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TIME DEPENDENT HESTON MODEL

E. BENHAMOU∗, E. GOBET †, AND M. MIRI ‡

Abstract. The use of the Heston model is still challenging because it has a closed formula only when
the parameters are constant [Hes93] or piecewise constant [MN03]. Hence, using a small volatility of
volatility expansion and Malliavin calculus techniques, we derive an accurate analytical formula for the
price of vanilla options for any time dependent Heston model (the accuracy is less than a few bps for
various strikes and maturities). In addition, we establish tight error estimates. The advantage of this
approach over Fourier based methods is its rapidity (gain by a factor 100 or more), while maintaining a
competitive accuracy. From the approximative formula, we also derive some corollaries related first to
equivalent Heston models (extending some work of Piterbarg on stochastic volatility models [Pit05b]) and
second, to the calibration procedure in terms of ill-posed problems.

Key words. asymptotic expansion, Malliavin calculus, small volatility of volatility, time dependent
Heston model
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1. Introduction. Stochastic volatility modeling has emerged in the late nineties
as a way to manage the smile. In this work, we focus on the Heston model which
is a lognormal model where the square of volatility follows a CIR1 process. The call
(and put) price has a closed formula in this model thanks to a Fourier inversion of
the characteristic function (see Heston [Hes93], Lewis [Lew00] and Lipton [Lip02]).
When the parameters are piecewise constant, one can still derive a recursive closed
formula using a PDE method (see Mikhailov and Nogel [MN03]) or a Markov argu-
ment in combination with affine models (see Elices [Eli08]), but formula evaluation
becomes increasingly time consuming. However, for general time dependent pa-
rameters there is no analytical formula and one usually has to perform Monte Carlo
simulations. This explains the interest of recent works for designing more efficient
Monte Carlo simulations: see Broadie and Kaya [BK06] for an exact simulation and
bias-free scheme based on Fourier integral inversion; see Andersen [And08] based
on a Gaussian moment matching method and a user friendly algorithm; see Smith
[Smi08] relying on an almost exact scheme; see Alfonsi [Alf08] using higher order
schemes and a recursive method for the CIR process. For numerical partial differen-
tial equations, we refer the reader to Kluge’s doctoral dissertation [Klu02].

Comparison with the literature. A more recent trend in the quantitative liter-
ature has been the use of the so called approximation method to derive analytical
formulae. This has led to an impressive number of papers, with many original ideas.
For instance, Alòs et al. [ALV07] have been studying the short time behavior of im-
plied volatility for stochastic volatility using an extension of Itô’s formula. Another
trend has focused on analytical techniques to derive the asymptotic expansion of the
implied volatility near expiry (see for instance Berestycki et al. [BBF04], [Lab05],
Hagan et al. [HKLW02], Lewis [Lew07], Osajima [Osa07] or Forde [For08]). But in
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Diop [Dio03], Alfonsi [Alf05] and Miri [Mir09].

1



2 E. BENHAMOU, E. GOBET ANDM. MIRI

these works the implied volatility near expiry does not have a closed formula because
the related geodesic distance is not explicit. It can, however, be approximated by a
series expansion [Lew07]. The drawback to these methods is their inability to handle
non-homogeneous (that is to say time dependent) parameters. For long maturities,
another approach has been the asymptotic expansion w.r.t. the mean reversion pa-
rameter of the volatility as shown in [FPS00]. In the case of zero correlation, averaging
techniques as exposed in [Pit05b] and [Pit05a] can be used. Antonelli and Scarlatti
take another view in [AS09] and have suggested price expansion w.r.t. correlation.
For all of these techniques, the domain of availability of the expansion is restricted to
either short or long maturities, to zero correlation, or to homogeneous parameters.
In our work, we aim to give an analytical formula which covers both short and long
maturities, that also handles time inhomogeneous parameters as well as non-null
correlations. As a difference with several previously quoted papers, our purpose
consists also of justifying mathematically our approximation.

The results closest to ours are probably those based on an expansion w.r.t. the
volatility of volatility by Lewis [Lew00]: it is based on formal analytical arguments
and is restricted to constant parameters. Our formula can be viewed as an extension
of Lewis’ formula in order to address a time dependent Heston model, using a direct
probabilistic approach. In addition, we prove an error estimate which shows that
our approximation formula for call/put is of order 2 w.r.t. the volatility of volatility.
The advantage of this current approximation is that the evaluation is about 100 to
1000 times quicker than a Fourier based method (see our numerical tests).

Comparisonwith our previousworks [BGM09b] and [BGM09a]. Our approach
here consists of expanding the pricew.r.t. the volatility of volatility, and of computing
the correction terms usingMalliavin calculus. In these respects, the current approach
is similar to our previous works [BGM09b] and [BGM09a], however, the techniques
for estimating error are different. Indeed, we use the fact that the price of vanilla
options can be expressed as an expectation of a smooth price function for stochastic
volatility models. This is based on a conditioning argument as in [RT96]. Conse-
quently, the smoothness hypotheses (H1,H2,H3) of our previous papers are no longer
required. Note also that the square root function arising in the martingale part of the
CIR process is not Lipschitz continuous. Hence, the Heston model does not fit the
smoothness framework previously used. Therefore, to overcome this difficulty, we
derive new technical results in order to prove the accuracy of the formula.

Contribution of the paper. We give an explicit analytical formula for the price
of vanilla options in a time dependent Heston model. Our approach is based on an
expansion w.r.t. a small volatility of volatility. This is practically justified by the fact
that this parameter is usually quite small (of order 1 or less, see [Lew00] or [BK06]
for instance). The resulting formula is the sum of two terms: the leading term is the
Black-Scholes price for the model without volatility of volatility while the correction
term is a combination of Greeks of the leading term with explicit weights depending
only on the model parameters. Proving the accuracy of the expansion is far from
straightforward, but with some technicalities and a relevant analysis of error, we
succeed in giving tight error estimates. Our expansion enables us to obtain averaged
parameters for the dynamic Heston model.

Formulation of the problem. We consider the solution of the stochastic differen-
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tial equation (SDE):

dXt =
√
vtdWt−

vt
2
dt, X0 = x0, (1.1)

dvt = κ(θt− vt)dt+ξt
√
vtdBt, v0, (1.2)

d〈W,B〉t = ρtdt,

where (Bt,Wt)0≤t≤T is a two-dimensional correlated Brownian motion on a filtered
probability space (Ω,F , (Ft)0≤t≤T,P)with theusual assumptionsonfiltration (Ft )0≤t≤T.
In our setting, (Xt)t is the log of the forwardprice and (vt)t is the square of the volatility
which follows a CIR process with an initial value v0 > 0, a positive mean reversion κ,
a positive long-term level (θt)t, a positive volatility of volatility (ξt)t and a correlation
(ρt)t. These time dependent parameters are assumed to be measurable and bounded
on [0,T].

To develop our approximationmethod, wewill examine the following perturbed
process w.r.t. ǫ ∈ [0,1]:

dXǫt =
√

vǫtdWt−
vǫt
2
dt, Xǫ0 = x0,

dvǫt = κ(θt− vǫt )dt+ ǫξt
√

vǫtdBt, vǫ0 = v0, (1.3)

so that our perturbed process coincides with the initial one for ǫ = 1 : X1
t =Xt,v1t = vt.

For the existence of the solution vǫ, we refer to Chapter IX in [RY99] (moreover, the
process is non-negative for kθt ≥ 0, see also the proof of Lemma 4.2). Our main
purpose is to give an accurate analytic approximation, in a certain sense, of the
expected payoff of a put option :

g(ǫ) = e−
∫ T

0
rtdtE[(K− e

∫ T

0
(rt−qt)dt+XǫT )+] (1.4)

where r (resp. q) is the risk-free rate (resp. the dividend yield), T is the maturity and
ǫ = 1. Extensions to call options and other payoffs are discussed later.

Outline of the paper. In Section 2, we explain the methodology of the small
volatility of volatility expansion. An approximation formula is then derived in The-
orem 2.3 and its accuracy stated in Theorem 2.4. This section ends by explicitly
expressing the formula’s coefficients for general time dependent parameters (con-
stant, smooth and piecewise constant). Our expansion allows us to give equivalent
constant parameters for the time dependent Heston model (see Subsection 2.6). As a
second corollary, the options calibration for Heston’s model using only one maturity
becomes an ill-posed problem; we give numerical results to confirm this situation.
In section 3, we provide numerical tests to benchmark our formula with the closed
formula in the case of constant and piecewise constant parameters. In Section 4,
we prove the accuracy of the approximation stated in Theorem 2.4: this section is
the technical core of the paper. In Section 5, we establish lemmas used to make the
calculation of the correction terms explicit (those derived in Theorem 2.3). In Section
6, we conclude this work and give a few extensions. In the appendix, we recall
details about the closed formula (of Heston [Hes93] and Lewis [Lew00]) in the case
of constant (and piecewise constant) parameters.

2. Smart Taylor expansion.
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2.1. Notations. N 2.1. Extremes of deterministic functions.
For a càdlàg function l : [0,T] �R, we denote lIn f = inft∈[0,T] lt and lSup = supt∈[0,T] lt.

N 2.2. Differentiation.
(i) For a smooth function x 7→ l(x), we denote by l(i)(x) its i-th derivative.
(ii) Given a fixed time t and for a function ǫ� f ǫt , we denote (if it has a meaning) the

ith derivative at ǫ = 0 by fi,t =
∂i f ǫt
∂ǫi
|ǫ=0.

2.2. Definitions. In order to make the approximation explicit, we introduce the
following family of operators indexed by maturity T.

D 2.1. Integral Operator. We define the integral operator ω(.,.)
.,T

as follows:

(i) For any real number k and any integrable function l, we set

ω(k,l)
t,T =

∫ T

t
ekuludu, ∀t ∈ [0,T].

(ii) For any real numbers (k1, · · · ,kn) and for any integrable functions (l1, · · · , ln), the
n-times iteration is given by

ω(k1 ,l1),··· ,(kn ,ln)
t,T = ω

(k1 ,l1ω
(k2 ,l2),··· ,(kn ,ln)
.,T

)

t,T , ∀t ∈ [0,T].

(iii) When the functions (l1, · · · , ln) are equal to the unity constant function 1, we simply
write

ω̃k1 ,··· ,kn
t,T

= ω(k1 ,1),··· ,(kn ,1)
t,T

, ∀t ∈ [0,T].

2.3. About theCIRprocess. Assumptions. In order tobound the approximation
errors, we need a positivity assumption for the CIR process.

Assumption (P). The parameters of the CIR process (1.2) verify the following
conditions:

ξIn f > 0, (
2κθ

ξ2
)In f ≥ 1.

This assumption is crucial to ensure the positivity of the process on [0,T], which is
stated in detail in Lemma 4.2 (remember that v0 > 0). We have

P(∀t ∈ [0,T] : vt > 0) = 1.

When the functions θ and ξ are constant, Assumption (P) coincides with the usual
Feller test condition 2κθ

ξ2
≥ 1 (see [KS88]).

Note that the above assumption ensures that the positivity property also holds
for the perturbed CIR process (1.3): for any ǫ ∈ [0,1], we have

P(∀t ∈ [0,T] : vǫt > 0) = 1

(see Lemma 4.2). We also need a uniform bound of the correlation in order to preserve
the non degeneracy of the SDE (1.1) conditionally on (Bt)0≤t≤T .

Assumption (R). The correlation is bounded away from -1 and +1:

|ρ|Sup < 1.
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2.4. Taylor Development. In this paragraph, we present the main steps leading
to our results. Complete proofs are given later.

If (F B
t )t denotes the filtration generated by the Brownian motion B, the distribu-

tion ofXǫ
T
conditionally toF B

T
is aGaussiandistributionwithmean x0+

∫ T

0
ρt

√

vǫtdBt−
1
2

∫ T

0
vǫtdt and variance

∫ T

0
(1−ρ2t )vǫtdt (ǫ ∈ [0,1]). Therefore, the function (1.4) can be

expressed as follows:

g(ǫ) = E[PBS(x0+

∫ T

0
ρt

√

vǫtdBt−
∫ T

0

ρ2t
2
vǫtdt,

∫ T

0
(1−ρ2t )vǫtdt)], (2.1)

where the function (x, y)� PBS(x, y) is the put function price in a Black-Scholes model

with spot ex, strike K, total variance y, risk-free rate req =

∫ T

0
r(t)dt

T , dividend yield

qeq =

∫ T

0
q(t)dt

T and maturity T. For the sake of completeness, we recall that PBS(x, y)
has the following explicit expression

Ke−reqTN
(

1√
y
log(

Ke−reqT

exe−qeqT
)+

1

2

√
y

)

− exe−qeqTN
(

1√
y
log(

Ke−reqT

exe−qeqT
)− 1

2

√
y

)

.

In the following, we expand PBS(., .) with respect to its two arguments. For this, we
note that PBS is a smooth function (for y > 0). In addition, there is a simple relation
between its partial derivatives:

∂PBS

∂y
(x, y) =

1

2
(
∂2PBS

∂x2
(x, y)− ∂PBS

∂x
(x, y)), ∀x ∈R,∀y > 0, (2.2)

which can be proved easily by a standard calculation left to the reader.
Under assumption (P), for any t, vǫt is C

2 w.r.t ǫ at ǫ = 0 (differentiation in Lp-sense).
This result will be shown later. In addition, vǫ does not vanish (for any ǫ ∈ [0,1]).
Hence, by putting vǫ

i,t
=
∂ivǫt
∂ǫi

, we get

dvǫ1,t = −κv
ǫ
1,tdt+ξt

√

vǫtdBt+ ǫξt
vǫ
1,t

2
√

vǫt
dBt, vǫ1,0 = 0,

dvǫ2,t = −κv
ǫ
2,tdt+ξt

vǫ
1,t

√

vǫt
dBt+ ǫξt

vǫ
2,t

2
√

vǫt
dBt− ǫξt

[vǫ
1,t
]2

4[vǫt ]
3/2

dBt, vǫ2,0 = 0.

From the definitions vi,t ≡
∂ivǫt
∂ǫi
|ǫ=0, we easily deduce

v0,t = e−κt(v0+

∫ t

0
κeκsθsds),

v1,t = e−κt
∫ t

0
eκsξs

√
v0,sdBs, (2.3)

v2,t = e−κt
∫ t

0
eκsξs

v1,s

(v0,s)
1
2

dBs. (2.4)

Note that v0,t coincides also with the expected variance E(vt) because of the linearity
of the drift coefficient of (vt)t. Now, to expand g(ǫ), we use the Taylor formula twice,
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first applied to ǫ� vǫt and
√

vǫt at ǫ = 1 using derivatives computed at ǫ = 0:

v1t = v0,t+ v1,t+
v2,t

2
+ · · · ,

√

v1t =
√
v0,t+

v1,t

2(v0,t)
1
2

+
v2,t

4(v0,t)
1
2

−
v2
1,t

8(v0,t)
3
2

+ · · · ,

secondly for the smooth function PBS at the second order w.r.t. the first and second

variable around (x0 +
∫ T

0
ρt
√
v0,tdBt −

∫ T

0

ρ2t
2 v0,tdt,

∫ T

0
(1− ρ2t )v0,tdt). For convenience,

we simply write

P̃BS =PBS(x0+

∫ T

0
ρt
√
v0,tdBt−

∫ T

0

ρ2t
2
v0,tdt,

∫ T

0
(1−ρ2t )v0,tdt), (2.5)

∂i+ jP̃BS

∂xiy j
=
∂i+ jPBS

∂xiy j
(x0+

∫ T

0
ρt
√
v0,tdBt−

∫ T

0

ρ2t
2
v0,tdt,

∫ T

0
(1−ρ2t )v0,tdt).

