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Abstract. Infinite stochastic games are a natural model for open reac-
tive processes: one player represents the controller, and the other rep-
resents a hostile environment. The evolution of the system depends on
the decisions of the players, supplemented by a random function. The
problems on such games can be sorted in two categories: the qualitative
analysis ponders whether a player can win with probability one (or arbi-
trarily close to one), while the quantitative analysis is concerned about
the maximal (or supremal) value a player can achieve.

In this paper, we establish the existence of optimal strategies in games
whose the winning condition does not depend on finite prefixes. We also
present a general procedure to derive quantitative results from qualitative
algorithms. It also follows from the correctness of this procedure that
optimal strategies are no more complex than almost-sure strategies.

1 Introduction

There is a long tradition of using infinite games to model open reactive
processes [BL69,PR89|. The system is represented as a game arena, i.e.
a graph whose vertices belong either to Eve (controller), Adam (non-
deterministic environment), or Random (stochastic evolution). The game
is played by moving a token on the arena: when it is in one of Eve’s vertices,
she chooses its next location among the successors of the current vertex;
when it is in one of Adam’s vertices, he chooses its next location; when
it is in a random vertex, its next location is decided by a fixed random
function. Playing the game for w moves results in a play of the game, i.e.
an infinite path of the graph. The specification of the system is represented
by a (Borel) subset of the possible plays, the winning condition. Eve wins
a play if it belongs to the winning condition, and Adam wins otherwise.
In this paper, we focus on “tail conditions”, where the winner of a
play does not depend on finite prefixes. Our main motivation is that tail

* This work was carried out during the tenure of an ERCIM “Alain Bensoussan”
Fellowship Programme, and was also partially supported by the french ANR AVERISS



conditions subsume parity conditions. Hence, most of our results carry to
regular games. From a verification perspective, tail conditions also cor-
respond to cases where local glitches are tolerated in the beginning of a
run, as long as the specification is met in the limit, e.g. in self-stabilising
protocols. Finally, one of the most popular payoff functions in economic
games, the mean-payoff function, is a tail condition. Due to lack of space,
many proofs are sketched or omitted. Complete proofs can be found in
the third chapter of [Hor08|.

Outline of the paper. Section 2 recalls the classical notions about sim-
ple stochastic games. In Section 3, we show that the different qualitative
criteria are equivalent in finite turn-based stochastic tail games, and define
a new notion of qualitative determinacy. Section 4 takes on the quanti-
tative problems, and shows how a qualitative algorithm can be used to
compute the values of a finite turn-based stochastic tail game. The exis-
tence of optimal strategies for both players in finite turn-based stochastic
tail games also follows from the proofs, as well as the fact that optimal
strategies are no more complex than almost-sure strategies.

2 Definitions

We recall here several classical notions about simple stochastic games, and
refer the reader to [GTWO02] and [dA97] for more details.

Arenas and plays A simple stochastic arena A is a directed graph
(Q,7T) without deadlocks, whose vertices are partitioned between Eve’s
vertices (Qp, represented as O’s), Adam’s vertices (Q4, represented as
O’s), and random vertices (Qp, represented as A’s), and supplemented
by a function § : Qr — D(Q), which is the random law directing the
choice of successors in the random vertices: so 6(r)(q) > 0 < (r,q) € 7.
A sub-arena A|p of A is the restriction of A to a subset B of Q such that
each controlled vertex of B has a successor in B, and all the successors of
random vertices in B belong to B. A play p of A is an (possibly infinite)
path in the graph (Q,7). The set of infinite plays is denoted by 2, and
the set of infinite plays starting in the vertex ¢ is denoted by (2.

Strategies and measures A pure strategy o for Fve is a deterministic
way of extending finite plays ending in a vertex of Eve: 0 : Q*Qp — Q is
such that (q,0(wq)) € 7. Strategies can also be defined as strategies with
memory. Given a (possibly infinite) set of memory states M, a strategy
o with memory M is defined by two functions: a “next-move” function



o™ : (Qpx M) — Q and a“memory-update” function o* : (QgxM) — M.
Notice that any strategy can be represented as a strategy with memory
O*. A play p is consistent with a strategy o if and only if Vi, p; € Qp =
pi+1 = o(po, - .., pi). The set of plays consistent with o is denoted by £2°.

