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Optimal Strategies inTurn-Based Sto
hasti
 Tail Games⋆Florian Hornf.horn�
wi.nlCentrum Wiskunde & Informati
aAmsterdam, The NetherlandsAbstra
t. In�nite sto
hasti
 games are a natural model for open rea
-tive pro
esses: one player represents the 
ontroller, and the other rep-resents a hostile environment. The evolution of the system depends onthe de
isions of the players, supplemented by a random fun
tion. Theproblems on su
h games 
an be sorted in two 
ategories: the qualitativeanalysis ponders whether a player 
an win with probability one (or arbi-trarily 
lose to one), while the quantitative analysis is 
on
erned aboutthe maximal (or supremal) value a player 
an a
hieve.In this paper, we establish the existen
e of optimal strategies in gameswhose the winning 
ondition does not depend on �nite pre�xes. We alsopresent a general pro
edure to derive quantitative results from qualitativealgorithms. It also follows from the 
orre
tness of this pro
edure thatoptimal strategies are no more 
omplex than almost-sure strategies.1 Introdu
tionThere is a long tradition of using in�nite games to model open rea
tivepro
esses [BL69,PR89℄. The system is represented as a game arena, i.e.a graph whose verti
es belong either to Eve (
ontroller), Adam (non-deterministi
 environment), or Random (sto
hasti
 evolution). The gameis played by moving a token on the arena: when it is in one of Eve's verti
es,she 
hooses its next lo
ation among the su

essors of the 
urrent vertex;when it is in one of Adam's verti
es, he 
hooses its next lo
ation; whenit is in a random vertex, its next lo
ation is de
ided by a �xed randomfun
tion. Playing the game for ω moves results in a play of the game, i.e.an in�nite path of the graph. The spe
i�
ation of the system is representedby a (Borel) subset of the possible plays, the winning 
ondition. Eve winsa play if it belongs to the winning 
ondition, and Adam wins otherwise.In this paper, we fo
us on �tail 
onditions�, where the winner of aplay does not depend on �nite pre�xes. Our main motivation is that tail
⋆ This work was 
arried out during the tenure of an ERCIM �Alain Bensoussan�Fellowship Programme, and was also partially supported by the fren
h ANRAveriss




onditions subsume parity 
onditions. Hen
e, most of our results 
arry toregular games. From a veri�
ation perspe
tive, tail 
onditions also 
or-respond to 
ases where lo
al glit
hes are tolerated in the beginning of arun, as long as the spe
i�
ation is met in the limit, e.g. in self-stabilisingproto
ols. Finally, one of the most popular payo� fun
tions in e
onomi
games, the mean-payo� fun
tion, is a tail 
ondition. Due to la
k of spa
e,many proofs are sket
hed or omitted. Complete proofs 
an be found inthe third 
hapter of [Hor08℄.Outline of the paper. Se
tion 2 re
alls the 
lassi
al notions about sim-ple sto
hasti
 games. In Se
tion 3, we show that the di�erent qualitative
riteria are equivalent in �nite turn-based sto
hasti
 tail games, and de�nea new notion of qualitative determina
y. Se
tion 4 takes on the quanti-tative problems, and shows how a qualitative algorithm 
an be used to
ompute the values of a �nite turn-based sto
hasti
 tail game. The exis-ten
e of optimal strategies for both players in �nite turn-based sto
hasti
tail games also follows from the proofs, as well as the fa
t that optimalstrategies are no more 
omplex than almost-sure strategies.2 De�nitionsWe re
all here several 
lassi
al notions about simple sto
hasti
 games, andrefer the reader to [GTW02℄ and [dA97℄ for more details.Arenas and plays A simple sto
hasti
 arena A is a dire
ted graph
(Q,T ) without deadlo
ks, whose verti
es are partitioned between Eve'sverti
es (QE , represented as #'s), Adam's verti
es (QA, represented as
2's), and random verti
es (QR, represented as △'s), and supplementedby a fun
tion δ : QR → D(Q), whi
h is the random law dire
ting the
hoi
e of su

