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Some Variations on Total Variation–Based Image Smoothing

Antonin Chambolle,1 Stacey E. Levine,2 and Bradley J. Lucier3

Abstract

In this paper we study finite-difference approximations to the
variational problem using the BV smoothness penalty that was intro-
duced in an image smoothing context by Rudin, Osher, and Fatemi.
We give a dual formulation for an “upwind” finite-difference approx-
imation for the BV seminorm; this formulation is in the same spirit
as one popularized by Chambolle for a simpler, more anisotropic,
finite-difference approximation to the BV seminorm. We introduce
a multiscale method for speeding the approximation of both Cham-
bolle’s original method and of the new formulation of the upwind
scheme. We demonstrate numerically that the multiscale method is
effective, and we provide numerical examples that illustrate both the
qualitative and quantitative behavior of the solutions of the numeri-
cal formulations.

1. Introduction

In an influential paper, Rudin, Osher, and Fatemi
[23] suggested using the bounded variation seminorm to
smooth images. The functional proposed in their work has
since found use in a wide array of problems (see, e.g., [7]),
both in image processing and other applications. The nov-
elty of the work was to introduce a method that preserves
discontinuities while removing noise and other artifacts.
We begin by giving some background on that work.

We work on the unit square I = [0, 1]2, where the
bounded variation seminorm is defined as

|f |BV(I) :=

∫

I

|Df(x)| dx

:= sup
{

∫

I

f ∇ · p
∣

∣

∣ p : I → R
2,(1)

p ∈ C1(I), |p(x)| ≤ 1 for all x ∈ I
}

The formulation of BV(I) smoothing on which we depend
is as follows: Given a nonconstant function f and a number
λ > 0, find the function f̃ that minimizes over all g

(2)
1

2
‖f − g‖2

L2(I) + λ|g|BV(I).

Fix f ; for each λ this problem has a unique solution that
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satisfies

(3)
f̃ − f

λ
+ ∂X |f̃ |BV(I) ∋ 0,

where ∂Xϕ(g) is the subdifferential of the convex, lower-
semi-continuous map ϕ : L2(I) → R. (See [17] for defini-
tions and the basic results we quote here.) Furthermore,
if we set

‖f̃ − f‖2
L2(I) = σ2,

then σ2 is a continuous, one-to-one, increasing function of
λ and

(4) σ2 <
∥

∥

∥f −
∫

I

f
∥

∥

∥

2

L2(I)
.

Thus, given σ2 that satisfies (4) there is a unique λ such

that the solution f̃ of (2) given above is also the solution

of the problem: Find f̃ that minimizes over all g with

‖f − g‖2
BV(I) = σ2

the functional

|g|BV(I).

Rudin, Osher, and Fatemi introduced BV(I) image
smoothing in the latter form, but these two formulations
are equivalent [11].

More recently, the BV smoothing technique is used as
just one step in the so-called inverse scale space approach
[20, 8].

In the continuous setting, the behavior of the solutions
of (2) is well understood (see [22] and references there-in).
The qualitative properties of solutions of discrete versions
of (2) are not, perhaps, as well known or understood. In
this work we study the behavior of solutions of the discrete
approach featured in [9] as well as an “upwind” variant
of this model that better preserves edges and “isotropic”
features.

The paper is organized as follows. In Section 2, we
discuss the algorithm introduced in [9] for minimizing a
finite-difference approximation to the ROF functional. In
Section 3, we propose a new formulation of an upwind
finite-difference approximation to the bounded variation
seminorm, and show how this can be used to minimize the
ROF functional in a manner similar to [9]. In Section 4, we
introduce a multiscale algorithm that greatly reduces the
run time of both methods. Section 5 contains numerical
examples that demonstrate the qualitative properties of
the algorithm and observed rates of convergence for two
special problems with known solutions.



2. Discrete BV(I) Variational Smoothing.

To begin we consider discretizations of (2). A stan-
dard approach, as first suggested in [23], is to regularize
the BV seminorm and consider the problem of minimizing,
with ǫ > 0,

1

2
‖f − g‖2

L2(I) + λ

∫

I

√

|∇g|2 + ǫ2.

This functional is differentiable in g, and one can follow
the flow of its associated Euler-Lagrange equation; numer-
ical methods approximate this flow. This is sufficient for
some applications, but the solution now depends on the
regularization parameter ǫ.

In this work we consider a discrete analog of (2) and
follow the dual approach of in [9]. The material in this
section is classical; we refer the reader to [9] for a more
extended treatment, and to [13] which puts [9] into some
historical context. Another approach to solving the dis-
crete problem that arises here is through second-order cone
programming [18], and through graph cuts [14], where one
considers anisotropic approximations to the usual isotropic
BV seminorm.