Then, one gets

g(1) =E[P̃BS] (2.6)

+E[
∂P̃BS

∂x
(

∫ T

0
ρt(

v1,t

2(v0,t)
1
2

+
v2,t

4(v0,t)
1
2

−
v2
1,t

8(v0,t)
3
2

)dBt−
∫ T

0

ρ2t
2
(v1,t+

v2,t

2
)dt)] (2.7)

+E[
∂P̃BS

∂y

∫ T

0
(1−ρ2t )(v1,t+

v2,t

2
)dt] (2.8)

+
1

2
E[
∂2P̃BS

∂x2
(

∫ T

0
ρt

v1,t

2(v0,t)
1
2

dBt−
∫ T

0

ρ2t
2
v1,tdt)

2] (2.9)

+
1

2
E[
∂2P̃BS

∂y2
(

∫ T

0
(1−ρ2t )v1,tdt)2] (2.10)

+E[
∂2P̃BS

∂xy
(

∫ T

0
(1−ρ2t )v1,tdt)(

∫ T

0
ρt

v1,t

2(v0,t)
1
2

dBt−
∫ T

0

ρ2t
2
v1,tdt)] (2.11)

+E (2.12)

where E is the error in our Taylor expansion. In fact, we notice that:

E[P̃BS] = E[E[e
−
∫ T

0
rtdt(K− ex0+

∫ T

0
(rt−qt−

v0,t
2 )dt+

∫ T

0

√
v0,t(ρtdBt+

√

1−ρ2t dB
⊥
t ))+|F B

T ]]

= PBS(x0,

∫ T

0
v0,tdt),

where B⊥ is a Brownian motion independent on F B
T
. Furthermore, the relation (2.2)

remains the same for P̃BS and this enables us to simplify the expansion above. This
gives:

P 2.2. The approximation (2.12) is equivalent to

g(1) = PBS(x0,

∫ T

0
v0,tdt)+E[

∂P̃BS

∂y

∫ T

0
(v1,t+ v2,t)dt]+

1

2
E[
∂2P̃BS

∂y2
(

∫ T

0
v1,tdt)

2]+E.
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The details of the proof are given in Subsection 5.2. At first sight, the above formula
looks like a Taylor formula of PBS w.r.t. the cumulated variance. In fact, it is different,
note that the coefficient of v2,t is not 1/2 but 1. Wedonot have anydirect interpretation
of this formula.

The next step consists of making explicit the correction terms as a combination
of Greeks of the BS price.

T 2.3. Under assumptions (P) and (R), the put2 price is approximated by

e−
∫ T

0
rtdtE[(K− e

∫ T

0
(rt−qt)dt+X1

T )+] =PBS(x0,varT)+
2

∑

i=1

ai,T
∂i+1PBS

∂xiy
(x0,varT)

+

1
∑

i=0

b2i,T
∂2i+2PBS

∂x2iy2
(x0,varT)+E, (2.13)

where

varT =

∫ T

0
v0,tdt, a1,T = ω

(κ,ρξv0,.),(−κ,1)
0,T

, a2,T = ω
(κ,ρξv0,.),(0,ρξ),(−κ,1)
0,T

,

b0,T = ω
(2κ,ξ2v0,.),(−κ,1),(−κ,1)
0,T , b2,T =

a2
1,T

2
.

The proof is postponed to Subsection 5.3. Finally, we give an estimate regarding the
error E arising in the above theorem.

T 2.4. Under assumptions (P) and (R), the error in the approximation (2.13) is
estimated as follows:

E =O
(

[ξSup
√
T]3
√
T
)

.

In view of Theorem 2.4, we may refer to the formula (2.13) as a second order
approximation formula w.r.t. the volatility of volatility.

2.5. Computation of coefficients.

Constant parameters. The case of constant parameters (θ,ξ,ρ) gives us the co-
efficients a and b explicitly. Indeed in this case, the operator ω is a simple iterated
integration of exponential functions. Using Mathematica, we derive the following
explicit expressions.

P 2.5. Explicit computations. For constant parameters, one has:

varT =m0v0+m1θ, a1,T =ρξ(p0v0+ p1θ),

a2,T =(ρξ)
2(q0v0+ q1θ), b0,T =ξ

2(r0v0+ r1θ).

2The approximation formula for the call price is obtained using the call/put parity relation: in (2.13),
it consists of replacing on the l.h.s. the put payoff by the call one, and on the r.h.s., the put price function
PBS by the similar call price function, while coefficients remain the same.
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where

m0 =
e−κT

(

−1+ eκT
)

κ
, m1 = T−

e−κT
(

−1+ eκT
)

κ
,

p0 =
e−κT

(

−κT+ eκT− 1
)

κ2
, p1 =

e−κT
(

κT+ eκT(κT− 2)+ 2
)

κ2
,

q0 =
e−κT

(

−κT(κT+ 2)+ 2eκT− 2
)

2κ3
, q1 =

e−κT
(

2eκT(κT− 3)+κT(κT+ 4)+6
)

2κ3
,

r0 =
e−2κT

(

−4eκTκT+ 2e2κT− 2
)

4κ3
, r1 =

e−2κT
(

4eκT(κT+ 1)+ e2κT(2κT− 5)+ 1
)

4κ3
.

R 2.1. In the case of constant parameters (θ,ξ,ρ), we retrieve the usual Heston
model. In this particular case, our expansion coincides exactly with Lewis’ volatility of
volatility series expansion (see Equation (3.4), page 84 in [Lew00] for Lewis’ expansion
formula and page 93 in [Lew00] for the explicit calculation of the coefficients J(i) with ϕ = 1

2 ).

Using his notation, we have a1,T = J(1), a2,T = J(4) and b0,T = J(3).
Smooth parameters. In this case, we may use a Gauss-Legendre quadrature

formula for the computation of the terms a and b.
Piecewise constant parameters. The computationof the variance varT is straight-

forward. Thus, it remains to provide explicit expressions of a and b as a function of
the piecewise constant data. Let T0 = 0≤ T1 ≤ · · · ≤ Tn = T such that θ,ρ,ξ are constant
on each interval ]Ti,Ti+1[ and are equal respectively to θTi+1 ,ρTi+1 ,ξTi+1 . Before giving

the recursive relation, we need to introduce the following functions: ω̃1,t = ω
(κ,ρξv0,.)

0,t ,

ω̃2,t = ω
(2κ,ξ2v0,.)

0,t , αt = ω
(k,ρξv0,.),(0,ρξ)

0,t , βt = ω
(2k,ξ2v0,.),(−κ,1)
0,t .

P 2.6. Recursive calculations. For piecewise constant coefficients, one
has:

a1,Ti+1 = a1,Ti + ω̃
−κ
Ti,Ti+1

ω̃1,Ti +ρTi+1ξTi+1 f
1
κ,v0,Ti

(θTi+1 ,Ti,Ti+1),

a2,Ti+1 = a2,Ti + ω̃
−κ
Ti,Ti+1

αTi +ρTi+1ξTi+1ω̃
0,−κ
Ti,Ti+1

ω̃1,Ti + (ρTi+1ξTi+1)
2 f 2κ,v0,Ti

(θTi+1 ,Ti,Ti+1),

b0,Ti+1 = b0,Ti + ω̃
−κ
Ti,Ti+1

βTi + ω̃
−κ,−κ
Ti,Ti+1

ω̃2,Ti +ξ
2
Ti+1

f 0κ,v0,Ti
(θTi+1 ,Ti,Ti+1),

αTi+1 = αTi +ρTi+1ξTi+1 (Ti+1−Ti)ω̃1,Ti +ρ
2
Ti+1
ξ2Ti+1 g

1
κ,v0,Ti

(θTi+1 ,Ti,Ti+1),

βTi+1 = βTi + ω̃
−κ
Ti,Ti+1

ω̃2,Ti +ξ
2
Ti+1

g2κ,v0,Ti
(θTi+1 ,Ti,Ti+1),

ω̃1,Ti+1 = ω̃1,Ti +ρTi+1ξTi+1h
1
κ,v0,Ti

(θTi+1 ,Ti,Ti+1),

ω̃2,Ti+1 = ω̃2,Ti +ξ
2
Ti+1

h2κ,v0,Ti
(θTi+1 ,Ti,Ti+1),

v0,Ti+1 = e−κ(Ti+1−Ti)(v0,Ti −θTi+1)+θTi+1,

where

f 0κ,v0 (θ, t,T) =
e−2κT(e2κt(θ−2v0)+e2κT((−2κt+2κT−5)θ+2v0)+4eκ(t+T)((−κt+κT+1)θ+κ(t−T)v0 ))

4κ3
,

f 1κ,v0 (θ, t,T) =
e−κT(eκT((−κt+κT−2)θ+v0)−eκt((κt−κT−2)θ−κtv0+κTv0+v0))

κ2
,

f 2κ,v0 (θ, t,T)=
e−κ(t+3T)(2eκ(t+3T)((κ(T−t)−3)θ+v0)+e2κ(t+T)((κ(κ(t−T)−4)(t−T)+6)θ−(κ(κ(t−T)−2)(t−T)+2)v0 ))

2κ3
,

g1κ,v0(θ, t,T) =
2eκTθ+eκt(κ2(t−T)2v0−(κ(κ(t−T)−2)(t−T)+2)θ)

2κ2
,



TIME DEPENDENT HESTON MODEL 9

g2κ,v0(θ, t,T) =
e−κT(e2κTθ−e2κt(θ−2v0)+2eκ(t+T)(κ(t−T)(θ−v0 )−v0))

2κ2
,

h1κ,v0(θ, t,T) =
eκTθ+eκt((κt−κT−1)θ+κ(T−t)v0 )

κ ,

h2κ,v0(θ, t,T) =
(eκt−eκT)(eκt(θ−2v0)−eκTθ)

2κ ,

and ω̃ut (T) =
−etu+eTu

u , ω̃0,ut (T) =
eTu(−tu+Tu−1)+etu

u2
, ω̃u,ut (T) =

(etu−eTu)2

2u2
.

Proof. According to Theorem 2.3, one has :

a1,Ti+1 =

∫ Ti

0
eκtρtξtv0,tω

(−κ,1)
t,Ti+1

dt+

∫ Ti+1

Ti

eκtρtξtv0,tω
(−κ,1)
t,Ti+1

dt

=a1,Ti +

∫ Ti

0
eκtρtξtv0,tω

(−κ,1)
Ti,Ti+1

dt+

∫ Ti+1

Ti

eκtρtξtv0,tω
(−κ,1)
t,Ti+1

dt

=a1,Ti +ω
(−κ,1)
Ti,Ti+1

∫ Ti

0
eκtρtξtv0,tdt+

∫ Ti+1

Ti

eκtρtξtv0,tω
(−κ,1)
t,Ti+1

dt

=a1,Ti + ω̃
−κ
Ti,Ti+1

ω̃1,Ti +ρTi+1ξTi+1 f
1
κ,v0,Ti

(θi+1,Ti,Ti+1),

where the functions f 1κ,v0 and ω̃
−κ are calculated analytically using Mathematica. The

other terms are calculated analogously.

2.6. Corollaries of the approximation formula (2.13).

Averaging Heston’s model parameters. We derive a first corollary of the approx-
imation formula in terms of equivalent Heston models. As explained in [Pit05b],
this averaging principle may facilitate efficient calibration. Namely, we search for
equivalent constant parameters κ̄, θ̄, ξ̄, ρ̄ for the Heston model3

dX̄t =
√
v̄tdWt−

v̄t
2
dt, X̄0 = x0,

dv̄t = κ̄(θ̄t− v̄t)dt+ ξ̄
√
v̄tdBt, v̄0 = v0,

d〈W,B〉t = ρ̄dt,

that equalize the price of call/put options maturing at T in the time dependent model
(equality up to the approximation error E). The following rules give the equivalent
parameters as a function of the variance varT and the coefficients a1,T, a2,T, b0,T that
are computed in the time dependent model. Results are expressed using

a =
a2,Tm1

m1q0−m0q1
, b = −

a1,Tm1

m1p0−m0p1
, c = varT(

p1

m1p0−m0p1
−

q1

m1q0−m0q1
),

where m0,m1,p0,p1,q0,q1,r0 and r1 are given in Proposition 2.5.

Averaging rule in the case of zero correlation. If ρt ≡ 0, the equivalent constant
parameters (for maturity T) are

κ̄ = κ, θ̄ =
varT−m0v0

m1
, ξ̄ =

√

b0,T

r0v0+ r1θ̄
, ρ̄ = 0.

3In this approach, we leave the initial value v̄0 equal to v0. Indeed, it is not natural to modify its value
since it is not a parameter, but rather an unobserved factor.
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Proof. Two sets of prices coincide at maturity T if they have the same approxima-
tion formula (2.13). In this case a1,T = a2,T = b2,T = 0, thus the approximation formula
depends only on two quantities varT and b0,T . It is quite clear that there is not a
single choice of parameters to fit these two quantities. A simple solution results from
the choice of κ̄ = κ and ρ̄ = 0: then, using Proposition 2.5, we obtain the announced
parameters θ̄ and ξ̄.

R 2.2. In this case of zero correlation andθ= v0 = θ̄, we exactly retrieve Piterbarg’s
results for the averaged volatility of volatility ξ̄ ( see [Pit05b]).

Averaging rule in the case of non zero correlation. We follow the same argu-
ments as before. Now the approximation formula also depends on the four quantities
varT, a1,T, a2,T and b2,T . Thus, equalizing call/put prices at maturity T is equivalent
to equalizing these four quantities in both models, by adjusting κ̄, θ̄, ξ̄ and ρ̄. Un-
fortunately, we have not found a closed expression for these equivalent parameters.
An alternative and simpler way of proceeding consists of modifying the unobserved
initial value v̄0 of the variance process while keeping κ̄ = κ. For non-vanishing
correlation (ρt)t, it leads to two possibilities

v̄0 =b
(b±
√
b2− 4ac)
2a

−
p1varT

m1p0−m0p1
, θ̄ =

varT−m0v̄0
m1

,

ξ̄ =

√

b0,T

r0v̄0+ r1θ̄
, ρ̄ =− 2a

ξ̄(b±
√
b2− 4ac)

.

In practice, only one solution gives realistic parameters. However, this rule is heuris-
tic since there is a priori no guarantee that these averaged parameters satisfy the
assumption (P), which is the basis for the arguments correctness.

Proof. Using Proposition 2.5, one has to solve the following system of equations

varT =m0v̄0+m1θ̄, a1,T =ρ̄ξ̄(p0v̄0+ p1θ̄),

a2,T =(ρ̄ξ̄)
2(q0v̄0+ q1θ̄), b0,T =ξ̄

2(r0v̄0+ r1θ̄).