essors in the random verti
es: so δ(r)(q) > 0 ⇔ (r, q) ∈ T .A sub-arena A|B of A is the restri
tion of A to a subset B of Q su
h thatea
h 
ontrolled vertex of B has a su

essor in B, and all the su

essors ofrandom verti
es in B belong to B. A play ρ of A is an (possibly in�nite)path in the graph (Q,T ). The set of in�nite plays is denoted by Ω, andthe set of in�nite plays starting in the vertex q is denoted by Ωq.Strategies and measures A pure strategy σ for Eve is a deterministi
way of extending �nite plays ending in a vertex of Eve: σ : Q∗QE → Q issu
h that (q, σ(wq)) ∈ T . Strategies 
an also be de�ned as strategies withmemory. Given a (possibly in�nite) set of memory states M , a strategy
σ with memory M is de�ned by two fun
tions: a �next-move� fun
tion2



σn : (QE×M) → Q and a �memory-update� fun
tion σu : (QE×M) → M .Noti
e that any strategy 
an be represented as a strategy with memory
Q∗. A play ρ is 
onsistent with a strategy σ if and only if ∀i, ρi ∈ QE ⇒
ρi+1 = σ(ρ0, . . . , ρi). The set of plays 
onsistent with σ is denoted by Ωσ.On
e an initial vertex q and two strategies σ and τ have been �xed,
Ω

σ,τ
q 
an naturally be made into a measurable spa
e (Ωσ,τ

q ,O), where Ois the σ-�eld generated by the 
ones {Ow | w ∈ Q∗}: ρ ∈ Ow if and only if
w is a pre�x of ρ. The probability measure P

σ,τ
q is re
ursively de�ned by:

∀r ∈ Q, Pσ,τ
q (Or) =

{

1 if r = q ,

0 if r 6= q ;

∀w ∈ Q∗, (r, s) ∈ Q2, Pσ,τ
q (Owrs) =







P
σ,τ
q (Owr) · 1σ(wr)=s if r ∈ QE ,

P
σ,τ
q (Owr) · 1τ(wr)=s if r ∈ QA ,

P
σ,τ
q (Owr) · δ(r)(s) if r ∈ QR .Winning 
onditions and values A winning 
ondition Φ is a Borelset of (Ωσ,τ

q ,O). An in�nite play is winning for Eve if it belongs to Φ,and winning for Adam otherwise. Finite plays are not winning for eitherplayer. A winning 
ondition Φ is a tail 
ondition if the winner of a playdoes not depend on �nite pre�xes: ∀w ∈ Q∗,∀ρ ∈ Qω, ρ ∈ Φ ⇔ wρ ∈ Φ.The value of q ∈ Q with respe
t to the strategies σ and τ for Eveand Adam (or {σ, τ}-value) is de�ned by: vσ,τ (q) = P
σ,τ
q (Φ). The valueof q with respe
t to a strategy σ for Eve (or σ-value) is the in�mum ofits {σ, τ}-values: vσ(q) = infτ vσ,τ (q). Symmetri
ally, the value of q withrespe
t to a strategy τ for Adam (or τ -value) is the supremum of its {σ, τ}-values: vτ (q) = supσ vσ,τ (q). By the quantitative determina
y of Bla
kwellgames [Mar98℄, the supremum of the σ-values is equal to the in�mum ofthe τ -values. This 
ommon value is 
alled the value of q.Winning 
riteria A strategy σ for Eve is almost-surely winning (oralmost-sure) from a vertex q if and only if the σ-value of q is one. It ispositively winning (or positive) from q if and only if for any strategy τ ,the {σ, τ}-value of q is positive (noti
e that the σ-value of q may be zero).The almost-sure region of Eve (resp. positive region of Eve) is the set ofverti
es from whi
h Eve has an almost-sure (resp. positive) strategy. Thelimit-sure region of Eve (resp. bounded regions of Eve) is the set of verti
eswith value one (resp. with positive value). In general, the limit-sure andalmost-sure 
riteria are di�erent, as are the positive and bounded 
riteria.3