Given N > 1, we let h = 1/N and consider discrete
functions

fi, i = (i1, i2), 0 ≤ i1, i2 < N.

A discrete Lh
2 (I) norm of f is defined by

‖f‖2
Lh

2
(I) =

∑

0≤i1,i2<N

|fi|2 h2.

One way to compute a discrete gradient of a discrete scalar
function fi is given by

(5) ∇hfi :=
(fi+(1,0) − fi

h
,
fi+(0,1) − fi

h

)

.

For any discrete gradient operator, one needs to spec-
ify the value of fi for some values of i outside [0, N)2; to
do so, we need to specify boundary conditions. We as-
sume that scalar discrete functions g, f , etc., are either
periodic (with period N) or satisfy Neumann or Dirichlet
boundary conditions. For Dirichlet boundary conditions,
fi is zero for i outside [0, N)2; for Neumann conditions, we
consider f to be reflected across the lines i1 = N − 1/2
and i2 = N − 1/2 and then extended periodically across
the plane with period 2N .

Given a discrete gradient, we can define an associated
discrete BV seminorm

|f |BVh(I) =
∑

0≤i1,i2<N

|∇hfi|h2

and then in turn a discrete analogue to (2),

(6)
1

2
‖f − g‖2

Lh

2
(I) + λ|g|BVh(I).

For any discrete gradient, we define an associated dis-

crete divergence of vector functions pi = (p
(1)
i , p

(2)
i ); given

the discrete gradient (5), we define the associated diver-
gence by

(7) ∇h · pi =
p
(1)
i − p

(1)
i−(1,0)

h
+

p
(2)
i − p

(2)
i−(0,1)

h
.

As for boundary conditions, we note that in the following
we compute discrete divergences only of discrete vector
fields that are themselves discrete gradients; therefore we
compute pi for i outside of [0, N)2 in a manner consistent
with whatever boundary condition we have chosen for dis-
crete scalar functions fi.

Because of how the discrete gradient and divergence
are related, we have

(8)

|f |BVh(I) =
∑

0≤i1,i2<N

|∇hfi|h2

= sup
|pi|≤1

∑

0≤i1,i2<N

(−∇h)fi · pi h2

= sup
|pi|≤1

∑

0≤i1,i2<N

fi

(

∇h · pi

)

h2.

The first equality is obvious; the second (which can be
interpreted as “the adjoint of the discrete divergence is the
negative of the discrete gradient”) follows by summation
by parts.

Thus, if the symmetric convex set K is defined by

K =
{

gi = ∇h · pi

∣

∣ |pi| ≤ 1, pi = (p
(1)
i , p

(2)
i )
}

,

then

|f |BVh(I) = sup
g∈K

∑

figi h2 =: 〈f, g〉.

Using classical convexity arguments, the first author [9]

showed that the minimizer f̃ of (6) is f − λ∇h · p̄ with p̄ a
minimizer of

(9) F (p) :=
∥

∥

∥∇h · p − f

λ

∥

∥

∥

2

subject to the constraint

(10) p ∈ K := {p : [0, N)2 → R
2 | |pi| ≤ 1 for all i}.

In other words,

(11) f̃ = f − πλKf,

where πλK is the orthogonal projector in Lh
2(I) of f onto

the convex set λK.
Chambolle [9] gave a specific iterative algorithm for

finding a discrete vector field p that minimizes (11). He
first set p0

i = 0 for all i (so that p0 is obviously in K) and
then calculates

(12) pn+1
i :=

pn
i − τ(−∇h)(∇h · pn − f/λ)i

1 + τ |(−∇h)(∇h · pn − f/λ)i|
.

He notes that pn ∈ K for all n and shows, using the
Karush-Kuhn-Tucker theorem, that if 0 < τ ≤ h2/8 the
limit limn→∞ pn exists and gives a minimizer of (11) over

2



all p with |pi| ≤ 1. Procedure (12) can be written as the
two-step process

p
n+1/2
i := pn

i − τ(−∇h)(∇h · pn − f/λ)i,

pn+1
i : =

pn+1/2

1 + |pn+1/2
i − pn

i |
,

where the first formula is just gradient descent of the func-
tional F (p) with step τ , and the second is a nonlinear pro-
jector that ensures that pn+1 ∈ K if pn

i ∈ K.
In [10], Chambolle speculates whether the two-step

procedure

(13)

p
n+1/2
i := pn

i − τ(−∇h)(∇h · pn − f/λ)i,

pn+1
i :=

p
n+1/2
i

max(1,
∣

∣p
n+1/2
i

∣

∣)

yields vector fields pn such that ∇h · pn converges to the
projection πK(f/λ). Again, the first half-step is gradient
descent along the functional F (p) given in (23), while the
second is the Lh

2 -projection of p onto the set K. We note
at the end of the next section that this iteration is a special
case of a more general minimization algorithm developed
originally by Eicke [16], which itself has been generalized
by Combettes [12, 13]. There is recent work related to
algorithms of this type by Aujol [4].

