N
N

N

HAL

open science

Pinning of a Bloch wall by diffusion of carbon atoms in a
silicon-iron single crystal: an experimental study by

means of an autoregressive spectrum analysis method

Nadine Martin, Frangois Glangeaud, D. Guillet, Jean-Louis Porteseil

» To cite this version:

Nadine Martin, Frangois Glangeaud, D. Guillet, Jean-Louis Porteseil. Pinning of a Bloch wall by diffu-
sion of carbon atoms in a silicon-iron single crystal: an experimental study by means of an autoregres-
sive spectrum analysis method. J. Phys. C: Solid State Phys, 1986, 19, pp.407-418.

3719/19/3/013 . hal-00370058

HAL Id: hal-00370058
https://hal.science/hal-00370058
Submitted on 23 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

10.1088/0022-


https://hal.science/hal-00370058
https://hal.archives-ouvertes.fr

Short title : Pinning of a Bloch wall by diffusion of carbon atoms.

Classification number : 75-60 E

Abstract - Diffusion of intersticial carﬁon atoms in iron creates
the phenomenon of "diffusion after-effect". After a recall of the
main features of this effect, this paper reports on an experimental
study of this phenomenon in a SiFe crystal. The various waveshapes
generated by the motion of a single Bloch wall are analysed by

an autoregressive signal processing technique which enables to

study the "instantaneous" power spectrum. A simple model is pfoposed

in order to account for the experimental results.
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I - INTRODUCTION

Magnetisation processes in bulky materials are essentially
due to motion of magnetic domain walls, at least in weak fields.
In view of the number and intricacy of the phenomena involved,
it is highly desirable to study the simplest possible domain
structures. This paper reports a study of the motion of one
180° Bloch wall in a single crystal of Si-Fe, under conditions
where diffusion of carbon atoms in the lattice interacts with

the displacements of the wall.

2 - THE PHENOMENON OF "DIFFUSION AFTEREFFECT"

The mobility of domain walls is usually determined by
lattice defects such as dislocations, inclusions, voids and
vacancies ... However, in a magnetically soft material, another
phenomenon, namely the diffusion after-effect, can become
predominant in limited temperature ranges. This effect is
associated with diffusion of impurity atoms inside a ferro-
magnetic material. Néel has given a detailed study of
this phenomenon in the case of a solid solution of carbon atoms

in the lattice of a-iron.

Fig.l rebresents the body-centered unit cell of iron. The
carbon atoms can be located in intersticial sites between two
iron atoms along the X, Y or‘Z directions. If the symmetry of
the lattice were perfectly cubic, the three possible types of
sites would be rigorously equivalent. In fact, the spontaneous
magnetization creates a dissymmetry between the X, Y and Z

directions.



Néel argues that this dissymmetry can be taken into

account by associating, to every intersticial site occupied

by a carbon atom, an energy of the form w cosz¢ » Where ¢ is
the angle between the corresponding edge of the cube and the
spontaneous magnetisation. This energy arises from the pertur-
bation of magnetocrystalline couplings by the ‘carbon atoms.
Although an exact calculation of w would be an exceedingly
difficult task, it can be estimated to lie in the range of

=15 0-16

10 to 1 erg.

Consider now two adjacent domains in which the magnetisa-
tions are antiparallel. The magnetic moments rotate by 180°
over a finite length which is the domain wall thickness :
§ = 2000 X in iron. If the wall is kept at rest for a very long '
time, thermal equilibrium is achieved by diffusion of carbon
atoms. The proportions of occupied X, Y, and Z intersticial
sites inside the wall are continuously varying functions of the
Z coordinate and adjust themselves in order to decrease the
energy of the system. Hence the wall traps itself in a potential

well whose dimensions are of the order of § .

The rate of creation of this well obviously depends on the
time constant <t of diffusion. of carbon atoms, which indeed is
strongly temperature-dependent. This phenomenon was thoroughly

studied by Brissonneau .

