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THE INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY

QUADRATIC INTEGERS OF CLASS NUMBER TWO

ALEXANDER RAHM AND MATHIAS FUCHS

Abstract. We calculate the integral homology of the non-Euclidean
Bianchi groups PSL2

`

O
Q[

√
−m ]

´

for m = 5, 6, 10, 13, making essential

use of an equivariant cellular decomposition of a retract of hyperbolic
three-space due to Flöge.
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1. Introduction

The object of study of this paper are the PSL2-groups Γ of the ring of
integers O of an imaginary quadratic number field Q[

√−m ], where m is
a square-free positive integer. For m congruent 1 or 2 modulo 4, we have
OQ[

√
−m ] = Z[

√−m ].
The arithmetic groups under study have often been called Bianchi groups,
because their study began with the works of Bianchi [4] back in 1892. These
groups have since been extensively studied, see for instance the monographs
[6, 7, 13].
A space that lends itself naturally to the study of these 2-by-2-matrix groups
is the associated symmetric space, hyperbolic three-space H. We use the
upper-half-space model of H and identify its boundary with C ∪∞ ∼= CP 1.
Bianchi exposed a fundamental domain for the action of Γ on the space H.
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However, the virtual cohomological dimension of arithmetic groups which
are lattices in SL2(C) is two, so it is desirable to define a proper action on a
contractible cellular two-dimensional space. Moreover, this space should be
cofinite.
In principle, this has been achieved by Mendoza [14] and Flöge [8] using the
reduction theory for binary Hermitian forms of Minkowski, Bianchi, Hum-
bert, Harder and others.
These two approaches have in common that they consider two-dimensional
Γ-equivariant retracts which are cocompact and are endowed with a natural
CW-structure such that the action of Γ is cellular and the quotient is a finite
CW-complex.
In the cases of non-trivial ideal class group, there is a difference between
the approaches of Mendoza and Flöge. The elements of the class group
of the number field are in bijection with the Γ-orbits of the cusps, where
the cusps are the elements of the number field Q

[√
−d

]
and ∞ thought of

as elements of the canonical boundary CP 1. The cusps which represent a
non-trivial element of the class group are commonly called singular points.
While Mendoza retracts away from all cusps, Flöge retracts away only from
the non-singular ones. Rather than the space H itself, he considers the space

Ĥ obtained from H by adjoining the Γ-orbits of the singular points. This
has the effect that it is possible to retract away only from the non-singular
cusps, but onto the singular ones in the appropriate way. It turns out that
this gives a suitable contractible 2-dimensional Γ-complex also in the case
of non-trivial class group.
Using Mendoza’s complex, Schwermer and Vogtmann [16] showed how to
calculate the integral group homology in the cases of trivial class group
m = 1, 2, 3, 7, 11. Vogtmann [20] computed the rational homology as the
homology of the quotient in many cases of non-trivial class group. The in-
tegral cohomology in the cases m = 2, 3, 5, 6, 7, 10, 11 has been determined
by Berkove [3], based on Flöge’s presentation of the groups with generators
and relations.
It is the purpose of the present paper to show how to calculate the inte-
gral homology of Bianchi groups with non-trivial class group using Flöge’s
complex. In the cases considered, Bianchi has computed the fundamental
polyhedron. With an implementation in Pari/GP [2], due to the first named
author, of Swan’s algorithm [19] we re-obtain this polyhedron. In the cases
m = 5, 6, 10, Flöge has computed the cell stabilizers and cell identifications;
and with our Pari/GP program, we redo Flöge’s computations and do the
same computation in the case m = 13. We use the equivariant Euler char-
acteristic to check our computations. With GAP [10] as well as by hand, we
find some conjugations betweeen the occurring stabilizer matrices. Then we
follow the lines of Schwermer and Vogtmann [16], encountering a spectral
sequence which degenerates on the E3-page and not already on the E2-page
as it does in the cases of trivial class group. This is because we have adjoined
to our complex the singular points, which have infinite stabilizers. So we
have some additional use of homological algebra to obtain the homology of
the Bianchi group. Our results are as follows:
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For m = 5:

Hq(Γ; Z) ∼=






Z2 ⊕ Z/3⊕ (Z/2)2 q = 1

Z⊕ Z/4⊕ Z/3⊕ Z/2 q = 2

Z/3⊕ (Z/2)q q > 3;

for m = 10 :

Hq(Γ, Z) ∼=






Z3 ⊕ (Z/2)2, q = 1,

Z2 ⊕ Z/4⊕ Z/3⊕ Z/2, q = 2,

Z/3⊕ (Z/2)q , q > 3;

for m = 6:

Hq(Γ; Z) ∼=






Z2 ⊕ Z/3⊕ Z/2, q = 1,

Z⊕ Z/4⊕ Z/3⊕ (Z/2)2, q = 2,

Z/3⊕ (Z/2)2k+2, q = 6k + 3,

Z/3⊕ (Z/2)2k+1, q = 6k + 4,

Z/3⊕ (Z/2)2k+4, q = 6k + 5,

Z/3⊕ (Z/2)2k+1, q = 6k + 6,

Z/3⊕ (Z/2)2k, q = 6k + 1, q > 7,

Z/3⊕ (Z/2)2k+3, q = 6k + 2, q > 8;

and for m = 13:

Hq(Γ, Z) ∼=






Z3 ⊕ (Z/2)2, q = 1,

Z2 ⊕ Z/4⊕ (Z/3)2 ⊕ Z/2, q = 2,

(Z/2)q ⊕ (Z/3)2, q = 4k + 3, k > 0,

(Z/2)q , q = 4k + 4, k > 0,

(Z/2)q , q = 4k + 1, k > 1,

(Z/2)q ⊕ (Z/3)2, q = 4k + 2, k > 1.

Thus for q > 2, the torsion for m = 5 is the same as for m = 10, analogously
to the cohomology results of Berkove [3]. The free part of these homology
groups is in accordance with the rational homology results of Vogtmann
[20]. We give the full details for our homology computation in the cases
m = 10, 13. We then give slightly less details in the cases m = 5, 6.
The authors would like to thank Philippe Elbaz-Vincent for his inspiration
and advice, and the first named author would like to thank Bill Allombert
for his help with programming in Pari/GP.

2. Flöge’s complex, contractibility and the spectral sequence

Denote the hyperbolic three-space by H = C × R∗
+. We will not use its

smooth structure, only its structure as a homogeneous SL2(C)-space. The
action is given by the formula

(
a b
c d

)
· (z, r) :=

(
(d− cz)(az − b)− r2ca

|cz − d|2 + r2 |c|2
,

r

|cz − d|2 + r2 |c|2
)

;

where
(

a b
c d

)
∈ SL2(C). As usual, we extend the action of SL2(C) to the

boundary CP 1 which we identify with {r = 0} ∪ ∞ = C ∪∞. The action
passes continuously to the boundary, where it reduces to the usual action
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by Möbius transformations
(

a b
c d

)
· z = az−b

−cz+d . As −1 ∈ SL2(C) acts triv-

ially, the action passes to PSL2(C). Let now m ∈ N be square-free, and
let R = OQ[

√
−m ], Γ = PSL2(R). When the class number of K = Q[

√−m ]
is one, then classical reduction theory provides a natural equivariant defor-
mation retract of H which is a CW-complex. This complex is defined as
follows. One first considers the union of all hemispheres

Sµ,λ :=

{

(z, r) :

∣∣∣∣z −
λ

µ

∣∣∣∣
2

+ r2 =
1

|µ|2

}

⊂ H,

for any two µ, λ with Rµ + λR = R. Then one considers the “space above
the hemispheres”

B :=
{
(z, r) : |cz − d|2 + r2 |c|2 > 1

for all c, d ∈ R, c 6= 0 such that Rc + Rd = R
}

and its boundary ∂B inside H. For nontrivial class group, the following
definition comes to work.

Definition 1. A point s ∈ CP 1 − {∞} is called a singular point if for all
c, d ∈ R, c 6= 0, Rc + Rd = R we have |cs − d| > 1.

The singular points modulo the action of Γ on CP 1 are in bijection with
the nontrivial elements of the class group [18].

In [8], Flöge extends the hyperbolic three-space H to a larger space Ĥ,
defined as follows.

Definition 2. As a set, Ĥ ⊂ C × R>0 is the closure under the Γ-action

of the union B̂ := B ∪ {singular points}. The topology is generated by the
topology of H together with the following neighborhoods of the translates s
of singular points:

Ûǫ(s) := {s} ∪
(

s 0
−1 s−1

)
·
{
(z, r) ∈ H : r > ǫ−1

}
.

Remark 3. The matrix
(

s 0
−1 s−1

)
maps the point at infinity into s, thus

giving the point s the topology of∞. The neighborhood Ûǫ(s) is sometimes
called a “horoball” because in the upper-half space model it is a Euclidean
ball, but with the hyperbolic metric it has “infinite radius”.

The space Ĥ is endowed with the natural Γ-action. Now the essential as-
pect of Flöge’s construction is the following consequence of Flöge’s theorem
[9, 6.6], which we append as theorem 23.

Corollary 4. There is a retraction ρ from Ĥ onto the set X ⊂ Ĥ of all

Γ-translates of ∂B̂, i. e. there is a continuous map ρ : Ĥ → X such that
ρ(p) = p for all p ∈ X. The set X admits a natural structure as a cellular
complex X•, such that Γ acts cellularly on X•.

Remark 5. (1) We show with the below lemma that ρ is a homotopy

equivalence, without giving a continuous path of maps Ĥ → Ĥ con-

necting ρ to the identity on Ĥ.
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(2) The map ρ is Γ-equivariant because its fibers are geodesics. But we
do not make use of this fact, as we do not need to show that the

homotopy type of Γ\Ĥ is the same as that of Γ\X. This would be
useful in the case of trivial class group, i. e. the case of a proper
action, to compute the rational homology H∗(Γ; Q) ∼= H∗(Γ\H; Q).

(3) We will provide X• with a cellular structure which is fine enough to
make the cell stabilizers fix the cells pointwise.

Lemma 6. Let Y be a CW-complex which admits an inclusion i into a
contractible topological space A, such that i is a homeomorphism between Y
with its cellular topology and the image i(Y ) with the subset topology of A.
Let p : A→ Y be a continuous map with p ◦ i = idY . Then p is a homotopy
equivalence.

Proof. For all n ∈ N, the induced maps on the homotopy groups
(idY )∗ = (p ◦ i)∗ : πn(Y )→ πn(Y ) factor through πn(A) = 0, hence are the
zero map; and πn(Y ) = 0. Denote by c the constant map from A to the one-
point space. Then c ◦ i is a morphism of CW-complexes, and the zero maps
it induces on the homotopy groups are isomorphisms. Thus by Whitehead’s
Theorem [12], c ◦ i is a homotopy equivalence. As A is contractible, the
composition (c ◦ i) ◦ p = c is a homotopy equivalence, so the same holds
already for p. �

Together with the lemma below, we obtain a crucial fact underlying this
paper.

Corollary 7. X• is contractible.

The following is an observation on Flöge’s construction.

Lemma 8. The space Ĥ is contractible.

Proof. One can identify the boundary of H ∼= {(z, r) ∈ C × R | r > 0} with
CP 1 ∼= C∪∞ ∼= {r = 0} ∪∞. By viewing the singular points as part of the

boundary, one arrives at an upper half-space model of Ĥ.