3. Upwind BV Smoothing

One might think that, given g ∈ BV(I), the L2(I)
projection of g on a grid with sidelength h

(14) gi =
1

h2

∫

Ii

g, Ii = h(I + i)

or the (multi-valued) L1(I) projection of g on the same
grid

gi = any m such that |{x ∈ Ii | g(x) ≥ m}| ≥ 1/2

and |{x ∈ Ii | g(x) ≤ m}| ≥ 1/2

would satisfy

(15) lim
h→0

|g|BVh(I) = |g|BV(I),

but this is not true in general. If g is C1, then integration
by parts in (1) shows that (15) holds. Again, if g is the
characteristic function of the set {x1 < 1/2} or {x2 <
1/2}, or even {x1 + x2 < 1}, then (15) holds, but if g is
the characteristic function of {x1 < x2} and we use the
projection (14) then a calculation shows that

(16) 2 = lim
h→0

|g|BVh(I) 6= |g|BV(I) =
√

2 .

In fact, this is not so much of an issue as far as min-

imization problems are concerned, since it is well known
in this case that the correct notion of convergence is Γ-

convergence [6], which ensures convergence of the mini-
mizers of variational problems. It can be shown without
much difficulty that the semi-norms |·|BV h Γ-converge as
h → 0 to the BV seminorm. However, it follows from the

inequality (16) that the approximation of χ{x1<x2}, as a
possible solution of a minimization problem, will be possi-
ble only after some smoothing of the discontinuity, so that
the output of a discrete minimization will usually not be
as sharp as one could hope.

This issue motivates us to we define an “upwind” dis-
crete BV(I) norm of a discrete scalar function gi given by

(17) ‖g‖BVh(I) :=
∑

i

|(−∇h)gi ∨ 0|h2,

where we have defined the discrete gradient

(18) (−∇h)gi =



















gi − gi+(1,0)

h
gi − gi−(1,0)

h
gi − gi+(0,1)

h
gi − gi−(0,1)

h



















.

and we denote by p∨ q and p∧ q the componentwise max-
imum and minimum, respectively, of the vectors p and q.
(Similarly, if we write an inequality between vectors, p ≤ q,
then we mean that this inequality holds componentwise.)
This type of operator is based on the classical first-order
upwind finite-difference scheme used to solve hyperbolic
partial differential equations; upwind methods have found
important applications in level set methods [21].

Of course, in the present case, the problem we are
solving is degenerate elliptic and there is, strictly speak-
ing, no direction of “wind” so that our choice may be seen
as quite arbitrary (and, in fact, the reverse direction is also
an admissible choice). However it still produces the desired
effect, which is to preserve some discontinuities better than
standard discretizations. We may refer, for a similar idea,
to Appleton and Talbot [3] who recently proposed to com-
pute minimal surfaces by solving some hyperbolic system,
discretized with an upwind scheme. Also in their case the
“speed” and “wind” can be reversed, still, their approach
produces sharp discontinuities as desired — on the other
hand, it does not really correspond to the minimization of
a convex discrete functional such as our upwind TV.

In (17) we include a difference in the sum only if the
difference is positive, i.e., the discrete function gi is in-

creasing as it goes to gi from the given direction. Note
that for smooth g(x) this is a convergent approximation
to the BV seminorm of f and for jumps across vertical,
horizontal, or diagonal lines you get the correct value of
the BV semi-norm; that is, limh→0 |g|BVh(I) = |g|BV(I).

We then write this “upwind” semi-norm as
∑

i

|(−∇h)gi ∨ 0|h2 = sup
|pi|≤1, pi≥0

∑

i

(−∇h)gi · pi h2.

Here we require not only that the Euclidean norm |pi| of
pi ∈ R

4 be no larger than one, but also that each coordi-
nate of pi be non-negative, so that p is in the set

(19) K := {p : [0, N)2 → R
4 | |pi| ≤ 1 and pi ≥ 0}.

3



Thus we have dealt with the “extra” nonlinearity of (17)
by incorporating it into the convex set that contains p.

If we now define the discrete divergence that is the
adjoint of the discrete gradient (18),

(20) ∇h · ξi =

ξ
(1)
i − ξ

(1)
i−(1,0)

h
+

ξ
(2)
i − ξ

(2)
i+(1,0)

h

+
ξ
(3)
i − ξ

(3)
i−(0,1)

h
+

ξ
(4)
i − ξ

(4)
i+(0,1)

h

and again apply summation by parts, we see that this new
discrete semi-norm is equal to

sup
u

∑

i

giui h2 = sup
u
〈g, u〉

with u in the convex set

(21) K := {∇h · p | p : [0, N)2 → R
4, |pi| ≤ 1, pi ≥ 0

}

.