Suppose that the wall is constrained to move at a constant
velocity i by a suitable magnetic field. If the carbon atoms
can diffuse at a sufficient rate, the potential well follows
the wall in its motion across the crystal. Energy is then dis-
sip;ted on a microscopic scale by reorientation of carbon atoms

in the lattice, resulting in a damping force exerted on the wall.



This phenomenon can be assimilated to some kind of viscous
friction (it shﬁuld be stressed that the carbon atoms undergo
a reorientation process, but no overall displacement of the
cloud of intersticials is involved). On the other hand, if
diffusion of carbon is too slow, the wall first jumps out of
the potential well in which it was initially located, then
moves on freely until it meets some obstacle or the magnetic
field is decreased. This phenomenon was brought to evidence
by Ferro et al .

The press I'he pressure exerted on the wall as a function
of its velocity is given by the following relationship
(Kronmiiller, Grosse-Nobis and Shénfelder, Grosse-Nobis and
Winner) :

v v 7

p(2) = == ST exp(- == ) p_ (2)dz + BL (1)
7 o zos

where § is the wall thickness ;

v, is the characteristic velocity §&/1 3

Py (Z) is the pressure needed to displace by a distance Z

the wall previously kept at rest for a time t>>T1 ;

BZ represents the damping by macroscopic eddy currents.

Fig.2 is a sketch of the curve p(é) . When i is small with
respect to §&/1 , the pressure is proportional to the velocity.
The maximum of the curve corresponds to an infinitely high
differential mobility and represents the possibility that the
wall escapes the moving potential well. No stable motion can be
obtained in the region of negative slope ; at very high velocities,
the diffusion mechanism can be neglected, and the mobility is

determined only by the eddy currents.



"Cotillard et al. have studied the motion of
a 180° Bloch wall and brought to evidence qualitative changes
in the electromotive force generated by the wall as its velocity
increases. We present hereafter a detailed studyyof this signal
by suitable techniques of signal processing, and propose a

model for the motion of the wall.

3 - THE SPECIMEN AND EXPERIMENTAL SETUP

The single crystal of SiFe contained 3% of silicon in
weight. It was cut to the shape of a rectangular picture frame
in a <001> plane, and its edges were parallel to the easy
axes of the (100) type. The domain structure was determined by
a mobile 180° wall running along the legs of the frame, and

four fixed 90° walls in the corners (fig. 3).

The magnetic fields were applied by means of a primary
coil wound around the four legs. A given displacement AZ of
the 180° wall created, in a secondary coil, a change of magnetic
flux A¢ ~ AZ. The magnetic fluxes were measured by means of

an analog galvanometric fluxmeter (Vergne and Porteseil).

Since the material was a very soft one, even a slowly
increasing field would have saturated it very rapidly, thus
preventing any detailed study of the signal generated by the
motion of the wall. We used the well-known: technique (Mazzetti and
Soardo) which consists of controlling the velocity of
the wall by a feedback loop (fig. 4). A current proportional
to the output voltage of the fluxmeter, that is to the flux
change A¢ , was fed to the magnetising coil with the suitable
polarity. This feedback.loop constrained the voltage € at

the input of the fluxmeter to be negligibly small. € was the



algebraic sum of the induced voltage -d¢/dt and a reference
e_. Thus this setup enabled to impose a given rate of change
of the magnetic flux, and consequently a given average velocity

of the wall.

In the experiments reported hereafter, the temperature of
the specimen was kept at 25% 0.1°C by a circulation of thermore-
gulated oil. At that temperature, the diffusion time constant
of carbon atoms T is close to one second ; accordingly, the
characteristic velocity of the wall 6/t was about 2000 Z.s-l,
and the order of magnitude of the corresponding induced voltages,

about 10-7V, was well suited to the characteristiecs of the

fluxmeter.

4 - EXPERIMENTAL RESULTS

We studied the behaviour of the 180° wall as a function
of the reference velocity Vo and observed that the voltage
-d¢/dt induced in the secondary coil undergoes qualitative

changes as v increases.

