’s proof which
is useful for class number three or greater.

Lemma 28 ([9, lemma 6.4]). There exists an ε1 > 0 with the following property:

If ε 6 ε1 and (z, r) ∈ D̂ with r < ε, then there is an s′ ∈ S such that (z, r) ∈ Û2ε(s
′).

Flöge draws the following sketch of the situation in a vertical half-plane, which we reproduce here
with his kind permission:

He gives only some hints on the proof, which we want to make slightly more explicit here.
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Sketch of proof. We consider the Euclidean geometry of the upper-half space model for Ĥ and write
coordinates in C×R>0 . Denote by ε1 the “height of the lowest non-singular vertex”, more precisely the
minimum of the values r > 0 occuring as the real coordinate of the non-singular vertices (z, r) ∈ H of

the fundamental domain ρ(D̂) for Γ. Then {(z, r) ∈ D̂ | r < ε1} consists of one connected component

for each singular point s′ ∈ S. We will denote by D̂s′ the connected component containing s′. Now

fix s′ ∈ S. There are finitely many hemispheres limiting D̂ from below and touching s′. We will
consider the situation in a vertical half-plane containing s′. The most critical vertical half-planes
for our assertion contain the intersection arc of two such hemispheres, because the other vertical

half-planes contain circle segments of ∂D̂ of greater radius. The intersection of two non-identical
Euclidean 2-spheres which have more than one point in common, is a circle with center on the line
segment connecting the two 2-sphere centers. Thus the intersection of the two hemispheres mentioned
above is a semicircle with center in the plane r = 0 . Denote by ζ the radius of this semicircle. Then
ε1 6 ζ, because an edge of our fundamental domain, connecting s′ with a non-singular vertex, lies

on this semicircle. Now it is easy to see that D̂s′ is a subset of the truncated cone obtained as the
convex envelope of s′ and the horizontal disk with radius ζ and center (s′, ζ). We conclude that for

all ε < ε1, ε > 0, the set {(z, r) ∈ D̂s′ | r < ε} is a subset of the horoball Û2ε(s
′). So we have seen

that ε1 has the property claimed in the lemma. �

Proof of theorem 24. For any (z, r) ∈ D̂ there is a unique rz > 0 such that (z, rz) ∈ D̂ ∩ ∂B̂ =: Ĝ, in

fact rz = min {r′ : (z, r′) ∈ D̂}. We can thus define the map π : D̂ → Ĝ by π(z, r) := (z, rz). The
map π is continuous with respect to the subset topology of R3, and by [9, corollary 5.10] also with

respect to the topology of Ĥ. Furthermore, we have π(p) = p for all p ∈ Ĝ.

We now extend π to a map ρ : Ĥ → X as follows.

Because of
{(

1 b
1

)
: b ∈ R

}
· D̂ = Ĝ, we find for any p ∈ Ĥ a γ ∈ Γ such that γ(p) ∈ D̂. We set

ρ(p) := γ−1 ◦ π ◦ γ(p). In order to show that this makes sense, we have to show that p ∈ γ−1D̂∩ξ−1D̂

implies γ−1 ◦ π ◦ γ(p) = ξ−1 ◦ π ◦ ξ(p), where γ, ξ ∈ Γ. We have ξ(p) ∈ ξγ−1D̂ ∩ D̂, then

γξ−1(ξ(p)) = γ(p) ∈ D̂ ∩ γξ−1D̂, and either ξ(p), γ(p) are both from Ĝ, or both from D̂ ∩B◦. In the
first case, it immediately follows that γ−1 ◦ π ◦ γ(p) = ξ−1 ◦ π ◦ ξ(p) = p, and ξ−1 ◦ ξ(p) = p. In the
second case, we have by [9, lemma 3.4] that if γξ−1 =

(
a b
c d

)
, the entry c must vanish. So γξ−1 is

the product
(

a 0
0 d

) (
1 db
0 1.

)
. Both of the latter two matrices commute with π since any such element ζ

satisfies ζ(∂B̂) = ∂B̂, and ζ maps vertical half-lines to vertical half-lines.

So we have (γξ−1 ◦ π ◦ ξγ−1)p′ = πp′ for all p′ ∈ D̂ with ξγ−1p′ ∈ D̂, and then it follows that

ξ−1 ◦ π ◦ ξ(p) = γ ∈ γ(ξ−1 ◦ π ◦ ξ)γ−1γ(p) = γ−1 ◦ π ◦ γ(p) = γ−1 ◦ π ◦ γ(p).

Thus, ρ is well-defined. Furthermore, π(p) = p for all p ∈ Ĝ implies ρ(p) = p for all p ∈ X. It remains

to show that ρ is continuous at any p ∈ Ĥ.
1st case. In the case p ∈ H, by lemma 26, p has an open neighborhood Up such that: for any γ ∈ Γ, we
have γUp ∩D 6= ∅ ⇐⇒ γ(p) ∈ D. Furthermore, the set {γ ∈ Γ : γ(p) ∈ D} is finite [9, remark 3.6],

say γ1, . . . , γn. Let now V be an open neighborhood of ρ(p). Because of the continuity of all γi, γ
−1
i

and the continuity of π : D̂ → Ĝ, there exist neighborhoods Ui of p such that γ−1
i ◦ π ◦ γi(Ui) ⊂ V .