Now consider H1 := {(z, r) ∈ Ĥ : r > 1} with the subspace topology of Ĥ.
The idea of the proof is to consider a vertical retraction onto H1, and to
show by an explicit argument that preimages of open sets are open.
Flöge [9, Korollar 5.8] suggests to use the map

φ : Ĥ × [0, 1] → Ĥ, ((z, r), t) 7→
{

(z, r) for all t ∈ [0, 1], if r > 1

(z, r + t(1− r)), if r < 1.

Let us now check that this is a continuous family of continuous maps. Con-
sider the collection of open balls with respect to the Euclidean metric on
C×R+ as soon as they are either contained in C×R∗

+, or touch the boundary

C×{0} in a cusp in Ĥ−H. This is a basis for the topology of Ĥ. Consider
one such open ball B, and its preimage under some φt, t ∈ [0, 1). This either
lies entirely in H, and is open, or it has boundary points. In the latter case,

consider the inverse of φt on Ĥ − H1, given by

φ−1
t =

(
z, r−t

1−t

)
,
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if this is in Ĥ. Suppose there is a cusp s with s ∈ Ĥ − H and φt(s, 0) ∈ B.
As B is open, we find β > 0 and δ > 0 such that (s, t + β) and (s + δ, t) are
in B. Since {

φt

(
s, β

1−t

)
= (s, t + β) ∈ B

φt(s + δ, 0) = (s + δ, t) ∈ B,

we know that (s, β
1−t) and (s + δ, 0) are in the preimage of B under φt. We

deduce that the whole horosphere of Euclidean diameter min {β, δ} touch-
ing at the cusp s is included in the preimage of B. Thus each point of
the preimage has a neighborhood entirely contained in the preimage, which
therefore also is open. The continuity at t = 1 as well as the continuity in
the variable t follow from very similar arguments.
The space H1 is homeomorphic to C× R+, thus contractible. �

2.0.1. The spectral sequence.
Corollary 7 gives us a contractible complex X• on which Γ acts cellularly.
As a consequence, the integral homology H∗(Γ; Z) can be computed as the
hyperhomology H∗(Γ;C•(X)) of Γ with coefficients in the cellular chain com-
plex associated to X. This hyperhomology is computable because there is a
spectral sequence as in [5, VII] which is also the one used in [16]. It is the
spectral sequence associated to the double complex ΘΓ

• ⊗ZΓ C•(X) comput-
ing the hyperhomology, where we denote by ΘΓ

• the bar resolution of the
group Γ. This spectral sequence can be rewritten (see [16, 1.1]) to yield

E1
p,q =

⊕

σ∈Γ\Xp

Hq(Γσ; Z) =⇒ Hp+q(Γ; Z),

where Γσ denotes the stabilizer of (the chosen representative for) the p-cell σ.
We have stated the above E1-term with trivial Z-coefficients in Hq(Γσ; Z),
because we use a fundamental domain which is strict enough to give X a
cell structure on which Γ acts without inversion of cells.
We shall also make extensive use of the description of the d1-differential
given in [16].
The technical difference to the cases of trivial class group, treated by [16],
is that the stabilizers of the singular points are free abelian groups of rank
two. In particular, the Γ-action on our complex X• is not a proper action
in the sense that all stabilizers would be finite. As a consequence, the
considered spectral sequence does not degenerate on the E2-level as it does
in Schwermer and Vogtmann’s cases.
So we compute a nontrivial differential d2, making some additional use of
homological algebra, in particular the below lemma and its corollary.

Remark 9. It would be possible to shift the technical difficulty away from
homological algebra, using a topological modification of our complex. In our
cases of class number two, there is one singular point in the fundamental
domain, representing the nontrivial element of the class group. Its stabilizer
is free abelian of rank two, and contributes the homology of a torus to the
zeroth column of the E2-term of our spectral sequence: H1(Z

2; Z) ∼= Z2,
H2(Z

2; Z) ∼= Z and Hq(Z
2; Z) = 0 for q > 2. One could modify our complex

in order to make the Γ-action on it proper, by replacing each singular point
by an R2 with the former stabilizer Z2 now acting properly. Then the
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nontriviality of our differential is equivalent to the existence of a nontrivial
homology relation induced by adjoining the torus R2/Z2 to the fundamental
domain.

The following lemma will be useful for computing our d2-differential. In
order to state it, let Γσ be a finite subgroup of Γ, let M be a ZΓσ-module,
and let ℓ : Γ/Γσ → Γ be a set-theoretical section of the quotient map
π : Γ→ Γ/Γσ. Furthermore, denote the standard bar resolution of a discrete
group Γ by ΘΓ

• .

Lemma 10. The section ℓ defines a map of ZΓσ-complexes

ε̂ℓ : ΘΓ
• −→ ΘΓσ

•

of degree zero which is a retraction of the resolution ΘΓ
• of the group Γ to

the resolution ΘΓσ• of Γσ. The map ε̂ℓ is induced on ΘΓ
0 = ZΓ by

Γ
εℓ−−→ ZΓσ,

γ 7→ (ℓ(π(γ)))−1γ

and is continued as a tensor product ε̂ℓ = εℓ ⊗ ...⊗ εℓ = ε
⊗(n+1)
ℓ on ΘΓ

n.

Remark 11. (1) Attention: εℓ is a ZΓσ-linear map because Γσ acts
from the right.

(2) Note that the resulting isomorphism in homology

H∗(Θ
Γ
• ⊗ZΓσ M) −→ H∗(Θ

Γσ
• ⊗ZΓσ M)

is independent of the choice of ℓ, and consistent with the canonical
isomorphisms of both sides with H∗(Γσ;M).

(3) Note that in the above lemma, it is not necessary to require ℓ(π(1)) = 1.
This would imply that εℓ is the identity on ΘΓσ• . However, we will
choose ℓ(π(1)) = 1 for simplicity.

(4) In explicit terms, the map εℓ is described as follows.

εℓ : ZΓ→ ZΓσ,

∑

γ∈Γ

aγγ =
∑

γσ∈Γσ

∑

ρ∈Γ/Γσ

aγσℓ(ρ)γσℓ(ρ) 7→
∑

γσ∈Γσ

( ∑

ρ∈Γ/Γσ

aγσℓ(ρ)

)
γσ,

where the aγ are coefficients from Z. The map εℓ restricts to the
identity on ZΓσ and gives an isomorphism of Z-modules

Z[ℓ(ρ)Γσ]→ ZΓσ

for every Γσ-orbit ℓ(ρ)Γσ .

Proof (of the lemma). In fact, the statement holds for any chain map ε̂ in
the place of ε̂ℓ that satisfies the following conditions. They are easily checked
to hold for the maps ε̂ℓ.

(1) ε̂ is ZΓσ-linear.
(2) The augmentation ΘΓ

0 → Z is the composition of ε̂ with the aug-

mentation ΘΓσ

0 → Z.
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Then the statement follows from the comparison theorem [21, 2.2.6] of fun-
damental homological algebra. In fact, the properties imply that ε̂ is a
chain map of resolutions lifting the identity on Z. An inverse is given by the
canonical inclusion ΘΓσ• → ΘΓ

• , and since the composition is unique up to
chain homotopy equivalence, it must be homotopic to the identity. �

The group Γσ acts diagonally on ΘΓ
1
∼= ZΓ⊗Z ZΓ, and trivially on Z, so

we can consider ΘΓ
1 ⊗ZΓσ Z.

Corollary 12. Let a cycle (
∑

i(ai ⊗Z bi)⊗ZΓσ 1) ∈ ΘΓ
1 ⊗ZΓσ Z be given,

where ai, bi ∈ Γ. The ensuing element in H1(Γσ, Z) is then given by
∑

i

ε(ai) εℓ(ai)−1εℓ(bi),

where ε is the augmentation from ZΓ to Z.

This expression makes sense because εℓ(ai) is invertible in ZΓσ.
Note that the cycle condition on

∑
i
(ai ⊗Z bi)⊗ZΓσ 1 says that

∑

i

(bi − ai)⊗ZΓσ 1 = 0.

which means that
∑

i ai is equivalent to
∑

i bi modulo ZΓσ.

Proof. Using the lemma 10, we just need to apply the map

(εℓ ⊗Z εℓ)⊗ZΓσ 1 : (ZΓ⊗Z ZΓ)⊗ZΓσ Z→ (ZΓσ ⊗Z ZΓσ)⊗ZΓσ Z

to get
∑

(εℓ ⊗Z εℓ ⊗ZΓσ 1)(ai ⊗Z bi ⊗ZΓσ 1) =
∑

(εℓ(ai)⊗Z εℓ(bi))⊗ZΓσ 1

=
∑

(1⊗Z εℓ(ai)
−1εℓ(bi))⊗ZΓσ ε(ai).

In bar notation, this is
∑[

εℓ(ai)
−1εℓ(bi)

]
⊗ZΓσ ε(ai), and is mapped to

∑

i

ε(ai) εℓ(ai)−1εℓ(bi) ∈ H1(Γσ, Z),

and to ∑

i

ε(ai) εℓ(ai)
−1εℓ(bi) mod [Γσ,Γσ]

by the isomorphism into the abelianization of Γσ described in [5, page 36].
�

2.0.2. The mass formula for the Euler characteristic.
We will use the Euler characteristic to check the geometry of the quotient
Γ\X. Recall the following definitions and proposition, which we include for
the reader’s convenience.

Definition 13 (Euler characteristic). Suppose Γ′ is a torsion-free group.
Then we define its Euler characteristic as

χ(Γ′) =
∑

i

(−1)i dim Hi(Γ
′; Q).
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Suppose further that Γ′ is a torsion-free subgroup of finite index in a group
Γ. Then we define the Euler characteristic of Γ as

χ(Γ) =
χ(Γ′)
[Γ : Γ′]

.

This is well-defined because of [5, IX.6.3].

Definition 14 (Equivariant Euler characteristic). Suppose X is a Γ-complex
such that

(1) every isotropy group Γσ is of finite homological type;
(2) X has only finitely many cells mod Γ.

Then we define the Γ-equivariant Euler characteristic of X as

χΓ(X) :=
∑

σ

(−1)dimσχ(Γσ),

where σ runs over the orbit representatives of cells of X.

Proposition 15 ([5, IX.7.3 e’]). Suppose X is a Γ-complex such that χΓ(X)
is defined. If Γ is virtually torsion-free, then Γ is of finite homological type
and χ(Γ) = χΓ(X).

Let now Γ be PSL2

(
O

Q[
√
−m ]

)
. Then the above proposition applies to X

taken to be Flöge’s (or still, Mendoza’s) Γ-equivariant deformation retract
of H. Using χ(Γσ) = 1

card(Γσ) for Γσ finite, the fact that the singular points

have stabilizer Z2, and the torsion-free Euler characteristic

χ(Z2) =
∑

i

(−1)irankZ(Hi Z2) = 1− 2 + 1 = 0,

we get the formula

χ(Γ) =
∑

σ

(−1)dimσ 1

card(Γσ)
,

where σ runs over the orbit representatives of cells of X with finite stabiliz-
ers.

Proposition 16. The Euler characteristic χ(Γ) vanishes.

Remark 17. This, together with the formula

0 = χ(Γ) = χΓ(X) =
∑

σ

(−1)dimσ 1

card(Γσ)
,

allows to check the joint data of the geometry of the fundamental domain,
cell stabilizers and cell identifications.

Proof of the latter proposition. Denote by ζK the Dedekind zeta function
associated to the number field K := Q

[√−m
]
.