At very low velocities (vr < 100 Z.s-l), the motion of
the wall is essentially uniform, but for a very weak residual
noise which can be attributed to the interaction with lattice
defects. Increasing v, leads to a quasi-periodic regime of
voltage pulses : the wall moves by a succession of well-defined
velocity jumps (fig. 5a). As v, is further increased, the
sequence of jumps becomes more and more complex (fig. 5 b,c)

until it merges into a chaotic-looking regime (fig.5 d).

The signals thus obtained for several values of v, were
adequately filtered in order to suppress the high-frequency

noise and 50 Hz hum, then recorded on a magnetic tape.



Fig. 6 gives three typical examples of the waveshapes we

studied.

5 - METHODS OF SIGNAL PROCESSING

We performed a preliminary study of the power spectra
by means of a standard technique : correlation followed by
a Fourier transform. That study yielded qualitatively correct
results, especially that the power spectrum broadens as the
signal evolves from the quasi-periodic regime to the chaotic
one. However it turned out that the spectra were strongly
dependent on the time interval over which they were determined.
For that reason, we had to use more sophisticated sighal-
processing techniques providing information about the short-

term characteristics of the signal.

5-1 - Moving-window Fourier transform

This technique consists of calculating the "instantaneous"
power spectrum of the signal over a moving time window of
finite duration T. It features two essential drawbacks : on
the one hand, its frequency resolution becomes poor, of order
1/T, as the width of the window is decreased. On the other
hand, it is not well suited to the study of a repetitive pro-

cess which exhibits no .long-term phase coherence.

5-2 - Autoregressive (AR) spectrum analysis

This parametric method allows to determine a finite number
of frequencies, and was thoroughly described by Fargetton.
In contrast with the classical techniques, its frequency reso-

lution is no longer limiter by the duration of the signal,
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thus allowing power spectra to be estimated over short time
intervals. In that type of analysis, the signal is regarded
as being the output of a filter whose parameters have to
be determined by a suitable algorithm. Let x be the nth

sampled value of the signal x(t) ; the AR model of order M

of the signal is defined by

M
X = -Z a. X . t e (2)
n i=1 i "n-3 n
with a, = coefficients of the model
M
z a.X . =X wvalue of x
_ i n-1 n n

predicted from the M previous values

x - X = error in the prediction of x
n n n n

The AR algorithm enables to calculate the coefficient
a. by regarding e as a noise and minimising its power.
The optimal method for estimating the ai's is a least-square
fit, which was especially designed to estimate evolutive power

spectra : the algorithm adapts itself to the stationarity

of the signal (Fargetton et al., Martin).

After having calculated the coefficients of the model, the

power density is readily estimated as :

Pete (3)

y(v) = W
|1 - &

i=1

21§ v,t )] 2
a;exp (- 27 j V.t

where T 1is the sampling period, and P, the variance of the
e

white noise e - This expression can also be written :

e e
(z

Y(Z) = M

Zi)
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The complex quantities Zi’ referred to as the

poles of the AR model, are conveniently plotted in the complex
plane inside fhe circle of radius 1 (fig. 7). Every pole re-

presents a frequency existing in the signal ; the closer Z.

to the unit circle, the stronger the corresponding frequency.

6 - RESULTS OF THE FREQUENCY ANALYSIS

The results of these methods are compared hereafter for
o
-1
two different average velocities of the wall : 2040 and 2720 A.s
(referred to as "low" and "medium" velocities). The sampling

frequency was 4 Hz for both recordings ; the time window of

5 s. The frequencies

the AR method was taken equal to 20 t,

brought to evidence are plotted versus time on figs. 8 and 9.
The solid lines represent the poles found by the AR method when
their moduli are higher than 0.9, that is to say  strong enough
to represent unambiguously well-defined frequencies. On the
other hand, the dotted contours represent the half-height widths
of the peaks of the Fourier spectrum. The time windows of both
methods are drawn at scale on fig. 9.