Thus, as in [9], the minimizer over discrete scalar
functions gi of

(22)
1

2
‖f − g‖2 + λ‖ |(−∇h)g ∨ 0| ‖1

can be written as the difference between f and the unique
projection of f onto the convex set λK.

In other words, the minimizer of (22) is f − λ∇h · p̄
where p̄ is any minimizer of the functional

(23) F (p) :=
∥

∥

∥∇h · p − f

λ

∥

∥

∥

2

subject to the constraint that p ∈ K, where K is defined by
(19). An iterative method to compute a p that minimizes
(23) is given by

(24)

p
n+1/3
i := pn

i − τ(−∇h)(∇h · pn − f/λ)i,

p
n+2/3
i := p

n+1/3
i ∨ 0,

pn+1
i :=

pn+2/3

max(1,
∣

∣pn+2/3
∣

∣)
,

where p0
i is chosen arbitrarily in K. The computation of

p
n+1/3
i is simply gradient descent of (23), while the next

two steps compute the projection of pn+1/3 onto K.
We remark that [24] contains bounds for the differ-

ence in L2(I) between discrete minimizers of (22) and the
minimizer of (2) as the mesh size h → 0.

The notational similarity of (23) and (11) is deliberate;
both can be formulated as minimizing over all x in a closed
convex set K

(25) F (x) = ‖Ax − b‖2

for some bounded linear operator A and vector b. In our
cases we have x = p, Ax = ∇h · p, b = f/λ, and K is given
by (10) or (19).

We consider the general iteration

(26) xn+1 = πK(xn − τ(A∗(Axn − b))),

where πK is the orthogonal projection onto the set K, A∗

is the adjoint of the operator A, and τ is suitably small.
In other words, we first perform gradient descent on the
functional F (x) and then project the intermediate result
onto the convex set K.

The convergence of this algorithm was studied by
Eicke [16], Theorem 3.2, and is a special case of a gen-
eral theory developed later by Combettes and his collab-
orators [12, 13]. For pedagogical purposes we recommend
the analysis in [16], which is particularly short and self
contained. The result applied to our (finite-dimensional)
problem gives the following: if 0 < τ < 2‖A‖−2 then xn

converges to a minimizer of F (x) on K. (Part of the
result goes back to Opial [19].) In our case this means
that the method converges if 0 < τ < h2/8 for the dis-
crete divergence (7) [9]; a similar argument shows that for
the discrete divergence (20) we obtain convergence when
0 < τ < h2/16.

The iteration (26) is efficient only if πK , A, and A∗

can be calculated quickly. In our case, it takes O(N2)
operations to calculate ∇n ·p or −∇hf on an N×N image.
For the set K defined by (10), we have simply

(πKp)i =
pi

max(1, |pi|)
.

For K defined by (19) we set

(πKp)i =
p̄i

max(1, |p̄i|)
where p̄i = pi ∨ 0.

So with either (10) or (19) we can calculate πKp on an
N × N image in O(N2) operations.

4. A Multiscale Algorithm

The characterization of the minimizer (11) allows us
the following observation: We need only construct a vector
field p that minimizes F (p) over all p ∈ K. Any general
iteration of the form (26) converges as long as the initial
data is in the set K. We propose here to use a multiscale
technique to get a good approximation p0 ∈ K for our
iterations.

We consider two grids in I, one with grid spacing 2h
and one with grid spacing h. We will construct a scalar
injector from the 2h-grid to the h-grid (called Ih

2h) and a
scalar projector from the h grid to the 2h grid (called I2h

h ).

Similarly, we will have an operator-dependent injector ~Ih
2h

on vector fields. Our general approach will then be as
follows.

Given data fh on a grid with spacing h, we calculate
data

f2h = I2h
h fh

on a grid with spacing 2h. We then calculate the minimizer
p2h of (23) with data f2h using our iterative algorithm (not
yet specifying the initial value p0). Next, we begin the
iteration solving (23) with data fh with the initial vector
field

p0 = ~Ih
2hp2h.

4



We now explain our choice of I2h
h and ~Ih

2h. Assume
that N is even with h = 1/N , and define the discrete inner
product on N × N arrays

〈u, v〉h =
∑

i

uivi h2

where the sum is taken over all i = (i1, i2) with 0 ≤ i1, i2 <
N . A similar inner product can be defined on N/2 × N/2
arrays with grid spacing 2h:

〈u, v〉2h =
∑

i

uivi (2h)2,

where the sum now is over all i = (i1, i2) with 0 ≤ i1, i2 <
N/2.