Once an initial vertex ¢ and two strategies ¢ and 7 have been fixed,
7" can naturally be made into a measurable space (1277, 0), where O
is the o-field generated by the cones {O,, | w € Q*}: p € O,, if and only if
w is a prefix of p. The probability measure Py is recursively defined by:

o lifr=gq,

vr e Q,P77(0,) = {Oi”#g ’
PZJ(OMT) ’ 1U(wr):s ifre Qg ,
Vw € Q*, (’I“, 5) € Q2apg77(owrs) = PZ’T(OW) ) 17—(wr):s ifreQa,
P07 (Owr) - 6(r)(s) it 7€ Qp .

Winning conditions and values A winning condition @ is a Borel
set of (277, 0). An infinite play is winning for Eve if it belongs to &,
and winning for Adam otherwise. Finite plays are not winning for either
player. A winning condition @ is a tail condition if the winner of a play
does not depend on finite prefixes: Vw € Q*,Vp € Q¥ p € ® & wp € P.

The wvalue of ¢ € O with respect to the strategies o and T for Fve
and Adam (or {o,7}-value) is defined by: v, ,(q) = Pg"(®). The value
of q with respect to a strategy o for Eve (or o-value) is the infimum of
its {o, T}-values: v,(q) = inf; vy -(g). Symmetrically, the value of ¢ with
respect to a strategy T for Adam (or T-value) is the supremum of its {o, 7}-
values: v,(q) = sup, v+ (q). By the quantitative determinacy of Blackwell
games [Mar98|, the supremum of the o-values is equal to the infimum of
the 7-values. This common value is called the value of q.

Winning criteria A strategy o for Eve is almost-surely winning (or
almost-sure) from a vertex ¢ if and only if the o-value of ¢ is one. It is
positively winning (or positive) from ¢ if and only if for any strategy 7,
the {o, 7}-value of ¢ is positive (notice that the o-value of ¢ may be zero).
The almost-sure region of Eve (resp. positive region of Ewve) is the set of
vertices from which Eve has an almost-sure (resp. positive) strategy. The
limit-sure region of Eve (resp. bounded regions of Eve) is the set of vertices
with value one (resp. with positive value). In general, the limit-sure and
almost-sure criteria are different, as are the positive and bounded criteria.



3 Qualitative Regions

In tail games, it is always possible for both players to disregard the history
of a play, and consider that the current vertex is the initial one. We can
thus use strategy translations to derive the value of a vertex from its owner
and the value of its successors:

Vg € Qp,v(q) = max{v(s) | (¢;s) € T}

Vg € Qa,v(q) =min{v(s) | (¢,s) € T} (1)
Vg€ Qr,v(g) = Y 8(q)(s) - v(s)
(a,5)€T

This is very similar to the case of reachability games, where such sys-
tems can directly be used to compute the values. Yet, there are two im-
portant differences: in general, tail games do not feature a “target vertex”,
whose value is known to be one; and there is no notion of “stopping games”,
where (1) has a unique solution. In order to establish our results, we need
thus to consider the more complex notion of o-value of a finite play:

Definition 1. The o-value of a finite play w consistent with o is the
infimum of the {o,7}-values under the assumption that w is a prefix of
the play:

ve(w) = irTlfP‘;’OT(gﬁ | po = wo, p1 = w1,...) .

Using the o-values of the prefixes, we can observe how the prospects
of the players evolve during a play. In particular, for any positive real
number 7, we define the event L7, corresponding to the plays where Eve’s
chances of winning have dropped below 7 at some point:

£5={3i,00(po. .. pi) <} -

This event has two interesting characteristics: first, if the o-value of
the initial vertex is greater than 7, the probability that the ensuing play
belongs to L7 is bounded away from one (Proposition 2); second, the
probability that Adam wins is zero outside of L] (Proposition 3).

Proposition 2. Let q be a vertex of Q, o and T be strategies for Eve and
Adam, and n < v < vs(q) be two positive real numbers. We have:

—_

— UV

Py (L) <

—_
3

S



Proposition 3. Let g be a vertexr of Q, T be a strategy for Adam, and n
be a positive real number. We have:

PIT(6 | L) =1 .

