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38706 La Tronche Cedex, France
first name.last name@imag.fr

Abstract: This paper applies machine learning techniquesttmlent modeling. It
presents a method for discovering high-level studehaviors from a very large set of
low-level traces corresponding to problem-solvirgicns in a learning environment.
Basic actions are encoded into sets of domain-dkpenattribute-value patterns called
cases. Then a domain-independent hierarchical clusteidegtifies what we call general
attitudes, yielding automatic diagnosis expressed in natlaalguage, addressed in
principle to teachers. The method can be applieddividual students or to entire groups,
like a class. We exhibit examples of this systemliag to thousands of students' actions
in the domain of algebraic transformations.

Keywords:.. Computer-assisted instruction, Machine learnifgucation, Mining
methods and algorithms

1 Introduction

Many learning environments are able to store vetgited traces of students' activities thus
producing huge sets of low-level data. Howeverniiging high-level behaviors from these
data is not straightforward, especially if the cgpis of the domain knowledge are not
explicitly encoded together with the correspondirages. In this paper we present a general
approach that aims at discovering patterns of stutiehaviors. Its principles are applicable
whenever the information carried by the traces bmagplit as finite sequences{ofitial state,
final state} pairs, where the final states are the result sfdostudent transformations performed
on the corresponding initial states. Within thisnext, final states are the initial states of
subsequertinitial state, final state} pairs (unless they are at the end of the sequence).

Our approach is based on a two-steps procedure:

« adomain-dependent representation of the information carried by trecés, which
encodes eachinitial state, final state} pair produced by the student, as a triplet
{context, action, outcome} that we call aase;

¢ adomain-independent machine-learning procedure, based on a clusteecignique
generating the high-level patterns, that we athitudes.

The output of our system are studeatstudes, which are generalizations of thases. They
are represented within the same formalism as ddmes, i.e. {context, action, outcome}.
Furthermore, attitudes are automatically translated into natural languagepressions
understandable by teachers as well as studentséhes Attitudes might be used as inputs to
a tutoring system, for instance for generatingedecting a new set of exercises, which may be
eventually coupled with the learning environmerigufFe 1 displays the general architecture,
composed of the learning environment (1), the eeco@) and the machine learning
construction ofttitudes (3).
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Fig. 1. General architecture of our approach

The paper is organized as follows: in section 2 present the general overview of our
approach. The specific learning environment foehtg learning on which we demonstrate our
method is presented in section 3. Section 4 pregshatdomain-dependent encoding procedure
and the data representation. The machine-learniogedure and the results are reported on
section 5. In section 6 we compare our system teeseelated work. Finally, we conclude and
present possible extensions of our work on segtion



2 General principlesof our approach

Our system is intended to be hooked up to a laggiety of learning environments that lack
an intelligent tracing system. In this section wewvide an example to present the general
strategy used to identify high-level behaviors, edrtheattitudes, starting with a collection of
low-level traces adequately encodectases.

In the algebra learning context of our presentiappbn, a high-level behavior may be, for
instance, not modifying the inequation sign whenvimg a negative multiplicative term from
one side of an equation to the other. Since thig anse systematically or just by inattention,
we use a statistical approach to assess the signife of local behaviors over a large set of
studentstases. Our aim is to make relevant generalizations flom-level case descriptions to
high-levelattitudes.

Let us show an example of attitude automatically produced by our system from fifty
transformations performed by a student. These foemstions are mainly movements of terms
in equations. A movement is a shortcut which igtduo students (at least in France) to shrink
the number of resolution steps. Beginners are tatinglt to solve an equation such as 7x-4=3,
they have to apply the same operation to both g@eéding 4), but later in the studies they are
taught that they have to "move" the -4 from one g the other, while changing its sign. An
automatically generated description of attitude produced by our system (typically, our
system identifies around 5 toatitudes for each student) looks as followsicoherent attitude
consisting in moving a positive term in additive position in an equation. This movement is
performed with or without changing its sign. The final position is additive. The expression
"with or without" reflects the fact that the systgrarformed a generalization of a sub-part of
the student's action ("changing its sigrBefore detailing our method, we first present the
algebra learning environment used to collect thdestt traces.