It can be seen from the figures that both types of
analysis yield essentially the same kind of information ;
especially, most of the solid segments (AR method) are located
inside the dotted contours (Fourier transform). However, it turmns

out that the AR poles can be followed on time intervals during

which the Fourier frequencies cannot be accurately defined.

The low-velocity recording exhibits a frequenéy fluctuating
irregularly with time around 1 Hz. On the other hand, the
medium-velocity recording brings to evidence two frequencies
around 1 and 1.5 Hz, which seem to appear alternately. The way
in which the instantaneous frequency shifts from one value
to the other is illustrated By fig. 10. The upper part of

the figure is a magnified plot of interval I (see fig. 9). The



10.

solid lines represent, as previously, the main peaks of the
Fourier spectrum, whereas the dotted lines represent weaker peak
The corresponding waveshape is monitored on the lower part |
of figure 10 ; the“instantaneous”frequency clearly increases

in the last quarter of the recording.

. . \, »
Fig. 11 gives three examples of the instantaneous power

spectra déte&mined by the AR method at threéidifferent times
tA’ tos FC (see fig. 9). It shows that, in the medium-speed
regime, the two frequencies around 1 and 1.5 Hz coexist, but
they do not have a high energy simultaneously. From these

diagrams, it can be readily understood why the results of a

standard Fourier analysis are strongly dependent on the time

interval over which they are determined.

7 - A MODEL FOR THE MOTION OF THE WALL

We propose the following interpretation for the experimen-

tal results :

- When the reference velocity v, is very low, the motion
of the wall takes place on the region OA of the curve p(z) (see
fig. 2). In that region of positive slope dp/dz, the motion
is stable, that is to say a small variation of z tends to be

cancelled by the corresponding change of the damping pressure.

- When v_ lies in the region of negative slope (AB), the
motion is unstable. Suppose that the wall is initially at
rest in 0 ; the velocity Z first increases steadily towards
its reference value uf to v,. Now, since the damping pressure

decreases as z increases, the velocity jumps very rapidly up

to v where the stability is restored. Then the feedback loop

C,
decreases z in order to make it equal to v_. When 2z = vy, the
motion becomes unstable again, and another jump BD takes place,

followed by a steady motion on the branch DA, and so on. Thus
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the velocity cannot kept stable at its reference value. Such a
mechanism results in a periodic motion (cycle ACBD), and may

be invoked to explain the "low-velocity" quasi-periodic regime.

- The static lattice defects (essentially dislocations
in our specimen) can account for the residual noise observed
in region 0OA, and the fluctuation of the fréquency around 1 Hz

observed in the low-velocity recordings.

- The medium and high-velocity regimes (two frequencies
and chaos) cannot be explained by a model in which the wall
is regarded as a rigid plane. Hence one has to take into account
some internal degrees of freedom of the wall. Of course, the

lattice defects will also interact with that more complex kind

of motion.

In the following, we will consider a unit area of the

wall (1 cm?).

7.1 - Motion of a rigid wall without lattice defects

The equation of motion is :
mZ + p(2) + £(Z,t) =0 (4)

The mass m of the wall was taken equal to 1.4x10—10g.cm-2

(Chikazumi).
The term f(Z,t) stands for the pressure exerted on the wall

by the feedback loop. The fluxmeter integrates the error voltage
e - (d¢/dt) and feeds a force proportional to f(er— d¢/dt)dt
back to the wall. Since the changes of magnetic flux are pro-
portional to the displacements of thé wall, £(Z,t) can be

written as K(Z - vrt) 3 for our experimental setup, K =

6.8 x 103 barye.cm-l.
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The damping pressure p(Z) is given by equation (1), which
is not well suited to a numerical study. In fact, its precise
analytical form is unimportant ; the point is that the curve
p(Z) must exhibit a region of negative slope. After trying
several analytical forms, we found that :

. Z/v0 .
p(Z) = K - 3 + BZ (5)
1 + (Z/vo)

is a satisfactory approximation to eq.(l) in the whole range of
velocities. The numerical values of the parameters were determined

as follows

- B8 = 0.542 M; o d , where 0 and d stand for

the conductivity and thickness of the specimen ; in our case

= 200 baryes.s.cm_1 (Grosse-Nobis and Winner).