The first equation gives θ̄ =
varT−m0v̄0

m1
. Replacing this identity in a1,T and a2,T gives

v̄0 =(
a1,T

(ρ̄ξ̄)
−
p1varT

m1
)

m1

p0m1− p1m0
, v̄0 =(

a2,T

(ρ̄ξ̄)2
−
q1varT

m1
)

m1

q0m1− q1m0
.

It readily leads to a quadratic equation ax2 + bx+ c = 0 with x = 1
ρ̄ξ̄
. By solving this

equation, we easily complete the proof of the result.

Collinearity effect in the Heston model. Another corollary of the approximation
formula (2.13) is that we can obtain the same vanilla prices at time T with different
sets of parameters. For instance, take on the one hand v0 = θ= 4%,κ1 = 2 and ξ1 = 30%
(model M1) and on the other hand v0 = θ = 4%, κ2 = 3 and ξ2 = 38.042% (modelM2),
both models having zero correlation. The resulting error between implied volatilities
within the two models are presented in Table 2.1: they are so small that prices can
be considered as equal. Actually, this kind of example is easy to create even with
non-null correlation: as before, in view of the approximation formula (2.13), it is
sufficient to equalize the four quantities varT, a1,T, a2,T and b2,T .

As a consequence, calibrating a Heston model using options with a single matu-
rity is an ill-posed problem, which is not a surprising fact.
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T 2.1
Error in implied Black-Scholes volatilities (in bp) between the closed formulas (see appendix) of the two models

M1 and M2 expressed as relative strikes. Maturity is equal to one year.

strikes K 80% 90% 100% 110% 120%

model M1 20.12% 19.64% 19.50% 19.62% 19.92%
model M2 20.11% 19.65% 19.51% 19.62% 19.92%
errors (bp) 0.69 -0.35 -0.81 -0.42 0.34

3. Numerical accuracy of the approximation. We give numerical results of the
performance of our method. In what follows, the spot S0, the risk-free rate r and
the dividend yield q are set respectively to 100, 0% and 0%. The initial value of the
variance process is set to v0 = 4% (initial volatility equal to 20%). Then we study
the numerical accuracy w.r.t. K, T, κ, θ, ξ and ρ by testing different values for these
parameters.

T 3.1
Set of maturities and strikes used for the numerical tests.

T/K

3M 70 80 90 100 110 120 125 130
6M 60 70 80 100 110 130 140 150
1Y 50 60 80 100 120 150 170 180
2Y 40 50 70 100 130 180 210 240
3Y 30 40 60 100 140 200 250 290
5Y 20 30 60 100 150 250 320 400
7Y 10 30 50 100 170 300 410 520
10Y 10 20 50 100 190 370 550 730

In order to present more interesting results for various relevant maturities and
strikes, we allow the range of strikes to vary over the maturities. The strike values

evolve approximately as S0 exp(c
√
θT) for some real numbers c and θ = 6%. The

extreme values of c are chosen to be equal to ±2.57, which represents the 1%-99%
quantile of the standard normal distribution. This corresponds to very out-of-the-
money options or very deep-in-the-money options. The set of pairs (maturity, strike)
chosen for the tests is given in Table 3.1.

Constant parameters. In Table 3.2, we report the numerical results when θ = 6%,
κ = 3, ξ = 30% and ρ = 0%, giving the errors of implied Black-Scholes volatilities
between our approximation formula (see Equation (2.13)) and the price calculated
using the closed formula (see appendix), for the maturities and strikes of Table 3.1.
The table should be read as follows: for example, for one year maturity and strike
equal to 170, the implied volatility is equal to 24.14% using the closed formula and
24.20%with the approximation formula, giving an error of -6.33 bps. In Table 3.2, we
observe that the errors do not exceed 7 bps for a large range of strikes andmaturities.
We notice that the errors are surprisingly higher for short maturities. At first sight,
it is counterintuitive as one would expect our perturbation method to work better
for short maturities and worse for long maturities, since the difference between our
proxy model (BS with volatility (v0,t)t) and the original one is increasing w.r.t. time.
In fact, this intuition is true for prices but not for implied volatilities. When we
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T 3.2
Implied Black-Scholes volatilities of the closed formula, of the approximation formula and related errors (in bp),

expressed as a function of maturities in fractions of years and relative strikes. Parameters: θ = 6%, κ = 3, ξ = 30%
and ρ = 0%.

3M 23.24% 22.14% 21.43% 21.19% 21.39% 21.86% 22.14% 22.44%
23.06% 22.19% 21.42% 21.19% 21.38% 21.88% 22.19% 22.49%
18.01 -4.86 0.53 0.38 0.65 -2.68 -4.86 -4.71

6M 24.32% 23.29% 22.55% 21.99% 22.10% 22.75% 23.17% 23.60%
24.12% 23.36% 22.57% 21.98% 22.09% 22.79% 23.24% 23.65%
19.69 -7.17 -1.89 0.93 1.05 -3.97 -7.12 -4.57

1Y 24.85% 24.06% 23.14% 22.90% 23.06% 23.66% 24.14% 24.38%
24.78% 24.12% 23.14% 22.89% 23.06% 23.71% 24.20% 24.42%
7.72 -6.49 0.26 1.12 0.72 -4.54 -6.33 -4.27

2Y 24.86% 24.36% 23.82% 23.61% 23.73% 24.16% 24.46% 24.76%
24.86% 24.40% 23.82% 23.61% 23.72% 24.19% 24.50% 24.78%
-0.21 -3.51 -0.12 0.68 0.37 -2.54 -3.62 -1.71

3Y 24.95% 24.53% 24.10% 23.89% 23.98% 24.27% 24.53% 24.74%
24.94% 24.55% 24.10% 23.89% 23.98% 24.28% 24.55% 24.75%
1.80 -2.12 -0.33 0.39 0.19 -1.27 -2.12 -1.26

5Y 24.88% 24.56% 24.20% 24.12% 24.17% 24.38% 24.53% 24.69%
24.86% 24.57% 24.20% 24.12% 24.17% 24.39% 24.54% 24.70%
1.38 -0.96 0.03 0.17 0.10 -0.58 -0.95 -0.59

7Y 25.03% 24.46% 24.30% 24.23% 24.27% 24.42% 24.54% 24.65%
24.97% 24.46% 24.30% 24.22% 24.27% 24.42% 24.55% 24.66%
5.72 -0.43 -0.02 0.09 0.04 -0.33 -0.54 -0.35

10Y 24.72% 24.51% 24.34% 24.30% 24.34% 24.44% 24.54% 24.62%
24.71% 24.51% 24.34% 24.30% 24.34% 24.44% 24.54% 24.62%
0.42 -0.28 0.02 0.05 0.02 -0.17 -0.29 -0.19

compare the price errors (in Price bp4) for the same data, we observe in Table 3.3
that the error terms are not any bigger for short maturities but vary slightly over
time with two observed effects. The error term first increases over time as the error
between the proxy and the original model increases over time, as forecasted. But for
long maturities, presumably because the volatility converges to its stationary regime,
errors decrease. When we convert these prices to implied Black-Scholes volatilities,
these error terms are dramatically amplified for short maturities due to very small
vega. Finally, note that for fixed maturity, price errors are quite uniform w.r.t. strike
K.

Impact of the correlation. Analogous results for correlations equal to −20%, 20%
and −50% are reported in Tables 3.4-3.5, 3.6-3.7 and 3.8-3.9. We notice that the errors
are smaller for a correlation close to zero and become larger when the absolute
value of the correlation increases. However, for realistic correlation values (-50% for
instance), the accuracy for the usual maturities and strikes remains excellent (error
smaller than 20 bps), except for very extreme strikes.

Impact of the volatility of volatility. In view of Theorem2.4, the smaller the volatility
of volatility, the more accurate the approximation. In the following numerical tests,
we increaseξ,whilemaintainingAssumption (P). Thus, the newHeston’s parameters
are κ = 10, ξ = 1 and ρ = −50%, the other parameters remaining unchanged. The
comparative results on implied volatilties and prices are presented in Table 3.10 and
3.11. As expected, the approximation is less accurate than for ξ = 30%, but still
accurate enough to be efficiently used for fast calibration. The results for prices are

4Error price bp=
Price Approximation−True Price

Spot ×10000
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T 3.3
Put prices of the closed formula, of the approximation formula and related errors (in bp), expressed as a function

of maturities in fractions of years and relative strikes. Parameters: θ = 6%, κ = 3, ξ = 30% and ρ = 0%.

3M 30.00 20.08 10.87 4.22 1.14 0.24 0.10 0.04
30.00 20.08 10.87 4.22 1.14 0.24 0.10 0.04
0.03 -0.11 0.06 0.08 0.09 -0.15 -0.14 -0.07

6M 40.01 30.07 20.52 6.20 2.72 0.40 0.14 0.05
40.01 30.08 20.52 6.19 2.71 0.40 0.14 0.05
0.05 -0.16 -0.18 0.26 0.26 -0.34 -0.29 -0.08

1Y 50.01 40.11 21.84 9.12 3.08 0.51 0.15 0.09
50.01 40.11 21.84 9.11 3.07 0.52 0.16 0.09
0.04 -0.21 0.06 0.44 0.23 -0.51 -0.29 -0.12

2Y 60.03 50.20 32.08 13.26 4.71 0.79 0.28 0.11
60.03 50.20 32.08 13.26 4.71 0.79 0.29 0.11
0.00 -0.18 -0.03 0.38 0.17 -0.43 -0.29 -0.06

3Y 70.02 60.15 41.70 16.39 5.73 1.21 0.36 0.15
70.02 60.15 41.70 16.39 5.73 1.21 0.37 0.15
0.01 -0.09 -0.08 0.27 0.11 -0.31 -0.22 -0.07

5Y 80.01 70.15 43.80 21.26 8.50 1.61 0.58 0.21
80.01 70.15 43.80 21.26 8.50 1.61 0.58 0.21
0.01 -0.04 0.01 0.15 0.08 -0.19 -0.15 -0.04

7Y 90.00 70.42 53.15 25.14 9.32 1.97 0.66 0.26
90.00 70.42 53.15 25.14 9.32 1.97 0.67 0.26
0.00 -0.04 -0.01 0.09 0.04 -0.14 -0.10 -0.03

10Y 90.01 80.23 55.22 29.92 11.49 2.62 0.84 0.33
90.01 80.23 55.22 29.92 11.49 2.62 0.84 0.33
0.00 -0.02 0.01 0.06 0.03 -0.09 -0.07 -0.02

more satisfactory than for implied volatilities. Once again, for short maturities, the
errors in implied volatilitiesmay be quite significant, except for options not-far-from-
the-money.

Impact of the assumption (P). The assumption (P) is a technical assumption that we
use to establish error estimates for the approximation formula (2.13). In the test that
follows, we relax this assumption by taking new parameters θ = 3%, κ = 2, ξ = 40%
and ρ = 0% for which the ratio 2κθ/ξ2 = 0.75 < 1. Results are reported in Tables 3.12
and 3.13. We observe that the approximation formula still works (errors are smaller
than 20 bps) but it is less accurate (compare with Table 3.2 for which the ratio 2κθ/ξ2

is equal to 4> 1). An extension of the validity of our formula by relaxingAssumption
(P) is presumably relevant. This investigation is left for further research.

Piecewise constant parameters. Heston’s constant parameters have been set to:
v0 = 4%,κ = 3. In addition, the piecewise constant functions θ, ξ and ρ are equal

respectively at each interval of the form ] i4 ,
i+1
4 [ to 4%+ i× 0.05%, 30%+ i× 0.5% and

−20%+ i× 0.35%.
In the same Tables 3.15 and 3.16, we report values using three different formulas. For
a given maturity, the first row is obtained using the closed formula with piecewise
constant parameters (see appendix), the second row uses our approximation formula
(2.13) and the third row uses the closed formula with constant parameters computed
by averaging (see Section 2.6). In order to give complete information on our tests,
we also report in Table 3.14 the values used for the averaging parameters (following
Section 2.6).

Of course, the quickest approach is the use of the approximation formula (2.13).
As before, its accuracy is very good, except for very extreme strikes. It is quite
interesting is to observe that the averaging rules that we propose are extremely



14 E. BENHAMOU, E. GOBET ANDM. MIRI

T 3.4
Implied Black-Scholes volatilities of the closed formula, of the approximation formula and related errors (in bp),

expressed as a function of maturities in fractions of years and relative strikes. Parameters: θ = 6%, κ = 3, ξ = 30%
and ρ = −20%.

3M 24.50% 23.07% 21.92% 21.16% 20.84% 20.91% 21.04% 21.21%
24.04% 23.14% 21.93% 21.15% 20.82% 20.87% 21.06% 21.37%
45.76 -7.65 -1.25 0.38 2.35 3.68 -2.73 -16.51

6M 25.68% 24.38% 23.31% 21.94% 21.65% 21.68% 21.88% 22.15%
25.19% 24.45% 23.38% 21.93% 21.63% 21.64% 21.96% 22.47%
49.49 -7.75 -7.32 0.99 2.22 4.10 -8.10 -32.52

1Y 26.20% 25.14% 23.65% 22.82% 22.47% 22.51% 22.72% 22.86%
25.92% 25.23% 23.68% 22.81% 22.44% 22.49% 22.89% 23.17%
28.04 -8.22 -2.65 1.32 3.45 2.08 -16.41 -31.56

2Y 26.03% 25.28% 24.29% 23.51% 23.18% 23.09% 23.17% 23.29%
25.95% 25.35% 24.32% 23.50% 23.16% 23.08% 23.25% 23.56%
7.83 -6.41 -2.54 0.93 2.37 1.57 -8.04 -26.37

3Y 26.06% 25.40% 24.57% 23.78% 23.47% 23.34% 23.36% 23.42%
25.95% 25.44% 24.60% 23.78% 23.45% 23.32% 23.41% 23.58%
11.21 -3.39 -2.44 0.61 1.65 1.71 -5.11 -16.68

5Y 25.83% 25.28% 24.47% 24.01% 23.75% 23.57% 23.55% 23.55%
25.75% 25.30% 24.47% 24.01% 23.74% 23.56% 23.56% 23.65%
8.29 -1.76 -0.65 0.32 0.84 1.01 -1.92 -9.38

7Y 26.02% 24.97% 24.56% 24.11% 23.86% 23.70% 23.65% 23.64%
25.82% 24.99% 24.57% 24.11% 23.85% 23.69% 23.67% 23.70%
20.23 -1.59 -0.59 0.21 0.60 0.69 -1.50 -6.16

10Y 25.43% 24.99% 24.49% 24.19% 23.97% 23.81% 23.75% 23.72%
25.40% 25.00% 24.49% 24.18% 23.96% 23.80% 23.76% 23.76%
3.46 -0.94 -0.20 0.14 0.38 0.48 -0.95 -3.98

accurate.