Brown [5, below (IX.8.7)] deduces the following formula from Harder’s result
[11, page 453]:

χ(SLn(OK)) =
n∏

j=2

ζK(1− j),

so especially
χ(SL2(OK)) = ζK(−1).
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As any cell σ in the interior of hyperbolic space has a stabilizer SL2(OK)σ
of twice the cardinality of Γσ, we have

χ(Γ) =
1

2
χ(SL2(OK)) =

1

2
ζK(−1).

Using the functional equation of ζK [15] and the fact that K has no real
places because it is imaginary quadratic, we get

ζK(−1) = 0.

�

Remark 18. One can prove the above proposition without using the Dedekind
zeta function. This alternative proof applies to any cofinite arithmetically
defined subgroup Γ of PSL(2, C). It is the main theorem of Harder’s article
on the Gauss-Bonnet theorem [11] that the Euler characteristic is the covol-
ume of Γ with respect to the Euler-Poincaré form µ on H, i. e. χ(Γ) =

∫
Y dµ,

where Y is a fundamental domain for the action of Γ on H. This extends the
classical Gauss-Bonnet theorem from the theory of the Euler-Poincaré form,
see [17, paragraph 3] (here the theorem is hidden as the existence assertion
of the Euler-Poincaré measure) to non-cocompact but cofinite discrete sub-
groups. The measure µ is a fundamental datum associated to the symmetric
space, without reference to any discrete group. In [17, paragraph 3,2a] it is
shown that µ = 0 on any odd-dimensional space. Since dim H = 3, we have
χ(Γ) = 0.
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3. Computations of the integral homology of PSL2

(
O

Q[
√
−m ]

)

Throughout this section, we mean trivial Z-coefficients wherever we leave
out the coefficients. We will always label the singular point in the funda-
mental domain by s; and we use the notation

⊗σ := ⊗Z[Γσ].

Let ω :=
√−m. We have Γ = PSL2(OQ[

√
−m ]) = PSL2(Z[ω]) in the cases

m = 5, 6, 10, 13 considered.

3.1. m = 13. The fundamental domain for Γ looks as follows.

o′ j ′

v′

y′

z′a′′

b′′

x′

u′

a′

b′

c′′

v′

y′

c′

o

e

f

g

h

j

s

t

u

v

w

x

y

z

a

b

c

The coordinates in Hyperbolic space of the vertices can be found in [4].
We make the following definitions.

A := ±
„

9 7ω
ω −10

«

, B := ±
„

−2 − ω 2 − ω
4 2 + 1ω

«

, C := ±
„

−1 − ω 8 − ω
3 1 + 2ω

«

,

D := ±
„

5 2ω
ω −5

«

, E := ±
„

−ω 6
2 ω

«

, J := ±
„

1
−1

«

,

S := ±
„

−1
1 1

«

, K := ±
„

11 + 4ω −17 + 7ω
−8 + ω −10 − 3ω

«

, M := ±
„

4 − 2ω 12 + ω
4 + ω −4 + 2ω

«

,

U := ±
„

1 ω
1

«

, V := ±
„

−ω 6 − ω
2 2 + ω

«

, W := ±
„

14 − ω 13 + 6ω
2ω −12 + ω

«

,

P := V −1D, T := P−1S2, R := TU−1S2U.

We observe the relations T = CKCA(CKC)−1, V −1 = CAC−1M and
S2 = BS−1BS. The matrix U acts as a vertical translation by −ω on this
fundamental domain. There are seventeen orbits of vertices, which have the
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following stabilizers.

Γo = 〈J |J2 = 1〉 ∼= Z/2,
Γe = 〈A, U−1JU |A3 = (U−1JU)2 = (AU−1JU)2 = 1〉 ∼= S3,
Γf = 〈D, E|D2 = E2 = (DE)2 = 1〉 ∼= D2,
Γg = 〈J, T |J2 = T 3 = (JT )2 = 1〉 ∼= S3,
Γh = 〈E, AU−1JU |E2 = (AU−1JU)2 = (EAU−1JU)2 = 1〉 ∼= D2,
Γj = 〈S|S3 = 1〉 ∼= Z/3,
Γs = 〈V, W |V W = WV 〉 ∼= Z2,
Γt = 〈R, U−1SU |R2 = (U−1SU)3 = (RU−1SU)2 = 1〉 ∼= S3,
Γu = 〈B|B2 = 1〉 ∼= Z/2,
Γv = 〈D|D2 = 1〉 ∼= Z/2,
Γw = 〈B, S|B2 = S3 = (BS)2 = 1〉 ∼= S3,
Γx = Γz = 〈CAC−1|(CAC−1)3 = 1〉 ∼= Z/3,
Γa = 〈S−1BS|(S−1BS)2 = 1〉 ∼= Z/2,
Γb = Γc = 〈M |M2 = 1〉 ∼= Z/2,
Γy = 〈T |T 3 = 1〉 ∼= Z/3.

There are twenty-eight orbits of edges. The edge stabilizers of isomorphy
type Z/2 are given on the chosen edge orbit representatives as

Γ(f,v) = 〈D|D2 = 1〉 ∼= Z/2,

Γ(h,u′) = 〈EAU−1JU |(EAU−1JU)2 = 1〉 ∼= Z/2,

Γ(t,b′′) = 〈R|R2 = 1〉 ∼= Z/2,

Γ(w,a) = 〈S−1BS|(S−1BS)2 = 1〉 ∼= Z/2,

Γ(b,c) = 〈M |M2 = 1〉 ∼= Z/2,

Γ(a′′,c′′) = 〈C−1S−1BSC|(C−1S−1BSC)2 = 1〉 ∼= Z/2,

Γ(v′,t) = 〈RU−1SU |(RU−1SU)2 = 1〉 ∼= Z/2,

Γ(w,u) = 〈B|B2 = 1〉 ∼= Z/2,

Γ(h,e) = 〈AU−1JU |(AU−1JU)2 = 1〉 ∼= Z/2,

Γ(g,f) = 〈DE|(DE)2 = 1〉 ∼= Z/2,

Γ(f,h) = 〈E|E2 = 1〉 ∼= Z/2,

Γ(o,g) = 〈J |J2 = 1〉 ∼= Z/2,

Γ(o′,e) = 〈U−1JU |(U−1JU)2 = 1〉 ∼= Z/2.

and the edge stabilizers of isomorphy type Z/3 are given on the chosen edge
orbit representatives as

Γ(e,x′) = 〈A|A3 = 1〉 ∼= Z/3,

Γ(x,z) = 〈CAC−1|(CAC−1)3 = 1〉 ∼= Z/3,

Γ(g,y) = 〈T |T 3 = 1〉 ∼= Z/3,

Γ(j,w) = 〈S|S3 = 1〉 ∼= Z/3,

Γ(t,j′) = 〈U−1SU |(U−1SU)3 = 1〉 ∼= Z/3,

Γ(y′,z′) = 〈KCA(KC)−1|(KCA(KC)−1)3 = 1〉 ∼= Z/3.

We use the identifications C · x′ = x, U · j′ = j, C · y′ = y and K · z = z′.
We find nine edge orbits with the trivial stabilizer, thirteen edge orbit rep-
resentatives with stabilizer type Z/2, and six with stabilizer type Z/3. The
singular vertex has stabilizer type Z2, and there are six vertex orbit repre-
sentatives with stabilizer type Z/2, two with D2, four with S3 and four with
Z/3. Furthermore, there are twelve orbits of faces with trivial stabilizers.
The above data gives the Γ-equivariant Euler characteristic of X:

χΓ(X) = 6 · 1
2

+ 4 · 1
3

+ 2 · 1
4

+ 4 · 1
6
− 9− 13 · 1

2
− 6 · 1

3
+ 12 = 0,

in accordance with remark 17.

3.1.1. E1-page for m = 13.
We obtain for the row q = 0 in the columns p = 0, 1, 2:

Z17
d1
1,0←−−− Z28

d1
2,0←−−− Z12,
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where the only occurring elementary divisor is 1, with multiplicity sixteen
for d1

1,0, and with multiplicity ten for d1
2,0.

3.1.2. Odd rows of the E1-term.
For odd q, the morphism

⊕

σ∈Γ\X0

Hq(Γσ)
d1
1,q←−−−

⊕

σ∈Γ\X1

Hq(Γσ)

is on the 2-primary part a homomorphism

(Z/2)q+13 ←− (Z/2)13

given by the q+13-by-13 matrix

(d1
1,q)(2) =





1 1

.

.

.
1 1

1 1

.

.

.
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1





,

where we replace each occurence of the dots “
..
. ” by q−1

2 lines with a “1”
in the column of the dots and zeroes elsewhere. This is due to the diagonal
map

(Z/2)
q+3
2 ∼= Hq(D2)← Hq(Z/2) ∼= Z/2,




1
...
1



← 1,

which is induced by the inclusion D2 ← Z/2 hitting the product of the two
fixed generators of D2. Therefore, we have to distinguish the case q = 1,
where d1

1,q has rank 12, and the case q > 3, where it has rank 13.

On the 3-primary part, d1
1,q is a homomorphism

{
(Z/3)4 ←− (Z/3)6 for q congruent 1 modulo 4,
(Z/3)8 ←− (Z/3)6 for q congruent 3 modulo 4.

It is given by the matrix

(d1
1,q)(3) =

(e, x′) (g, y) (x, z) (y′, z′) (j, w) (t, j′)
e −α 0 0 0 0 0
x 1 0 −1 0 0 0
g 0 −α 0 0 0 0
y 0 1 0 −1 0 0
z 0 0 1 1 0 0
j 0 0 0 0 −1 1
w 0 0 0 0 α 0
t 0 0 0 0 0 −α,

where α = 1 for q congruent 3 modulo 4 and α = 0 else. This matrix has
full rank 6 (injectivity) for q congruent 3 modulo 4, and rank 4 (surjectivity)
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for q congruent 1 modulo 4.
For q = 1, there is an additional module H1(Γs) ∼= Z2 on the target side,
which can not be hit because the edge stabilizers are only torsion.

Remark 19. So, the 3-torsion in H1(Γ) has already been killed by the d1

differential. This shows that there is no injection

H1(PSL2(Z))→ H1(Γ).

We verify this fact by considering the generator of the 3-torsion in
H1(PSL2(Z)), which is induced by the matrix S. In the group Γ for m = 13,
the matrix S of order three is subject to the relation S2 = BS−1BS where B
is a matrix of order two defined above. The right hand side of this equation
can be simplified to the unit element when we pass it to Γab ∼= H1(Γ).
So, the above non-injectivity is based on the fact that S does not survive
abelianizing Γ while it survives abelianizing PSL2(Z).

3.1.3. The rows with q even.
There is a zero map arriving at

⊕

σ∈Γ\X0

Hq(Γσ) = (Z/2)q for q bigger than 2,

and respectively at
⊕

σ∈Γ\X0

H2(Γσ) = Z⊕ (Z/2)2.

