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Time-Frequency Modeling and Detection of random

non-stationary signals for Monitoring Purposes

Julien HUILLERY∗ and Nadine MARTIN†

Signal and Image Laboratory (LIS), 38402 St Martin d’Heres, France

This paper deals with the modelization and detection of non-stationary random signals
in the time-frequency space. A time-frequency random model of signal is derived from
a given temporal model. The time model we are interested in consists in a determinis-
tic signal embedded in an additive centered Gaussian perturbation. This Gaussian model
is characterized by two parameters, which are the mean and covariance matrix of the
process. The corresponding time-frequency model depends on the time-frequency trans-
form applied to the signal. For the spectrogram, the determinant parameters are the nature
and length of the analysis window and the zero-padding. We show that for a Gaussian sig-
nal, spectrogram coefficients distribution can be approximated by a chi2 law defined by
three parameters. A time-frequency signal detection task inspired from a Neyman-Pearson
strategy is performed on the basis of this probabilistic time-frequency model. The detector
determines the time-frequency regions where signal energy is present. It thus provides
a time-frequency signature of the signal. This information is used for structural health
monitoring techniques. Extraction of the fundamental meshing frequency and harmonics
of a gearbox under varying load conditions is presented.

I. Introduction

The study presented in this paper relates to structural health monitoring through the analysis of signals.
As monitoring is linked with the observation of the behaviour of a system, it reveals an intrinsically non-

stationary context. Time-Frequency (TF) research aims at the development of new analysis tools dedicated
to non-stationary signals. These tools have proved great efficiency for signal analysis as they allow the
observation of the evolution along time of the signal frequency structure.

A large amount of work has been done in the field of analysis of random signals, based on time series
and/or spectral analysis where effective tools constructed on a theoretical framework have been developed
for detection, estimation and classification. An essential aspect of probabilistic approaches for signal analysis
is the choice of the structure and nature of the model used to represent the randomness of the signal. This
modelization always concerns the time representation of the signal. The first aim of this paper is to present
how a time random model can be transplanted into the time-frequency domain.

Similarly to the time domain, this probabilistic time-frequency model can be used as a framework for a
time-frequency signal detection task. Time-frequency detection extract the time-frequency locations where
a signal is present. It reveals useful for the determination of the signal temporal locations but also provides
deeper information about the spectral structure of the signal and how this structure evolves. In this paper
we present a procedure, based upon a Neyman-Pearson framework, that localizes the regions of the time-
frequency plan where signal energy is present.

Structural health monitoring task based upon this analysis of the signal is performed as described in
figure 1. We investigate vibration monitoring of a rotative machinery under fluctuating load conditions.
Different loads imposed to an induction motor cause the rotative speed to fluctuate. Our aim is to recover
the law of the load by extracting the fundamental meshing frequency of the system. The time-frequency
detection procedure is used for this purpose.
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Figure 1. Overview of the method

This paper is organised as follow: the first section describes the time-frequency model of signal and the
second section presents the algorithm used to detect the signal time-frequency patterns. The third part
focuses on the use of the time-frequency signal detection algorithm for load variations monitoring purpose.

II. Time-frequency modeling

The time random model of signal we are interested in is composed of a deterministic part d(t) and an
additive random part r(t), namely

x(t) = d(t) + r(t). (1)

The deterministic part represents the support of the information under interest while the random part stands
for the receiver environment. The non-stationarities originate from the deterministic process. The structure
of this model allows the development of signal processing methods without prior hypotheses upon the nature
or structure of the information contained in the signal. The only a priori information is the random nature
of the additive perturbation process r(t). It namely consists in its law of probability that can be represented
by its probability density function or equivalent. The results are here presented for a centered Gaussian
process with covariance matrix R associated to the autocorrelation function Γ(τ). As a consequence, each
sample x(t) of the signal is distributed as a Gaussian variable with mean d(t) and autocorrelation function
Γ(τ)

x(t) ∼ N (d(t),Γ(τ)) . (2)

Once the time modelization task of the phenomenon under investigation has been performed, the next step
consists in determining the corresponding random model in the time-frequency domain.

Many time-frequency representations of signals have been proposed yielding to the need of a classifica-
tion.1 One first distinction separates representations associated with linear or quadratic transformation of
the signal. Short-Time Fourier Transform and Wavelet Transform are members of the linear group. The
advantage of the quadratic group is to offer the possibility of an interpretation of time-frequency represen-
tations as physical quantities like energy. The class of Cohen gathers some of the quadratic transforms.
One key aspect regarding the choice of a quadratic transform is the balance between energy concentration
and presence of interference terms. The Wigner-Ville distribution (presence of interferences, high energy
concentration) and the spectrogram (no interferences, poor energy concentration) correspond to the farthest
transforms. To each time-frequency representation of the signal will correspond a specific time-frequency
random model. The law of probability of the time-frequency coefficients will depend on the transformation
applied to the signal. In this study, results are presented for the case of spectrogram.