Computational time. Regarding the computational time, the approximation for-
mula (2.13) yields essentially the same computational cost as the Black-Scholes for-
mula, while the closed formula requires an additional space integration involving
many exponential and trigonometric functions for which evaluation costs are higher.
For instance, using a 2,6 GHz Pentium PC, the computations of the 64 numerical
values in Table 3.2 (3.4, 3.6 or 3.8) take 4.71 ms using the approximation formula and
301ms using the closed formula. For the example with time dependent coefficients
(reported in Table 3.15), the computational time for the 64 prices is about 40.2 ms
using the approximation formula and 2574 ms using the closed formula. Roughly
speaking, the use of the approximation formula enables us to speed up the valuation
(and thus the calibration) by a factor 100 to 600.

4. Proof of Theorem 2.4. The proof is divided into several steps. In Subsection
4.1we give the upper bounds for derivatives of the put function PBS, in Subsection 4.2
the conditions for positivity of the squared volatility process v, in Subsection 4.3 the

upper bounds for the negative moments of the integrated squared volatility
∫ T

0
vtdt,

in Subsection 4.4 the upper bounds for derivatives of functionals of the squared
volatility process v. Finally, in Subsection 4.5, we complete the proof of Theorem 2.4
using the previous Subsections.

Notations. In order to alleviate the proofs, we introduce some notations specific
to this section.
Differentiation. For every processZǫ, wewrite (if these derivatives have ameaning):

(i) Zi,t =
∂iZǫt
∂ǫi
|ǫ=0,
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T 3.5
Put prices of the closed formula, of the approximation formula and related errors (in bp), expressed as a function

of maturities in fractions of years and relative strikes. Parameters: θ = 6%, κ = 3, ξ = 30% and ρ = −20%.

3M 30.01 20.10 10.93 4.22 1.07 0.19 0.07 0.03
30.00 20.11 10.93 4.22 1.06 0.19 0.07 0.03
0.10 -0.21 -0.15 0.08 0.32 0.18 -0.06 -0.18

6M 40.01 30.10 20.60 6.18 2.61 0.31 0.10 0.03
40.01 30.10 20.60 6.18 2.60 0.31 0.10 0.03
0.19 -0.22 -0.74 0.28 0.54 0.30 -0.26 -0.41

1Y 50.02 40.15 21.95 9.08 2.89 0.39 0.10 0.05
50.02 40.15 21.96 9.08 2.88 0.39 0.10 0.06
0.23 -0.32 -0.60 0.52 1.08 0.20 -0.57 -0.64

2Y 60.05 50.25 32.21 13.21 4.46 0.62 0.19 0.06
60.05 50.25 32.21 13.20 4.44 0.62 0.20 0.07
0.12 -0.39 -0.69 0.52 1.09 0.23 -0.50 -0.69

3Y 70.03 60.19 41.82 16.32 5.44 0.99 0.26 0.09
70.03 60.19 41.83 16.31 5.43 0.99 0.26 0.10
0.12 -0.17 -0.62 0.41 0.94 0.38 -0.42 -0.63

5Y 80.02 70.18 43.91 21.16 8.17 1.35 0.44 0.14
80.02 70.18 43.91 21.16 8.16 1.35 0.44 0.14
0.06 -0.09 -0.28 0.28 0.66 0.30 -0.26 -0.51

7Y 90.00 70.47 53.25 25.02 8.94 1.68 0.51 0.18
90.00 70.47 53.26 25.02 8.93 1.68 0.51 0.18
0.02 -0.17 -0.24 0.21 0.55 0.26 -0.24 -0.44

10Y 90.01 80.26 55.30 29.78 11.07 2.29 0.66 0.24
90.01 80.26 55.30 29.78 11.06 2.29 0.67 0.24
0.02 -0.06 -0.11 0.16 0.43 0.24 -0.20 -0.38

(ii) the ith Taylor residual by RZǫ

i,t
= Zǫt −

∑i
j=0
ǫ j

j!Z j,t.

Generic constants. We keep the same notation C for all non-negative constants

(i) depending on universal constants, on a number p≥ 1 arising in Lp estimates,
on θIn f , v0 and K;

(ii) depending in a non decreasing way on κ, 1
√

1−|ρ|2
Sup

, θSup, ξSup,
ξSup
ξIn f

and T.

We write A =O(B) when |A| ≤ CB for a generic constant.
Miscellaneous.

(i) We write σǫt =
√

vǫt for the volatility for the perturbed process.
(ii) if (Z)t∈[0,T] is a càdlàg process, we denote by Z∗ its running extremum:

Z∗t = sup
s≤t
|Zs|,∀t ∈ [0,T].

(iii) The Lp norm of a random variable is denoted, as usual, by ‖Z‖p =E[|Z|p]1/p.

4.1. Upper bounds for put derivatives.

L 4.1. For every (i, j) ∈N2, there exists a polynomial P with positive coefficients
such that:

sup
x∈R

∣

∣

∣

∣

∣

∣

∂i+ jPBS

∂xiy j
(x, y)

∣

∣

∣

∣

∣

∣

≤
P(
√
y)

y
(2 j+i−1)+

2

.

Proof. Note that it is enough to prove the estimates for j = 0, owing to the relation
(2.2). We now take j = 0. For i = 0, the inequality holds because PBS is bounded. Thus



16 E. BENHAMOU, E. GOBET ANDM. MIRI

T 3.6
Implied Black-Scholes volatilities of the closed formula, of the approximation formula and related errors (in bp),

expressed as a function of maturities in fractions of years and relative strikes. Parameters: θ = 6%, κ = 3, ξ = 30%
and ρ = 20%.

3M 21.81% 21.10% 20.89% 21.22% 21.89% 22.71% 23.13% 23.54%
22.41% 21.11% 20.87% 21.22% 21.90% 22.78% 23.20% 23.55%
-59.86 -1.80 2.68 0.27 -0.82 -7.12 -7.19 -1.20

6M 22.75% 22.05% 21.72% 22.04% 22.53% 23.71% 24.31% 24.47%
23.41% 22.16% 21.66% 22.03% 22.53% 23.81% 24.40% 24.45%
-66.39 -10.95 5.61 0.72 -0.08 -9.75 -8.77 2.21

1Y 23.31% 22.83% 22.59% 22.97% 23.62% 24.72% 25.41% 24.80%
23.83% 22.91% 22.55% 22.96% 23.64% 24.82% 25.46% 24.81%
-52.67 -8.05 3.84 0.88 -1.65 -9.85 -4.37 -1.19

2Y 23.53% 23.33% 23.31% 23.70% 24.25% 25.16% 25.65% 24.93%
23.77% 23.34% 23.28% 23.70% 24.27% 25.22% 25.68% 24.93%
-23.90 -1.04 2.80 0.47 -1.42 -6.19 -3.19 -0.67

3Y 23.70% 23.56% 23.58% 23.99% 24.48% 25.15% 25.63% 24.83%
23.93% 23.58% 23.56% 23.99% 24.49% 25.19% 25.64% 24.84%
-23.06 -1.95 2.19 0.22 -1.15 -3.93 -1.70 -0.92

5Y 23.81% 23.76% 23.92% 24.23% 24.59% 25.15% 25.46% 24.74%
23.96% 23.77% 23.91% 24.23% 24.59% 25.17% 25.47% 24.74%
-14.87 -0.62 0.82 0.04 -0.59 -2.06 -0.94 -0.49

7Y 23.92% 23.90% 24.03% 24.34% 24.68% 25.12% 25.39% 24.68%
24.21% 23.89% 24.02% 24.34% 24.68% 25.13% 25.39% 24.68%
-28.79 0.90 0.63 -0.01 -0.48 -1.30 -0.30 -0.30

10Y 23.94% 23.99% 24.18% 24.42% 24.70% 25.06% 25.29% 24.63%
23.99% 23.99% 24.18% 24.42% 24.71% 25.07% 25.29% 24.64%
-5.60 0.42 0.26 -0.03 -0.32 -0.79 -0.07 -0.17

consider i ≥ 1. Then by differentiating the payoff, one gets:

∂iPBS

∂xi
(x, y) = ∂ixE[e

−
∫ T

0
rtdt(K− ex+

∫ T

0
(rt−qt)dt−

y
2+

√

y
TWT )+]

= −∂i−1x E[1
(e
x+

∫ T
0 (rt−qt)dt−

y
2 +

√

y
T WT≤K)

e
x−

∫ T

0
qtdt−

y
2+

√

y
TWT ]

= −∂i−1x E[Ψ(x+G)]

whereΨ is a bounded function (byK) andG is aGaussianvariablewith zeromeanand

variance equal to y. For such a function, we write E[Ψ(x+G)] =
∫

R
Ψ(z) e

−(z−x)2/(2y)√
2πy

dz

and from this, it follows by a direct computation that

∣

∣

∣∂i−1x E[Ψ(x+G)]
∣

∣

∣≤ C

y
i−1
2

for any x and y. We have proved the estimate for j = 0 and i ≥ 1.

4.2. Positivity of the squared volatility process v. For a complete review re-
lated to time homogeneous CIR processes, we refer the reader to [GJY03]. For time
dependent CIR process, see [Mag96] where the existence and representation using
squared Bessel processes are provided.

To prove the positivity of the process v, we show that it can be bounded from
below by a suitable time homogeneous CIR process, time scale being the only differ-
ence (see definition 5.1.2. in [RY99]). The arguments are quite standard, but since we



TIME DEPENDENT HESTON MODEL 17

T 3.7
Put prices of the closed formula, of the approximation formula and related errors (in bp), expressed as a function

of maturities in fractions of years and relative strikes. Parameters: θ = 6%, κ = 3, ξ = 30% and ρ = 20%.

3M 30.00 20.06 10.81 4.23 1.22 0.28 0.13 0.06
30.00 20.06 10.81 4.23 1.22 0.29 0.13 0.06
-0.05 -0.03 0.30 0.05 -0.12 -0.43 -0.25 -0.02

6M 40.00 30.05 20.45 6.21 2.82 0.48 0.19 0.07
40.00 30.05 20.44 6.21 2.82 0.49 0.20 0.07
-0.11 -0.19 0.49 0.20 -0.02 -0.92 -0.43 0.05

1Y 50.01 40.08 21.72 9.14 3.26 0.64 0.22 0.10
50.01 40.08 21.71 9.14 3.26 0.65 0.22 0.10
-0.20 -0.20 0.83 0.35 -0.53 -1.25 -0.26 -0.04

2Y 60.02 50.15 31.94 13.31 4.96 0.97 0.39 0.11
60.02 50.15 31.94 13.31 4.96 0.98 0.39 0.11
-0.20 -0.04 0.73 0.26 -0.67 -1.18 -0.32 -0.03

3Y 70.01 60.11 41.58 16.46 6.02 1.44 0.49 0.16
70.01 60.11 41.57 16.46 6.03 1.45 0.49 0.16
-0.12 -0.07 0.53 0.15 -0.67 -1.06 -0.21 -0.05

5Y 80.01 70.11 43.68 21.36 8.83 1.87 0.75 0.21
80.01 70.11 43.67 21.35 8.84 1.88 0.75 0.21
-0.06 -0.02 0.35 0.03 -0.48 -0.74 -0.18 -0.04

7Y 90.00 70.36 53.04 25.25 9.69 2.26 0.84 0.26
90.00 70.36 53.04 25.25 9.70 2.27 0.84 0.26
-0.01 0.08 0.25 -0.01 -0.45 -0.57 -0.07 -0.03

10Y 90.01 80.20 55.13 30.06 11.91 2.96 1.04 0.34
90.01 80.19 55.13 30.06 11.91 2.96 1.04 0.34
-0.02 0.02 0.15 -0.04 -0.37 -0.45 -0.02 -0.02

need a specific statement that is not available in the literature, we detail the result
and its proof. The time change t 7→ At is defined by

t =

∫ At

0
ξ2sds.

Because ξIn f > 0, A is a continuous, strictly increasing time change and its inverse

A−1 enjoys the same properties.
L 4.2. Assume (P) and v0 > 0. Denote by (ys)0≤s≤A−1

T
the CIR process defined by

dyt = (
1

2
− κ
ξ2
In f

yt)dt+
√
ytdB̃t, y0 = v0,

where B̃ is the Brownian motion given by

B̃t =

∫ AT

0
ξsdBs. (4.1)

Then, a.s. one has vt ≥ yA−1t
for any t ∈ [0,T]. In particular, (vt)0≤t≤T is a.s. positive.

Proof. Note that (B̃t)0≤t≤A−1
T
is really a Brownianmotion because byLévy’sCharac-

terization Theorem, it is a continuous localmartingalewith 〈B̃, B̃〉t = t (see Proposition
5.1.5 [RY99] for the computation of the bracket). Now that we have set ṽt = vAt , our
aim is to prove that ṽt ≥ yt for t ∈ [0,A−1T ]. Using Propositions 5.1.4 and 5.1.5 [RY99],
we write

ṽt = v0+

∫ At

0
(κ(θs− vs)ds+ξs

√
vsdBs) = v0+

∫ t

0
(
κ

ξ2
As

(θAs − ṽs)ds+
√
ṽsdB̃s).
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T 3.8
Implied Black-Scholes volatilities of the closed formula, of the approximation formula and related errors (in bp),

expressed as a function of maturities in fractions of years and relative strikes. Parameters: θ = 6%, κ = 3, ξ = 30%
and ρ = −50%.

3M 26.13% 24.29% 22.60% 21.11% 19.95% 19.22% 19.03% 18.92%
25.57% 24.43% 22.63% 21.11% 19.90% 18.99% 18.91% 19.57%
56.55 -14.06 -2.51 0.19 4.35 23.24 11.67 -64.22

6M 27.47% 25.81% 24.31% 21.85% 20.92% 19.80% 19.55% 19.47%
26.89% 25.97% 24.44% 21.84% 20.89% 19.50% 19.61% 21.11%
58.13 -16.68 -12.19 0.82 3.38 29.46 -5.28 -164.16

1Y 27.96% 26.57% 24.34% 22.68% 21.51% 20.49% 20.19% 20.11%
27.67% 26.75% 24.39% 22.66% 21.43% 20.24% 20.77% 21.73%
29.08 -18.08 -5.01 1.53 7.49 24.84 -58.18 -162.76

2Y 27.56% 26.51% 24.93% 23.34% 22.31% 21.30% 20.95% 20.73%
27.52% 26.65% 24.98% 23.33% 22.25% 21.15% 21.19% 22.20%
4.11 -14.03 -4.75 1.43 5.50 14.43 -23.17 -146.81

3Y 27.53% 26.56% 25.22% 23.61% 22.66% 21.81% 21.39% 21.16%
27.42% 26.66% 25.26% 23.60% 22.62% 21.71% 21.53% 22.04%
11.28 -9.11 -4.59 1.06 3.97 9.79 -14.43 -88.86

5Y 27.11% 26.25% 24.83% 23.83% 23.10% 22.28% 21.94% 21.66%
27.01% 26.31% 24.84% 23.82% 23.08% 22.23% 21.98% 22.14%
9.64 -5.22 -1.23 0.62 1.98 5.14 -4.04 -47.56

7Y 27.35% 25.67% 24.92% 23.93% 23.23% 22.55% 22.22% 21.98%
27.03% 25.71% 24.93% 23.93% 23.21% 22.52% 22.25% 22.28%
31.65 -3.57 -1.09 0.43 1.46 3.26 -3.91 -30.07

10Y 26.40% 25.66% 24.70% 24.01% 23.40% 22.82% 22.50% 22.29%
26.36% 25.68% 24.70% 24.00% 23.39% 22.80% 22.53% 22.48%
4.15 -2.43 -0.35 0.29 0.93 2.02 -2.65 -18.89

Nowwe apply a comparison result for SDEs twice (see Proposition 5.2.18 in [KS88]).
1. First, one gets ṽt ≥ nt, where (ns)s is the (unique) solution of

nt = 0+

∫ t

0
− κ
ξ2
As

nsds+
√
nsdB̃s,

because v0 ≥ 0 and κ
ξ2
As

(θAs −x)≥ − κξ2
As

x, for all x ∈R and s ∈ [0,A−1
T
]. Of course nt = 0,

thus ṽt is non-negative.
2. Secondly, using the non-negativity of ṽ, we only need to compare drift

coefficients for the non-negative variable x. Under (P), since

κ

ξ2
As

(θAs − x) ≥
1

2
− κ
ξ2
In f

x ∀x ≥ 0,∀s ∈ [0,A−1T ],

we obtain ṽt ≥ yt for t ∈ [0,A−1T ] a.s.
Moreover, the positivity of y (and consequently that of v) is standard: indeed, y is
a 2-dimensional squared Bessel process with a time/space scale change (see [GJY03],
or the proof of Lemma 4.3 below).