- From equation (5), the damping pressure originating from

the diffusion after-effect passes through a maximum for'Z/vO =

0.79. The corresponding value of p(Z) is Pmax = 0.53 K. We
measured the field Hmax applied by the feedback loop when a

0.8 mOe.

jump starts at point A (see fig.2) and found Hmax

]

Accordingly, P = 2 M, H = 2.7 baryes, and K 5.1 baryes.

max S "max

Equation (1) was solved numerically. When v lies in the
region of positive slope 0OA, the calculated velocity é is

always equal to v_s but for a transient regime depending on

the initial conditions. On the other hand, if v, lies in the

unstable region AB, a succession of periodic velocity pulses

is obtained (fig. 12).
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7.2. - Motion of a rigid wall with lattice defects

The lattice defects in the specimen exert on the wall a
force fd(Z) which is a random fonction of its abscissa. That
force can be regarded as the derivative of a suitable random
potential V(Z). In Néel's model |l4|, the curve V(Z) is assimi-
lated to a succession of arcs of parabolas ; consequently,
fd(Z) is made of a succession of linear segments, whose slopes
are random. Porteseil et al. showed that the
ends of these segments are separated by a distance of the order

of the wall thickness § . Accordingly, the random force due to

defects was expressed in the internal Z = nd , Z = (n+l) as :
£.,(2) = - av_ . p_(Z-n 6 + constant (6)
d dz n

where P, is the random slope on that interval, and the constant

term is determined by imposing the continuity of fd(Z) et Z = né

The simplest choice for the pn's would be to consider them

as independent random numbers. However, it turns out that these

numbers are correlated over 5 or 6 successive segments of the

curve fd(Z) (Porteseil et al.). A simple way of taking
that memory into account consists of representing each P, by

the sum of 6 successive terms in a sequence of independent ran-
dom numbers generated by a computer :

P. = q + .... + g (7)

That process results in a correlation between P, and Py
with decreases linearly with |n-m| and vanishes when |n-m|> 5.
The magnitude of the random slopes p was determined by imposing
that the maximum value of the random force fd(Z) correspond to
the experimental coercive field H, of the specimen, which leads

to (f 9.5 x 1072 barye.

d)max
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We solved numerically equation (4) in which the random term
fd(Z) was added. Fig. 13 shows an example of the sequences of
jumps thus generated. As could be expected, the amplitudesand
time intervals are random ; nevertheless, the signal remains
roughly periodic, like the experimental signal (fig. 5a). Fig.l4
is an histogram of the time intervals between. the jumps of the
calculated sequence. It shows that a model of rigid wall with
lattice defects can account for the quasi-periodic regime found -~

experimentally at intermediate velocities.

As previously stated, internal degrees of freedom have td
be considered in order to describe the more complex (bi-periodic
or chaotic) motion of the wall. We introduced them in thekéiﬁ;
plest possible way by assuming that the wall was made of two
parts (fig. 15), each of them being subjected to a pressure
whose analytical expression was analogous to equation (5). The
two random contributions representing the influences of lattice
defects on both parts were taken completely independent of each
other. Furthermore, we introduced a restoring force of the type

M(Z —ZZ) in order to account for the increase of surface energy

1
due to the distortion of the wall. From the currently admitted
values of the wall energies in iron and iron alloys (y =] ergumfz)

we estimated M = 1 dyne.cm-l. .