These two results suggest a way to improve o with a ‘“reset” procedure
with respect to a given real number 1. Assume that Eve plays ¢ and, at
some point, the o-value of the prefix drops below 7, while the o-value of
the current vertex is greater than n. She can improve her chances to win
by forgetting the past, and restart playing o as if the play just started.

Definition 4. The strategy o reset with respect to n, denoted by o,, is a
strateqy with memory, whose memory states are the plays of A consistent
with o. Its memory-update and next-move function are defined as follows:

n _ o(q) ifve(wg) <nAvs(q) >n
oly(w,q) = {J(wq) otherwise

u _Ja ifve(wg) <nAv.(q) >n
oLy (w,q) = {wq otherwise

If Eve plays according to o, it follows from Proposition 2 that the
number of resets in the ensuing play is finite with probability one. Thus,
by Proposition 3, either the o-value of the visited vertices is consistently
below 7, or Eve wins with probability one. We can use reset strategies to
expose several links between the different notions of “winning regions”.

Theorem 5. In any finite turn-based stochastic tail game, Eve has an
almost-sure winning strategy in the region with value one, and Adam has
an almost-sure strategy in the region with value zero.

Sketch of proof. Let us prove the result for Eve. As the arena is finite, we
can choose 1 and v such that 0 < n < v <1, and any vertex whose value
is less than one is also less than 7. Now, if ¢ has value v from the vertices
with value one, |, is almost-sure for Eve from these vertices. O

Theorem 5 states that the limit and almost-sure winning criteria are
equivalent in finite turn-based stochastic tail games. It follows directly
that the positive and bounded winning criteria are also equivalent. Using
the standard reduction to parity games, these results can be extended to
finite simple stochastic w-regular games. However, Theorem 5 does not
hold for games with context-free conditions, infinite arenas, or concurrent
moves: in each of the three games of Figure 1, the value of the initial
vertex is one, yet Eve has no almost-sure strategy.
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CEEANO

W=a"b"o W = Reach ®

(a) Context-free condition (b) Concurrent moves

8\—/ 8 ~- - .8

W = —Reach ®

(c) Infinite arena
Fig. 1. Limit-sure is not almost-sure

We can also use reset strategies directly to derive a positive-almost
property for finite turn-based stochastic tail games, extending Chatterjee’s
bounded-limit property for finite concurrent tail games [Cha07a|':

Theorem 6 (Positive-almost property). In any finite turn-based stochas-
tic tail game, if Eve has a positive strateqy from every vertex, she has an
almost-sure strategy from every vertex. If she has a positive strategy from

at least one vertex, she has an almost-sure strateqy from at least one ver-
tex. The same holds for Adam.

Sketch of proof. In the proof of the “universal” part of Theorem 6 for Eve,
the trick is to choose n and v between zero and the lowest value for a
vertex in the game (by Theorem 5, all vertices have positive value). Once
again, if o has value v on the vertices with value one, o, is an almost-sure
strategy for Eve. The other statements follow by duality. O

LIt is called a positive-limit property in the paper, but relies on the existence of a
vertex with positive value: a “bounded” vertex, according to [dAHO00]’s taxonomy.



Although the result is out of the scope of this work, a large part of
this proof still holds in the more general case of finite concurrent games
whose winning condition is suffix-closed. However, Theorem 6 itself does
not: Figure 1 again provides counter-examples. But we could derive an
existential positive-limit property for Eve and a universal bounded-almost
property for Adam in these games:

Claim 7. In any finite concurrent game with a suffiz-closed winning con-
dition, if Eve has a positive strategqy from at least one vertex, then there is
at least one vertex with value one. If no vertex has value one, Adam has
an almost-sure strateqy from every vertex.

Last, but not least of our triptych is Theorem 8, which extends quan-
titative determinacy in prefix-independent games:

Theorem 8 (Qualitative determinacy). In any finite turn-based stochas-
tic tail game, from any vertex, either Eve has an almost-sure strategy or
Adam has a positive strategy, and vice versa.