3.1.4. The E2-page. In the rows with q > 2, E2
p,q is concentrated in the

columns p = 0 and p = 1 given as follows:

q = 4k + 1, q > 5 (Z/2)q (Z/3)2

q even, q > 4 (Z/2)q 0
q = 4k + 3, q > 3 (Z/3)2 ⊕ (Z/2)q 0
. . . . . . . . .
q = 2 Z ⊕ (Z/2)2 0

In the rows q = 0 and q = 1, E2
p,q is concentrated in the columns p = 0, 1, 2:

q = 1 Z2 ⊕ (Z/2)2 (Z/3)2 ⊕ Z/2 0

q = 0 Z Z2 Z2

d2

kkVVVVVVVVVVVVVVVVVVVVVV

3.1.5. Computation of the differential d2.
The only nontrivial d2-arrow is determined on the E0-level by the following
maps connecting E0

2,0 with E0
0,1:

L

σ∈Γ\X0

Θ1 ⊗σ Z
L

σ∈Γ\X1

Θ1 ⊗σ Z1⊗δoo

dΘ⊗1

��
L

σ∈Γ\X1

Θ0 ⊗σ Z
L

σ∈Γ\X2

Θ0 ⊗σ Z1⊗δoo

where dΘ is the differential of the bar resolution Θ• for Γ, and δ is the dif-
ferential of Flöge’s cellular complex. The generators of the abelian group
E2

2,0
∼= Z2 are represented by the face (c, s, c′, z) and the union of two faces

(b, x, b′, v′, y′, a′, u, a, y, v) =: F , whose quotients by Γ are homeomorphic
to 2-spheres. We observe the edge identifications CAC−1 · (c, z) = (c′, z),
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V −1 · (s, c) = (s, c′), CAC−1 · (b, x) = (b′, x), V −1 · (b, v) = (b′, v′),
P · (y, v) = (y′, v′), S2 · (a, y) = (a′, y′), and B · (a, u) = (a′, u).
The above d2-arrow is induced by

δ
(
(c, s, c′, z)

)
= (CAC−1 − 1) · (c, z) + (V −1 − 1) · (s, c)

and

δ
(
(b, x, b′, v′, y′, a′, u, a, y, v)

)
= (CAC−1 − 1) · (x, b) + (V −1 − 1) · (b, v)

+ (P − 1) · (v, y) + (S2 − 1) · (y, a) + (B − 1) · (a, u).

The lift 1⊗F 1 in E0
2,0 of the generator of E2

2,0 represented by

F = (b, x, b′, v′, y′, a′, u, a, y, v) is mapped as follows:

(1, CAC−1) ⊗b 1 − (1, CAC−1) ⊗x 1
+(1, V −1) ⊗v 1 − (1, V −1) ⊗b 1

+(1, P ) ⊗y 1 − (1, P ) ⊗v 1
+(1, S2) ⊗a 1 − (1, S2) ⊗y 1
+(1, B) ⊗u 1 − (1, B) ⊗a 1

(1, CAC−1) ⊗(x,b) 1

+(1, V −1) ⊗(b,v) 1

+(1, P ) ⊗(v,y) 1

+(1, S2) ⊗(y,a) 1

+(1, B) ⊗(a,u) 1

oo

dΘ⊗1

��
(CAC−1 − 1) ⊗(x,b) 1

+(V −1 − 1) ⊗(b,v) 1

+(P − 1) ⊗(v,y) 1

+(S2 − 1) ⊗(y,a) 1

+(B − 1) ⊗(a,u) 1

1 ⊗F 1oo

The passage to E1. We attribute the symbols tσ to the part of this sum
lying in Θ1 ⊗σ Z:

tx := −(1, CAC−1)⊗x 1,
tb := (1, CAC−1)⊗b 1− (1, V −1)⊗b 1,
tv := (1, V −1)⊗v 1− (1, P ) ⊗v 1,
ty := (1, P )⊗y 1− (1, S2)⊗y 1,
ta := (1, S2)⊗a 1− (1, B)⊗a 1,
tu := (1, B)⊗u .

With the formula in our corollary 12, we find the classes t̄σ in H1(Θ∗ ⊗σ Z)
as follows: As V −1M = CAC−1 and Γb = 〈M | M2 = 1〉,

tb = [CAC−1]⊗b 1− [V −1]⊗b 1 = [V −1M ]⊗b 1− [V −1]⊗b 1

gives the cycle

V V −1M − V V −1 = M ∈ 〈M | 2M = 0〉 ∼= H1(Γb, Z).

As V −1 = PD and Γv = 〈D| D2 = 1〉,
tv = [V −1]⊗v 1− [P ]⊗v 1 = [PD]⊗v 1− [P ]⊗v 1

gives the cycle

P−1PD − P−1P = D ∈ 〈D| 2D = 0〉 ∼= H1(Γv , Z).

As S2 = BS−1BS and Γa = 〈S−1BS| (S−1BS)2 = 1〉,
ta = [S2]⊗a 1− [B]⊗a 1 = [BS−1BS]⊗a 1− [B]⊗a 1

gives the cycle

B−1BS−1BS −B−1B = S−1BS ∈ 〈S−1BS| 2S−1BS = 0〉 ∼= H1(Γa, Z).
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Finally, tu = [B]⊗u 1 gives the cycle

B ∈ 〈B| 2B = 0〉 ∼= H1(Γu, Z).

The term E2
0,1 having no 3-torsion, the 3-torsion part t̄x + t̄y of the above

sum makes no contribution to the image of d2.
The 2-torsion part, tb + ta + tv + tu, equals the image d1

1,1(t(b,c) + t(c′′,a′′) +

t(v,f) + t(f,h) + t(h,u′)), where tσ stands for the generator of H1(Γσ, Z) ∼= Z/2.

Hence it makes no contribution neither, and we obtain d2(F ) = 0.
The lift 1⊗(c,s,c′,z) 1 of the generator (c, s, c′, z) is mapped as follows:

(1, CAC−1) ⊗z 1
−(1, CAC−1) ⊗c 1

+(1, V −1) ⊗c 1
−(1, V −1) ⊗s 1

(1, CAC−1) ⊗(c,z) 1

+(1, V −1) ⊗(s,c) 1

1⊗δoo

dΘ⊗1

��
(CAC−1 − 1) ⊗(c,z) 1

+(V −1 − 1) ⊗(s,c) 1
1 ⊗(c,s,c′,z) 1

1⊗δoo

The passage to E1. We attribute the symbols tσ to the part of this sum
lying in Θ1 ⊗σ Z:

tz := (1, CAC−1)⊗z 1,
tc := (1, V −1)⊗c 1− (1, CAC−1)⊗c 1,
ts := −(1, V −1)⊗s 1.

With the formula in our corollary 12, we find the classes t̄σ in H1(Θ∗ ⊗σ Z)
as follows:

tz = [CAC−1]⊗z 1

gives the cycle

CAC−1 ∈ 〈CAC−1| 3CAC−1 = 0〉 ∼= H1(Γz, Z).

As V −1M = CAC−1 and Γc = 〈M | M2 = 1〉,
tc = [V −1]⊗c 1− [CAC−1]⊗c 1 = [V −1]⊗c 1− [V −1M ]⊗c 1

gives the cycle

V V −1 − V V −1M = −M ∈ 〈M | 2M = 0〉 ∼= H1(Γc, Z).

Finally,
ts = −[V −1]⊗s 1

gives the cycle
V ∈ 〈V ,W 〉 ∼= H1(Γs, Z) ∼= Z2.

The term E2
0,1 having no 3-torsion, the 3-torsion part tz of the above sum

makes no contribution to the image of d2.
However the 2-torsion part, tc = M , passes to the E2-page because no chain
of edges can have the single point c as its boundary. Furthermore, V is
one of the generators of the free part of E2

0,1
∼= Z2 ⊕ (Z/2)2, so we obtain

d2 ((c, s, c′, z)) = M + V , which is of infinite order and has the following
property: There is no element η ∈ E2

0,1 with kη = M + V for an integer

k > 1. As we have seen that d2(F ) = 0, we obtain the quotient

E3
0,1
∼= Z⊕ (Z/2)2.
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Hence we obtain for integral homology the following short exact sequences:





0→ (Z/2)q → Hq(Γ; Z)→ (Z/3)2 → 0, q = 4k + 2,

0→ (Z/2)q → Hq(Γ; Z)→ 0, q = 4k + 1,

0→ (Z/2)q → Hq(Γ; Z)→ 0, q = 4k + 4,

0→ (Z/3)2 ⊕ (Z/2)q → Hq(Γ; Z)→ 0, q = 4k + 3,

0→ Z⊕ (Z/2)2 → H2(Γ; Z)→ Z⊕ (Z/3)2 ⊕ Z/2→ 0,

0→ Z⊕ (Z/2)2 → H1(Γ; Z)→ Z2 → 0.

3.1.6. The spectral sequence for m = 13 with Z/2-coefficients.
¿From [16, lemma 4.2(3)] we compute by elementary means that
Hq(S3; Z/2) ∼= Z/2, Hq(Z/2; Z/2) ∼= Z/2 and Hq(D2; Z/2) ∼= (Z/2)q+1 for
all q > 0. Also by elementary means, we get

Hq(Z
2, Z/2) ∼=






0, q > 3,

Z/2, q = 2,

(Z/2)2, q = 1.

3.1.7. E1-page with Z/2-coefficients.
We can apply the functor − ⊗ Z/2 to the row q = 0 and obtain in the
columns p = 0, 1, 2:

(Z/2)17
d1
1,0←−−− (Z/2)28

d1
2,0←−−− (Z/2)12.

The rest of this row are zeroes. The matrix d1
1,0 has rank 16 and the matrix

d1
2,0 has rank 10. In the rows with q > 0, the differential d1 is given by a

single arrow d1
1,q from E1

1,q = (Hq(Z/2; Z/2))13 ⊕ (Hq(Z/3; Z/2))6 ∼= (Z/2)13

to

E1
0,q = Hq(Z

2; Z/2)⊕ (Hq(Z/2; Z/2))6 ⊕ (Hq(D2; Z/2))2 ⊕ (Hq(S3; Z/2))4,

and the rest of these rows are zeroes.
For q = 1, we have d1

1,1 of rank 12 arriving at E1
0,1
∼= (Z/2)16.

For q > 3, we have d1
1,q of rank 13 arriving at E1

0,q
∼= (Z/2)12+2q .

For q = 2, we have d1
1,2 of rank 13 arriving at E1

0,2
∼= (Z/2)17. The only

difficulty in seeing this is to compute the maps Hq(Z/2; Z/2)→ Hq(D2; Z/2)
induced by the inclusions f : Z/2 → D2. For this task we take the reso-
lutions of Z/2 ∼= 〈t | t2 = 1〉 and D2

∼= 〈D,E |D2 = E2 = (DE)2 = 1〉
proposed by [16] and compute the chain map induced by extending f to a
ring homomorphism f : Z[Z/2] → Z[D2]. We can then apply the functor
− ⊗Z[G] Z/2 to this chain map (where Z/2 is the trivial Z[G]-module for
G = Z/2,D2 ).

3.1.8. The E2-page for m = 13 with Z/2-coefficients. We obtain in the rows
with q > 2 the E2-term concentrated in the column p = 0,

q > 3 (Z/2)2q−1

q = 2 (Z/2)4,
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and in the rows q = 0, q = 1 it is concentrated in the columns p = 0, 1, 2:

q = 1 (Z/2)4 Z/2 0

q = 0 Z/2 (Z/2)2 (Z/2)2.

d2

2,0

iiTTTTTTTTTTTTTTTTT

Computation of the differential d2
2,0. The basis {(c, s, c′, z), F} of E2

2,0 with

Z-coefficients induces a basis of E2
2,0 with Z/2-coefficients. The Universal

Coefficient Theorem gives us an isomorphism

0→ H1(Γσ; Z)⊗Z Z/2
∼= // H1(Γσ; Z/2) → 0 = TorZ

1 (H0(Γσ; Z), Z/2)

which we will use to transfer the elements tσ ∈ H1(Γσ; Z) computed in
subsection 3.1.5 to H1(Γσ; Z/2).
For d2

2,0((c, s, c
′, z)) the computation is as follows.