4.3. Upper bound for negative moments of the integrated squared volatility

process
∫ T

0
vtdt.

L 4.3. Assume (P). Then for every p > 0, one has:

sup
0≤ǫ≤1

E[(

∫ T

0
vǫtdt)

−p] ≤ C

Tp
.
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T 3.9
Put prices of the closed formula, of the approximation formula and related errors (in bp), expressed as a function

of maturities in fractions of years and relative strikes. Parameters: θ = 6%, κ = 3, ξ = 30% and ρ = −50%.

3M 30.01 20.14 11.01 4.21 0.95 0.12 0.03 0.01
30.01 20.15 11.02 4.21 0.94 0.11 0.03 0.01
0.21 -0.47 -0.31 0.04 0.57 0.82 0.16 -0.36

6M 40.02 30.15 20.70 6.16 2.43 0.19 0.04 0.01
40.02 30.15 20.71 6.15 2.42 0.17 0.04 0.02
0.37 -0.59 -1.33 0.23 0.81 1.59 -0.09 -1.05

1Y 50.04 40.21 22.11 9.03 2.59 0.22 0.03 0.01
50.04 40.22 22.12 9.02 2.57 0.21 0.05 0.03
0.36 -0.88 -1.17 0.61 2.27 1.67 -1.05 -1.69

2Y 60.08 50.33 32.38 13.11 4.06 0.39 0.08 0.02
60.08 50.34 32.39 13.10 4.03 0.37 0.09 0.04
0.09 -1.00 -1.32 0.80 2.47 1.59 -0.84 -2.00

3Y 70.05 60.25 41.99 16.20 4.98 0.69 0.13 0.03
70.05 60.25 42.00 16.19 4.96 0.67 0.13 0.05
0.17 -0.54 -1.21 0.72 2.20 1.73 -0.74 -1.80

5Y 80.03 70.23 44.06 21.01 7.65 0.99 0.25 0.06
80.03 70.23 44.07 21.00 7.64 0.98 0.26 0.07
0.11 -0.30 -0.53 0.54 1.54 1.29 -0.38 -1.50

7Y 90.00 70.54 53.40 24.84 8.36 1.28 0.31 0.09
90.00 70.55 53.40 24.84 8.35 1.27 0.32 0.10
0.06 -0.41 -0.44 0.43 1.32 1.04 -0.45 -1.32

10Y 90.02 80.30 55.42 29.57 10.43 1.82 0.44 0.13
90.02 80.30 55.42 29.57 10.42 1.81 0.44 0.14
0.03 -0.18 -0.20 0.34 1.04 0.89 -0.42 -1.17

Before proving the result, we mention that analogous estimates appear in [BD07]
(Lemmas A.1 and A.2): some exponential moments are stated under stronger condi-
tions than those in assumption (P). In addition, the uniformity of the estimates w.r.t.
ξ (or equivalently w.r.t. ǫ) is not emphasized. In our study, it is crucial to get uniform
estimates w.r.t. ǫ.

Proof. Fix p ≥ 1
2 (for 0 < p < 1

2 , we derive the result from the case p = 1
2 using the

Hölder inequality). The proof is divided into two steps. We first prove the estimates
in the case of constant coefficients κ, θ, ξ with κθ = 1

2 , ǫ = 1 and ξ = 1. Then, using
the time change of Lemma 4.2, we derive the result for (vǫt )t. The critical point is to
get estimates that are uniform w.r.t. ǫ.
Step 1. Take θt ≡ θ, ξt ≡ 1, κθ = 1

2 , ǫ = 1 and consider

dyt = (
1

2
−κyt)dt+

√
ytdBt, y0 = v0,

for a standard Brownian motion B. We represent y as a time space transformed
squared Bessel process (see [GJY03])

yt = e−κtz (eκt−1)
4κ

where z is a 2-dimensional squared Bessel process. Therefore, using a change of
variable and the explicit expression of Laplace transform for the integral of z (see
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T 3.10
Implied Black-Scholes volatilities of the closed formula, of the approximation formula and related errors (in bp),

expressed as a function of maturities in fractions of years and relative strikes. Parameters: θ = 6%, κ = 10, ξ = 1
and ρ = −50%.

3M 31.51% 28.04% 24.74% 21.83% 19.94% 19.45% 19.58% 19.85%
30.68% 28.99% 24.95% 21.71% 19.38% 18.05% 19.76% 22.93%
82.46 -94.66 -21.22 12.10 56.44 140.23 -18.10 -308.17

6M 31.45% 28.86% 26.52% 22.69% 21.36% 20.11% 20.05% 20.20%
30.83% 29.59% 26.98% 22.58% 21.09% 19.14% 20.64% 24.03%
62.40 -73.58 -46.52 11.30 26.99 97.22 -59.12 -383.12

1Y 30.09% 28.30% 25.44% 23.34% 21.89% 20.76% 20.49% 20.45%
29.87% 28.72% 25.54% 23.28% 21.70% 20.30% 21.65% 23.17%
21.52 -42.32 -10.69 6.02 19.45 46.13 -115.72 -271.22

2Y 28.45% 27.27% 25.51% 23.73% 22.58% 21.48% 21.12% 20.90%
28.46% 27.47% 25.57% 23.71% 22.50% 21.28% 21.42% 22.75%
-0.53 -20.08 -6.39 2.42 8.11 19.97 -30.34 -184.76

3Y 28.08% 27.05% 25.61% 23.88% 22.86% 21.96% 21.51% 21.27%
27.98% 27.16% 25.66% 23.86% 22.81% 21.83% 21.67% 22.30%
9.78 -11.59 -5.41 1.39 4.91 12.13 -16.04 -102.46

5Y 27.40% 26.52% 25.04% 24.00% 23.23% 22.38% 22.03% 21.75%
27.31% 26.58% 25.05% 23.99% 23.21% 22.33% 22.07% 22.26%
9.15 -5.98 -1.31 0.71 2.20 5.85 -3.93 -51.20

7Y 27.56% 25.84% 25.06% 24.05% 23.33% 22.63% 22.29% 22.05%
27.24% 25.88% 25.08% 24.05% 23.31% 22.59% 22.33% 22.36%
32.00 -3.83 -1.14 0.47 1.57 3.57 -3.88 -31.56

10Y 26.53% 25.77% 24.80% 24.09% 23.47% 22.88% 22.55% 22.34%
26.49% 25.80% 24.80% 24.09% 23.46% 22.86% 22.58% 22.53%
4.02 -2.57 -0.36 0.31 0.97 2.15 -2.64 -19.49

[BS02] p.377), one obtains for any u ≥ 0

E[exp(−u
∫ T

0
ytdt)] ≤ E[exp(−4ue−2κT

∫
(eκT−1)

4κ

0
zsds)]

≤ cosh(

√
2u(1− e−κT)

2κ
)−1 exp(−

√
2ue−κTv0 tanh(

√
2u(1− e−κT)

2κ
)).

Combining this with the identity x−p = 1
Γ(p)

∫ ∞
0

up−1e−uxdu for x =
∫ T

0
ytdt, one gets:

E[(

∫ T

0
ytdt)

−p] ≤ 1

Γ(p)

∫ ∞

0
up−1 cosh(

√
2u(1− e−κT)

2κ
)−1 exp(−

√
2ue−κTv0 tanh(

√
2u(1− e−κT)

2κ
))du.

Define the parameter λ2 = (eκT−1)
2κv0

and the new variable n =
√
2u(1−e−κT )

2κ = v0e
−κTλ2

√
2u.

It readily follows that

E[(

∫ T

0
ytdt)

−p] ≤ C(
eκT

λ2
)2p

∫ ∞

0
n2p−1 cosh(n)−1 exp(− tanh(n)n

λ2
)dn,

whereC is a constant depending only on v0 and p. We upper bound the above integral
differently according to the value of λ.

(i) If λ ≥ 1, then

E[(

∫ T

0
ytdt)

−p] ≤ C(
eκT

λ2
)2p

∫ ∞

0
n2p−1 cosh(n)−1dn ≤ Ce2pκT. (4.2)
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T 3.11
Put prices of the closed formula, of the approximation formula and related errors (in bp), expressed as a function

of maturities in fractions of years and relative strikes. Parameters: θ = 6%, κ = 10, ξ = 1 and ρ = −50%.

3M 30.05 20.30 11.28 4.35 0.95 0.13 0.04 0.01
30.04 20.35 11.31 4.33 0.87 0.08 0.05 0.05
0.99 -4.95 -2.80 2.41 7.37 4.62 -0.31 -3.51

6M 40.06 30.28 20.96 6.40 2.54 0.21 0.05 0.01
40.05 30.32 21.02 6.36 2.47 0.15 0.06 0.06
0.92 -3.90 -5.83 3.18 6.51 5.23 -1.28 -4.72

1Y 50.08 40.31 22.37 9.29 2.71 0.24 0.04 0.02
50.07 40.33 22.40 9.26 2.65 0.21 0.07 0.06
0.41 -2.60 -2.58 2.39 5.95 3.19 -2.52 -3.89

2Y 60.10 50.39 32.54 13.33 4.18 0.41 0.09 0.02
60.10 50.40 32.56 13.31 4.14 0.38 0.10 0.05
-0.01 -1.58 -1.82 1.35 3.67 2.26 -1.17 -2.89

3Y 70.06 60.28 42.09 16.38 5.09 0.71 0.13 0.03
70.05 60.28 42.11 16.37 5.06 0.69 0.14 0.06
0.17 -0.73 -1.46 0.94 2.74 2.19 -0.86 -2.22

5Y 80.04 70.25 44.15 21.15 7.76 1.02 0.26 0.06
80.03 70.25 44.16 21.15 7.74 1.01 0.27 0.08
0.11 -0.36 -0.57 0.61 1.72 1.49 -0.38 -1.68

7Y 90.00 70.56 53.46 24.96 8.45 1.31 0.32 0.09
90.00 70.57 53.46 24.96 8.44 1.30 0.32 0.10
0.06 -0.44 -0.47 0.47 1.42 1.16 -0.46 -1.42

10Y 90.02 80.31 55.47 29.67 10.51 1.85 0.44 0.13
90.02 80.31 55.48 29.67 10.50 1.84 0.45 0.14
0.03 -0.19 -0.20 0.36 1.09 0.95 -0.42 -1.23

(ii) If λ ≤ 1, split the integral into two parts, n ≤ arctanh(λ) and n ≥ arctanh(λ).
For the first part, simply use n≥ tanh(n) for anyn. For the second part, use tanh(n)≥ λ
and cosh(n)−1 ≤ 1. This gives

E[(

∫ T

0
ytdt)

−p] ≤C
[

(
eκT

λ2
)2p

∫ arctanh(λ)

0
n2p−1 cosh(n)−1 exp(− tanh

2(n)

λ2
)dn

+ (
eκT

λ2
)2p

∫ ∞

arctanh(λ)
n2p−1 exp(−n

λ
)dn

]

:= C[T1+T2]. (4.3)

We upper bound the two terms separately.

1. First term T1. Using the change of variablem =
tanh(n)
λ , one has:

T1 ≤ e2pκTλ−4p+1
∫ 1

0
arctanh(λm)2p−1 cosh(arctanh(λm))exp(−m2)dm.

Because of λ ≤ 1, we have the following inequalities for m ∈ [0,1[:

arctanh(λm) ≤ λarctanh(m), cosh(arctanh(λm)) ≤ cosh(arctanh(m)).

Using 2p− 1≥ 0, it readily follows that

T1 ≤ (
e2κT

λ2
)p

∫ 1

0
arctanh(m)2p−1 cosh(arctanh(m))exp(−m2)dm. (4.4)

2. Second term T2. Clearly, we have

T2 ≤ (
eκT

λ2
)2p

∫ ∞

0
n2p−1 exp(−n

λ
)dn = (

e2κT

λ2
)p

∫ ∞

0
v2p−1e−vdv. (4.5)
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T 3.12
Implied Black-Scholes volatilities of the closed formula, of the approximation formula and related errors (in bp),

expressed as a function of maturities in fractions of years and relative strikes. Parameters: θ = 3%, κ = 2, ξ = 40%
and ρ = 0%.

3M 23.27% 21.25% 19.59% 18.86% 19.47% 20.64% 21.25% 21.85%
22.35% 21.48% 19.56% 18.85% 19.43% 20.83% 21.48% 21.94%
92.35 -22.93 2.23 1.62 3.51 -18.90 -22.93 -9.79

6M 24.10% 22.05% 20.22% 18.21% 18.68% 20.75% 21.78% 22.72%
22.52% 22.26% 20.50% 18.14% 18.59% 21.16% 22.10% 22.51%
158.79 -20.74 -28.41 7.08 9.08 -40.69 -32.03 20.96

1Y 23.96% 22.01% 18.89% 17.60% 18.51% 20.84% 22.23% 22.85%
22.20% 22.14% 18.99% 17.45% 18.48% 21.42% 22.20% 22.30%
175.41 -12.81 -10.17 14.90 2.60 -57.41 2.27 54.89

2Y 22.72% 21.05% 18.61% 17.24% 18.04% 20.26% 21.42% 22.42%
21.40% 21.20% 18.83% 17.10% 18.06% 20.72% 21.32% 21.42%
132.35 -14.49 -22.09 14.34 -1.35 -46.40 9.96 100.04

3Y 22.44% 20.84% 18.66% 17.16% 17.88% 19.60% 20.84% 21.67%
20.74% 20.67% 18.93% 17.06% 17.91% 19.96% 20.67% 20.79%
170.16 16.92 -27.04 10.16 -3.17 -36.03 16.92 87.99

5Y 21.56% 20.09% 17.86% 17.16% 17.61% 19.08% 19.94% 20.75%
20.03% 19.88% 17.92% 17.10% 17.62% 19.28% 19.83% 20.03%
153.81 20.49 -5.89 5.27 -0.54 -19.86 11.43 72.25

7Y 21.93% 19.01% 17.88% 17.17% 17.60% 18.76% 19.54% 20.16%
19.51% 19.09% 17.95% 17.14% 17.62% 18.88% 19.39% 19.58%
241.42 -7.47 -6.53 3.16 -1.53 -12.47 14.41 58.41

10Y 20.21% 18.92% 17.58% 17.20% 17.53% 18.42% 19.09% 19.61%
19.24% 18.88% 17.60% 17.18% 17.54% 18.49% 18.97% 19.16%
96.63 4.46 -1.61 1.76 -0.93 -7.64 11.97 44.80

Combining (4.3), (4.4) and (4.5), we obtain E[(
∫ T

0
ytdt)

−p] ≤ C( e
2κT

λ2
)p. In view of the

inequality (ex− 1 ≥ x,x ≥ 0), we have λ2 = (eκT−1)
2κv0

≥ T
2v0

, which gives

E[(

∫ T

0
ytdt)

−p] ≤ C
e2pκT

Tp
, (4.6)

available when λ ≤ 1.