Note that for all γi we have γ−1
i ◦ π ◦ γi(p) = ρ(p). Setting U := Up ∩ (

⋂n
i=1 Ui), we have ρ(U) ⊂ V ,

i. e. ρ is continuous at the point p.

2nd case. In the case p ∈ Ĥ ∩ C, let ǫ0, ǫ1 and ǫs for s ∈ S be positive real numbers as in lemma 27,
lemma 28 and [9, lemma 5.9]; and let ǫ > 0 be less than the minimum of ǫ0

2 , ǫ1, ǫs for s ∈ S. Because

of
{(

1 b
1

)
: b ∈ R

}
· D̂ = Ĝ, there exist s ∈ S, ξ =

(
a b
c d

)
such that ξs = p and by [9, remark 5.5(a)],

we have ξÛǫ(s) = Û ǫ

|cs−d|2
(p). Let us now show that ρ(Û ǫ

|cs−d|2
(p)) ⊂ Û2ǫ(p). Let p′ ∈ Û ǫ

|cs−d|2
(p), and
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let γ ∈ Γ with γp′ ∈ D̂. Then ρ(p′) = γ−1 ◦ π ◦ γ(p′). By [9, remark 5.5(b)], applied to s and γξ it

follows that γp′ = γξ(ξ−1p′) ∈ Ûǫ(γξs) = Ûǫ(γp), and by [9, remark 5.6] all conditions of lemma 28

are satisfied. So there is an s′ ∈ S such that γp′ ∈ Û2ǫ(s
′). This means that γξ(Û2ǫ(s)) ∩ Û2ǫ(s

′) 6= ∅,
and by lemma 27 it follows that s′ = γξs = γp. Let us now consider γp′ again.

Since γp′ ∈ Ûǫ(γp)) = Ûǫ(s
′) = Uǫ(s

′) and π(Uǫ(s
′)) ⊂ Uǫ(s

′); and by [9, lemma 5.9] we have

Uǫ(s
′) ∩ B̂ ⊂ Û2ǫ(s

′). So π ◦ γp′ ∈ Û2ǫ(s
′). By [9, remark 5.5(b)] it finally follows that

ρ(p′) = γ−1 ◦ π ◦ γp′ ∈ γ−1Û2ǫ(s
′) ⊂ Û2ǫ(γ

−1s′) = Û2ǫ(p),

and we are done. �
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4 (1971), 409–455. MR 0309145 (46 #8255), Zbl 0232.20088

[11] Allen Hatcher, Algebraic topology, Cambridge University Press, 2002. MR 1867354 (2002k:55001), Zbl 1044.55001
[12] Colin Maclachlan and Alan W. Reid, The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics,

vol. 219, Springer-Verlag, New York, 2003. MR 1937957 (2004i:57021), Zbl 1025.57001
[13] Eduardo R. Mendoza, Cohomology of PGL2 over imaginary quadratic integers, Bonner Mathematische Schriften

[Bonn Mathematical Publications], 128, Dissertation, Rheinische Friedrich-Wilhelms-Universität, Mathematisches
Institut, Bonn, 1979. MR 611515 (82g:22012), Zbl 0464.12005

[14] W ladys law Narkiewicz, Elementary and analytic theory of algebraic numbers. 3rd ed., Springer Monographs in
Mathematics, Springer-Verlag, Berlin, 2004. MR 2078267 (2005c:11131), Zbl 0717.11045

[15] Joachim Schwermer and Karen Vogtmann, The integral homology of SL2 and PSL2 of Euclidean imaginary quadratic
integers, Comment. Math. Helv. 58 (1983), no. 4, 573–598. MR 728453 (86d:11046), Zbl 0545.20031

[16] Jean-Pierre Serre, Cohomologie des groupes discrets, Prospects in mathematics (Proc. Sympos., Princeton Univ.,
Princeton, N.J., 1970), Princeton Univ. Press, Princeton, N.J., 1971, pp. 77–169. Ann. of Math. Studies, No. 70
(French). MR 0385006 (52 #5876), Zbl 0235.22020

[17] , Le problème des groupes de congruence pour SL2, Ann. of Math. (2) 92 (1970), 489–527. MR 0272790
(42 #7671), Zbl 0239.20063

[18] Richard G. Swan, Generators and relations for certain special linear groups, Advances in Math. 6 (1971), 1–77
(1971). MR 0284516 (44 #1741), Zbl 0221.20060

[19] Karen Vogtmann, Rational homology of Bianchi groups, Math. Ann. 272 (1985), no. 3, 399–419. MR 799670
(87a:22025), Zbl 0545.20031

[20] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38,
Cambridge University Press, Cambridge, 1994. MR 1269324 (95f:18001), Zbl 0797.18001

http://pari.math.u-bordeaux.fr/


INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY QUADRATIC INTEGERS OF CLASS NUMBER TWO 31
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