Given a discrete analysis window w[n] of length M , the Short-Time Fourier Transform Xw[n, k] of a
discrete signal x[n] is formed by the successive Discrete Fourier Transforms of the windowed signal. The
spectrogram Sw

x [n, k] corresponds to the squared modulus of the STFT or equivalently to the sum of the
squares of the STFT real and imaginary parts, Xr

w[n, k] and Xi
w[n, k] respectively. We thus start from the

following definitions:

Sw
x [n, k] = Xr

w[n, k]2 + Xi
w[n, k]2, (3)

Xr
w[n, k] =

M−1∑
m=0

x[n−m]w[m] cos(−2πk
m

N
), (4)
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Xi
w[n, k] =

M−1∑
m=0

x[n−m]w[m] sin(−2πk
m

N
). (5)

where N is the length of the computed FFT and N −M corresponds to the zero-padding.
The law of the random variable Sw

x [n, k] is thus determined by the probabilistic behaviour of the squared
modulus of the vector X[n, k] defined by

X[n, k]T = [Xr
w[n, k] Xi

w[n, k]]. (6)

Equations (4) and (5) express the real and imaginary parts of the STFT as linear combinations of
signal samples. As x[n] are Gaussian variables (not necessarily independent), Xr

w[n, k] and Xi
w[n, k] are also

distributed as Gaussian laws. X[n, k] is thus a Gaussian vector defined by five parameters m1, m2, Σ11,
Σ22 and Σ12 (for clarity of notation we drop the time-frequency location [n, k] in the probability parameter
notations):

X[n, k] =

(
Xr

w[n, k]
Xi

w[n, k]

)
∼ N

{(
m1

m2

)
,

(
Σ11 Σ12

Σ12 Σ22

)}
. (7)

From equations (1),(4) and (5), we obtain

m1 = Dr
w = Re(STFT {d(t)}) (8)

m2 = Di
w = Im(STFT {d(t)}) (9)

and

Σ11 = WT CkRCkW (10)
Σ22 = WT SkRSkW (11)
Σ12 = WT CkRSkW (12)

where WT = [w[0] · · ·w[M − 1]] is the analysis window vector and Ck (resp. Sk) is the cosine (resp. sine)
diagonal matrix,

Ck = diag
[
cos(−2πk

m

N
)
]

m=0,M−1

Sk = diag
[
sin(−2πk

m

N
)
]

m=0,M−1

Spectrogram coefficients are thus distributed as the squared modulus of the Gaussian vector X. This law
of probability is determined through the five parameters m1, m2, Σ11, Σ22 and Σ12. This distribution can be
approximated2 with a chi2 distribution with three parameters χ2(α, δ, θ). The coefficients of proportionality
α, the degree of freedom δ and the uncentrality parameter θ are then defined as

δ =
(Σ11 + Σ22)

2

Σ2
11 + Σ2

22 + 2Σ2
12

, (13)

α =
Σ11 + Σ22

δ
, (14)

θ =
m2

1 + m2
2

α
=

Sw
d

α
, (15)

where Sw
d is the spectrogram of the deterministic part d(t) alone.

One advantage of this time-frequency random model is the direct link between the transform that is used
and the resulting distribution. Parameters of the time-frequency transformation being known, the parameters
of the time-frequency model are defined by the time-frequency distribution Dw[n, k] of the deterministic part
and the variance-covariance matrix R of the additive random process.

3 of 6

American Institute of Aeronautics and Astronautics



III. Time-frequency signal detection

We use the results presented in the previous section to develop an algorithm that automatically detect
and isolate time-frequency components of the determinist part of our model. In this work, a time-frequency
component of a signal is defined as a region of the time-frequency plane where signal energy is present.
Furthermore, the additive random process r(t) is assumed to be white with an unkown spectral power σ2.
We can thus write R = σ2IN . For this simple case, the three parameters (α,δ,θ) of the χ2 law (equations
13, 14 and 15) reduce to

δ =
1

2β2 − 2β + 1
, (16)

α =
σ2

δ
, (17)

θ =
m2

1 + m2
2

α
=

Sw
d

α
, (18)

where β is a function of the analysis window w[n] and the frequency k defined by

β =
1
2

+
1
2
∗

M−1∑
n=0

w[n]2 cos(4πk
n

N
). (19)

Note that for most frequencies k, β equals 1
2 and the χ2 law has two degrees of freedom (δ = 2).3

At each time-frequency location [n, k], the detection scheme can be formulated as a two hypothesis test
problem. The null hypothesis H0 corresponds to the presence of the random additive process r(t) only, and
the signal hypothese H1 is valid if the deterministic part d(t) provides energy at the considered location.
That is: {

H0 : Sw
x [n, k] = Sw

r [n, k],
H1 : Sw

x [n, k] = Sw
r+d[n, k].