To sum up (4.2) and (4.6), we have proved that

E[(

∫ T

0
ytdt)

−p] ≤ Ce2pκT(1+
1

Tp
), (4.7)

for a constant C depending only on p and v0.
Step 2. Take ǫ ∈]0,1]. We apply Lemma 4.2 to vǫ, in order to write vǫt ≥ yǫ

A−1ǫ,t
where

t =
∫ Aǫ,t

0
(ǫξs)2ds and dyǫt = ( 12 −

κ
(ǫξIn f )

2 y
ǫ
t )dt+

√

yǫt dB̃
ǫ
t , y
ǫ
0
= y0. Thus, we get

∫ T

0
vǫtdt ≥
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T 3.13
Put prices of the closed formula, of the approximation formula and related errors (in bp), expressed as a function

of maturities in fractions of years and relative strikes. Parameters: θ = 3%, κ = 2, ξ = 40% and ρ = 0%.

3M 30.00 20.06 10.67 3.76 0.88 0.18 0.08 0.03
30.00 20.07 10.67 3.76 0.88 0.18 0.08 0.03
0.12 -0.46 0.24 0.32 0.45 -0.88 -0.58 -0.13

6M 40.01 30.05 20.32 5.13 1.91 0.25 0.09 0.04
40.00 30.05 20.35 5.11 1.89 0.27 0.10 0.03
0.29 -0.37 -2.15 1.99 2.06 -2.72 -1.01 0.29

1Y 50.01 40.06 20.98 7.01 1.73 0.25 0.08 0.05
50.00 40.06 21.00 6.95 1.73 0.29 0.08 0.04
0.55 -0.27 -1.80 5.92 0.70 -4.43 0.07 0.98

2Y 60.01 50.07 30.89 9.70 2.28 0.28 0.10 0.04
60.01 50.07 30.93 9.62 2.29 0.33 0.10 0.03
0.63 -0.39 -4.17 8.03 -0.51 -4.44 0.40 1.61

3Y 70.01 60.04 40.60 11.82 2.56 0.36 0.10 0.04
70.00 60.04 40.64 11.75 2.58 0.41 0.09 0.03
0.36 0.28 -4.17 6.94 -1.42 -4.48 0.71 1.54

5Y 80.00 70.03 41.45 15.21 3.75 0.38 0.11 0.04
80.00 70.02 41.47 15.16 3.75 0.40 0.11 0.02
0.15 0.26 -1.76 4.61 -0.34 -2.79 0.58 1.24

7Y 90.00 70.07 51.04 17.97 3.78 0.39 0.10 0.03
90.00 70.08 51.06 17.94 3.80 0.41 0.09 0.02
0.01 -0.24 -1.63 3.25 -1.07 -1.94 0.70 1.00

10Y 90.00 80.03 51.95 21.43 4.55 0.46 0.10 0.03
90.00 80.03 51.96 21.41 4.56 0.48 0.09 0.02
0.04 0.06 -0.64 2.14 -0.80 -1.44 0.61 0.76

T 3.14
Equivalent averaged parameters.

T v̄0 θ̄ ξ̄ ρ̄

3M 4 % 4 % 30 % -20 %
6M 3.97 % 4.04 % 30.12 % -19.93 %
1Y 3.28 % 4.38 % 30.89 % -19.72 %
2Y 4.64 % 4.02 % 31.12 % -18.95 %
3Y 56.24 % 4.04 % 32.10 % -18.20 %
5Y 28.58 % 2.68 % 33.63 % -16.52 %
7Y 84.92 % 0.59 % 35.41 % -14.80 %
10Y 14.54 % 4.57 % 39.98 % -12.32 %

(
∫ A−1ǫ,t
0

yǫsds)/(ǫξSup)
2 and in view of (4.7), it follows that

E[(

∫ T

0
vǫtdt)

−p] ≤ (ǫξSup)
2p
E(

∫ A−1
ǫ,T

0
yǫsds)

−p

≤ C(ǫξSup)
2pe

2p κ
(ǫξIn f )

2 A
−1
ǫ,T
(1+

1

[A−1ǫ,T]
p
)

≤ Ce
2pκ

ξ2
Sup

ξ2
In f

T

(ξ
2p

Sup
+
ξ
2p

Sup

ξ
2p

In f

1

Tp
)

where we have used ǫ2ξ2
In f

T ≤ A−1ǫ,T ≤ ǫ
2ξ2

Sup
T.
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T 3.15
Implied Black-Scholes volatilities of the closed formula, of the approximation formula and of the averaging

formula, expressed as a function of maturities in fractions of years and relative strikes. Piecewise constant parameters.

3M 23.45% 21.88% 20.58% 19.70% 19.39% 19.55% 19.74% 19.97%
22.73% 21.96% 20.60% 19.69% 19.35% 19.53% 19.84% 20.28%
23.45% 21.88% 20.58% 19.70% 19.39% 19.55% 19.74% 19.97%

6M 24.09% 22.59% 21.30% 19.63% 19.33% 19.58% 19.92% 20.31%
23.09% 22.60% 21.43% 19.61% 19.30% 19.58% 20.19% 20.93%
24.09% 22.59% 21.30% 19.63% 19.33% 19.58% 19.92% 20.31%

1Y 23.95% 22.66% 20.76% 19.70% 19.37% 19.69% 20.12% 20.36%
23.12% 22.66% 20.81% 19.68% 19.32% 19.78% 20.62% 21.05%
23.95% 22.66% 20.76% 19.70% 19.37% 19.69% 20.12% 20.35%

2Y 23.26% 22.30% 21.01% 19.99% 19.66% 19.83% 20.09% 20.37%
22.84% 22.33% 21.04% 19.96% 19.62% 19.90% 20.43% 21.02%
23.26% 22.30% 21.01% 19.98% 19.66% 19.83% 20.09% 20.37%

3Y 23.28% 22.40% 21.27% 20.26% 19.96% 20.02% 20.23% 20.43%
22.81% 22.38% 21.33% 20.24% 19.93% 20.04% 20.47% 20.90%
23.28% 22.40% 21.27% 20.26% 19.96% 20.02% 20.23% 20.42%

5Y 23.22% 22.46% 21.34% 20.77% 20.54% 20.54% 20.65% 20.80%
22.88% 22.44% 21.35% 20.77% 20.52% 20.55% 20.76% 21.09%
23.22% 22.46% 21.34% 20.77% 20.54% 20.54% 20.64% 20.79%

7Y 23.86% 22.36% 21.81% 21.26% 21.06% 21.06% 21.16% 21.27%
23.25% 22.39% 21.82% 21.26% 21.05% 21.07% 21.23% 21.45%
23.86% 22.37% 21.81% 21.26% 21.06% 21.06% 21.15% 21.26%

10Y 23.59% 22.96% 22.30% 21.97% 21.82% 21.83% 21.92% 22.02%
23.46% 22.98% 22.30% 21.97% 21.81% 21.84% 21.96% 22.12%
23.59% 22.96% 22.30% 21.97% 21.82% 21.83% 21.92% 22.01%

Note that the upper bound does not depend on ǫ ∈]0,1]. For ǫ = 0, the upper
bound in Lemma 4.3 is also true because (v0t )t is deterministic and

max(v0,θSup) ≥ v0t ≥min(v0,θIn f ) > 0. (4.8)

4.4. Upper bound for residuals of the Taylor development of g(ǫ) defined in
(1.4). Throughout the following paragraph, we assume that (P) is in force. We define
the variables:

PǫT =

∫ T

0
ρt(σ

ǫ
t −σ0,t)dBt−

∫ T

0

ρ2t
2
(vǫt − v0,t)dt, QǫT =

∫ T

0
(1−ρ2t )(vǫt − v0,t)dt.

Notice that (x0+
∫ T

0
ρt
√
v0,tdBt−

∫ T

0

ρ2t
2 v0,tdt,

∫ T

0
(1−ρ2t )v0,tdt)+(P1

T
,Q1

T
)= (x0+

∫ T

0
ρt

√

v1tdBt−
∫ T

0

ρ2t
2 v

1
tdt,

∫ T

0
(1−ρ2t )v1tdt).

Themain result of this subsection is the following proposition, the statement ofwhich
uses the notation introduced at the beginning of Section 4.
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T 3.16
Put prices of the closed formula, of the approximation formula and of the averaging formula, expressed as a

function of maturities in fractions of years and relative strikes. Piecewise constant parameters.

3M 30.00 20.07 10.78 3.93 0.87 0.13 0.05 0.02
30.00 20.08 10.78 3.93 0.87 0.13 0.05 0.02
30.00 20.07 10.78 3.93 0.87 0.13 0.05 0.02

6M 40.01 30.06 20.41 5.53 2.06 0.18 0.05 0.01
40.00 30.06 20.42 5.53 2.05 0.18 0.05 0.02
40.01 30.06 20.41 5.53 2.06 0.18 0.05 0.01

1Y 50.01 40.07 21.33 7.85 1.97 0.17 0.03 0.02
50.01 40.07 21.35 7.84 1.95 0.18 0.04 0.02
50.01 40.07 21.33 7.85 1.97 0.17 0.03 0.02

2Y 60.02 50.11 31.38 11.23 2.92 0.24 0.06 0.01
60.01 50.11 31.39 11.23 2.90 0.25 0.07 0.02
60.02 50.11 31.38 11.23 2.92 0.24 0.06 0.01

3Y 70.01 60.07 41.07 13.92 3.55 0.41 0.08 0.02
70.01 60.07 41.08 13.92 3.54 0.42 0.09 0.03
70.01 60.07 41.07 13.92 3.55 0.41 0.08 0.02

5Y 80.01 70.07 42.64 18.37 5.74 0.61 0.15 0.04
80.01 70.07 42.64 18.36 5.72 0.61 0.16 0.04
80.01 70.07 42.64 18.37 5.74 0.61 0.15 0.04

7Y 90.00 70.24 52.22 22.15 6.46 0.86 0.21 0.06
90.00 70.24 52.22 22.15 6.45 0.86 0.21 0.07
90.00 70.24 52.22 22.15 6.46 0.86 0.21 0.06

10Y 90.01 80.14 54.13 27.17 8.71 1.42 0.35 0.11
90.01 80.14 54.13 27.16 8.70 1.42 0.36 0.12
90.01 80.14 54.13 27.17 8.71 1.42 0.35 0.11

P 4.4. One has the following estimates for every p ≥ 1

‖P1
T‖p ≤C(ξSup

√
T)
√
T,

‖RP1

2,T‖p ≤C(ξSup
√
T)3
√
T,

‖R(P1)2

2,T
‖p ≤C(ξSup

√
T)3T,

‖Q1
T‖p ≤C(ξSup

√
T)T,

‖RQ1

2,T
‖p ≤C(ξSup

√
T)3T,

‖R(Q1)2

2,T ‖p ≤C(ξSup
√
T)3T2,

‖RP1Q1

2,T
‖p ≤C(ξSup

√
T)3T

3
2 .

To estimate the derivatives and the residuals for the variables Pǫ
T
and Qǫ

T
, we need

first to prove the existence of the derivatives and the residuals of the volatility process

σǫt =
√

vǫt and its square vǫ. Finally we prove Proposition 4.4.

4.4.1. Upper bounds for derivatives of σǫ and vǫ. Under assumption (P), the
volatility process σǫt is governed by the SDE:

dσǫt = ((
κθt
2
−
ǫ2ξ2t
8

)
1

σǫt
− κ
2
σǫt )dt+

ǫξt
2

dBt, σ
ǫ
0 =
√
v0, (4.9)

where we have used Ito’s Lemma and positivity of vǫt (see Lemma 4.2).

In order to estimate Rσ
ǫ

0,t, we are going to prove that it verifies a linear equation
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(Lemma 4.5) from which we deduce an a priori upper bound (Proposition 4.6). We

iterate the same analysis for the residuals Rσ
ǫ

1,t
(Proposition 4.7) and Rσ

ǫ

2,t
(Proposition

4.8). Analogously, we give upper bounds for the residuals of vǫt (Proposition 4.9).

L 4.5. Under (P), the process (Rσ
ǫ

0,t
= σǫt −σ0t )0≤t≤T is given by

Rσ
ǫ

0,t =Uǫt

∫ t

0
(Uǫs )

−1(− ǫ
2ξ2s

8σ0,s
ds+

ǫξs
2

dBs),

where

dUǫt = −αǫtUǫtdt, Uǫt = 1,

αǫt = (
κθt
2
−
ǫ2ξ2t
8

)
1

σǫtσ0,t
+
κ

2
.

Proof. From the definition (σ0,t)t = (σ0t )t and the equation (4.9), one obtains the
SDE

dσ0,t = (
κθt
2σ0,t

− κ
2
σ0,t)dt, σ0,0 =

√
v0.

Substitute this equation in (4.9) to obtain

dRσ
ǫ

0,t = −α
ǫ
tR
σǫ

0,tdt−
ǫ2ξ2t
8σ0,t

dt+
ǫξt
2

dBt, R
σǫ

0,0 = 0. (4.10)

Note that Rσ
ǫ

0,.
is the solution of a linear SDE. Hence, it can be explicitly represented

using the process Uǫ (see Th. 52 in [Pro90]):

Rσ
ǫ

0,t =Uǫt

∫ t

0
(Uǫs )

−1(− ǫ
2ξ2s

8σ0,s
ds+

ǫξs
2

dBs).

P 4.6. Under (P), for every p ≥ 1 one has

‖(Rσǫ0,.)
∗
t‖p ≤ CǫξSup

√
t.

In particular, the application ǫ� σǫt is continuous
5 at ǫ = 0 in Lp.

Proof. At first sight, the proof seems to be straightforward from Lemma 4.5. But
actually, the difficulty lies in the fact that one can not uniformly in ǫ upper bound Uǫt
in Lp (because of the term with 1/σǫt in α

ǫ
t ).

Using Lemma 4.5 and Ito’s formula for the product (Uǫt )
−1(

∫ t

0
ǫξs
2 dBs), one has

Rσ
ǫ

0,t =Uǫt

∫ t

0
(Uǫs )

−1(− ǫ
2ξ2s

8σ0,s
ds)+

∫ t

0

ǫξs
2

dBs−Uǫt
∫ t

0
(

∫ s

0

ǫξu
2

dBu)d(U
ǫ
s )
−1.

