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Abstract 
This paper tackles the problem of detecting nonstationary events in a signal. An ergodic 
process is stationary if its law is invariant whatever the time translation is. So the control of 
the invariance of the law parameters can lead to a stationarity measure. We propose such a 
test stated from a time-frequency representation so as to localize both in time and frequency 
nonstationary events. At each frequency we define two observation subsets. The first one is 
the subset of time frequency points, whose process is random and stationary eventually added 
with a deterministic process. The second one gathers all time-frequency points, whose 
process is non stationary. The problem is thus simplified into two competing sets or 
hypotheses between which we have to choice. A binary hypothesis test is stated from the 
Neyman-Pearson criterion. We construct a decision rule to have maximum probability of 
detection while not allowing the probability of false alarm to exceed a given value. Given that 
no a priori information is known, a recursive algorithm is performed in order to estimate the 
unknown parameters of the decision rule. The test converges when the subsets become 
steady. To be independent of the choice of the false alarm probability, the decision rule is 
applied for different values of this probability. To initialize the algorithm, we only assume 
that a time stationary part exists at each frequency. Under all these assumptions, all types of 
nonstationarities can be detected. The proposed detector is a post-processing to a time-
frequency estimator. In this paper, we use a spectrogram or a gliding correlogram, which sets 
the size of the nonstationary events to detect. The detector could be adapted to any other 
time-frequency estimator if its statistical law is known. Applications on real signals are 
carried out and show that the proposed method performs well. 
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INTRODUCTION 

To detect  nonstationary occurrences in a signal is a current problem in a great deal of 
domains. Natural sources are indeed nonstationary rather than stationary. Acoustic 
signals such as speech, breath sounds, bioacoustic sounds emitted by whales and 
dolphins, seismic signals such as those emitted by avalanches or earthquakes contain 
occurrences that can be of interest to detect. Engineering systems also produce 
nonstationary signals such as cavitation signals, transient signals got from shocks on a 
structure, vibratory signals in rotating machine or sensor signals. The processing of 
these signals is not trouble-free. Each possible method takes accounts of some 
particular characteristics of the signal. 

In this paper, we do not made any specific assumption about the 
nonstationarities of the signal. We propose a method that is suitable to all signals, 
whatever the variations might be, and that is of interest whenever a simple Cusum test 
or an energy detector does not perform well. This method only depends on a time-
frequency representation (TFR), which must afford an adequate resolution. Under this 
assumption, the method can be widely applied to the detection of transients, 
frequency modulated signals, frequency jumps, births or deaths of deterministic or 
random components. Only amplitude modulations will be badly detected. As is to be 
expected if any a priori information is used, the method is not optimal but robust and 
automatic. 

PRINCIPLE OF THE METHOD 

An ergodic random process is completely stationary if its probability density function 
(pdf) remains unaltered under a time shift. This definition is a severe requirement and 
is often relax by considering a stationarity up to a given order n. Under this weaker 
condition, the moments of process should be identical up to order n only. These 
definitions imply the ergodicity of the process, that is to say the equality between 
time and ensemble averages. We a priori assume this property, so that the moments 
estimated with observations from a single realization converges in mean square to the 
corresponding ensemble average. Furthermore, if the process is Gaussian, the 
stationarity up to order 2 necessarily implies complete stationarity [PRI 81]. 

In this paper, we are dealing with nonstationary random signals, whose 
probability density function changes over time. Consequently, the mean and the 
variance change over time and are thus functions of time. The detection scheme 
implies the knowledge of the probability density function of the process. The detector 
is here designed for a Gaussian noise, but it could be extended to other types of 
random process. 

In this framework, a measure of the stationarity results in the time invariance 
control of the statistical properties of the process. Such an approach requires a time 
observation scale and a way of measuring the moment invariance. In addition, we aim 
at estimating both the time and the frequency locations of each nonstationary 
occurrence. As we already said in the introduction, we design the detector in the time-
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frequency plane to cope with this problem. The TFR is estimated with a spectrogram 
or a gliding correlogram, whose time and frequency resolutions are given a priori. 
The detector is then a post-processing, whose properties depend on the TFR 
properties. 

STATISTICAL TEST IN THE TIME-FREQUENCY PLANE 

One of important statistical tools in signal theory detection is hypothesis testing. The 
hypotheses are statements of the possible decisions that are being considered. Among 
possible criterion for making decisions, the Bayes criterion is optimal because the 
average cost of all possible decision or risk is minimized [VTR 68], [WHA 71], [PRO 
89]. Applied to signal processing, the hypotheses were first defined from time data 
[ARQ 82]. When data are nonstationary, it can be of interest to define the decision 
rule in a more adapted space. In 1980, Altès defined a detector from a spectrogram 
[ALT 80]. Kumar and Carroll extended it to a Wigner Ville distribution [KUM 84]. 
At that time, these authors agreed about the fact that the performance in a time-
frequency space is identical to that obtained in a time space only. See also [KAY 85] 
and [FLA 86]. Marinovich decomposed the TFR in singular values in order to 
separate the signal components from the noise [MAR 91]. Later on, Lemoine showed 
the limits of an optimal detector [LEM 95]. 