3 Qualitative RegionsIn tail games, it is always possible for both players to disregard the historyof a play, and 
onsider that the 
urrent vertex is the initial one. We 
anthus use strategy translations to derive the value of a vertex from its ownerand the value of its su

essors:
∀q ∈ QE ,v(q) = max{v(s) | (q, s) ∈ T }

∀q ∈ QA,v(q) = min{v(s) | (q, s) ∈ T } (1)
∀q ∈ QR,v(q) =

∑

(q,s)∈T

δ(q)(s) · v(s)This is very similar to the 
ase of rea
hability games, where su
h sys-tems 
an dire
tly be used to 
ompute the values. Yet, there are two im-portant di�eren
es: in general, tail games do not feature a �target vertex�,whose value is known to be one; and there is no notion of �stopping games�,where (1) has a unique solution. In order to establish our results, we needthus to 
onsider the more 
omplex notion of σ-value of a �nite play:De�nition 1. The σ-value of a �nite play w 
onsistent with σ is thein�mum of the {σ, τ}-values under the assumption that w is a pre�x ofthe play:
vσ(w) = inf

τ
P

σ,τ
w0

(Φ | ρ0 = w0, ρ1 = w1, . . .) .Using the σ-values of the pre�xes, we 
an observe how the prospe
tsof the players evolve during a play. In parti
ular, for any positive realnumber η, we de�ne the event Lσ
η , 
orresponding to the plays where Eve's
han
es of winning have dropped below η at some point:

Lσ
η = {∃i, vσ(ρ0 . . . ρi) ≤ η} .This event has two interesting 
hara
teristi
s: �rst, if the σ-value ofthe initial vertex is greater than η, the probability that the ensuing playbelongs to Lσ

η is bounded away from one (Proposition 2); se
ond, theprobability that Adam wins is zero outside of Lσ
η (Proposition 3).Proposition 2. Let q be a vertex of Q, σ and τ be strategies for Eve andAdam, and η < ν ≤ vσ(q) be two positive real numbers. We have:

P
σ,τ
q (Lσ

η) ≤
1 − ν

1 − η
.4



Proposition 3. Let q be a vertex of Q, τ be a strategy for Adam, and ηbe a positive real number. We have:
P

σ,τ
q (Φ | ¬Lσ

η) = 1 .These two results suggest a way to improve σ with a �reset� pro
edurewith respe
t to a given real number η. Assume that Eve plays σ and, atsome point, the σ-value of the pre�x drops below η, while the σ-value ofthe 
urrent vertex is greater than η. She 
an improve her 
han
es to winby forgetting the past, and restart playing σ as if the play just started.De�nition 4. The strategy σ reset with respe
t to η, denoted by σ↓η, is astrategy with memory, whose memory states are the plays of A 
onsistentwith σ. Its memory-update and next-move fun
tion are de�ned as follows:
σn

↓η(w, q) =

{

σ(q) if vσ(wq) ≤ η ∧ vσ(q) > η

σ(wq) otherwise
σu

↓η(w, q) =

{

q if vσ(wq) ≤ η ∧ vσ(q) > η

wq otherwiseIf Eve plays a

ording to σ↓η, it follows from Proposition 2 that thenumber of resets in the ensuing play is �nite with probability one. Thus,by Proposition 3, either the σ-value of the visited verti
es is 
onsistentlybelow η, or Eve wins with probability one. We 
an use reset strategies toexpose several links between the di�erent notions of �winning regions�.Theorem 5. In any �nite turn-based sto
hasti
 tail game, Eve has analmost-sure winning strategy in the region with value one, and Adam hasan almost-sure strategy in the region with value zero.Sket
h of proof. Let us prove the result for Eve. As the arena is �nite, we
an 
hoose η and ν su
h that 0 < η < ν < 1, and any vertex whose valueis less than one is also less than η. Now, if σ has value ν from the verti
eswith value one, σ↓η is almost-sure for Eve from these verti
es. �Theorem 5 states that the limit and almost-sure winning 
riteria areequivalent in �nite turn-based sto
hasti
 tail games. It follows dire
tlythat the positive and bounded winning 
riteria are also equivalent. Usingthe standard redu
tion to parity games, these results 
an be extended to�nite simple sto
hasti
 ω-regular games. However, Theorem 5 does nothold for games with 
ontext-free 
onditions, in�nite arenas, or 
on
urrentmoves: in ea
h of the three games of Figure 1, the value of the initialvertex is one, yet Eve has no almost-sure strategy.5