3 Algebra L earning Environment

The ApLusix learning environment [1] allows students to soligehraic problems using an
equation editor. Given algebraic equations or imgiqus to be solved, students usingLBsIX
proceed step by step as they would do on a noteliduk only imposed constraint is that the
expressions entered at any resolution step musteliformed from a syntactic point of view.
Figure 2 presents a snapshot of the system, showipgoposed exercise and a student's
resolution in three steps.PAUSIX stores all of the student's intermediate resutidicated on
the figure as step 1 and step 2 of the resolut@h.course, the granularity of the data
continuously varied since the transformation frome cstudent's step to the next one may
involve implicit mental operations and/or severahdtaneous algebraic transformations. For
example, the second step combines two actionanthigplicative term -4 was moved from the
LHS to the denominator of the RHS of the equatioitheut changing the sense of the
inequality, and the fraction was then simplified.
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Fig. 2. Snapshot of an#Lusix screen, showing the resolution of an exerciseugit@a decomposition
into 2 steps. Each step may correspond to manyeelmy algebraic transformations.

In order to implement a systematic treatment aravide an automatic student model, we
need to homogenize the granularity of collectech.d@his is done by introducing whenever
necessary virtual elementary steps based on dokmawledge. In the particular case of our
algebra learning environment, these steps are peoblby ANAIS, a particular software
developed by the ALusix team, which decomposes the complex student's sSi#ps
intermediate elementary steps. To this end, itainsta full set of elementary algebraic rules
identified by experimented teachers and didactipeeis as being usually implemented by
students. These rules are algebraic transformatitias may be either correct (for instance,
(a+b)2 - az+2ab+b2, or incorrect (for instance x n).

ANAIS strives to describe the student transformationsnfiane step to the next one as
resulting from the successive application of rubddsained through a best-first search in the
space of all possible algebraic transformationscofdingly, the student's production is
segmented into{initial state, final state} pairs, where each final state stems from the
corresponding initial state after the applicatidrasingle elementary transformation rule. Each
pair of states is labeled as correct or incorrecbeding to the semantic of the rule that has been
used to generate it. As a result, we obtain a sterdi and homogeneous data set "enriched"
with the ANAIS' virtual steps. This set is the input to our syst€or example, if a student has
performed the following transformation: -4x <2 x < -1/2, ANAIS identifies two steps:

e 4x<2 > X < 2/(-4) (incorrect)
o X<2/(-4) - X <-1/2 (correct)

Thus, the two correspondifgitial state, final state} pairs are: {-4x < 2, x < 2/(-4))}, labeled
incorrect, and {x < 2/(-4), x < -1/2} labeled cotte These are the inputs to our modeling
system.

Data used in this paper have been collected imge Iscale experiment performed in middle
schools in Brazil during the fall 2003-2004. A toreumber of 2 700 students were asked to
solve between 3 and 10 algebraic problems usingghpl After segmentation withmais, their
production represents 111 2§8itial state, final state} pairs, corresponding to an average of 41
resolution steps per student.



4 Data Representation: the Domain-dependent Encoder

In this step we transform each domain-depen§ieitial state, final state} pair into a generic
case, that is to say a tripldtontext, action, outcome}, where:

« context represents the relevant part of the initial staith respect to the semantics
of the transformation performed by the student;

e action represents the action itself, based on an autoraatlysis of the differences
between initial state and final state and usingctireectness label described above;

e outcome represents the relevant part of the final state.

Each item of thease triplet is encoded as a set of attributes, in order t fegularities and
identify general behaviors using machine-learniqgpraaches. We organize the attributes
describing these components into three categagélecting three different levels of location in
the initial and final states. These categories are:

e argument: descriptors of the element(s) directly concerbgdthe transformation
between the initial and the final state;

« local term (simply called term hereafter): descriptors of ékements that are close
to the argument;

e expression: descriptors of global properties of the state.