As tc generates H1(Γc; Z) ∼= Z/2, it is transferred to the generator of

H1(Γc; Z/2) ∼= Z/2.

Since ts can be completed with a second element to a Z-basis of H1(Γs; Z) ∼= Z2,
it is transferred to a nontrivial element of

H1(Γs; Z/2) ∼= (Z/2)2.

The element tz vanishes because

H1(Γz; Z)⊗ Z/2 ∼= Z/3⊗ Z/2 = 0.

The sum tc+ts is quotiented to a nontrivial element on the E2-page because
H1(Γs; Z/2) is not hit by the d1-differential. So d2

2,0(〈(c, s, c′, z)〉) ∼= Z/2.

For d2
2,0(F ) the computation is as follows.

The 3-torsion vanishing when tensoring with Z/2, the 3-torsion part t̄x + t̄y
of the sum makes no contribution to the image of d2.
The 2-torsion part, tb + ta + tv + tu, equals the image

d1
1,1(t(b,c) + t(c′′,a′′) + t(v,f) + t(f,h) + t(h,u′)),

where tσ, σ ∈ {b, a, v, u, (b, c), (c′′ , a′′), (v, f), (f, h), (h, u′)} now stands for
the generator of H1(Γσ; Z/2) ∼= Z/2. Hence it makes no contribution neither,
and we obtain d2(F ) = 0. Thus d2

2,0 has rank 1.

So the E3 = E∞-page gives us immediately

Hq(Γ, Z/2) ∼=






(Z/2)2q−1, q > 3,

(Z/2)6, q = 2,

(Z/2)5, q = 1

and we conclude

Hq(Γ, Z) ∼=






Z3 ⊕ (Z/2)2, q = 1,

Z2 ⊕ Z/4⊕ (Z/3)2 ⊕ Z/2, q = 2,

(Z/2)q ⊕ (Z/3)2, q = 4k + 3, k > 0,

(Z/2)q , q = 4k + 4, k > 0,

(Z/2)q , q = 4k + 1, k > 1,

(Z/2)q ⊕ (Z/3)2, q = 4k + 2, k > 1.
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3.2. m = 5. The fundamental domain for Γ := PSL2(OQ[
√
−5 ]) looks as

follows.

v1

a3

a1

a2b

u

u1

s

v

a

We will make use of the following matrices:

A := ±
„

−1
1

«

, B := ±
„

−ω 2
2 ω

«

, M := ±
„

−ω 4
1 ω

«

, S := ±
„

−1
1 1

«

,

U := ±
„

1 ω
1

«

, V := ±
„

−ω 2 − ω
2 2 + ω

«

, W := ±
„

6 − ω 5 + 2ω
2ω ω − 4

«

,

which are subject to the relations UMU−1 = A, UWS(UW )−1 = S,
WABW−1 = MB and S = ABV . There are five orbits of vertices, with
stabilizers

Γb = 〈A, B|A2 = B2 = 1〉 ∼= D2,
Γu = 〈B, M |B2 = M2 = 1〉 ∼= D2,
Γa = 〈AB|AB2 = 1〉 ∼= Z/2,
Γv = 〈S|S3 = 1〉 ∼= Z/3,
Γs = 〈V, W |V W = WV 〉 ∼= Z2

and identifications UW · a = a1, V −1 · a = a2, S2 · a = a2, U · u = u1 and
UW · v = v1. There are seven orbits of edges, with stabilizers

Γ(b,a) = 〈AB|AB2 = 1〉 ∼= Z/2,

Γ(v,v1) = 〈S|S3 = 1〉 ∼= Z/3,

Γ(a3,u) = 〈MB|MB2 = 1〉 ∼= Z/2,

Γ(u,b) = 〈B|B2 = 1〉 ∼= Z/2,

Γ(u1,b) = 〈A|A2 = 1〉 ∼= Z/2;

(a, v) and (a, s) having the trivial stabilizer. There are three orbits of faces,
with trivial stabilizers.
The above data gives the Γ-equivariant Euler characteristic of X:

χΓ(X) =
1

4
+

1

4
+

1

2
+

1

3
− 1

2
− 1

3
− 1

2
− 1

2
− 1

2
− 2 + 3 = 0,

in accordance with remark 17.

3.2.1. The zeroth row of the E1-page. This row identifies with the cellular
chain complex of the quotient complex Γ\X.
We obtain for the row q = 0 in the columns p = 0, 1, 2:

Z5
d1
1,0←−−− Z7

d1
2,0←−−− Z3

where 1 is the only elementary divisor of the differential matrices, with
multiplicity four for d1

1,0, and multiplicity two for d1
2,0. The homology of

Γ\X is generated in degree 1 by the loop represented by the edge (v, v1), and
in degree 2 by the quotient of the face (a2, s, a, v), which is homeomorphic
to a 2-sphere.
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3.2.2. Odd rows of the E1-page. We start by investigating the morphism

Z2 ⊕ Z/3⊕ (Z/2)5
d1
1,1←−−−−− Z/3⊕ (Z/2)4

and the morphism

Z/3⊕ (Z/2)q+4
d1
1,q←−−−−− Z/3⊕ (Z/2)4

for q > 3. On the 3-torsion, d1
1,q is zero.

On the 2-torsion, d1
1,q it is given by the matrix

(d1
1,q)(2) =

(b, a) (a3, u) (u, b) (u1, b)

a 1 −1 0 0
b −1 0 0 1
... ... ... ... ...
b −1 0 1 0
u 0 1 −1 0

... ... ... ... ...
u 0 1 0 −1,

where we fill in q−1
2 zero rows into each dotted line, except that in the

columns with a “-1” both above and below the dots, we write “-1” into all
entries of this column which are between the two “-1”’s.
Thus d1

1,1 has rank 3 and d1
1,q has rank 4 for q > 3.

3.2.3. Even rows of the E1-term. There is a zero map arriving at E1
0,2
∼= Z⊕ (Z/2)2.

For q > 4, there is a zero map arriving at E1
0,q
∼= (Z/2)q.

The rest of the E1-page are zeroes.

3.2.4. The E2-page.
The following periodic part appears in the columns p = 0 and p = 1:

q > 4 even (Z/2)q 0
q > 3 odd (Z/2)q ⊕ Z/3 Z/3;

the lowest three rows are given as follows in the columns p = 0, 1, 2:

q = 2 Z ⊕ (Z/2)2 0 0

q = 1 Z2 ⊕ (Z/2)2 ⊕ Z/3 Z/2 ⊕ Z/3 0

q = 0 Z Z Z

d2

kkVVVVVVVVVVVVVVVVVVVVVV

and the rest of the E2-page are zeroes.
Let us compute the only nontrivial d2-arrow. The generator of E2

2,0 comes

from the 2-cell (a2, s, a, v). Among its vertices, we have the identifications
S2 ·a = a2 and V −1 ·a = a2, where the matrices V of infinite order stabilizes
the singular point s, and the matrix S of order three stabilizes the point v.
The lift 1 ⊗(a2,s,a,v) 1 of the generator of E2

2,0 is mapped as follows in the
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E0-page:

(V −1, 1) ⊗s 1 − (V −1, 1) ⊗a 1
+(1, S2) ⊗v 1 − (1, S2) ⊗a 1

(V −1, 1) ⊗(a,s) 1

+(1, S2) ⊗(a,v) 1

1⊗δoo

dΘ⊗1

��
1 ⊗(a,s) 1 − V −1 ⊗(a,s) 1

+S2 ⊗(a,v) 1 − 1 ⊗(a,v) 1
1 ⊗(a2,s,a,v) 1oo

It passes to

(V , 2S,AB) ∈ 〈V ,W 〉 ⊕ 〈S | 3S = 0〉 ⊕ (Z/2)2 ∼= E2
0,1,

which is of infinite order and has the following property: There is no element
η ∈ E2

0,1 with kη = (V , 2S,AB) for an integer k > 1. So,

E3
0,1
∼= Z⊕ (Z/2)2 ⊕ Z/3.

Thus the E∞-page gives us the following short exact sequences:





0 → (Z/2)q → Hq(Γ; Z) → Z/3 → 0 q > 4 even,

0 → Z/3 ⊕ (Z/2)q → Hq(Γ; Z) → 0 q > 3 odd,

0 → Z ⊕ (Z/2)2 → H2(Γ; Z) → Z/3 ⊕ Z/2 → 0,

0 → Z ⊕ Z/3 ⊕ (Z/2)2 → H1(Γ; Z) → Z → 0.

The result

Hq(Γ; Z) ∼=






Z2 ⊕ Z/3⊕ (Z/2)2 q = 1

Z⊕ Z/4⊕ Z/3⊕ Z/2 q = 2

Z/3⊕ (Z/2)q q > 3

is obtained after resolving the ambiguity of the extension H2(Γ, Z) by a
reflection like the one on [16, page 587], for which we have to recompute the
spectral sequence with Z/2-coefficients, giving us

Hq(Γ; Z/2) ∼=

{
(Z/2)4 q = 1

(Z/2)5 q = 2

(Z/2)2q−1 q > 3.

Remark 20. There are the following checks of the computations we made.
Let us look at the low term short exact sequence

0→ E∞
0,1 → Γab → E∞

1,0 → 0

of the spectral sequence. We have E∞
1,0 = H1(Γ\X) = (π1(Γ\X))ab, and the

projection is the abelianization of the map Γ → π1(Γ\X) given as follows.
Choose a fixed base point x ∈ X. For every γ ∈ Γ, choose a continuous
path in X from x to γx. This gives a well-defined loop in Γ\X since X is
contractible.
As Flöge shows, an inspection of the complex X and the associated stabilizer
group yields, together with [1, theorem 4.5], a presentation of Γ by means
of generators and relations. (It should be even easier to deduce only the
abelianization of Γ, however we didn’t figure out the details for this.) So
suppose Γab is known. The group E∞

0,1 = E3
0,1 is then the kernel of the

projection Γab → π1(Γ\X).
For m = 5, this check looks as follows. The abelianization is the abelian
group Γab ∼= 〈A,B, S,U : 2A = 0, 2B = 0, 3S = 0〉. Since the fundamental
group of the quotient is free, only the parabolic elements U and V can define
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nontrivial loops in the quotient. The element U generates a nontrivial loop,
while V generates a trivial loop.
So it follows that E∞

0,1
∼= Z⊕(Z/2)2⊕Z/3, generated by V ,A,B and S. This

is consistent with the computation above, involving the detailed analysis of
the d2-differential.

3.3. m = 10. The fundamental domain for Γ := PSL2(OQ[
√
−10 ]) looks as

follows.

x1

a2

a1

b1

v2w2

w1

r1

a3

b2

v1

s

u

x

y

a
b

r

v
w

We will use the following definitions:

A := ±
„

−1
1

«

, B := ±
„

−ω 3
3 ω

«

, C := ±
„

−1 − ω 4 − ω
2 1 + ω

«

,

D := ±
„

ω − 1 −4
3 1 + ω

«

, L := ±
„

ω 3
3 −ω

«

, R := ±
„

5 + ω 2ω − 3
ω − 3 −4 − ω

«

,

S := ±
„

−1
1 1

«

, U := ±
„

1 ω
1

«

, V := ±
„

1 − ω 5
2 1 + ω

«

,

W := ±
„

11 5ω
2ω −9

«

, Y := ±
„

ω − 2 −5
3 2 + ω

«

.