Then the problem consisted of solving numerically a system
of two differential equations coupled by the spring-like inter-
action term M. Fig. 16 represents a calculated sequence of jumps.
From the analysis of the results, it turns out that the wall

may exhibit two different kinds of motion :
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- a synchronous motion, in which both parts jump together ;
- a piecewise motion in which the parts of wall jump alter-

nately.

Each kind of motion features a well defined average time
interval between jumps which is shorter in the piecewise motion.
For instance, with an average reference velocity of 10 000 R.s—l,
the average intervals are respectively about 0.4 and 0.24 s.
Furthermore, it turns out that the motion shifts from one type
to the other at random instants, depending on the values of the
independent random forces exerted on both parts of the wall by
the defects. This numerical study explains the main features
of the bi-periodic regime observed at intermediate velocities,

during which the repetition rate jumps from one value to another

at random instants.

That analysis might indeed be extended to a higher number
of segments of wall, in order to account for the chaotic-
looking regime observed at high velocities. However that would
not be very convincing, since a qualitative agreement with
experiment could easily be achieved with a sufficient number
of degrees of freedom, each of them being affected by a suitable
random force. A more promising way consists of analysing the
high-velocity signal by the "stroboscopic" technique widely
used in the study of non-linear dynamical systems
Dubois et al. )., That technique would enable to determine expe-
rimentally the effective number of degrees of freedom, provided
it is not too high, and perhaps to bring to evidence such
characteristic structures as '"strange attractors". That analysis

is presently under way, and will be published elsewhere.



More generally, the motion of a domain wall is interesting
because it enables to stﬁdy the general behaviours encountered
in non-linear dynamics in a situation typical of solid-state
physics, where a "noise" due to defects is always present.

For instance, the pinning of domain walls by diffusion of
impurities might have some analogies with the pinning and
memory effects observed in modulated structures and charge-

density waves (Dumas et al., Lederer et al., Salva et al.).
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FIGURE CAPTIONS

1 - The b.c.c cell of oa-iron, showing the three possible types

of carbon intersticials ; the Z site is occupied.

2 - A sketch of the damping pressure exerted on the wall as a
function of its velocity.
For the clearness of the figure, the slope B of the asymptote
‘ (eddy currents) was strongly exaggerated. As a consequence,
the velocity v, indicated on the figure is much smaller than
its actual order of magnitude. The insert shows the oscillations
of the velocity when the reference velocity lies in the unstable

region AB.

3 - The single crystal SiFe specimen. Outer dimensions :
37.20 x 17.26 mm2 ; inter dimensions : 30.44 x 10.50 mm2 3

thickness 0.61 mm.
4 - The feedback circuit enabling to control the velocity of the wall.

5 - Four examples of the signal generated in a pickup coil by the
motion of the wall. Values of the references velocity v
o - o - o - ° -
a : 1360 A.s L b : 6800 A.s ! s ¢ : 10900 A.s ! 3 d : 34000 A.cm

’

The length of the "t" arrow represents 5 s.
6 - Three examples of the waveshapes after low-pass filtering.

7 - The circle of radius | in the complex plane, showing the location

of the poles of the AR method.

8 - Compared results of both types of frequency analysis for a
o

reference velocity v, = 2040 A.s_l.

9 - Same as fig.8, v, = 2720 A.s .
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11

12

13

14

15

16

- A detail of the waveshape and the corresponding change of the

"instantaneous" frequency found by the AR method.

Three examples of AR power spectra bringing to evidence

the energy exchanges between two frequencies.

The perfectly periodic velocity pulses obtained by solving
numerically equation (4) with a reference velocity lying
o

in the unstable region AB (see fig.2) : v, = 2040 A.s_l.

Same as fig. 12, with an additional random force representing

the lattice defects.

Histogram of the time intervals between jumps obtained from

a long calculated sequence similar to fig. 13.

A schematic model for the motion of a deformable wall made of

two interacting parts.

A sequence of velocity pulses calculated from the model of
deformable wall interacting with lattice defects. The first
six pulses correspond to the piecewise motion of the wall,

the last four to its coherent motion.
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