Coming from our domain of algebra learning, herarisexample (Figure 3) where we show

the three descriptor levels of the initial statenfincorrect transformation.
Argument
{:Aij+4fz:9x2710 — x+4fz:9x2710+5
‘- 3 3

Term
- _

~
Expression

Fig. 3. The three different levels of location: arguméeatm and expression

In the domain of movements in algebraic equatioves defined 25 attributes to express the
context, 6 for the action and 6 for the outcomtglizing 37 attributes for eadase. Depending
on their nature, attributes may take different @ise values. Table 1 contains the list of the
most relevant ones for the transformation descriipeffigure 3. Note that the non-relevant
attributes are not detailed here: being unchangetidaction, they remain thus identical in the
context and the outcome.

Table. 1. Representation of @se in the{context, action, outcome} formalism

Context Action Outcome
arg.side left
arg.location beginning
arg.polynomial false
arg.coefficient true
arg.implicitSign | false
arg.operateur X arg.operateurChangedtrue arg.operateur  +
arg.category multiplicat | arg.categoryChanged true arg.category | add
arg.negative true arg.signChanged true arg.negative | false
term.polynomial | true
expr.type equation expr.typeChanged | false expr.type | equation
expr.polynomial | true

expr.correct | false




The content of the table can be interpreted a®volithe context attributes say that the
argument is in the left hand side of the equatarthe beginning, it is not polynomial, it is an
integer with an explicit negative sign and the aeparis multiplicative. The term is polynomial.
The expression is a polynomial equation. The outcoattributes say that, after the
transformation the operator of the argument is ddlit@n, it belongs to an additive category
and is positive. The expression is still an equmtibthe action attributes are derived from the
context and outcome attributes. They indicate that operator of the argument has been
changed by the student, that its category andigts Isave also been modified. However, the
type of the expression remains the same. In additibe last attribute indicates that this
transformation is algebraically incorrect.

It is worth noting that some of these attributes sdundant in this example, but they are
needed to describe other students’ behaviors. ifhésao use attributes that allow the model to
give a fine explanation of students’ behaviors, neviesome of them are redundarithe
generalization process will select which of theratlexplain the transformation.

Provided the {initial state, final state} pairs arepresented bgases of {context, action,
outcome} triplets, our approach can be fruitfullyed to provide behavioralktitudes of the
studentsAttitudes are generalizations of studert&ses, performed by an independent module
we will present in the next section. Its role igdentify high-level behavior from this low-level
data.

5 Discovering Attitudes

5.1 Technique: Hierarchical Clustering

Cases are the basic material used by our system to werduigh-level student's behavior. Our
approach relies on an unsupervised learning alguorito cluster similarcases into classes
hereafter calledittitudes. The goal is to get a set of a few classes, reptasve of typical
student's behavior. We use a hierarchical clusietechnique [2]. This algorithm groups
together the two most similar (according to a distadetailed below cf. 5.3)ases into a
working cluster that replaces the corresponduages. The procedure is applied again and again
on the set of remainingases and working clusters. The latter are candidaggtitudes: they
generalize the underlyingases. The algorithm stops when the closest similarigtween
elements reaches a given threshold.

Our attribute-based representation is combined wavighatistical counting that keeps trace of
the number ofases that share the same attribute value inwleking cluster or attitude. We
keep track of this statistical information to ctaesize the way attributes are generalized, and
whether this generalization is significant or netvae explained in part 2, the goal being to
distinguish between systematic or occasional stigl@ctions.Cases have one and only one
counter set to 1 for each attribute, the one cpoeding to the actual value of the attribute.
When we group together twaaises or working clusters, the counters of the attribute values are
updated. Table 2 contains an example in whiate 12 is grouped withworking cluster 6,
giving a newworking cluster that generalizes (and replaces) both of them.aftnbute values
in theattitudes represent the numbers adses sharing the corresponding attribute value in the
cluster.



Table. 2. Generalization of onease and onevorking cluster producing a newvorking cluster

Attributes Case 12 Working Cluster 6 Working Cluster (6&12)
arg.side left | right + | left |right — | left | right
0 1 1 3 1 4
arg.location beg. | mid. | end|alone| beg. | mid. | end| aloneg| beg. | mid. | end|alone
0 1 0| O 0 1 3 0 0 2 3 0
true | false true | false true | false
arg.comple
1 0 0 1 1 1
arg.polynom | true | false true | false true | false
ial 1 | 0 3 |0 4 0

5.2 Different kinds of attitudes

An attitude is a generalization of underlyingases. The attribute "expr.correct” has a
particular meaning. It is not used during the galimation process, but is very important to
characterize thattitudes obtained. We distinguish two kinds atfitudes:

« coherent attitudes, that are either correct or incorrect;

« incoherent attitudes which contain a statistically significant proporti of correct
and incorrectases. The fact that both proportioase significantly not equal to zero
implies that it is probably not an isolated caserbther a more systematic behavior.