Proof. Theorem 8 follows directly from Theorem 5 and the quantitative
determinacy of Blackwell games [Mar98]. 0

By contrast with Theorem 5, we did not find any counter-example
for natural extensions of Theorem 8. In particular, the three games of
Figure 1 are qualitatively determined.

4 Values and optimal strategies

The algorithms computing the values of simple stochastic tail games are
often adaptations of algorithms for reachability games which use qualita-
tive algorithms as oracles. For example, one can guess a solution to (1) and
use a qualitative algorithm to check necessary and sufficient conditions on
the value regions: see [CdAHO05] for Rabin and Streett games, [Cha07b] for
Muller games, and [CHHO8] for finitary games. It is also possible to adapt
the strategy improvement algorithm of [HK66] when one of the players has
positional strategies: see [CJHO04| for parity, and [CHO06| for Rabin games.
Finally, in one-player stochastic tail games (Markov Decision Processes),
one can compute first the almost-sure region, and then the values of the
reachability game to this region [Cha07a].

In this section, we show how our permutation algorithms from |[GHOS]|
can be automatically modified to solve any finite turn-based stochastic



tail game. In fact, the resulting algorithms uses very similar concepts (and
proofs). The main idea is that if Adam does not make obvious mistakes,
Eve can only hope to win by reaching her almost-sure region. This can
only be done through random vertices: there is no vertex of Eve leading to
it (it would belong to the almost-sure region), and she cannot hope that
Adam will enter it voluntarily (that would be an obvious mistake). We can
thus consider the winning condition as a tool for Eve to ensure that the
token reaches the best possible random vertex: if Adam refuses to comply,
he loses. The behaviour of both players is then determined by their prefer-
ences over the random vertices. Furthermore, it is sufficient to consider the
cases where Eve and Adam share the same estimation over the respective
quality of random vertices, i.e., when their preferences are opposed. These
preferences are represented by permutations over the random vertices. In
the remainder of the paper, a permutation m designates a permutation over
the k£ random vertices, such that {m,..., 7} = Qr. We often consider
the sink and target vertices as random vertices in permutation-based con-
cepts, with the implicit assumption that they are respectively the lowest
and greatest vertices: mp = ® and 741 = ©.

For simplicity (and efficiency), we first normalise the games we con-
sider: we compute the almost-sure regions of both players, and merge each
of them into a single sink vertex (® for Adam, ® for Eve). The winning
condition is modified accordingly: a play that reaches ® is winning for
Adam and a play that reaches ® is winning for Eve.

Adam’s almost-sure region

®
>
©

Eve’s almost-sure region
(a) Original game (b) Normalised game

Fig. 2. Game normalisation

In each of our algorithms, the atomic loop considers a permutation
7, and decides whether it is “correct”. The first question is to determine,



for each vertex, the best (with respect to 7) random vertex that Eve can
ensure to reach. We do so with the help of a qualitative oracle, which
computes embedded almost-sure regions for Eve:

Definition 9. Let G = (A, P) be a normalised finite turn-based stochastic
tail game, and w be a permutation over the k random wvertices of A. The
w-regions of G are defined as follows:

— for any 1 < i < k, Wy[i] is the almost-sure region of Eve in A with
respect to the objective @ U Reach(U;>i{m;}), minus Ujs;Wr[j];

Notice that a random vertex m; may belong to a region Wp[j] with
i < j (but not ¢ > 7). In this case, the region Wy[i] is empty. Once the
m-regions have been computed, we derive from them a Markov Chain G™,
with k + 2 vertices numbered 0...%k + 1: for any i,5 € [0,k + 1], the
probability of going from 7; to 7; is equal to the probability of going from
m; to Wr[j] in G. We denote by v, [i] the value of m; in G™.

We use two logical relations to decide about the pertinence of a permu-
tation. Self-consistency is a most natural condition, as it simply expresses
the adequation between a priori preferences, and resulting values:

Definition 10. Let G be a finite turn-based stochastic tail game with k
random vertices. A permutation m over Qg is self-consistent if for any
1<i<j <k, vali] < veljl.