Our injector Ih
2h will simply be the constant injector

on 2 × 2 squares:

(Ih
2hu)i = u⌊i/2⌋,

where ⌊i/2⌋ = (⌊i1/2⌋, ⌊i2/2⌋) and ⌊x⌋ is the largest integer
no greater than x. The corresponding projector I2h

h is
defined as the adjoint of Ih

2h with respect to the h- and
2h-inner products, i.e., for an N × N grid function v and
a N/2 × N/2 grid function u

〈Ih
2hu, v〉h = 〈u, I2h

h v〉2h.

A direct calculation shows that

(I2h
h v)i =

1

4

(

v2i + v2i+(1,0) + v2i+(0,1) + v2i+(1,1)

)

,

i.e., it is simply the average of the values of v on 2 × 2
subgrids. (The factor 1/4 comes in because of the different
weights in the two inner products.)

After we calculate the minimizer p2h of (23) over all
p ∈ K on the grid with spacing 2h, we start the iteration
on the grid with spacing h with

p0 = ~Ih
2hp2h.

Here ~Ih
h2 is an injector that satisfies

(27) ∇h · ~Ih
2hp2h = Ih

2h∇2h · p2h.

Specifically, for the anisotropic operators (7) and (5) we
have

(~Ih
2hp)i =

1

2

(

p
(1)
⌊i/2⌋ + p

(1)
⌊(i−(1,0))/2⌋

p
(2)
⌊i/2⌋ + p

(2)
⌊(i−(0,1))/2⌋

)

,

and for the upwind operators (18) and (20) we have

(~Ih
2hp)i =

1

2

















p
(1)
⌊i/2⌋ + p

(1)
⌊(i−(1,0))/2⌋

p
(2)
⌊i/2⌋ + p

(2)
⌊(i+(1,0))/2⌋

p
(3)
⌊i/2⌋ + p

(3)
⌊(i−(0,1))/2⌋

p
(4)
⌊i/2⌋ + p

(4)
⌊(i+(0,1))/2⌋

















.

In both cases, we know p2h minimizes

‖∇2h · p − f2h/λ‖2
2h

over all p ∈ K2h. Because (27) holds we know that ~Ih
2hp2h

minimizes over all p ∈ ~Ih
2hK2h 6⊆ Kh

‖∇h · p − Ih
2hf2h/λ‖2

h.

We also know that

Ih
2hf2h − λ∇h · ~Ih

2hp2h

minimizes
1

2
‖Ih

2hf2h − g‖2
h + λ|g|BVh

over all g ∈ Ih
2hK2h 6⊆ Kh.

We don’t know a reasonable way to bound the error
incurred by starting the iteration on the grid with spacing
h with

p0 = πKh

~Ih
2hp2h.

There are three sources of error: (1) we use Ih
2hf2h =

Ih
2hI2h

h fh as the data instead of fh; (2) we minimize over

all p ∈ ~Ih
2hK2h instead of over Kh, and (3) we immediately

project Ih
2hp2h onto Kh. It is straightforward to bound the

first error, since the solutions to all these problems are L2

contractions so the difference between the minimizers of

1

2
‖Ih

2hf2h − g‖2
h + λ|g|BVh

and
1

2
‖fh − g‖2

h + λ|g|BVh

over all g ∈ Ih
2hK̄2h is bounded by

‖fh − Ih
2hf2h‖L2

≤ ‖f − fh‖L2
+ ‖f − f2h‖L2

≤ Chα|f |Lip(α,L2)

whenever f is in the Lipschitz space Lip(α, L2). We don’t
know how to deal with the other two errors.

5. Experimental Results

We did a series of experiments to (a) measure the ef-
fectiveness of the multiscale predictor for the initial vector
field p, (b) examine the experimental convergence rates
for two sets of initial data for the continuous BV problem
with known analytic solutions, and (c) illustrate some of
the qualitative properties of the solutions to the discrete
problems.

All of our algorithms compute only an approximate
minimizer of discrete BV problems—we must decide when
to stop the iteration (26). In [10] one finds a simple error
bound; first we let

f̃n = f − λ∇h · pn.

Then we have
(28)

‖f̃ − f̃n‖2
Lh

2
(I) ≤ λ(|f̃n|BVh(I) − 〈∇hfn, pn〉) = ǫ(pn)2.

So we can ensure that we’ve computed f̃ to within an error
of ǫ, i.e.,

‖f̃ − f̃n‖Lh

2
(I) ≤ ǫ,
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if we iterate until ǫ(pn) ≤ ǫ. It is possible that the true
error is much less than the bound, but we don’t know that.

In our computations the initial data is 255 times the
characteristic function of a disk or of a square, and we set
ǫ(pn) = 1/4, so we ensure that the Lh

2(I) error between
our computed discrete minimizer and the exact discrete
minimizer is ≤ 1/4 greyscales.