Matz and Hlawatsch proposed a composite hypothesis test defined in a time-
frequency region [MAT 99]. But, in this case, a training data set is necessary. Richard 
and Lengellé defined a performing linear detector, which suppresses the redundancy 
in a Wigner-Ville distribution [RIC 98]. Friedlander and Porat proposed a detector 
based on the maximum likelihood function applied on parts of the RTF only [FRI 89], 
[POR 92]. This algorithm is suitable to transient detection but, indeed, is not optimal. 

In this paper, we propose a detector, which takes advantage of the locality of 
the TFR as well. But we do not want using any a priori information on the signal 
because many applications require this context. We cannot thus determine the Bayes 
risk and we will consider the Neyman-Pearson criterion, which involves neither a 
priori probabilities nor cost estimates. In comparison with previous works, theis 
detector assigns a label to each time frequency point without defining regions or 
contours of these regions [HOR 02], [MAR 03]. 

Let [ ]x n  be a discrete time signal. The observation set [ ]x k�L  is a subset of  
so that 

2R

 [ ] ( ) [ ] [ ]{ }2, / ,x xk n k S n k for a given x n= ∈ ∃�L R , (1) 

with  the frequency variable and k [ ],xS n k  the RTF of [ ]x n . As such, [ ]x k�L  is a 

cross section of  [ ],xS n k at a constant frequency k. Let us define two hypotheses: 

- H0 where [ ]x n  is a stationary random process [ ]b n  with zero mean and constant 

variance, added with a stationary deterministic signal [ ]d n  eventually; 

- H1 where [ ]x n is nonstationary. 
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Under , the observation set 0H [ ]
0H kL  is defined as 

 [ ] ( ) [ ] [ ]( ){ }0 0 0, / ,
xH xS Hk n k k p p et E S n k= ∈ =L L min , (2) 

with 
0xS Hp  the pdf of the observation [ ],xS n k  under . Under , the observation 

set 
0H 1H

[ ]
1H kL  is the complement of [ ]

0
kHL . Due to the definition of , 0H [ ],xS n k  is 

distributed as gamma ( 2, ,0Γ r α ) , which defines 0p  [DUR 99]. The parameter r is 
an equivalent degree of freedom, which is derived from the normalized variance 

[ ](n xS n )Var ,k  of the observation 

 [ ]( ) [ ]( )
[ ]( )( )2

Var , 2Varn , =
r,

x
x

x

S n k
S n k

E S n k
= = . (3) 

The parameter α  is defined as  
 [ ]( ),bα E S k rν= , (4) 

where [ ],bS n k  is the RTF of [ ]b n . If a deterministic signal [ ]d n  is present, [ ],xS n k  

is proportional to a noncentral chi-square variable, ( )2'rχ δ , with the same 
proportionality parameter α , a degree of freedom , and with noncentrality 
parameter 

'r
[ ] [ ],dr S n k S ,b n kδ = , where [ ],d kS n  is the RTF of [ ]d n . In this case, 

the normalized variance is 

 [ ]( ) [ ]( )
[ ]( )( )

( )
( )2

Var , 2 ' 4
Varn ,

',
x

x

x

S n k r
S n k

rE S n k
2

δ

δ

+
= =

+
. (5) 

Whether the RTF estimator is either a spectrogram or a correlogram, the 
normalized variance depends on the method parameters and mostly on the average 
rate. So the degree r  is nearly equal to the degree r. '

Knowing 0p , we can write at each frequency k the decision rule, 

 , (6) [ ] [
1

0

,

H

x P

H

S n k kη
>
<

]fa

which allows making a decision between the two hypothesis H0 and H1  The 
probability of false alarm  is given by the user and, therefore, permits the 
calculation of the detection threshold 

Pfa
[ ]Pfa kη  after inverting the integral, 

 . (7) ( )
[ ]

0

Pfa k

Pfa p s ds
η

+∞

= ∫
We note that the normalized variance in (5) is always lower than the normalized 

variance in (3). So, if we use the gamma distribution instead of the non-central chi-
square distribution, the effective  will be lower. Pfa

4 



 

THRESHOLD OF THE DECISION RULE 

A gamma variable is proportional to a chi-square variable 2
rχ . So, Eq. (7) can be 

written as 

 
[ ]

( )
[ ] [ ]

2
1

r r
Pfa Pfa Pfak k k

sPfa g ds g u duα χ
η λ η αα

+∞ +∞

=

 = = 
 ∫ ∫ 2χ

 (8) 

where  is the pdf of a ( )2
r

g u
χ

2

rχ . Therefore, inverted Eq. (8) gives the threshold, 

which depends on the given  and on the parameter Pfa α . We have to estimate this 
last parameter defined in Eq. (4). The moment about zero of [ ],bS n k  can be 

estimated from the average of the points belonging to [ ]
0

kHL . Thus, we have 

 [ ]
[ ]( ) [ ]