It is easy to derive a solution to (1) from a self-consistent permutation.
However, in general, there is more than one solution to this system, so we
need another property, that we dub liveness:

Definition 11. Let G be a finite turn-based stochastic tail game with k
random wvertices. A permutation m™ over Qg is live if for any 1 < i < k,

6(m;)(Uj>iWx[j]) > 0.

It may seem that this notion is already captured by self-consistency, as
it is a “bad idea” for Eve to send the token to a random vertex that does
not verify the internal property. However, the choice of the permutation
also effects Adam’s behaviour [Mur(07], and there may be spurious non-live
self-consistent permutations.

Liveness and self-consistency are used in a straightforward way. In any
finite turn-based stochastic tail game, there is a live and self-consistent
permutation. Moreover, if a permutation 7 is live and self-consistent, then



for any vertex ¢ in Q, g € Wy[i] = v(q) = vr[i]. It is then easy to derive
algorithms computing the values from a qualitative algorithm:

Theorem 12. Let € be a class of finite turn-based stochastic tail games.
If the almost-sure region of Eve in a €-game G can be computed in time
t(|Gl), then the values of any €-game G can be computed in time |Qr +

1t ¢(1g]).-

Sketch of proof. For any given permutation 7, the m-regions can be com-
puted in time |Qgr| - t(|G|). We can then decide whether 7 is live and
self-consistent in linear time. We may need to do so for each of the |Qp|!
permutation, leading to a worse-time complexity of |Qr + 1|!-¢(|G|)). O

Theorem 13. Let € be a class of finite turn-based stochastic tail games.
If the problem of computing the almost-sure regions of €-games belongs to
the complexity class IC, then the quantitative problems of €-games belongs
to the classes NPX and co-NPX .

Sketch of proof. Instead of searching exhaustively for a live and self-
consistent permutation, we can guess it non-deterministically, and check
that it is correct in linear time with |Qg| calls to a K-oracle. O

An interesting by-product of the proof is that the w-strategies derived
from a live and self-consistent permutation are optimal:

Theorem 14. In any finite turn-based stochastic tail game, both players
have optimal strategies.

As the parity acceptance condition, which can be used to represent
any w-regular language, is a tail condition, Theorem 14 also yields an
alternative proof of the existence of optimal strategies in finite simple
stochastic w-regular games [dAHO00].

It can also be noted that Eve’s strategy is defined as a spatial compo-
sition of residually almost-sure strategies, and does not use more memory
than its components:

Theorem 15. Let € be a class of finite turn-based stochastic tail games.
If Eve has almost-sure strategies with memory T in €-games, then she also
has optimal strategies with memory T in €-games.

Note that Theorem 15 does not hold when the winning condition is
not a tail condition: see the weak parity game of Figure 3.

10



Fig. 3. Optimal strategies require memory in weak parity games

In this game, the value of the initial vertex is % Indeed, if Eve sends the
token once to the left and then always to the right, the lowest occurring
colour has equal chances to be 1 or 2. However, this value cannot be
achieved by means of a positional strategy:

— if there is a positive probability to send the token to the left, the lowest
occurring colour is almost surely 1;
— otherwise, the lowest occurring colour is surely 3.

Both players have positional almost-sure strategies in weak parity
games [GZ05]. Optimal strategies for weak parity games with d colours
may require up to d — 1 memory states.

5 Conclusion

We proved the existence of optimal strategies for both players in all finite
turn-based stochastic tail games. This also yields an alternative proof
for the existence of optimal strategies in finite simple stochastic w-regular
games [dAHO00]. Furthermore, we presented a single procedure to compute
the values of finite turn-based stochastic tail games, provided that we
already have a qualitative algorithm. The cost of this procedure is either
a |Qg|! factor, or a non-deterministic guess, generalising several results on
the complexity of quantitative problems. Once again, these results can be
used to compute the values of w-regular games, although it is necessary
to first reduce them to equivalent parity games.

The existence of optimal strategies is very sensitive to each of our
hypotheses, as demonstrated by Figure 1. However, the “qualitative de-
terminacy” may hold in more general settings It would also be interesting
to look for a procedure to compute the values of simple stochastic games
with arbitrary winning conditions, and/or infinite arenas.

11
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