5Note that from the upper bound (4.11) in the proof, we easily obtain that the continuity also holds
a.s., and not only in Lp. Since only the latter is needed in what follows, we do not go into detail.
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Under (P), one hasαǫt ≥ κ/2> 0,which implies that t 7→Uǫt is decreasing and t 7→ (Uǫt )
−1

is increasing. Thus, 0 ≤Uǫt (U
ǫ
s )
−1 ≤ 1 for s ∈ [0, t]. Consequently, we deduce

|Rσǫ0,t| ≤
∫ t

0

ǫ2ξ2s
8σ0,s

ds+ (

∫ .

0

ǫξs
2

dBs)
∗
t + (

∫ .

0

ǫξs
2

dBs)
∗
t(1−Uǫt )

≤
∫ t

0

ǫ2ξ2s
8σ0,s

ds+ (

∫ .

0
ǫξsdBs)

∗
t . (4.11)

Now we easily complete the proof by observing that σ0,s ≥ min(
√

θIn f ,
√
v0) and

‖(
∫ .

0
ξsdBs)

∗
t‖p ≤ CξSup

√
t.

We define

σ1,t =U0
t

∫ t

0
(U0

s )
−1ξs

2
dBs.

Therefore, (σ1,t)0≤t≤T solves the following SDE:

dσ1,t = −(
κθt

2(σ0,t)2
+
κ

2
)σ1,tdt+

ξt
2
dBt, σ1,0 = 0, (4.12)

and for every p ≥ 1

‖(σ1,.)∗t‖p ≤ CξSup
√
t. (4.13)

P 4.7. Under (P), the process (Rσ
ǫ

1,t
= σǫt −σ0t −ǫσ1,t)0≤t≤T fulfills the equality:

Rσ
ǫ

1,t =Uǫt

∫ t

0
(Uǫs )

−1(− ǫ
2ξ2s

8σ0,s
+ ǫσ1,s((

αǫs
σ0,s
− κ

2σ0,s
)Rσ

ǫ

0,s+
ǫ2ξ2s
8σ0,s

))ds.

Moreover, for every p ≥ 1, one has

‖(Rσǫ1,.)
∗
t‖p ≤ C(ǫξSup

√
t)2.

In particular, the application ǫ� σǫt is C1 at ǫ= 0 in Lp sense with the first derivative at ǫ= 0

equal to σ1,t (justifying a posteriori the definition Rσ
ǫ

1,.
).

Proof. From Equations (4.10) and (4.12), it readily follows that

dRσ
ǫ

1,t = −α
ǫ
tR
σǫ

1,tdt− ǫσ1,t(α
ǫ
t −

κθt
2(σ0,t)2

− κ
2
)dt−

ǫ2ξ2t
8σ0,t

dt,Rσ
ǫ

1,0 = 0.

Because of the identity

−(αǫt −
κθt

2(σ0,t)2
− κ
2
) = ((

αǫt
σ0,t
− κ

2σ0,t
)Rσ

ǫ

0,t+
ǫ2ξ2t

8(σ0,t)2
),

one deduces the equality

Rσ
ǫ

1,t =Uǫt

∫ t

0
(Uǫs )

−1(− ǫ
2ξ2s

8σ0,s
+ ǫσ1,s((

αǫs
σ0,s
− κ

2σ0,s
)Rσ

ǫ

0,s+
ǫ2ξ2s

8(σ0,s)2
))ds.
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Then

|Rσǫ1,t| ≤
∫ t

0
Uǫt (U

ǫ
s )
−1(
ǫ2ξ2s
8σ0,s

+ ǫ|σ1,s|((
αǫs
σ0,s
+
κ

2σ0,s
)|Rσǫ0,s|+

ǫ2ξ2s
8(σ0,s)2

))ds

≤
∫ t

0
Uǫt (U

ǫ
s )
−1(
ǫ2ξ2s
8σ0,s

+ ǫ|σ1,s|(
κ

2σ0,s
|Rσǫ0,s|+

ǫ2ξ2s
8(σ0,s)2

))ds+ ǫ

∫ t

0
Uǫt (U

ǫ
s )
−1 α

ǫ
s

σ0,s
|σ1,s‖Rσ

ǫ

0,s|ds

≤
∫ t

0
(
ǫ2ξ2s
8σ0,s

+ ǫ|σ1,s|(
κ

2σ0,s
|Rσǫ0,s|+

ǫ2ξ2s
8(σ0,s)2

))ds+ ǫ(
σ1,.R

σǫ

0,.

σ0,.
)∗t ,

where we have usedUǫt (U
ǫ
s )
−1 ≤ 1 for every s ∈ [0, t] andUǫt

∫ t

0
αǫs (U

ǫ
s )
−1ds = 1−Uǫt ≤ 1

for the third inequality. Apply Proposition 4.6 and Inequality (4.13) to complete the

proof of the estimate of ‖(Rσǫ
1,.
)∗t‖p.

We define (σ2,t)0≤t≤T as the solution of the linear equation

dσ2,t = (−( κθt
2(σ0,t)2

+
κ

2
)σ2,t+κθt

(σ1,t)
2

(σ0,t)3
−
ξ2t
4σ0,t

)dt, σ2,0 = 0. (4.14)

Clearly, for p ≥ 1, we have

‖(σ2,.)∗t‖p ≤ C(ξSup
√
t)2. (4.15)

P 4.8. Under (P), the process (Rσ
ǫ

2,t = σ
ǫ
t −σ0t −ǫσ1,t−

ǫ2

2 σ2,t)0≤t≤T fulfills the

equality:

Rσ
ǫ

2,t =Uǫt

∫ t

0
(Uǫs )

−1[ǫ2((
αǫs
σ0,s
− κ

2σ0,s
)Rσ

ǫ

0,s+
ǫ2ξ2s

8(σ0,s)2
)(
σ2,s
2
−
(σ1,s)

2

σ0,s
)

+ ǫ((
αǫs
σ0,s
− κ

2σ0,s
)Rσ

ǫ

1,s+
ǫ2ξ2s

8(σ0,s)2
)σ1,s]ds.

Moreover, for every p ≥ 1, one has

‖(Rσǫ2,.)
∗
t‖p ≤ C(ǫξSup

√
t)3.

In particular, the application ǫ� σǫt is C2 at ǫ = 0 in Lp sense with the second derivative at
ǫ = 0 equal to σ2,t.

Proof. The equality is easy to check. The estimate is proved in the same way as
in the proof of Proposition 4.7, we therefore skip the details.

C 4.9. The application ǫ� vǫt is C2 at ǫ = 0 in Lp sense. The residuals for the
squared volatility satisfy the following inequalities: for every p ≥ 1, one has

‖(Rvǫ

0,.)
∗
t‖p ≤ CǫξSup

√
t,

‖(Rvǫ

1,.)
∗
t‖p ≤ C(ǫξSup

√
t)2,

‖(Rvǫ

2,.)
∗
t‖p ≤ C(ǫξSup

√
t)3.

Proof. Note that vǫt = (σǫt )
2 = (σ0,t+Rσ

ǫ

0,t)
2 = v0,t+ 2σ0,tRσ

ǫ

0,t+ (R
σǫ

0,t)
2. Thus, we have

Rvǫ

0,t = 2σ0,tR
σǫ

0,t
+(Rσ

ǫ

0,t
)2,which leads to the requiredestimateusingσ0,t ≤max(

√
v0,

√

θSup)

and Proposition 4.6. The other estimates are proved analogously using Propositions
4.7 and 4.8 and Inequalities (4.13) and (4.15).
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4.4.2. Proof of Proposition 4.4. We can write

P1
T =

∫ T

0
ρtR

σ1

0,tdBt−
∫ T

0

ρ2t
2
Rv1

0,tdt, RP1

2,T =

∫ T

0
ρtR

σ1

2,tdBt−
∫ T

0

ρ2t
2
Rv1

2,tdt.

Then, using Propositions 4.6, 4.8 and Corollary 4.9, we prove the two first estimates
of Proposition 4.4. The others inequalities are proved in the same way.

4.5. Proof ofTheorem2.4. For convenience, we introduce the following notation
for λ ∈ [0,1]:

P̄BS(λ) =PBS

(

x0+

∫ T

0
ρt((1−λ)

√
v0,t+λ

√

v1t )dBt−
∫ T

0

ρ2t
2
((1−λ)v0,t+λv1t )dt

,

∫ T

0
(1−ρ2t )((1−λ)v0,t+λv1t )dt

)

,

∂i+ jP̄BS

∂xiy j
(λ) =

∂i+ jPBS

∂xiy j

(

x0+

∫ T

0
ρt((1−λ)

√
v0,t+λ

√

v1t )dBt−
∫ T

0

ρ2t
2
((1−λ)v0,t+λv1t )dt

,

∫ T

0
(1−ρ2t )((1−λ)v0,t+λv1t )dt

)

.

Notice that P̃BS (see (2.5)) is a particular case of P̄BS for λ = 0:

P̃BS = P̄BS(0),
∂i+ jP̃BS

∂xiy j
=
∂i+ jP̄BS

∂xiy j
(0).

Now, we represent the error E in (2.12) using the previous notations. A second order
Taylor expansion leads to

g(1) = E(P̄BS(1)) = E(P̄BS(0)+∂λP̄BS(0)+
1

2
∂2λP̄BS(0)+

∫ 1

0
dλ

(1−λ)2
2
∂3λP̄BS(λ)).

The first term E(P̄BS(0)) is equal to (2.6). Approximations of the three above deriva-
tives contribute to the error E.

1. We have E(∂λP̄BS(0)) = E(
∂P̃BS
∂x P1

T
+
∂P̃BS
∂y Q1

T
). These two terms are equal to

(2.7) and (2.8) plus an error equal to

E(
∂P̃BS

∂x
RP1

2,T +
∂P̃BS

∂y
R
Q1

2,T
).

2. Regarding the second derivatives, we have E( 12∂
2
λ
P̄BS(0)) = E(

1
2
∂2P̃BS
∂x2

(P1
T
)2+

1
2
∂2P̃BS
∂y2

(Q1
T
)2 +

∂2P̃BS
∂xy P1

T
Q1

T
). These terms are equal to (2.9), (2.10) and (2.11), plus an

error equal to

E(
1

2

∂2P̃BS

∂x2
R
(P1)2

2,T +
1

2

∂2P̃BS

∂y2
R
(Q1)2

2,T +
∂2P̃BS

∂xy
R
P1Q1

2,T ).

3. The last term with ∂3
λ
P̄BS is neglected and thus is considered as an error.
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To sum up, we have shown that

E =
1

∑

i=0

E[
∂1P̄BS

∂xiy1−i
(0)R

(P1)i(Q1)1−i

2,T
]+

2
∑

i=0

Ci
2

2
E[
∂2P̄BS

∂xiy2−i
(0)R

(P1)i(Q1)2−i

2,T
]

+

∫ 1

0

(1−λ)2
2

3
∑

i=0

Ci
3E[
∂3P̄BS

∂xiy3−i
(λ)(P1

T)
i(Q1

T)
3−i]dλ.

Using Lemma 4.1 and Assumption (R), one obtains for all λ ∈ [0,1]

‖∂
i+ jP̄BS

∂xiy j
(λ)‖2 ≤ C‖(

∫ T

0
((1−λ)v0,t+λv1t )dt)

−(2 j+i−1)+
2 ‖4

≤ C((1−λ)‖(
∫ T

0
v0,tdt)

−(2 j+i−1)+
2 ‖4+λ‖(

∫ T

0
v1tdt)

−(2 j+i−1)+
2 ‖4)

where we have applied a convexity argument. Finally, apply Lemma 4.3 with ǫ = 0
and ǫ = 1 to conclude that

‖∂
i+ jP̄BS

∂xiy j
(λ)‖2 ≤

C

(
√
T)(2 j+i−1)+

,

uniformly w.r.t. λ ∈ [0,1]. Combining this with Proposition 4.4 yields that

|E| ≤ C















1
∑

i=0

(ξSup
√
T)3

T1−i/2

(
√
T)1−i

+

2
∑

i=0

(ξSup
√
T)3

T2−i/2

(
√
T)3−i

+

3
∑

i=0

(ξSup
√
T)3

T3−i/2

(
√
T)5−i















≤ C(ξSup
√
T)3
√
T.

Theorem 2.4 is proved.

5. Proof of Proposition 2.2 and Theorem 2.3.

5.1. Preliminary results. In this section, we bring together the results (and their
proofs) which allow us to derive the explicit terms in the formula (2.13).
In the following, αt (resp. βt) is a square integrable and predictable process (resp.
deterministic) and l is a smooth functionwithderivativeshaving, atmost, exponential
growth.
For the next Malliavin calculus computations, we freely use standard notations from
[Nua06].

L 5.1. (Lemma 1.2.1 in [Nua06]) Let G ∈D1,∞(Ω). One has

E[G

∫ t

0
αsdBs] = E[

∫ t

0
αsD

B
s (G)ds],

where DB(G) = (DB
s (G))s≥0 is the first Malliavin derivative of G w.r.t. B.

Taking G = l(
∫ T

0
ρt
√
v0,tdBt) gives the following result.

L 5.2. One has:

E[(

∫ T

0
αtdBt)l(

∫ T

0
ρt
√
v0,tdBt)] = E[(

∫ T

0
ρt
√
v0,tαtdt)l

(1)(

∫ T

0
ρt
√
v0,tdBt)].



TIME DEPENDENT HESTON MODEL 31

L 5.3. For any deterministic integrable function f and any continuous semi-
martingale Z vanishing at t=0, one has:

∫ T

0
f (t)Ztdt =

∫ T

0
ω
(0, f )
t,T

dZt.

Proof. This is an application of the Itô formula to the product ω
(0, f )
t,T Zt.

L 5.4. One has:

E[l(

∫ T

0
ρt
√
v0,tdBt)

∫ T

0
βtv1,tdt] = ω

(κ,ρξv0,.),(−κ,β)
0,T

E[l(1)(

∫ T

0
ρt
√
v0,tdBt)],

E[l(

∫ T

0
ρt
√
v0,tdBt)

∫ T

0
βtv

2
1,tdt] = ω

(2κ,ξ2v0,.),(−2κ,β)
0,T

E[l(

∫ T

0
ρt
√
v0,tdBt)]

+ 2ω
(κ,ρξv0,.),(κ,ρξv0,.),(−2κ,β)
0,T

E[l(2)(

∫ T

0
ρt
√
v0,tdBt)],

E[l(

∫ T

0
ρt
√
v0,tdBt)

∫ T

0
βtv2,tdt] = ω

(κ,ρξv0,.),(0,ρξ),(−κ,β)
0,T E[l(2)(

∫ T

0
ρt
√
v0,tdBt)].

Proof. Using Lemmas 5.2 ( f (t) = e−κtβt, Zt =
∫ t

0
eκsξs

√
v0,sdBs) and 5.3, one has:

E[l(

∫ T

0
ρt
√
v0,tdBt)

∫ T

0
βtv1,tdt] = E[l(

∫ T

0
ρt
√
v0,tdBt)

∫ T

0
e−κtβt

∫ t

0
eκsξs

√
v0,sdBsdt]

= E[l(

∫ T

0
ρt
√
v0,tdBt)

∫ T

0
ω
(−κ,β)
t,T

eκtξt
√
v0,tdBt]

= E[l(1)(

∫ T

0
ρt
√
v0,tdBt)]

∫ T

0
ω
(−κ,β)
t,T

eκtρtξtv0,tdt,

which gives the first equality. The second and the third are proved in the same way.