5.3 The distance

To compare the pairs oases or working clusters we use a distance index taking into account
the differences between the context part, the agigrt and the outcome part of the tease
triplets considered. This distance relies on afomeft o emphasizing the context part or the
action/outcome part (cf. Equation 1). If the comtpart is given more weight, the algorithm
tends not to clusteattitudes that have distant contexts. The system is thenentikely to
discover incoherent behaviors (i.e. attitudes incttthe student performs different actions in
similar contexts). In the other way, if the act@amd outcome parts are given more weight, the
system does not tend to groattitudes with distant actions, even if contexts are simildhnis
would lead to the discovery of coherent behavioes @ttitudes in which the student performs
similar actions in different contexts). The genatistance [y between twacases or attitudes
Ajand Ais the following (ctx, act and out stand for contexction and outcome):

Dy (AA]) =aXdist(ctx(A),ctx(AJ))+(1—a)><(dist(act(A) ,act(A])) +dist(out(A) ,out(A]))) (Eq X

where the distanadist between sets of attributes of a given categonyedds on the frequency
of values for each attributes. Each attribdiie weighted by an integey :

Vidm _ #Vj dm

#
Z‘Au ZVi d

Now we are going to explain how the clustering dan used to analyze not only the
individual behavior of each student (cf. 5.4) bisibao provide a snapshot of the behavior of a
group of student (cf. 5.5).

diSt(Vi,Vi)=;[de;

] With{#vi,d,m : frequency of value  for attribute (Eq ;

ZV 4 humber of accurrences of attribate



5.4 Individual Attitudes

We applied this method on 111 258 transformatiaiected from 2 700 students in Brazil.
Figure 4 displays the hierarchical clustering dfthe transformations produced by student
#1497 based on fifty transformations. The full t(Eegure 4) is shown for illustrative purposes.
The algorithm was actually stopped at the dasheel that represents the chosen generality
level, which corresponds to a similarity threshofd).38. This threshold appears to be a good
value according to the conducted tests. We use<alad shapes of the nodes to represent the
most relevant attributes.

« The color indicates the correctness of the noderdcb light gray, incorrect: dark
gray, both: middle gray).
* The shape represents the operator (+: triangsguare, *: pentagon, /: circle).

Let us describe some of the fig#titudes obtained (with our threshold) in this example.

e Attitude #1 corresponds to eorrect and coherent behavior. Its attributes indicate
that the student knows how to solve simple equatiofwhere
"argument.squareRoot", "argument.power" and "argurfraction" are false) in
which a negative term ("argument.negative"=truey teabe moved. It is the case of
transformations like : 68=2x+4 - 6x=2x+4-3 where theargument is represented
in bold. The student correctly moves the argumenthe other side, whatever its
position ("argument.side" and "argument.positiore' generalized) or its coefficient
("arg.coefficient" is generalized), the argumenttlod outcome is still in additive
position ("argument.categoryChanged"=false), bute tlsign has changed
("argument.signChanged"=true).

e Attitude #5 is an example of amcoherent attitude. In a similar case (simple
equations), but with a positive argument ("argumegative"=false), the student
sometimes fails to change the sign of the argument.

Seull =38

8 4
w

Fig.4. Hierarchical clustering afases for student #1497. Fivattitudes have been kept. Leaves contain
one or more identicaiases.