From section II and above, the distribution of Sw
x [n, k] under H0 is a central (θ = 0) χ2 law for every

time-frequency location [n, k]. The proportionality coefficient α is equal to σ2/δ where the degree of freedom
δ and the spectral power σ2 remains to be estimated. Under H1, spectrogram coefficients are distributed
as a non-central χ2 variable. As for this case the non-centrality parameter θ is fluctuating over the time-
frequency plane, a Neyman-Pearson strategy seems preferable for the detection task: a given fixed False
Alarm Probability (PFA) determines the detection threshold on the probability distribution under H0.

The general principle of the algorithm4 is to iteratively select higher energy connected time-frequency
coefficients until the distribution of the remaining region matches a possible H0 distribution. Doing so the
algorithm iteratively estimates the unknown parameter σ2 of the random process.

The time-frequency detection procedure is now described:
In the time frequency plane, candidates to the signal class H1 are selected through the use of a PFA on

the probability distribution of the noise class H0. For this purpose, parameters α and δ (proportionality
coefficient and degree of freedom respectively) of the central χ2 law are estimated5 by maximising the
likelihood with the data contained in the noise class H0. A threshold is determined on this probability
distribution according to the initialy given PFA. TF coefficients Sw

x [n, k] superior to this threshold are
selected as candidates for the signal class H1.

The signal class regions then grow by clustering candidates connected in the time-frequency plane. A
candidate for the signal class is assigned to the class H1 if it is contiguous to a member of the class H1. The
time-frequency region growing stops when the number of candidates falls under a threshold determined with
the initial number of candidates and the PFA.
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After each grow, the likelihood of the remaining noise class distribution with a central χ2 distribution is
evaluated. The procedure repeats iteratively until the convergence of the likelihood stops its evolution.

In fine, the limit between the noise and signal regions is determined according to the time-frequency
model. The spectral power σ2 of the additive random process is estimated. The time-frequency space is
segmented into regions corresponding to the deterministic signal components and may be interpreted as a
time-frequency signature.

IV. Load variations monitoring

We used the time-frequency detection procedure described in section III for the analysis of vibration
signals from rotative machinery. The aim of the experiment is the monitoring of a fluctuating load applied
to the motor. Excess load may then be detected so as to prevent mechanical failure or motor break down.

The experiment has been carried out using data from the benchmark ”GOTIX”(see figure 2) of the Signal
and Image Laboratory, Grenoble, France. This benchmark is composed of a 55kW asynchronous motor, a
gearbox with a multiplicative ratio of 57/15, a speed variable controller and a DC motor that allows the
simulation of variable loads. Signals are acquired from various voltage/current sensors and accelerometers
placed at different locations. We used the vibration signal recorded on the motor shaft. During acquisition,
the load represented by the DC motor was continuously modified.

(a) global view (b) detail of the gearbox

Figure 2. The benchmark ”GOTIX” from the Signal and Image Laboratory (LIS)

Vibration signals from rotative machinery display a harmonic structure (see figure 3-a)). The fundamental
frequency corresponds to the rotation speed of the motor. Variation of the load imposed to the rotative
machinery results in inversely proportional variation of the rotation speed. As a consequence, extraction of
the fundamental meshing frequency of the vibration signal allows to recover the load conditions the system
has been subject to.

Unfortunately, the fundamental frequency of vibration signals may have less energy than some of its
harmonics and suffer from amplitude variations. Furthermore, a load variation ∆L generates a frequency
variation of K∆L on the fundamental frequency and n ∗ K∆L on the nth harmonic. As the frequency
resolution of a time-frequency analysis is constant over the whole frequency range, resolution on the load
variation is gained when looking at high harmonics. In the case under interest, the 7th harmonic reveals the
more energetic and of relatively stable amplitude (figure 3-b)). We thus restrict the analysis to the frequency
band [5200Hz; 6100Hz]. Some knowledge about the behaviour of the investigated rotative machinery and
sensors may help to determine this spectral region of interest as it remained the same for all the experiments
we conducted.

Figure 3-c) depicts the time-frequency signal detection result from which the load variations are ex-
tracted (figure 3-d)) by use of the motor torque/rotation speed characteristic. We recover the load variations
manually obtained during the experiment.
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(a) spectrogram of the gear signal (b) zoom on the 7th harmonic

(c) Time-frequency detection result (d) fundamental meshing frequency variations (left y-axis)
and corresponding load conditions (rigth y-axis)

Figure 3. Time-frequency signal detection and load variations monitoring

V. Conclusion

More than extract the temporal location of a signal, time-frequency signal detection provides information
about the spectral structure of a signal and the way it evolves. In this study, a time-frequency detection
procedure is presented. This procedure is based on a time-frequency probabilistic model constructed on a
given Gaussian temporal model and taking into account the characteristics of the time-frequency transform
used for the analysis. Monitoring of the load imposed to a rotative machinery is presented and show the
applicability of the method.
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