a b b
W = a

n

b
n

⊚(a) Context-free 
ondition 1|1

0|0

0|1

1|0

W = Reach⊚(b) Con
urrent moves
· · · · · ·

.2 .8 .2 .8 .2 .8
W = ¬Reach⊗(
) In�nite arenaFig. 1. Limit-sure is not almost-sureWe 
an also use reset strategies dire
tly to derive a positive-almostproperty for �nite turn-based sto
hasti
 tail games, extending Chatterjee'sbounded-limit property for �nite 
on
urrent tail games [Cha07a℄1:Theorem 6 (Positive-almost property). In any �nite turn-based sto
has-ti
 tail game, if Eve has a positive strategy from every vertex, she has analmost-sure strategy from every vertex. If she has a positive strategy fromat least one vertex, she has an almost-sure strategy from at least one ver-tex. The same holds for Adam.Sket
h of proof. In the proof of the �universal� part of Theorem 6 for Eve,the tri
k is to 
hoose η and ν between zero and the lowest value for avertex in the game (by Theorem 5, all verti
es have positive value). On
eagain, if σ has value ν on the verti
es with value one, σ↓η is an almost-surestrategy for Eve. The other statements follow by duality. �1 It is 
alled a positive-limit property in the paper, but relies on the existen
e of avertex with positive value: a �bounded� vertex, a

ording to [dAH00℄'s taxonomy.6



Although the result is out of the s
ope of this work, a large part ofthis proof still holds in the more general 
ase of �nite 
on
urrent gameswhose winning 
ondition is su�x-
losed. However, Theorem 6 itself doesnot: Figure 1 again provides 
ounter-examples. But we 
ould derive anexistential positive-limit property for Eve and a universal bounded-almostproperty for Adam in these games:Claim 7. In any �nite 
on
urrent game with a su�x-
losed winning 
on-dition, if Eve has a positive strategy from at least one vertex, then there isat least one vertex with value one. If no vertex has value one, Adam hasan almost-sure strategy from every vertex.Last, but not least of our tripty
h is Theorem 8, whi
h extends quan-titative determina
y in pre�x-independent games:Theorem 8 (Qualitative determina
y). In any �nite turn-based sto
has-ti
 tail game, from any vertex, either Eve has an almost-sure strategy orAdam has a positive strategy, and vi
e versa.Proof. Theorem 8 follows dire
tly from Theorem 5 and the quantitativedetermina
y of Bla
kwell games [Mar98℄. ⊓⊔By 
ontrast with Theorem 5, we did not �nd any 
ounter-examplefor natural extensions of Theorem 8. In parti
ular, the three games ofFigure 1 are qualitatively determined.4 Values and optimal strategiesThe algorithms 
omputing the values of simple sto
hasti
 tail games areoften adaptations of algorithms for rea
hability games whi
h use qualita-tive algorithms as ora
les. For example, one 
an guess a solution to (1) anduse a qualitative algorithm to 
he
k ne
essary and su�
ient 
onditions onthe value regions: see [CdAH05℄ for Rabin and Streett games, [Cha07b℄ forMuller games, and [CHH08℄ for �nitary games. It is also possible to adaptthe strategy improvement algorithm of [HK66℄ when one of the players haspositional strategies: see [CJH04℄ for parity, and [CH06℄ for Rabin games.Finally, in one-player sto
hasti
 tail games (Markov De
ision Pro
esses),one 
an 
ompute �rst the almost-sure region, and then the values of therea
hability game to this region [Cha07a℄.In this se
tion, we show how our permutation algorithms from [GH08℄
an be automati
ally modi�ed to solve any �nite turn-based sto
hasti
7