We begin by discussing the efficiency improvements we
observed by our multiscale method. As mentioned in the
previous paragraph, we do not compute exact discrete min-
imizers, but only approximate discrete minimizers. Our
final goal is to compute f̃n

h such that

‖f̃h − f̃n
h ‖Lh

2
(I) ≤ ǫh

for some ǫh. We begin the iterative algorithm with some
initial guess for p0

h. Without our multiscale algorithm we
take p0

h = 0. Our multiscale algorithm says that we should
iteratively compute pn

2h on a grid with grid size 2h until

‖f̃2h − f̃n
2h‖L2h

2
(I) ≤ ǫ2h

and then set

p0
h = πKh

~Ih
2hpn

2h.

In our computations we take ǫ2h = ǫh = 1/4. It is possible
that, given ǫh = 1/4, a better choice of ǫ2h can improve
our initial vector field p0

h.
We compare the computational effort needed by our

multiscale method and the iterative method operating
solely on the grid with grid spacing h and p0

h = 0. We

note that each iteration pn
2h → pn+1

2h on a grid with mesh
size 2h takes (roughly) 1/4 as many operations as one iter-
ation on the grid of size h. Thus, if the number of iterations
on grids with spacing h, 2h, 4h, etc., are Nh, N2h, N4h,
respectively, we report the number of equivalent iterations
on the finest grid,

Nh +
1

4
N2h +

1

16
N2h + · · · .

In our examples we take the data to be f = 255χ
[ 1
4

, 3
4
]2 ,

the characteristic function of a subsquare with sidelength
1/2 inside the computational domain of [0, 1]2. We use
Dirichlet boundary conditions. We computed numerical
solutions on grids with h = 1/128, 1/256, and 1/512. We
chose three values of λ for which the L2(I) distance be-
tween the solution of the continuous problem (2) and the
initial data f is 16, 32, and 64. For this purpose we use the
characterization of the exact solutions (see [5], Section 4 in
[2], or Appendix 1 in [1]) and found that the corresponding
values of λ are 3.771636443, 7.820179629, and 16.26268646,
respectively.

A summary of the iteration count to solve both prob-
lems (6) and (22) such that the error bound (28) is < 1/4,
both with and without the multiscale approach, are sum-
marized in Tables 1 and 2. The iteration count with the
multiscale approach is reported as the equivalent number
of iterations at the finest resolutions as described above.

Table 1

Iteration count without the multiscale algorithm;
columns 1–3 are the result of (6); columns 4–6 are the result of (22)

16 32 64 16 32 64
128 4,815 21,772 119,468 4,293 5,414 13,049
256 10,466 45,744 255,096 17,173 21,162 33,158
512 36,653 103,817 514,060 68,324 83,908 113,843

Table 2

Iteration count with the multiscale algorithm;
columns 1–3 are the result of (6); columns 4–6 are the result of (22)

16 32 64 16 32 64
128 1,393 2,358 10,047 1,694 2,574 3,476
256 4,525 6,722 12,250 5,460 8,851 12,484
512 14,615 22,328 33,115 17,197 30,676 44,289

We see that the multiscale method of choosing p0
h

speeds up the computation, and greatly so in some cases.
Next we discuss the observed error between the min-

imizer f̃ of the continuous problem (2) and the approx-

imate minimizers f̃n
h (with an error in Lh

2 (I) of < 0.25)
of the two discrete problems (6) and (22). For the three
problems with

(29) f = 255χ
[ 1
4

, 3
4
]2 ,

and λ equal to 3.771636443, 7.820179629, and 16.26268646
(corresponding to ‖f − f̃‖L2(I) = 16, 32, and 64, respec-
tively) we computed numerical approximation to the exact
solutions on a grid of size 2048×2048; the value of the nu-
merical approximation on the subsquare 1

2048 (I+i) is taken
to be

(30) f̃
( 1

2048

(

i +
(1

2
,
1

2

)))

.

A simple geometric argument shows that this approxima-
tion is a near-best piecewise constant projection in L2(I)

of f̃ onto a 2,048 × 2,048 grid (just follow the argument
for Example 2 in Section III.E of [15], as the measure of

the subgrid square where f̃ is less than the value (30) is no
less than 1/4, and no greater than 3/4, times the measure
of the subgrid square).

Table 3

L2(I) errors on grids of size 128, 256, and 512, and

differences ‖f − f̃‖L2(I) of 16, 32, and 64, with initial data (29);

columns 1–3 are the result of (6); columns 4–6 are the result of (22);

α is the estimated order of convergence, ‖f̃ − f̃h‖L2(I) ≈ Chα.

16 32 64 16 32 64
128 1.613 1.889 2.113 1.533 1.813 2.045
256 0.962 1.134 1.249 0.900 1.041 1.145
512 0.554 0.654 0.733 0.508 0.578 0.639

α 0.772 0.765 0.764 0.796 0.824 0.839

We compute piecewise constant approximations fn
h of

the minimizers of (6) and (22) on grids of size 128 × 128,
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Figure 1. The solution of the discrete BV problem using the

anisotropic definition (8).