The matrix U acts as a vertical translation by −ω on this fundamental
domain. There are nine orbits of vertices, labelled a, b, r, u, v, w, x, y, s. We
have the following identifications: UWa = a1, Wa = a2, V a = a3;
S−1v = v1, U−1Dv = v2; Dw = w1, U−1Dw = w2; Db = b1,
Cb = b2; Dr = r1; UWx = x1. The stabilizers of the vertex orbit
representatives are

Γa = Γb =
˙

R| R3 = 1
¸ ∼= Z/3,

Γw =
˙

S | S3 = 1
¸ ∼= Z/3,

Γy =
˙

A, L| A2 = L2 = (AL)2 = 1
¸ ∼= D2,

Γu =
˙

A, B | A2 = B2 = (AB)2 = 1
¸ ∼= D2,

Γr =
˙

C| C2 = 1
¸ ∼= Z/2,

Γv =
˙

AB| (AB)2 = 1
¸ ∼= Z/2,

Γx =
˙

B | B2 = 1
¸ ∼= Z/2,

Γs = 〈V, W | V W = WV 〉 ∼= Z2.

There are fifteen orbits of edges, labelled (b, v), (r, w), (b, r), (v,w), (a2 , w2),
(y, r1), (x, a), (u, y), (a, b), (u, v), (a, s), (w, b1), (r, v2), (y, x1), (x, u).
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Amongst their stabilizers only

Γ(a2,w2) = Γa2
= W−1ΓaW =

˙

W−1RW
˛

˛ (W−1RW )3 = 1
¸ ∼= Z/3,

Γ(a,b) = Γa = Γb =
˙

R| R3 = 1
¸ ∼= Z/3,

Γ(w,b1) = Γb1 = Γw =
˙

S | S3 = 1
¸ ∼= Z/3,

Γ(y,r1) = Γr1
= DΓrD−1 =

˙

AL = DCD−1
˛

˛ (DCD−1)2 = 1
¸ ∼= Z/2,

Γ(u,v) = Γv =
˙

AB | (AB)2 = 1
¸ ∼= Z/2,

Γ(r,v2) = Γv2
= Γr =

˙

C| C2 = 1
¸ ∼= Z/2,

Γ(y,x1) = Γx1
= UWΓx(UW )−1 =

˙

L | L2 = 1
¸ ∼= Z/2,

Γ(x,u) = Γx =
˙

B | B2 = 1
¸ ∼= Z/2,

Γ(u,y) =
˙

A | A2 = 1
¸ ∼= Z/2

are nontrivial. Furthermore, there are seven orbits of faces, with trivial
stabilizers.
With the above information on the isomorphy types of the cell stabilizers,
we get the Γ-equivariant Euler characteristic of X:

χΓ(X) = 3 · 1
3

+ 2 · 1
4

+ 3 · 1
2
− 3 · 1

3
− 6 · 1

2
− 6 + 7 = 0,

in accordance with remark 17.

3.3.1. The row q = 0 in the E1-page for m = 10.
We obtain for the row q = 0 in the columns p = 0, 1, 2:

Z9
d1
1,0←−−− Z15

d1
2,0←−−− Z7,

where 1 is the only elementary divisor of the differential matrices, with
multiplicity eight for d1

1,0, and multiplicity five for d1
2,0. The rest of this row

are zeroes.

3.3.2. Odd rows of the E1-term.
For odd q, the morphism

⊕

σ∈Γ\X0

Hq(Γσ)
d1
1,q←−−−

⊕

σ∈Γ\X1

Hq(Γσ)

is for q > 3 of the form

(Z/3)3 ⊕ (Z/2)q+6 ←− (Z/3)3 ⊕ (Z/2)6.

For q = 1, we have to add H1(Γs) ∼= Z2 on the target side of the morphism d1
1,q,

but the incoming torsion must reach it trivially.
On the 3-primary part, d1

1,q is given by the matrix

(d1
1,q)(3) =

(a, b) (Db, w) (Wa, U−1Dw)

a −1 0 −1
w 0 1 1
b 1 −1 0.

This matrix has rank 2, so its image is isomorphic to (Z/3)2 and its kernel
is of type Z/3.
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On the 2-primary part, d1
1,q is for odd q given by the matrix

(d1
1,q)(2) =

(y, r1) (u, v) (r, v2) (y, x1) (x, u) (u, y)

u 0 −1 0 0 0 −1
...

...
...

...
...

...
...

u 0 −1 0 0 1 0
y −1 0 0 0 0 1
.
..

.

..
.
..

.

..
.
..

.

..
.
..

y −1 0 0 −1 0 0
x 0 0 0 1 −1 0
r 1 0 −1 0 0 0
v 0 1 1 0 0 0,

where we fill in q−1
2 zero rows into each of the two dotted lines, except that

in the columns with a “-1” both above and below the dots, we write “-1”
into all entries of this column which are between the two “-1”’s. This is due
to the diagonal map

(Z/2)
q+3
2 ∼= Hq(D2)← Hq(Z/2) ∼= Z/2,




1
...

1



← 1,

which is induced by the inclusion D2 ← Z/2 hitting the product of the two
fixed generators of D2. The above matrix (d1

1,q)(2) has rank 5 for q = 1, and
full rank 6 for q > 3.

3.3.3. The rows with q even.
There is a zero map arriving for q greater than 2 at

⊕

σ∈Γ\X0

Hq(Γσ) ∼= (Z/2)q,

and for q = 2 at
⊕

σ∈Γ\X0

H2(Γσ) ∼= Z⊕ (Z/2)2.

3.3.4. The E2-page for m = 10:
The following periodic part appears in the columns p = 0 and p = 1:

q > 4 even (Z/2)q 0
q > 3 odd (Z/2)q ⊕ Z/3 Z/3;

the lowest three rows are as follows in the columns p = 0, 1, 2:

q = 2 Z ⊕ (Z/2)2 0 0

q = 1 Z2 ⊕ (Z/2)2 ⊕ Z/3 Z/2 ⊕ Z/3 0

q = 0 Z Z2 Z2

d2

kkVVVVVVVVVVVVVVVVVVVVVV

and the rest of the E2-page are zeroes.

3.3.5. Computation of the differential d2.
The generators of the abelian group E2

2,0
∼= Z2 are represented by the 2-cell

(a, s, a3, x) and the union of two 2-cells (v1, b2, r, b, v, w), whose quotients by
Γ are homeomorphic to 2-spheres. On the vertices of (a, s, a3, x) , we have
the identifications B · a = a3 and V · a = a3, where the matrix B fixes x
and the matrix V fixes s. For (v1, b2, r, b, v, w), we have the identifications
of vertices Cb = b2, Cr = r, S2v = v1 and S2w = w; and we pay particular
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attention to the matrix CR = S2AB identifying the edge (b, v) ∼= (b2, v1).
Thus the only nontrivial d2-arrow is induced by

δ((a, s, a3, x)) = (a, s) + V · (s, a) + B · (a, x) + (x, a)

and

δ((v1, b2, r, b, v, w)) = (b, r)−C ·(b, r)+CR ·(b, v)+S2 ·(v,w)−(v,w)−(b, v).

The lift 1 ⊗(v1,b2,r,b,v,w) 1 of the generator obtained from (v1, b2, r, b, v, w) is
mapped as follows:

(C, 1) ⊗r 1 − (C, 1) ⊗b 1
+(1, CR) ⊗v 1 − (1, CR) ⊗b 1
+(1, S2) ⊗w 1 − (1, S2) ⊗v 1

(C, 1) ⊗(b,r) 1

+(1, CR) ⊗(b,v) 1

+(1, S2) ⊗(v,w) 1

1⊗δoo

dΘ⊗1

��
1 ⊗(b,r) 1 − C ⊗(b,r) 1

+CR ⊗(b,v) 1 − 1 ⊗(b,v) 1

+S2 ⊗(v,w) 1 − 1 ⊗(v,w) 1

1 ⊗(v1,b2,r,b,v,w) 1oo

We attribute the symbols tσ to the part of this sum lying in Θ1 ⊗σ Z.

tr := (C, 1) ⊗r 1,
tb := −(1, CR) ⊗b 1 − (C, 1) ⊗b 1,
tw := (1, S2) ⊗w 1,
tv := (1, CR) ⊗v 1 − (1, S2) ⊗v 1.

With the formula in our corollary 12, we find the classes tσ in H1(Θ∗ ⊗σ Z)
in the following way.

tr = C ∈ 〈C|2C = 0〉 = Γab
r

∼= H1(Γr , Z),

tb = 2R ∈ 〈R|3R = 0〉 = Γab
b

∼= H1(Γb, Z),

tw = 2S ∈ 〈S|3S = 0〉 = Γab
w

∼= H1(Γw, Z),

tv = AB ∈ 〈AB|2AB = 0〉 = Γab
v

∼= H1(Γv, Z).

As E1
−1,1 = 0, the whole of E1

0,1 is in the kernel of d1. So for the passage to

E2, we just have to look at the image of d1.
The chain tv + tr equals the image d1

1,1(−(r, v2)), so it passes to the zero

element in the quotient E2
0,1. Meanwhile, the cycle tb +tw is a representative

of the generator of the 3-torsion in E2
0,1, as we see from the matrix for the

3-primary part of d1
1,1. Thus, d2

2,0(〈(v1, b2, r, b, v, w)〉) ∼= Z/3.

The lift 1⊗(a,s,a3,x)1 of the generator obtained from (a, s, a3, x) is mapped

(V, 1) ⊗s 1 − (V, 1) ⊗a 1
+(1, B) ⊗x 1 − (1, B) ⊗a 1

(V, 1) ⊗(a,s) 1

+(1, B) ⊗(a,x) 1

1⊗δoo

dΘ⊗1

��
1 ⊗(a,s) 1 − V ⊗(a,s) 1

+B ⊗(a,x) 1 − 1 ⊗(a,x) 1
1 ⊗(a,s,a3,x) 1oo

We attribute the symbols tσ to the part of this sum lying in Θ1 ⊗σ Z,

ts := (V, 1) ⊗s 1,
tx := (1, B) ⊗x 1,
ta := −(V, 1) ⊗a 1 − (1, B) ⊗a 1.

We find the class ts = −V ∈ 〈V ,W 〉 = Γab
s
∼= H1(Γs, Z) ∼= Z2, which is

a generator of the free part of E1
0,1. It can not be the image of a torsion
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element from E1
1,1 = (Z/3)3⊕(Z/2)2. Therefore, it is preserved when passing

from E1
0,1 to E2

0,1. The cycles tx and ta are torsion, so the fact that ts is

a generator of the free part determines that the image d2
2,0(〈(a, s, a3, x)〉)

is of infinite order and has the following property: There is no element
η ∈ E2

0,1
∼= Z2 ⊕ Z/3 ⊕ (Z/2)2 with kη = d2

2,0(〈(a, s, a3, x)〉) for an integer

k > 1. Together with the isomorphy d2
2,0(〈(v1, b2, r, b, v, w)〉) ∼= Z/3, we

obtain
E3

0,1
∼= Z⊕ (Z/2)2.

Thus the E∞-page gives the following short exact sequences:





0→ (Z/2)q → Hq(Γ; Z)→ Z/3→ 0, for q > 4 even,

0→ Z/3⊕ (Z/2)q → Hq(Γ; Z)→ 0, for q > 3 odd,

0→ Z⊕ (Z/2)2 → H2(Γ; Z)→ Z⊕ Z/3⊕ Z/2→ 0,

0→ Z⊕ (Z/2)2 → H1(Γ; Z)→ Z2 → 0.