The aim of discoveringttitudes is mainly to allow teachers to obtain a precisegdosis
about students. In order to produce a more leglidgnosis of each student's production, we
transform theattitudes' attribute values into a natural language texgFé 5), by concatenating
predefined sentences. We also automatically gemnénat examples and a small comment about
the coherence or incoherence for eattitude. Whenever theattitude is incoherent, an
algorithm goes back down through the hierarchicaé tuntil reaching the first node that
clustered two cohererdttitudes. It then looks for attributes that discriminatetvibeen both
attitudes. These attributes are also provided because tlagylbm correlated with the reason for
the student's incoherent behavior. Here is an elangd such a diagnosis generated
automatically by our system:

Attitude #40 based on 14 transformations (8 correct, 6 incorrect)

Di agnosti c:

I ncoherent attitude consisting in nmoving a positive termin additive position in
an equation, this novement is perforned with or wi thout changing its sign. The
final position is additive.

Exanpl es:
FoYEMX =cccocac > r-v-nx=0
V-r=n -------- > v-r+n=0

Expl anat i on:
This student does not seemto have a coherent attitude with this context, which
could be the sign of a deeper m sunderstandi ng.

The possi bl e causes coul d be:
- the termto be noved is on the right side of the equation;
- the termto be noved contains a polynom al part;

Fig.5. Natural language translation of attitude of student #1497

Another usage of our automatattitude discovery, currently under investigation, is to
automatically generate appropriate exercises fodestts in case of incorrect or incoherent
attitudes. For instance, the above mentioregtitude #5 would lead to the generation of an
exercise in which a positive term has to be mowetthé¢ other side of an equation. For example:
TX+4=11x+13.

5.5 Group Attitudes

Processing all studentsases produced 11 02@&ttitudes. Their global analysis identified
whether some of thesatitudes were shared by several students. It is not passdlsimply
draw a frequency chart because very ftitudes are fully identical among different students,
since they are the result of an induction procHsk. thus necessary to aggregate individual
attitudes. To this end, we use the same mechanism as bbfwause individuatases and
attitudes share the same formalism. The similarity threshwlis set to a low value (0.1)
because the goal is not to generakttudes but rather to smooth the differences between
individual attitudes. Figure 6 displays the 38 most frequetittudes. The y-axis indicates the
number of individualcases that compose eacdttitude, together with their correctness. The
number of students is also displayed.
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Fig. 6. Histogram of the 38 most frequettitudes. Green and red bars represent numbers of correct
and incorrectases; the blue bars are the number of students preggtite correspondingases in their
productions.

In our data, the two most frequaattitudes are correct ones. They correspond to a movement
of a positive argumentattitude #11021, 1217 students) or a negative argumattitude
#11022, 1188 students). Incorregttitudes have also been identified. For instanatitude
#10997 (565 students) is an additive movement négative argument from one side to the
other of an inequation, without changing its sigihere are also incohereattitudes. attitude
#11023 (955 students) is an additive movement imagquation in which the sign of a negative
argument is correctly changed, but the inequatign & sometimes also reversed, probably
because of a confusion with multiplicative argunsent

6 Related work

Students’ data produced by interactive learningrenments are quite often huge sequences
of low-level descriptions which should be automatic interpreted by changing the level of
granularity [3]. Several existing systems rely omchmine learning techniques to discover
student knowledge behind such basic descriptiorgaéling regularities requires a rewriting
of student's productions in term of higher levaindin-dependent attributes defined by experts.

Many systems build user models by means of supstvisachine learning techniques based
on predefined profiles provided by domain expdrtefile Extractor [4] induces rules from pre-
classified examples, using a decision tree. It$ igda discover preferences, needs and interests
of e-learning students. Our approach is quite difie since our goal is to automatically
discover those profiles.
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Animalwatch [5] is closer to our system. Its domasnbasic arithmetic. Animalwatch
analyzes a student data to predict whether shedwmilable to solve the problem and the time
it would take her. Animalwatch uses four kinds afigbles, similar to our attributes:

e Sudent: student gender, scores to initial tests;

« Topic: type of operator (addition, substraction, etod &pe of operands;

e Problem: problem difficulty, number and difficulty of prequisites to solve the
problem (such as adding fractions, simplifying fiaws), etc.

e Context: number of prior errors, best hint seen, etc.

After tests of several algorithms, such as a Bayeslassifier and a decision tree, the authors
finally use a simple linear regression to prediet two variables. The main difference between
Animalwatch and our system is that we are not gitamg to predict performances but rather to

construct a cognitive profile of the student.