Figure 2. The solution of the discrete BV problem using the

upwind definition (17).

256× 256, and 512× 512, and measure the L2(I) distance

between these approximations f̃n
h and the projection onto

a 2048× 2048 grid of f̃ given above. These differences are
reported in Table 3.

We also computed solutions approximate solutions fn
h

when f is 255 times the characteristic function of the disk

(31) f = 255χ
|x−( 1

2
, 1
2
)|≤ 1

4

,

Figure 3. The solution of the discrete BV problem using the

anisotropic definition (8) in “false color”.

Figure 4. The solution of the discrete BV problem using the

upwind definition (17) in “false color”.

with ‖f − f̃‖L2(I) = 16, 32, 64. Again we used Dirichlet
boundary conditions and the discrete minimization prob-
lems (6) and (22); again we ensured that ǫ(pn) ≤ 1/4,

so we know that ‖f̃h − f̃n
h ‖L2(I) ≤ 1/4. The exact solu-

tion f̃ is simply a multiple of the characteristic function
of same disk such that ‖f − f̃‖L2(I) is the correct value.

The values of ‖f − f̃‖L2(I) = 16, 32, and 64 correspond to

7



Figure 5. The solution of the discrete BV problem using the

anisotropic definition (8) (128×128).

Figure 6. The solution of the discrete BV problem using the

upwind definition (17) (128×128).

λ = 4.5134516668, 9.02703337, and 18.05406674, respec-
tively. We compared the same piecewise constant approx-
imation (30) to f̃ on a 2048 × 2048 grid to piecewise con-

stant approximations f̃n
h the discrete solutions of (6) and

(22) on grids of size 128 × 128, 256 × 256, and 512 × 512.
Here the piecewise constant, discrete initial data fh is not
equal to the true initial data f ; we used the same inter-
polation method (30) to compute our discrete data fh on

Figure 7. The solution of the discrete BV problem using the

anisotropic definition (8) in “false color” (128×128).

Figure 8. The solution of the discrete BV problem using the

upwind definition (17) in “false color” (128×128).

grids of size 128 × 128, etc. The results are reported in
Table 4.

With both the characteristic function of the disk and
the square as data, the solution is in the Sobolev space
W β,2 for β at most 1/2, so one might suspect that the max-
imum possible rate of approximation in L2(I) by piecewise
constants is O(hβ), and this is, roughly, what one observes
when the data is a multiple of the characteristic function
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of a disk. When the data is a multiple of the characteris-
tic function of the square, however, the discontinuities in
the solution are aligned with the computational grid, and
the convergence rate, which is at most one for piecewise
constant approximations, is limited by the smoothness of
f̃ inside only the subsquare [14 , 3

4 ]2, and the experimental
convergence rate is clearly above 1/2.

Next we discuss the qualitative properties of the nu-
merical solutions.

The anisotropy of the operator (7) was briefly noted
in the previous section. The operator (20) was offered as
a “more isotropic” operator, but it, too, is fundamentally
anisotropic—if a function has discontinuities across curves
that are not vertical, horizontal, or diagonal lines then
indeed

lim
h→0

|g|BVh(I) 6= |g|BV(I)

even for the “upwind” discrete BV semi-norm. Here we
briefly give two examples that illustrate the effect of this
anisotropy.

As usual, we work only with Dirichlet boundary con-
ditions. We begin with

f = 255 χD,

where D is the disk with center
(

1
2 , 1

2

)

and radius 1
4 . Using

the iteration (26), we then find the approximate minimizer
over all discrete g with

‖f − g‖Lh

2
(I) ≤ 64

of

‖g‖BVh(I)

for both the anisotropic definition (8) and the “upwind”
definition (17) of the discrete BV semi-norm. The exact
minimizer of the continuous problem in this case is known
[22] to be

(

255 − 2λ
r

)

χD, where r = 1
4 is the radius of the

disk and λ (satisfying λ > 1
r ) is chosen so that

‖255 χD −
(

255 − 2λ

r

)

χD‖L2(I) = 64.

We use the error bound ǫ(pn) to ensure that the Lh
2(I)

errors are no greater than 1/4.

Table 4

L2(I) errors on grids of size 128, 256, and 512, and

differences ‖f − f̃‖L2(I) of 16, 32, and 64, with initial data (31);

columns 1–3 are the result of (6); columns 4–6 are the result of (22)

α is the estimated order of convergence, ‖f̃ − f̃h‖L2(I) ≈ Chα.