tail game. In fa
t, the resulting algorithms uses very similar 
on
epts (andproofs). The main idea is that if Adam does not make obvious mistakes,Eve 
an only hope to win by rea
hing her almost-sure region. This 
anonly be done through random verti
es: there is no vertex of Eve leading toit (it would belong to the almost-sure region), and she 
annot hope thatAdam will enter it voluntarily (that would be an obvious mistake). We 
anthus 
onsider the winning 
ondition as a tool for Eve to ensure that thetoken rea
hes the best possible random vertex: if Adam refuses to 
omply,he loses. The behaviour of both players is then determined by their prefer-en
es over the random verti
es. Furthermore, it is su�
ient to 
onsider the
ases where Eve and Adam share the same estimation over the respe
tivequality of random verti
es, i.e., when their preferen
es are opposed. Thesepreferen
es are represented by permutations over the random verti
es. Inthe remainder of the paper, a permutation π designates a permutation overthe k random verti
es, su
h that {π1, . . . , πk} = QR. We often 
onsiderthe sink and target verti
es as random verti
es in permutation-based 
on-
epts, with the impli
it assumption that they are respe
tively the lowestand greatest verti
es: π0 = ⊗ and πk+1 = ⊚.For simpli
ity (and e�
ien
y), we �rst normalise the games we 
on-sider: we 
ompute the almost-sure regions of both players, and merge ea
hof them into a single sink vertex (⊗ for Adam, ⊚ for Eve). The winning
ondition is modi�ed a

ordingly: a play that rea
hes ⊗ is winning forAdam and a play that rea
hes ⊚ is winning for Eve.Adam's almost-sure region
Eve's almost-sure region(a) Original game (b) Normalised gameFig. 2. Game normalisationIn ea
h of our algorithms, the atomi
 loop 
onsiders a permutation

π, and de
ides whether it is �
orre
t�. The �rst question is to determine,8



for ea
h vertex, the best (with respe
t to π) random vertex that Eve 
anensure to rea
h. We do so with the help of a qualitative ora
le, whi
h
omputes embedded almost-sure regions for Eve:De�nition 9. Let G = (A, Φ) be a normalised �nite turn-based sto
hasti
tail game, and π be a permutation over the k random verti
es of A. The
π-regions of G are de�ned as follows:� Wπ[k + 1] = {⊚};� for any 1 ≤ i ≤ k, Wπ[i] is the almost-sure region of Eve in A withrespe
t to the obje
tive Φ ∪ Reach(∪j≥i{πj}), minus ∪j>iWπ[j];� Wπ[0] = {⊗}.Noti
e that a random vertex πi may belong to a region Wπ[j] with
i < j (but not i > j). In this 
ase, the region Wπ[i] is empty. On
e the
π-regions have been 
omputed, we derive from them a Markov Chain Gπ,with k + 2 verti
es numbered 0 . . . k + 1: for any i, j ∈ [0, k + 1], theprobability of going from πi to πj is equal to the probability of going from
πi to Wπ[j] in G. We denote by vπ[i] the value of πi in Gπ.We use two logi
al relations to de
ide about the pertinen
e of a permu-tation. Self-
onsisten
y is a most natural 
ondition, as it simply expressesthe adequation between a priori preferen
es, and resulting values:De�nition 10. Let G be a �nite turn-based sto
hasti
 tail game with krandom verti
es. A permutation π over QR is self-
onsistent if for any
1 ≤ i ≤ j ≤ k, vπ[i] ≤ vπ[j].It is easy to derive a solution to (1) from a self-
onsistent permutation.However, in general, there is more than one solution to this system, so weneed another property, that we dub liveness:De�nition 11. Let G be a �nite turn-based sto
hasti
 tail game with krandom verti
es. A permutation π over QR is live if for any 1 ≤ i ≤ k,
δ(πi)(∪j>iWπ[j]) > 0.It may seem that this notion is already 
aptured by self-
onsisten
y, asit is a �bad idea� for Eve to send the token to a random vertex that doesnot verify the internal property. However, the 
hoi
e of the permutationalso e�e
ts Adam's behaviour [Mur07℄, and there may be spurious non-liveself-
onsistent permutations.Liveness and self-
onsisten
y are used in a straightforward way. In any�nite turn-based sto
hasti
 tail game, there is a live and self-
onsistentpermutation. Moreover, if a permutation π is live and self-
onsistent, then9