Web-EasyMath [6] also relies on machine learniggpathms to construct student models in
the domain of algebraic powers. The goal is tordefat best a model for a new user. The
student is first required to pass a test aboutkhewledge of the four basic operations and to
assess her self-estimation on basic skills. A daveighted k-nearest neighbor algorithm is
used to asses the concept knowledge level of thestedent with respect to all the students
that belong to the same category.

With a more generic scope, Sison & Shimura [7pps® several features that might be used
to categorize systems that discover student knayeldcbm their behaviors. Let us define our
approach with respect to some of these features:

e student behavior complexity (from simple values to more complex expressionsg Th
student behavior is undoubtedly complex in ouresyst

e student behavior multiplicity (from single behavior to multiple behaviors) We are
not analyzing in depth a single behavior, our systather considers a very large set
of behaviors;

« background knowledge construction (from completely specified to automatically
extended). In our case, the domain knowledge, re@tbect or incorrect, cannot be
extended by the system itself.

¢ student model construction (analytic or synthetic). Our approach is synthbgcause
it is based on behavior generalization. Howeves,ARAIS software which attempts
to discover intermediate resolution steps is amalyt

Finally, our system can be analyzed with respedilyo & Mitrovic's classification [8].
They proposed a threefold classification of exgiimelligent tutoring systems:

*  expert-centric systemsin which the internal representation of the domaimainly
designed by an expert;

« efficiency-centric systems which are partially specified and contain paranmsteat
allow to optimize a certain criterion (evaluatiomé, memory used, etc.);

e data-centric systems which learn their structure using mainly data.

This classification was initially specific to Bayas student modeling, but could be easily
extended to other approaches. In our casetténde in not a pre-defined expert object, but is
constructed by a generalization process usingmtai@duced by the student. Our approach could
therefore be considered in this classification data-centric student modeling approach.

11



7 Conclusion

This paper presents a system allowing to automiticacovering high-levehttitudes of
students out of problem-solving traces produceallgarning environment. Our general purpose
approach makes the system applicable to many teaaidmains, under the assumptions that
the student actions can be represented as (coatgixin, outcome) triplets. The system's output
is a synthesis, directly understandable by teacbedidactic experts, of the knowledge of a
student or a class. The system can deal with imeolhébehaviors and distinguish between
occasional or systematic student errors. The esnlty be used for automatically generating
new appropriate exercises.

The domain on which we applied our system is tHaalgebraic transformations, mainly
additive and multiplicative movements in equatiamsl inequations. Applications to factoring
and reducing algebraic expressions are currentbyogress.

Modeling student actions by means of a set ofbatteéis is an important feature of our
approach. We could have used other formalisms.irstance, in our algebra domain, student
actions could have been pairs of equations repredess trees and we could have invented
formalisms for representing generalized actionswéler, this formalism would have been too
much dependent on our domain and would not have kasily extended to other domains.
Attributes are a much more general way of représgratudent actions, especially at the low
level from which our approach can perform geneadilins. This formalism allows a clear
distinction between the domain knowledge and thehim&-learning process of building the
student's model. Attributes are obviously domaipetwlent, but once they have been defined,
the machine-learning mechanism is ready to opefeea consequence, the diagnosis will be
expressed in terms of the attributes, thus undedatale by humans.

It is worth noting that attributes do not have te bleverly designed in order to be
independent from each other. as we mentioned eati® generalization process will
automatically select those which best explain tiuelent behavior, provided there are enough
examples. Our system is based on the hypothedistildent traces are temporal sequences of
states, which we know is not the case for everyalomGoing from one state to the other is
done by only one action, the cause of a state libmgnly preceding state. This is probably our
strongest hypothesis, but we believe that many lprofsolving learning environments are
based on this hypothesis.

Another limit of our approach is that it does nake into account the order in which the
student is exposed to exercises. This informatiay be very useful to model the time course
of learning, through the analysis of whiattitudes appear or disappear on time. One approach
could be to rely on a incremental clustering sysseich as Cobweb [9]. The information about
student steps order are needed if we want to utaahelshe student resolution strategies. It may
certainly give richer diagnosis.
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