¿From here, we easily see the results,

Hq(Γ, Z) ∼=






Z3 ⊕ (Z/2)2, q = 1,

Z2 ⊕ Z/4⊕ Z/3⊕ Z/2, q = 2,

Z/3⊕ (Z/2)q , q > 3;

except for the ambiguity in the 3-torsion and the 2-torsion of the short
exact sequence for H2(Γ; Z). To resolve it, we will compute homology with
Z/2-coefficients,

Hq(Γ, Z/2) ∼=






(Z/2)2q−1, q > 3

(Z/2)6, q = 2,

(Z/2)5, q = 1,

and then use the Universal Coefficient Theorem in the form

H2(Γ, Z/2) ∼= H2(Γ; Z)⊗ (Z/2)⊕ TorZ
1 (H1(Γ; Z), Z/2).

and we do the same for Z/3-coefficients.

Remark 21. For m = 10, the check introduced in remark 20 takes the
following form. The abelianization is the group

Γab ∼= 〈A,B,D,U,W : 2A = 2B = 0〉.
The parabolic elements are U and W . The element U generates nontrivial
loops in the quotient, while W and D generate trivial loops.
So it follows that E∞

0,1 = Z ⊕ (Z/2)2, generated by W,A and B. This is
consistent with the computation above.



INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY QUADRATIC INTEGERS 27

3.4. m = 6. The fundamental domain for Γ := PSL2(OQ[
√
−6 ]) looks as

follows.

b1 a1

a2

a3

s

b

a

u

v

v1

The matrix U := ± ( 1 ω
1 ) performs a vertical translation by −ω of the fun-

damental domain for Γ. The following matrices occur in the cell stabilizers.

A := ±
„

−1
1

«

, B := ±
„

−1 − ω 2 − ω
2 1 + ω

«

, R := ±
„

−ω 5 − ω
1 1 + ω

«

,

S := ±
„

−1
1 1

«

, V := ±
„

1 − ω 3
3 1 + ω

«

, W := ±
„

7 3ω
2ω −5

«

.

There are five orbits of vertices, labelled b, a, u, v, s, with stabilizers

Γu =
˙

B, S| B2 = S3 = (BS)3 = 1
¸ ∼= A4,

Γv =
˙

B, R| B2 = R3 = (BR)3 = 1
¸ ∼= A4,

Γv1
=

˙

UBU−1, S
˛

˛ (UBU−1)2 = S3 = (UBU−1S)3 = 1
¸ ∼= A4,

Γa =
˙

SB | (SB)3 = 1
¸ ∼= Z/3,

Γa2
=

˙

RB | (RB)3 = 1
¸ ∼= Z/3,

Γb =
˙

A| A2 = 1
¸ ∼= Z/2,

Γs = 〈V, W | V W = WV 〉 ∼= Z2,

and identifications UW ·a = a1, W ·a = a2, V ·a = a3, A·a = a3, UW ·b = b1

and U · v = v1. There are seven orbits of edges, labelled (b, a), (a, s), (a, u),
(u, v), (a2, v), (b, b1) and (u, v1), amongst whose stabilizers only

Γ(a2,v) =
˙

RB | (RB)3 = 1
¸

= Γa2
∼= Z/3,

Γ(u,v1) =
˙

S | S3 = 1
¸ ∼= Z/3,

Γ(a,u) =
˙

SB | (SB)3 = 1
¸

= Γa
∼= Z/3,

Γ(u,v) =
˙

B | B2 = 1
¸ ∼= Z/2,

Γ(b,b1) =
˙

A | A2 = 1
¸

= Γb = Γb1
∼= Z/2

are nontrivial; and three orbits of faces with trivial stabilizers. The above
data gives the Γ-equivariant Euler characteristic of X:

χΓ(X) =
1

12
+

1

12
+

1

3
+

1

2
− 1− 1− 1

3
− 1

3
− 1

3
− 1

2
− 1

2
+ 3 = 0,

in accordance with remark 17.

3.4.1. Zeroth row of the E1-term.
We obtain in the columns p = 0, 1, 2:

Z5
d1
1,0←−−− Z7

d1
2,0←−−− Z3

where 1 is the only occurring elementary divisor of the differential matrices,
with multiplicity four for d1

1,0, and multiplicity two for d1
2,0. The homology

of this sequence is generated by the cycle (b, b1) in degree one and by the
face (a, s, a3, b) in degree two.
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3.4.2. Even rows of the E1-term.
The even rows are the zero map to E1

0,2
∼= Z⊕(Z/2)2, and to E1

0,q
∼= (Hq(A4))

2

for the degree q > 4.

3.4.3. Odd rows of the E1-term.
The map d1

1,q is on the 2-primary part induced by the inclusion of Γ(u,v)
∼= Z/2

into Γv and Γu which are of isomorphy typeA4. By [16, lemma 4.5(2)], every
inclusion of Z/2 into A4 induces injections on homology in degrees greater
than 1, and is zero on H1. So the morphism

Z2 ⊕ Z/2⊕ (Z/3)3
d1
1,1←−−− (Z/2)2 ⊕ (Z/3)3

has Z/2-rank 0 on the 2-primary part, and

Z/3⊕ Z/2⊕ (Hq(A4))
2

d1
1,q←−−− (Z/2)2 ⊕ (Z/3)3

in the odd rows of degree q > 3 has Z/2-rank 1 on the 2-primary part.

On the 3-primary part, d1
1,q is for all odd q given by the following rank 2

matrix.

(d1
1,q)(3) =

(a, u) (a2, v) (u, v1)

a −1 −1 0
u 1 0 −1
v 0 1 1.

In order to determine it, we make use of the following facts.
First, by [16, lemma 4.5], each of the occurring group inclusions induces an
injection in homology. So we have to determine the relative positions of the
images coming from the edges in each direct summand over the points. In
order to find out if cancelling occurs between terms with positive and neg-
ative signs, let us look at the following diagram. The symbol ∆W denotes
the isomorphism given by conjugation with W , δ denotes an inner automor-
phism, ι denotes any canonical inclusion, and the arrows emanating from
Z/3 are labeled with the image of the canonical generator.

Γ(a2,v)

id

uujjjjjjjjjjjjjjjjjjj
ι

**UUUUUUUUUUUUUUUUUUUUUU

Γa2

∆W
��

Z/3

RB

OO

RB
oo

RB
//

SB
uujjjjjjjjjjjjjjjjjjjjj

SUBU−1 **UUUUUUUUUUUUUUUUUUUUUUU

SB

zzuuuuuuuuuuuuuuuuuuuuuuu

S

��:
::

::
::

::
::

::
::

::

SB

����
��

��
��

��
��

��
��

�

S

%%KKKKKKKKKKKKKKKKKKKKKKKKKK

S

��

Γv

∆U
��

Γa Γv1

Γ(a,u)

id

OO

ι
// Γu

δ
// Γu Γ(u,v1) ι

//
ι

oo Γv1

δ

OO

Applying homology Hq for odd q and taking into account that the fact that
inner automorphisms act trivially on homology, we get a similar slightly
smaller commutative diagram. One can then unambiguously identify all oc-
curring groups Hq(Z/3) ∼= Z/3 and its images in Hq(A4) with the “abstract”
Hq(Z/3) ∼= Z/3 in the middle. This gives a basis for the 3-primary parts of
the source and a subspace of the image. In this basis, the 3-primary map
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is given by the following matrix, followed by an injection which does not
influence the homology.

3.4.4. The E2-page.
The following periodic part appears in the columns p = 0 and p = 1:

q = 6k + 2, q > 8 (Z/2)2k+2 0
q = 6k + 1, q > 7 (Z/2)2k ⊕ Z/3 Z/3 ⊕ Z/2
q = 6k + 6 (Z/2)2k 0
q = 6k + 5 (Z/2)2k+4 ⊕ Z/3 Z/3 ⊕ Z/2
q = 6k + 4 (Z/2)2k 0
q = 6k + 3 (Z/2)2k+2 ⊕ Z/3 Z/3 ⊕ Z/2;

the lowest three rows are in the columns p = 0, 1, 2:

q = 2 Z ⊕ (Z/2)2 0 0

q = 1 Z2 ⊕ Z/2 ⊕ Z/3 (Z/2)2 ⊕ Z/3 0

q = 0 Z Z Z

kkVVVVVVVVVVVVVVVVVVVVVVV

and the rest of the E2-page are zeroes.

3.4.5. The E3 = E∞-term. For the calculation of the d2-differential, we
have

δ(a, s, a3, b) = (a3, s) + (s, a) + (a, b) + (b, a3)

= (V · a, s) + (s, a) + (a, b) + (b, A · a)

= V (a, s)− (a, s)− (b, a) + A(b, a),

1⊗ δ(1⊗(a,s,a3,b) 1) = 1⊗V (a,s) 1− 1⊗(a,s) 1− 1⊗(b,a) 1 + 1⊗A(b,a) 1

= (V − 1)⊗(a,s) 1 + (A− 1)⊗(b,a) 1

= (dΘ ⊗ 1)
(
(1, V )⊗(a,s) 1 + (1, A)⊗(b,a) 1

)

= (dΘ ⊗ 1)
(
[V ]⊗(a,s) 1 + [A]⊗(b,a) 1

)
.

We then get

1⊗ δ
(
[V ]⊗(a,s) 1 + [A]⊗(b,a) 1

)
= [V ]⊗s 1− [V ]⊗a 1 + [A]⊗a 1− [A]⊗b 1.

As [V ] ⊗s 1 and [W ] ⊗s 1 represent the generators of the torsion-free part
of E2

0,1
∼= Z2 ⊕ Z/2⊕ Z/3, we see that the above computed element of E0

0,1

represents an element ν ∈ E2
0,1 of infinite order with the following property:

There is no element η ∈ E2
0,1 with kη = ν for an integer k > 1. So,

E3
0,1
∼= Z⊕ Z/3⊕ Z/2 and E3

2,0 = 0.

3.4.6. The short exact sequences.
We thus obtain for integer homology the following short exact sequences:






0 → (Z/2)2k+2 → Hq(Γ; Z) → Z/3 ⊕ Z/2 → 0, q = 6k + 2, q > 8

0 → (Z/2)2k ⊕ Z/3 → Hq(Γ; Z) → 0, q = 6k + 1, q > 7

0 → (Z/2)2k → Hq(Γ; Z) → Z/3 ⊕ Z/2 → 0, q = 6k + 6,

0 → (Z/2)2k+4 ⊕ Z/3 → Hq(Γ; Z) → 0, q = 6k + 5,

0 → (Z/2)2k → Hq(Γ; Z) → Z/3 ⊕ Z/2 → 0, q = 6k + 4,

0 → (Z/2)2k+2 ⊕ Z/3 → Hq(Γ; Z) → 0, q = 6k + 3,

0 → Z ⊕ (Z/2)2 → H2(Γ; Z) → Z/3 ⊕ (Z/2)2 → 0,

0 → Z ⊕ Z/3 ⊕ Z/2 → H1(Γ; Z) → Z → 0.
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Summarizing, we obtain:

Hq(Γ; Z) ∼=






Z2 ⊕ Z/3⊕ Z/2, q = 1,

Z⊕ Z/4⊕ Z/3⊕ (Z/2)2, q = 2,

Z/3⊕ (Z/2)2k+2, q = 6k + 3,

Z/3⊕ (Z/2)2k+1, q = 6k + 4,

Z/3⊕ (Z/2)2k+4, q = 6k + 5,

Z/3⊕ (Z/2)2k+1, q = 6k + 6,

Z/3⊕ (Z/2)2k, q = 6k + 1, q > 7,

Z/3⊕ (Z/2)2k+3, q = 6k + 2, q > 8.