for any vertex q in Q, q ∈ Wπ[i] ⇒ v(q) = vπ[i]. It is then easy to derivealgorithms 
omputing the values from a qualitative algorithm:Theorem 12. Let C be a 
lass of �nite turn-based sto
hasti
 tail games.If the almost-sure region of Eve in a C-game G 
an be 
omputed in time
t(|G|), then the values of any C-game G 
an be 
omputed in time |QR +
1|! · t(|G|).Sket
h of proof. For any given permutation π, the π-regions 
an be 
om-puted in time |QR| · t(|G|). We 
an then de
ide whether π is live andself-
onsistent in linear time. We may need to do so for ea
h of the |QR|!permutation, leading to a worse-time 
omplexity of |QR + 1|! · t(|G|)). �Theorem 13. Let C be a 
lass of �nite turn-based sto
hasti
 tail games.If the problem of 
omputing the almost-sure regions of C-games belongs tothe 
omplexity 
lass K, then the quantitative problems of C-games belongsto the 
lasses NPK and 
o-NPK.Sket
h of proof. Instead of sear
hing exhaustively for a live and self-
onsistent permutation, we 
an guess it non-deterministi
ally, and 
he
kthat it is 
orre
t in linear time with |QR| 
alls to a K-ora
le. �An interesting by-produ
t of the proof is that the π-strategies derivedfrom a live and self-
onsistent permutation are optimal:Theorem 14. In any �nite turn-based sto
hasti
 tail game, both playershave optimal strategies.As the parity a

eptan
e 
ondition, whi
h 
an be used to representany ω-regular language, is a tail 
ondition, Theorem 14 also yields analternative proof of the existen
e of optimal strategies in �nite simplesto
hasti
 ω-regular games [dAH00℄.It 
an also be noted that Eve's strategy is de�ned as a spatial 
ompo-sition of residually almost-sure strategies, and does not use more memorythan its 
omponents:Theorem 15. Let C be a 
lass of �nite turn-based sto
hasti
 tail games.If Eve has almost-sure strategies with memory Υ in C-games, then she alsohas optimal strategies with memory Υ in C-games.Note that Theorem 15 does not hold when the winning 
ondition isnot a tail 
ondition: see the weak parity game of Figure 3.10



1
2 3.5.5

Fig. 3. Optimal strategies require memory in weak parity gamesIn this game, the value of the initial vertex is 1
2 . Indeed, if Eve sends thetoken on
e to the left and then always to the right, the lowest o

urring
olour has equal 
han
es to be 1 or 2. However, this value 
annot bea
hieved by means of a positional strategy:� if there is a positive probability to send the token to the left, the lowesto

urring 
olour is almost surely 1;� otherwise, the lowest o

urring 
olour is surely 3.Both players have positional almost-sure strategies in weak paritygames [GZ05℄. Optimal strategies for weak parity games with d 
oloursmay require up to d − 1 memory states.5 Con
lusionWe proved the existen
e of optimal strategies for both players in all �niteturn-based sto
hasti
 tail games. This also yields an alternative prooffor the existen
e of optimal strategies in �nite simple sto
hasti
 ω-regulargames [dAH00℄. Furthermore, we presented a single pro
edure to 
omputethe values of �nite turn-based sto
hasti
 tail games, provided that wealready have a qualitative algorithm. The 
ost of this pro
edure is eithera |QR|! fa
tor, or a non-deterministi
 guess, generalising several results onthe 
omplexity of quantitative problems. On
e again, these results 
an beused to 
ompute the values of ω-regular games, although it is ne
essaryto �rst redu
e them to equivalent parity games.The existen
e of optimal strategies is very sensitive to ea
h of ourhypotheses, as demonstrated by Figure 1. However, the �qualitative de-termina
y� may hold in more general settings It would also be interestingto look for a pro
edure to 
ompute the values of simple sto
hasti
 gameswith arbitrary winning 
onditions, and/or in�nite arenas.11
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