L 5.5. One has

E[
∂i+ jP̃BS

∂xiy j
] =
∂i+ jPBS

∂xiy j
(x0,

∫ T

0
v0,tdt).

Proof. One has

E[
∂iP̃BS

∂xi
] = ∂ix=x0E[PBS(x0+

∫ T

0
ρt
√
v0,tdBt−

∫ T

0

ρ2t
2
v0,tdt,

∫ T

0
(1−ρ2t )v0,tdt)]

=
∂iPBS

∂xi
(x0,

∫ T

0
v0,tdt).

Since P̃BS verifies the following relation

∂P̃BS

∂y
=

1

2
(
∂2P̃BS

∂x2
− ∂P̃BS

∂x
), (5.1)

we immediately obtain the result.
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5.2. Proof of Proposition 2.2. One has

E[
∂P̃BS

∂x
(

∫ T

0
ρt(

v1,t

2(v0,t)
1
2

+
v2,t

4(v0,t)
1
2

−
v2
1,t

8(v0,t)
3
2

)dBt−
∫ T

0

ρ2t
2
(v1,t+

v2,t

2
)dt)]

= E[
1

2
(
∂2P̃BS

∂x2
− ∂P̃BS

∂x
)

∫ T

0
ρ2t (v1,t+

v2,t

2
)dt]−E[∂

2P̃BS

∂x2

∫ T

0

ρ2t v
2
1,t

8v0,t
dt]

= E[
∂P̃BS

∂y

∫ T

0
ρ2t (v1,t+

v2,t

2
)dt]−E[∂

2P̃BS

∂x2

∫ T

0

ρ2t v
2
1,t

8v0,t
dt],

where we have used Lemma 5.2 at the first equality and identity (5.1) at the second
one. Plugging this relation into the approximation (2.12) and summing the second
and third line, one has

g(1) =E[P̃BS]+E[
∂P̃BS

∂y

∫ T

0
(v1,t+

v2,t

2
)dt]

−E[∂
2P̃BS

∂x2

∫ T

0

ρ2t v
2
1,t

8v0,t
dt]+

1

2
E[
∂2P̃BS

∂x2
(

∫ T

0
ρt

v1,t

2(v0,t)
1
2

dBt−
∫ T

0

ρ2t
2
v1,tdt)

2]

+
1

2
E[
∂2P̃BS

∂y2
(

∫ T

0
(1−ρ2t )v1,tdt)2]

+E[
∂2P̃BS

∂xy
(

∫ T

0
(1−ρ2t )v1,tdt)(

∫ T

0
ρt

v1,t

2(v0,t)
1
2

dBt−
∫ T

0

ρ2t
2
v1,tdt)]+E. (5.2)

In addition, one has

−E[∂
2P̃BS

∂x2

∫ T

0

ρ2t v
2
1,t

8v0,t
dt]+

1

2
E[
∂2P̃BS

∂x2
(

∫ T

0
ρt

v1,t

2(v0,t)
1
2

dBt−
∫ T

0

ρ2t
2
v1,tdt)

2]

= E[
∂2P̃BS

∂x2

∫ T

0
(

∫ t

0
ρs

v1,s

2(v0,s)
1
2

dBs−
∫ t

0

ρ2s
2
v1,sds)(ρt

v1,t

2(v0,t)
1
2

dBt−
ρ2t
2
v1,tdt)]

= E[
1

2
(
∂3P̃BS

∂x3
− ∂

2P̃BS

∂x2
)

∫ T

0
(

∫ t

0
ρs

v1,s

2(v0,s)
1
2

dBs−
∫ t

0

ρ2s
2
v1,sds)ρ

2
t v1,tdt]

= E[
∂2P̃BS

∂xy

∫ T

0
(

∫ t

0
ρs

v1,s

2(v0,s)
1
2

dBs−
∫ t

0

ρ2s
2
v1,sds)ρ

2
t v1,tdt],

where we have used Ito’s Lemma for the square at the first equality, Lemma 5.2
at the second and Identity (5.1) at the third one. Substituting this relation in the
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approximation (5.2) and summing the second and fourth line, one gets

g(1) =E[P̃BS]+E[
∂P̃BS

∂y

∫ T

0
(v1,t+

v2,t

2
)dt]

+E[
∂2P̃BS

∂xy
(

∫ T

0
(

∫ t

0
ρs

v1,s

2(v0,s)
1
2

dBs−
∫ t

0

ρ2s
2
v1,sds)ρ

2
t v1,tdt

+ (

∫ T

0
(1−ρ2t )v1,tdt)(

∫ T

0
ρt

v1,t

2(v0,t)
1
2

dBt−
∫ T

0

ρ2t
2
v1,tdt))]

+
1

2
E[
∂2P̃BS

∂y2
(

∫ T

0
(1−ρ2t )v1,tdt)2]+E. (5.3)

We now study the second term of (5.3). In the computations below, we use Ito’s
Lemma for the second equality, Lemma 5.2 and Identity (5.1) for the third equality

and Lemma 5.1 (G =
∂2P̃BS
∂xy v1,t) for the fourth one; it gives

A =E[
∂2P̃BS

∂xy
(

∫ T

0
(

∫ t

0
ρs

v1,s

2(v0,s)
1
2

dBs−
∫ t

0

ρ2s
2
v1,sds)ρ

2
t v1,tdt

+ (

∫ T

0
(1−ρ2t )v1,tdt)(

∫ T

0
ρt

v1,t

2(v0,t)
1
2

dBt−
∫ T

0

ρ2t
2
v1,tdt))]

=E[
∂2P̃BS

∂xy
(

∫ T

0
(

∫ t

0
ρs

v1,s

2(v0,s)
1
2

dBs−
∫ t

0

ρ2s
2
v1,sds)(ρ

2
t + 1−ρ2t )v1,tdt

+

∫ T

0
(

∫ t

0
(1−ρ2s )v1,sds)(ρt

v1,t

2(v0,t)
1
2

dBt−
ρ2t
2
v1,tdt))]

=

∫ T

0
E[
∂2P̃BS

∂xy
v1,t(

∫ t

0
ρs

v1,s

2(v0,s)
1
2

dBs−
∫ t

0

ρ2s
2
v1,sds)]dt

+E[
∂2P̃BS

∂y2

∫ T

0
(

∫ t

0
(1−ρ2s )v1,sds)ρ2t v1,tdt]

=

∫ T

0
E[
∂2P̃BS

∂xy
(v1,t(−

∫ t

0

ρ2s
2
v1,sds)+

∫ t

0
ρs

v1,s

2
√
v0,s

DB
s v1,tds)

+
∂3P̃BS

∂x2y
v1,t

∫ t

0

ρ2s
2
v1,sds]dt+E[

∂2P̃BS

∂y2

∫ T

0
(

∫ t

0
(1−ρ2s )v1,sds)ρ2t v1,tdt].

From Equation (2.3), one has DB
s v1,t = e−kteksξs

√
v0,s. Hence it is deterministic. Thus,

using Identity (5.1) and Lemma 5.2 for the first equality and Equation (2.4) for the
second equality, one has:

A =E[
∂2P̃BS

∂y2

∫ T

0
((

∫ t

0
ρ2sv1,sds)v1,tdt+ (

∫ t

0
(1−ρ2s )v1,sds)ρ2t v1,tdt)]

+E[
∂P̃BS

∂y

∫ T

0
(

∫ t

0

v1,s

2v0,s
e−kteksξs

√
v0,sdBs)dt]

=E[
∂2P̃BS

∂y2

∫ T

0
((

∫ t

0
ρ2sv1,sds)v1,tdt+ (

∫ t

0
(1−ρ2s )v1,sds)ρ2t v1,tdt)]+E[

∂P̃BS

∂y

∫ T

0

v2,t

2
dt].
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Now, plug this last equality into (5.3) and use the identity

∫ T

0
((

∫ t

0
ρ2sv1,sds)v1,tdt+ (

∫ t

0
(1−ρ2s)v1,sds)ρ2t v1,tdt)+

1

2
(

∫ T

0
(1−ρ2t )v1,tdt)2 =

∫ T

0
((

∫ t

0
ρ2sv1,sds)v1,tdt+ (

∫ t

0
(1−ρ2s)v1,sds)(ρ2t + 1−ρ2t )v1,tdt) =

∫ T

0
((

∫ t

0
(ρ2s + 1−ρ2s))v1,sds)v1,tdt =

1

2
(

∫ T

0
v1,tdt)

2;

it immediately gives the result.

5.3. Proof of Theorem 2.3. Proof. Step 1: We show the equality

E[
∂P̃BS

∂y

∫ T

0
(v1,t+ v2,t)dt] =

2
∑

i=1

ai,T
∂i+1PBS(x0,

∫ T

0
v0,tdt)

∂xiy
,

where

a1,T = ω
(κ,ρξv0,.),(−κ,1)
0,T

, a2,T = ω
(κ,ρξv0,.),(0,ρξ),(−κ,1)
0,T

.

Actually, the result is an immediate application of Lemma 5.4 and Lemma 5.5.
Step 2: We show the equality

1

2
E[
∂2P̃BS

∂y2
(

∫ T

0
v1,tdt)

2] =

1
∑

i=0

b2i,T
∂2i+2PBS(x0,

∫ T

0
v0,tdt)

∂x2iy2
,

where

b0,T = ω
(2κ,ξ2v0,.),(−κ,1),(−κ,1)
0,T

,

b2,T = ω
(κ,ρξv0,.),(−κ,1),(κ,ρξv0,. ),(−κ,1)
0,T + 2ω

(κ,ρξv0,.),(κ,ρξv0,.),(−κ,1),(−κ,1)
0,T =

a2
1,T

2
.

Indeed, one has

1

2
E[
∂2P̃BS

∂y2
(

∫ T

0
v1,tdt)

2] = E[
∂2P̃BS

∂y2

∫ T

0
(

∫ t

0
v1,sds)v1,tdt]

= E[
∂2P̃BS

∂y2

∫ T

0
(

∫ T

t
e−κsds)(eκtv21,tdt+ξt

√
v0,te

κt(

∫ t

0
v1,sds)dBt)]

= E[
∂2P̃BS

∂y2

∫ T

0
(

∫ T

t
e−κsds)eκtv21,tdt]+E[

∂3P̃BS

∂xy2

∫ T

0
ω
(κ,ρξv0,.),(−κ,1)
t,T

v1,tdt],

where we have used Lemma 5.3 ( f (t) = e−κt, Zt = (
∫ t

0
v1,sds)(e

κtv1,t)) for the second

equality and Lemmas 5.2 and 5.3 ( f (t) = (
∫ T

t
e−κsds)ρtξtv0,teκt, Zt =

∫ t

0
v1,sds) for the

last one.
An application of the first and second equality in Lemma 5.4 gives the announced
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result. Actually, it remains to show that b2,T = a2
1,T
/2. Indeed, consider two càdlàg

functions f and g : [0,T] �R. Then

(
∫ T

0
ft(

∫ T

t
gsds)dt)

2

2
=

∫ T

0

∫ T

0
ft1 (

∫ T

t1
gt3dt3) ft2 (

∫ T

t2
gt4dt4)dt2dt1

2

=

∫ T

0
ft1 (

∫ T

t1

∫ T

t1

gt3 ft2 (

∫ T

t2

gt4dt4)dt3dt2)dt1

=

∫ T

0
ft1 (

∫ T

t1

ft2

∫ T

t2

∫ T

t2

gt3gt4dt3dt4dt2

+

∫ T

t1

gt3

∫ T

t3

ft2

∫ T

t2

gt4dt4dt2dt3)dt1

=2

∫ T

0
ft1

∫ T

t1

ft2

∫ T

t2

gt3

∫ T

t3

gt4dt3dt4dt2dt1

+

∫ T

0
ft1

∫ T

t1

gt3

∫ T

t3

ft2

∫ T

t2

gt4dt4dt2dt3dt1.

Putting f (t)= ρtξtv0,te
kt and g(t)= e−kt in the previous equality readily gives b2,T =

a2
1,T

2 ,
which finishes the proof.

6. Conclusion. Wehaveestablishedanapproximationpricing formula for call/put
options in the time dependent Heston models. We prove that the error is of order
3 w.r.t. the volatility of volatility and 2 w.r.t. the maturity. In practice, taking the
Fourier method as a benchmark, the accuracy is excellent for a large range of strikes
andmaturities. In addition, the computational time is about 100 to 1000 times smaller
than using an efficient Fourier method.

Following the arguments in [BGM09b], our formula extends immediately to
other payoffs depending on ST (note that the identities (2.2) and (5.1) are valid for
any payoff of this type). As explained in [BGM09b], the smoother the payoff, the
higher the error order w.r.t. T; the less smooth the payoff, the lower the error order
w.r.t. T. For digital options, the error order w.r.t. T becomes 3/2 instead of 2.

Extensions to exotic options and to the third order expansion formula w.r.t. the
volatility of volatility are left for further research.

7. Appendix: closed formulas in Heston model. There are few closed repre-

sentations for the call/put prices written on the asset St = e
∫ t

0
(rs−qs)dseXt in the Heston

model (defined in (1.1) and (1.2)). We focus on the Heston formula [Hes93] and on
the Lewis formula [Lew00]. Both of them rely on the knowledge of the characteristic
function of the log-asset price (Xt)t and on Fourier transform-based approaches.

(i) In [Hes93], Heston obtains a representation in a Black-Scholes form:

CallHeston(t,St,vt;T,K) = Ste
−
∫ T

t
qsdsP1−Ke−

∫ T

t
rsdsP2,

where both probabilities P1 and P2 are equal to a one-dimensional integral of char-
acteristic functions.

(ii) In [Lew00], Lewis takes advantage of the generalized Fourier transform,
by using an integration along a straight line in the complex plane parallel to the real
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axis. It is important to detect the strip where the integration is safe. Lewis suggests
the use of complex numbers z such that Im(z) = 1

2 . His formula writes

CallHeston(t,St,vt;T,K) = Ste
−
∫ T

t
qsds− Ke−

∫ T

t
rsds

2π

∫ i
2+∞

i
2−∞

e−izXφT(−z)
dz

z2− iz

where X = log

(

Ste
−
∫ T
t qsds

Ke−
∫ T
t rsds

)

and φT(z) = E(ez(XT−Xt)|Ft). Then, the above integral is

evaluated by numerical integration.
Using PDE arguments in combination with affine models, we can obtain an explicit
formula for φT(z) in the case of constant Heston parameters. In addition, it can
be computed without discontinuities in z, following the arguments in [JK05]. For
piecewise constant parameters, the characterictic function φT(z) can be computed
recursively using nested Riccatti equations with constant coefficients: we refer to the
work by Mikhailov and Nogel [MN03].

In our numerical tests, we prefer the Lewis formula which gives better numerical
results, in particular for very small or very large strikes, compared to the Heston
formula.
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