We easily see these results except for the ambiguity in the 3-torsion of the
short exact sequence for H2(Γ; Z) and in the 2-torsion for all even degrees.
To resolve it, we compute homology with Z/2-coefficients,

Hq(Γ; Z/2) ∼=






(Z/2)3, q = 1,

(Z/2)5, q = 2,

(Z/2)4k+5, q = 6k + 3,

(Z/2)4k+3, q = 6k + 4,

(Z/2)4k+5, q = 6k + 5,

(Z/2)4k+5, q = 6k + 6,

(Z/2)4k−2 , q = 6k + 1, q > 7

(Z/2)4k+3, q = 6k + 2, q > 8.

and then use the Universal Coefficient Theorem in the form

Hq+1(Γ; Z/2) ∼= Hq+1(Γ; Z)⊗ (Z/2) ⊕TorZ
1 (Hq(Γ; Z), Z/2).

We do the same for Z/3-coefficients.

Remark 22. For m = 6, the check introduced in remark 20 takes the
following form. The abelianization is the abelian group Γab ∼= 〈A,R,U,W :
2A = 0, 3R = 0〉. The parabolic elements are U and W . The element U
generates nontrivial loops in the quotient, while W generates trivial loops.
So it follows that E∞

0,1
∼= Z⊕ Z/2⊕ Z/3, generated by W,A and R. This is

consistent with the computation above.

4. Appendix: The equivariant retraction

In this section, we give Flöge’s proof of the existence of a retraction ρ from

Ĥ to the cell complex X•. We do not show the fact that ρ is Γ-equivariant,
which can be observed since the fibers of ρ are geodesics.

Theorem 23 ([9, theorem 6.6]). X is a retract of Ĥ, i. e. there is a

continuous map ρ : Ĥ → X such that ρ(p) = p for all p ∈ X.

The map ρ is first defined as the orthogonal projection π from B̂ to ∂B̂,

and is then continued to the whole of Ĥ by Γ.
Bianchi [4] has shown that a nearly strict fundamental domain for the action
of Γ on H can be chosen in the form of a Euclidean vertical column D inside
B. Define

D̂ := {(z, r) ∈ B̂ | 0 ≤ Re(z) ≤ 1, 0 ≤ Im(z) ≤ √m},
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and denote by S the set of singular points in D̂. Finally, D := D̂ − S.

Remark 24 ([9], D is Γ-normal). For every p ∈ H, there exists a neigh-
borhood U of p in H such that there are at most finitely many g ∈ Γ with
gD ∩ U 6= ∅.

We will use the following lemmas to prove the theorem 23.

Lemma 25 ([9, lemma 6.5]). For any subset A ⊂ D which is closed in H
and any p ∈ H, there exists an open neighborhood Up of p such that we have
for all g ∈ Γ:
gA ∩ Up 6= ∅ if and only if p ∈ gA.

Proof. By the above remark, there is a neighborhood U of p in H for which
{g ∈ Γ | gD ∩ U 6= ∅ } is finite. So especially its subset

Γo := {g ∈ Γ | gA ∩ U 6= ∅ and p /∈ gA }
is finite. Therefore, A being closed,

⋃
g∈Γo

gA is closed in H. Thus

Up := U−(
⋃

g∈Γo

gA) is open in H and satisfies to the requested condition. �

Lemma 26 ([9, lemma 6.3]). There is an ε0 > 0 such that for all singular
points s, s′ ∈ S, for all ε ≤ ε0 and g ∈ Γ we have the following statement:

gÛε(s) ∩ Ûε(s
′) 6= ∅ implies gs = s′.

For class number two, as we obtain a fundamental domain for the action

of Γ on Ĥ (stricter than D̂) containing just one singular point, this lemma

states only that Γ acts discontinuously on Ĥ (with respect to its topology
which is finer than the subset topology of R3); and we skip Flöge’s proof
which is useful for class number three or greater.

Lemma 27 ([9, lemma 6.4]). There exists an ε1 > 0 with the following
property:

If ε ≤ ε1 and (z, r) ∈ D̂ with r < ε, then there is an s′ ∈ S such that

(z, r) ∈ Û2ε(s
′).

Flöge draws the following sketch of the situation in a vertical half-plane,
which we reproduce here with his kind permission:

He gives only some hints on the proof, which we want to make slightly more
explicit here.

Sketch of proof. We consider the Euclidean geometry of the upper-half space

model for Ĥ and write coordinates in C×R>0 . Denote by ε1 the “height of
the lowest non-singular vertex”, more precisely the minimum of the values
r > 0 occuring as the real coordinate of the non-singular vertices (z, r) ∈ H
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of the fundamental domain ρ(D̂) for Γ. Then {(z, r) ∈ D̂ | r < ε1} consists
of one connected component for each singular point s′ ∈ S. We will denote

by D̂s′ the connected component containing s′. Now fix s′ ∈ S. There

are finitely many hemispheres limiting D̂ from below and touching s′. We
will consider the situation in a vertical half-plane containing s′. The most
critical vertical half-planes for our assertion contain the intersection arc of
two such hemispheres, because the other vertical half-planes contain circle

segments of ∂D̂ of greater radius. The intersection of two non-identical
Euclidean 2-spheres which have more than one point in common, is a circle
with center on the line segment connecting the two 2-sphere centers. Thus
the intersection of the two hemispheres mentioned above is a semicircle with
center in the plane r = 0 . Denote by ζ the radius of this semicircle. Then
ε1 6 ζ, because an edge of our fundamental domain, connecting s′ with a

non-singular vertex, lies on this semicircle. Now it is easy to see that D̂s′

is a subset of the truncated cone obtained as the convex envelope of s′ and
the horizontal disk with radius ζ and center (s′, ζ). We conclude that for

all ε < ε1, ε > 0, the set {(z, r) ∈ D̂s′ | r < ε} is a subset of the horoball

Û2ε(s
′). So we have seen that ε1 has the property claimed in the lemma. �

Proof of theorem 23. For any (z, r) ∈ D̂ there is a unique rz > 0 such that

(z, rz) ∈ D̂ ∩ ∂B̂ =: Ĝ, in fact rz = min {r′ : (z, r′) ∈ D̂}. We can thus

define the map π : D̂ → Ĝ by π(z, r) := (z, rz). The map π is continuous
with respect to the subset topology of R3, and by [9, corollary 5.10] also

with respect to the topology of Ĥ. Furthermore, we have π(p) = p for all

p ∈ Ĝ.

We now extend π to a map ρ : Ĥ → X as follows.

Because of
{(

1 b
1

)
: b ∈ R

}
· D̂ = Ĝ, we find for any p ∈ Ĥ a γ ∈ Γ such that

γ(p) ∈ D̂. We set ρ(p) := γ−1 ◦ π ◦ γ(p). In order to show that this makes

sense, we have to show that p ∈ γ−1D̂ ∩ ξ−1D̂ implies

γ−1 ◦ π ◦ γ(p) = ξ−1 ◦ π ◦ ξ(p), where γ, ξ ∈ Γ. We have ξ(p) ∈ ξγ−1D̂ ∩ D̂,

then γξ−1(ξ(p)) = γ(p) ∈ D̂ ∩ γξ−1D̂, and either ξ(p), γ(p) are both from

Ĝ, or both from D̂ ∩ B◦. In the first case, it immediately follows that
γ−1 ◦ π ◦ γ(p) = ξ−1 ◦ π ◦ ξ(p) = p, and ξ−1 ◦ ξ(p) = p. In the second case,
we have by [9, lemma 3.4] that if γξ−1 =

(
a b
c d

)
, the entry c must vanish. So

γξ−1 is the product
(

a 0
0 d

) (
1 db
0 1.

)
. Both of the latter two matrices commute

with π since any such element ζ satisfies ζ(∂B̂) = ∂B̂, and ζ maps vertical
half-lines to vertical half-lines.
So we have (γξ−1 ◦ π ◦ ξγ−1)p′ = πp′ for all p′ ∈ D̂ with ξγ−1p′ ∈ D̂, and
then it follows that

ξ−1 ◦ π ◦ ξ(p) = γ ∈ γ(ξ−1 ◦ π ◦ ξ)γ−1γ(p) = γ−1 ◦ π ◦ γ(p) = γ−1 ◦ π ◦ γ(p).

Thus, ρ is well-defined. Furthermore, π(p) = p for all p ∈ Ĝ implies ρ(p) = p

for all p ∈ X. It remains to show that ρ is continuous at any p ∈ Ĥ.
1st case. In the case p ∈ H, by lemma 25, p has an open neighborhood Up

such that: for any γ ∈ Γ, we have γUp ∩D 6= ∅ ⇐⇒ γ(p) ∈ D. Further-
more, the set {γ ∈ Γ : γ(p) ∈ D} is finite [9, remark 3.6], say γ1, . . . , γn.
Let now V be an open neighborhood of ρ(p). Because of the continuity of
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all γi, γ
−1
i and the continuity of π : D̂ → Ĝ, there exist neighborhoods

Ui of p such that γ−1
i ◦ π ◦ γi(Ui) ⊂ V . Note that for all γi we have

γ−1
i ◦ π ◦ γi(p) = ρ(p).

Setting U := Up ∩ (
⋂n

i=1 Ui), we have ρ(U) ⊂ V , i. e. ρ is continuous at the
point p.

2nd case. In the case p ∈ Ĥ ∩ C, let ǫ0, ǫ1 and ǫs for s ∈ S be positive real
numbers as in lemma 26, lemma 27 and [9, lemma 5.9]; and let ǫ > 0 be less

than the minimum of ǫ0
2 , ǫ1, ǫs for s ∈ S. Because of

{(
1 b

1

)
: b ∈ R

}
· D̂ = Ĝ,

there exist s ∈ S, ξ =
(

a b
c d

)
such that ξs = p and by [9, remark 5.5(a)], we

have ξÛǫ(s) = Û ǫ

|cs−d|2
(p). Let us now show that ρ(Û ǫ

|cs−d|2
(p)) ⊂ Û2ǫ(p).

Let p′ ∈ Û ǫ

|cs−d|2
(p), and let γ ∈ Γ with γp′ ∈ D̂. Then ρ(p′) = γ−1 ◦ π ◦ γ(p′).

By [9, remark 5.5(b)], applied to s and γξ it follows that

γp′ = γξ(ξ−1p′) ∈ Ûǫ(γξs) = Ûǫ(γp), and by [9, remark 5.6] all conditions

of lemma 27 are satisfied. So there is an s′ ∈ S such that γp′ ∈ Û2ǫ(s
′).

This means that γξ(Û2ǫ(s)) ∩ Û2ǫ(s
′) 6= ∅, and by lemma 26 it follows that

s′ = γξs = γp.

Let us now consider γp′ again. Since γp′ ∈ Ûǫ(γp)) = Ûǫ(s
′) = Uǫ(s

′) and

π(Uǫ(s
′)) ⊂ Uǫ(s

′); and by [9, lemma 5.9] we have Uǫ(s
′) ∩ B̂ ⊂ Û2ǫ(s

′). So

π ◦ γp′ ∈ Û2ǫ(s
′). By [9, remark 5.5(b)] it finally follows that

ρ(p′) = γ−1 ◦ π ◦ γp′ ∈ γ−1Û2ǫ(s
′) ⊂ Û2ǫ(γ

−1s′) = Û2ǫ(p),

and we are done. �
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