16 32 64 16 32 64
128 10.637 9.223 6.004 9.925 8.312 5.143
256 7.929 6.981 4.542 7.061 6.051 3.795
512 6.029 5.360 3.495 5.185 4.503 2.852

α 0.410 0.392 0.390 0.468 0.442 0.425

In our experiments we set h = 1/128. The results are
shown in Figure 1 for the anisotropic discrete BV norm (8)
and in Figure 2 for the upwind discrete BV norm (17). If
one looks closely, one sees that the “northeast” and “south-
west” borders of the solution disk in the anisotropic solu-
tion are more smoothed than other parts of the border,
and the “upwind” solution has generally a sharper border
everywhere.

To illustrate this phenomenon more clearly, we include
“false color” images of Figures 1 and 2 as Figures 3 and 4,
respectively. Here each greyscale was assigned an arbitrary
color to show how much the borders are smoothed in each
of the solutions. For example, the pixels with a greyscale
of 0 were colored with the terra-cotta-like color; the same
mapping of greyscales to colors was used in both images.

Some things stick out immediately from the false-color
images. First, the greyscale values of the central plateau of
the discrete solutions are different, but their difference of
only one greyscale value (113 in the anisotropic image, 112
in the greyscale image) could be explained by numerical
error.

Second, the smoothing of the border of the solution
truly is anisotropic in the “anisotropic” image, and it is
smoothed over a distance of about 9 pixels in the northeast
and southwest directions, which is significant (and which
cannot be due to the discrete error, which as noted above
is no more than 0.25 RMS greyscales). The smoothing
of the upwind solution is spread over a noticeably smaller
distance. The notion that “BV preserves edges”, while true
in the continuous setting, clearly needs some qualification
in the discrete setting.

There are precisely three places where there is a one-
pixel jump from the plateau of the disk to the background
color in the anisotropic image—at the right, the bottom,
and the “northwest” corner. In the upwind image, there
are four such places, at the left and right and top and
bottom edges of the plateau.

Figures 5-8 show similar qualitative effects when the
initial data is the square [14 , 3

4 ]2.
To illustrate the damage to the multiscale algorithm

by (necessarily) projecting the injected vector field

~Ih
2hp2h

onto the convex set Kh we illustrate

(32) Ih
2hf2h − λ∇h · ~Ih

2hp2h = Ih
2h(f2h − λ∇2h · p2h),

which is just the injection of the solution at a scale of 2h
into the space of piecewise constants with scale h, and

(33) Ih
2hf2h − λ∇h · (πKh

~Ih
2hp2h),

which is close to the initial approximation to the solution
at scale h. (It would be precisely the initial approximation
at scale h if we had fh instead of Ih

2hf2h.) We take h =
1/128 and the anisotropic method (8). Figure 9 shows (32),
which is the 64×64 solution injected into the 128×128 grid;
Figure 10 shows (33), i.e., what happens when we project
the initial vector field onto Kh. The effect is so severe
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Figure 9. The image (32) with h = 1/128 and (8) with

‖f̃ − f‖L2(I) = 64.

Figure 10. The image (33) with h = 1/128 and (8) with

‖f̃ − f‖L2(I) = 64.

because the operator ∇h magnifies any changes incurred
by πKh

by a factor of 1/h.
These figures strongly suggest that there should be a

better way to map ~Ih
2hp2h onto Kh. For example, for any

divergence-free vector field qh (with ∇h · qh = 0), we could
start just as well with

(34) p0
h = πKh

(~Ih
2hp2h − qh)

and still satisfy (cf. (27))

∇h · (~Ih
2hp2h − qh) = Ih

2h∇2h · p2h.

If we could find qh so that

~Ih
2hp2h − qh ∈ Kh,

for example, then using (34) as the initial vector field would
result in Figures 9 and 10 being identical.

We now consider the example

f = 255χS

where S is the square [14 , 3
4 ]×[14 , 3

4 ]. As in the last example,
we found the approximate minimizer of ‖g‖BV satisfying
‖f − g‖L2

h
(I) ≤ 64. Allard gives the exact minimizer of the

continuous problem in an appendix to [1] (see Figure 11).

Figure 11. The projection onto a 256 × 256 grid of the exact

solution of the continuous BV problem, in “false color”.

Both the original and upwind solutions preserve sharp
jumps at the sides of the squares, however, we see some
significant differences near the corners. As expected, the
upwind scheme yields the same type of smoothing at each
of the four corners, which seems to match the true solu-
tion (see Figure 11). On the other hand, the anisotropy of
the original scheme is evident in the behavior of the four
corners. It is also curious to note that the right and bot-
tom sides of the square are much better preserved than the
top and left ones. Furthermore, the truncated top left cor-
ner appears to be favoring a sharp jump over what should
be a more gradual ramp. Finally, we note the magnified
anisotropy of the ramps in the northwest and southeast
corners.
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