[ ] [ ]00
/ ,

1ˆ ,
b H

b
n S n k kH

α k
card k ∈

= ∑
LL

S n k r , (9) 

where [ ]ˆ kα  is an estimation of α  at frequency k . 
 Finally, taking (8) into account, the test (6) becomes 

   (10) [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

1

1

0

0

,

,

ˆ,

x H

r H

H is true
S n k k

x Pfa

H is true
S n k k

S n k k kλ α

∈

∈

>
×

<

L

L

The threshold [ ]Pfa kλ  is equal to 1 minus the Pfath-quantile of a 2

rχ  and 
depends on the given  only. Pfa

RECURSIVE TIME-FREQUENCY TEST 

The partition of [ ]x k�L  is a priori not known. We propose an iterative algorithm to be 

able to apply (10). At each iteration, [ ]
0H kL  and the test threshold are updated. Let us 

define the partition set under  at iteration i+1, 0H

 ( ) [ ] [ ] [ ] [ ]{ }
0

1 ˆ, / ,i i
H x x PfaS n k S n k k kν λ+ = ≤L α , (11) 

with [ ]ˆ iα k  the value of [ ]ˆ kα  at iteration i. The knowledge of the threshold at the 
previous iteration allows the determination of the partition sets. The test will 
converge when [ ]

0H kL  will be stable, 

 ( ) ( ) ( ) ( )
0 0 0 0

1I I
H H H Hwhen Iν ν ν −=L L L L ν= . (12) 

We then deduce the complement 
 [ ] [ ]

1 1

I
H Hk =L L k , (13) 

which is the desired set. 
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 The remaining problem is the initialization. We propose to initialize [ ]
0

0
H kL  

with the p % lowest samples [ ],xS n k  of [ ]x k�L . The value p is given a priori, which 

may induce a bias on the estimation of [ ]0 kα̂ . If the signal is only a stationary white 

noise, [ ]0ˆr α k×  might subestimate the value of [ ]( ),rE S n k  and, subsequently, the 
 will be higher than the desired value. On the other hand, if more than p % 

samples are nonstationary, 
Pfa

[ ]0ˆr α k×  might overestimate the value of [ ]( ),r n kE S  
and the  would be lower than the desired value. But, in both cases, the estimation 
will be adjusted at the next iteration, the number of false alarms will decrease 
whereas the detection probability will increase. In addition, since we want the 
detector to be not sensitive to the choice of the , the decision rule is applied with 
several values of , which yields a classification of the detected points. The user 
has to choice this set of  values.  

Pfa

Pfa
Pfa

Pfa
 Lastly, the result of this criterion can be represented as a time-frequency map. 
Each element of [ ]

1H kL  is coded by the normalized value [ ] [ ] [ ], I
r PfaS n k k kλ α , 

whose maximum value is 1. All elements of [ ]
0H kL  are coded by 0. We can also 

compute an alternative map, where each element of [ ]
1

kHL  is classified according to 
the value of  that detects this element at the last iteration. Each class is defined as Pfa

( ) [ ] [ ] [ ] [ ] [ ] [ ]1
0

1 ˆ ˆClass = , / ,c c

c c I I
x H xPfa Pfa

k

Pfa Pfa Pfa S n k k k k S n k kλ α λ α+

+≤ < ∈ ≤ < 
 
 

UL  

  (14) 
with  and  successive values of  in the  set. We usually choice cPfa 1cPfa + cPfa Pfa

{ }2 3,10 ,− − 4 5,10− −10 10 , which defines 5 classes. 

TRANSIENT DETECTION IN AN HYDRAULIC NOISE 

We have tested the proposed detector for many vibratory and acoustic signals 
(ASpect data base). In this paper, we present the detection results of a vibratory signal 
provided by Electricité de France (EDF). The signal is a measure of an hydraulic 
noise in a primary pump of a nuclear reactor. The measure has the particularity to 
have recorded the shocks of a bolt against the walls of hydraulic circuits. Figure 1 
shows the signal of 102 400 points sampled at 50 000 Hz. The RTF of this signal and 
the detection map are presented in Figure 2. 

The criterion detects 4 main patterns corresponding to the shocks that we can 
identify by attentively listening the signal. The first three shocks are visible on the 
time representation between 0.9 and 1.1s. But, the last one is very difficult to 
recognize whereas the test detects it without any difficulty. We also observe that the 
hydraulic noise, which is stationary through all the observation time, is well not 
detected by the proposed test. 
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Figure 1 – Real vibratory signal (EDF), 102 400 samples(50 000 Hz) 

   
Figure 2 – TFR and detection map versus Pfa class 

0

Spectrogram parameters: Blackman window, segments de 512 points), Detection parameter
p=50. 

 

 

Figure 3 – Frequency and time average of [ ]
0H kL  elements. 
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Figure 3 shows projections of the detection map over the time axis and over the 
frequency axis. In addition to the detection map, this projections could be useful for 
defining simple tests for diagnostic or surveillance. 
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