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RANDOM WALKS PERTAINING TO A CLASS

OF DETERMINISTIC WEIGHTED GRAPHS

THIERRY HUILLET

Abstract. In this note, we try to analyze and clarify the intriguing inter-
play between some counting problems related to specific thermalized weighted
graphs and random walks consistent with such graphs.

1. Introduction

The purpose of this work is to underline the subtle relationship between some
counting problems related to thermalized weighted graphs and random walks con-
sistent with such graphs; see e.g. [1] for a detailed treatise on general random
walks on graphs. Let us summarize the topics developed in this paper. We start
with defining finite thermalized weighted graphs. We show that the notion of a
graph singularity spectrum naturally arises in the problem consisting in counting
the number of paths whose transition-energy rate is asymptotically of a given or-
der. This spectrum is classically the Legendre transform of the graph pressure
function which is the logarithm of the spectral radius of its weight matrix. The
corresponding Perron eigenvectors play a key role in the Perron-Frobenius theory.
We next recall the Gibbs-variational principle, stating that the pressure produced
by all random walks consistent with the graph structure is bounded below by the
graph pressure which may itself be viewed as the pressure of some consistent canon-
ical random walk. This turns out to be a by-product of the Ruelle thermodynamic
formalism. We then exhibit and interpret some important consistent random walks
in the light of quasi-stationary distributions for substochastic random walks. The
idea is to normalize the weight matrix of the graph by its norm to make it sub-
stochastic so that, by adding an extra absorbing coffin state, we may switch to the
study of a proper random walk conditioned to its absorption time. By doing so,
a probabilistic interpretation of both the spectral radius and Perron eigenvectors
of the graph weight matrix naturally comes out and at least two conditioning are
shown to be relevant: one is to condition locally the above random walk on not
hitting the absorbing state in one step at each iteration, the other is to condition
it on not hitting the absorbing state in the remote future. The latter construction
is shown to be the canonical random walk with smallest pressure production rate.
At the end of the paper, we briefly discuss three particular cases, namely: the case
where the weighted graph is reduced to its adjacency matrix, the case of a potential
weighted graph and the case of a symmetric reversible weighted graph. Several gen-
eral conclusions that make use of the above constructions may be drawn. One is an
expression in terms of the average transition energy of the canonical random walk
associated to the adjacency matrix of the value at which the singularity spectrum
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of any weighted graph attains its maximum, another is that the entropy produc-
tion rate of the locally conditioned random walk is always bounded above by the
logarithm of the spectral radius of its adjacency matrix, in the potential case.

2. Finite graphs with Boltzmann weights

Let W ≥ 0 be some non-negative N × N weight matrix of some finite graph (i.e.
with non-negative entries W (i, j) ≥ 0). Let A = [A (i, j)], defined by the indicator
function:

A (i, j) = I (W (i, j) > 0) ∈ {0, 1} ,

stand for the Boolean adjacency matrix associated to W . With A′ denoting the
transpose of A, we shall assume that A = A′ and that A is irreducible: in other
words, the underlying topological graph is undirected and strongly connected so
that for each couple of states (i, j), there is an integer m such that Am (i, j) > 0.
With β ∈ R, we shall choose to represent W under the form:

(1) W (i, j) =: Wβ (i, j) = A (i, j) e−βH(i,j),

for some well-behaved transition energies −∞ < H (i, j) < +∞ from state i to j,
not all equal to the same value. The matrix Wβ therefore appears to be the weight
matrix of some thermalized weighted graph: it can be represented as the Hadamard
product (say, ∗) of A with some positive Boltzmann kernel matrix Kβ with entries

Kβ (i, j) = e−βH(i,j):

(2) Wβ = A ∗Kβ.

We note that the Hadamard λ−power (λ > 0) of Wβ simply is W ∗λ
β = Wλβ =

A ∗Kλβ , corresponding to a rescaling of β.

Remark: Let x1 < x2 < ... < xN be N points on the line (circle). For some matrix
H, we may define

H (i, j) = H (xi, xj)

to be the interaction energy between sites (i, j) in positions (xi, xj) leading to a
slightly more general spatially extended model that can be treated along similar
lines. △

2.1. Some counting problems arising in this context. The quantity

Wβ (in) :=

n
∏

m=1

Wβ (im−1, im)

is the weight of the n−path in := {i0, i1, .., in} which is non-null if and only if:
A (in) :=

∏n
m=1A (im−1, im) 6= 0. The total product weight of n−step paths con-

necting states (i0, in) therefore is given by the corresponding element of the transfer
matrix:

Wn
β (i0, in) =

∑

i1,..,in−1

n
∏

m=1

Wβ (im−1, im) =

∑

i1,..,in−1

n
∏

m=1

A (im−1, im) e−β
P

n
m=1

H(im−1,im) =

Nn(i0,in)
∑

p=1

e−βHn(p),
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where Hn (p) is the cumulative energy of the p−th path connecting (i0, in) and
Nn (i0, in) := An (i0, in) is the number of such n−paths. Summing over the end-
points of the n−paths, we obtain the full partition function of energy

(3) Zn (β) :=
∑

i0,in

Wn
β (i0, in) =

∑

i0,..,in

n
∏

m=1

Wβ (im−1, im) =

Nn
∑

p=1

e−βHn(p),

where Nn :=
∑

i0,in
Nn (i0, in) = Zn (0) is the total number of n−paths. Define

Nn,ε (α) := #

{

p ∈ [Nn] :
1

n
Hn (p) ∈ (α− ε, α+ ε)

}

,

the number of n−paths whose transition-energy rate is asymptotically of order α.
We expect

(4) lim
ε↓0

lim
n↑∞

1

n
logNn,ε (α) = f (α) ≥ 0,

where f (α) = infβ (αβ − p (β)), α ∈ [α−, α+], is the concave Legendre transform
of some concave pressure function p (β). We may call f (α) the singularity spectrum
of the weighted graph.

Observing from (3) that Zn (β) =
∥

∥

∥Wn
β

∥

∥

∥ is a matrix-norm and recalling under our

irreducibility assumption:
∥

∥

∥Wn
β

∥

∥

∥

1/n

→n↑∞ ρβ , the spectral radius of Wβ , we get

(5) −
1

n
logZn (β) →

n↑∞
p (β) = − log ρβ .

For each β, the number ρβ, as an eigenvalue of Wβ , satisfies det
(

1
ρβ
Wβ − I

)

= 0.

For each n, the quantity

Φn (β) :=
Zn (β)

Zn (0)
=

1

Nn

Nn
∑

p=1

e−βHn(p)

is the Laplace-Stieltjes transform of some discrete probability measure on n−paths
satisfying − 1

n log Φn (β)→ p (β)− p (0) = − log
ρβ

ρ0

. This limit therefore is the log-

Laplace transform of some probability distribution which, in particular, is smooth
and concave. The pressure p (β) is classically related to the scaled free energy τ (β)
by: p (β) =: βτ (β) . Note that, for each n, we also have:

Φn (β) =
1

Nn

∑

hn∈Hn

Nn (hn) e−βhn ,

where Hn := Span(Hn (p) ; p ∈ [Nn]) , Nn (hn) := # {p ∈ [Nn] : Hn (p) = hn} and
Nn (hn) /Nn is the probability of n−paths of energy hn.

With 1 = (1, 1, .., 1)
′
, we define wβ := Wβ1 to be the column-sum vector of

Wβ , with entries wβ (i) =
∑

j A (i, j) e−βH(i,j). Define w+
β = maxi wβ (i), w−

β =

miniwβ (i). We have w−
β ≤ ρβ ≤ w

+
β and so

− logw+
β ≤ p (β) ≤ − logw−

β .
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Clearly, it holds that

− logw+
β ∼

β↑∞
βα− where α− = mini,j:A(i,j)=1H (i, j) and similarly,

− logw−
β ∼

β↓−∞
βα+ where α+ = maxi,j:A(i,j)=1H (i, j) > α−.

We can check that f (α−) = f (α+) = 0 and that the maximum of f (α) is attained
at α = α0 = p′ (0). We also have f (α) = f (p′ (β)) = p′ (β)β − p (β) so that
f (α0) = −p (0) = log ρ0 > 0 where ρ0 is the spectral radius of A.

Whenever α− < 0, α+ > 0, then there is a βc, possibly not equal to 0, given by:
p′ (βc) = 0. With αc := p′ (βc) = 0, f (αc) = −p (βc) > 0.

For all distinct pairs of nodes (i, j), let m (i, j) = inf (m > 1 : Am (i, j) > 0) . Then

m∗ = max
(i,j)

m (i, j)

is the diameter of the adjacency graph. For each (i, j), there can be more than
one path of minimal length m (i, j) . Let Nm(i,j) ≥ 1 be the number of such
length−m (i, j) paths and let h (i, j) be the energy of any path with smallest energy
among these Nm(i,j) paths. Then

α∗ = max
(i,j)

[h (i, j) /m (i, j)]

is a quantity of interest related to the energy diameter of the weighted graph.
Clearly, α− < α∗ < α+ and α∗ belongs to the range of the spectrum.

2.2. Perron-Frobenius and the like. Let π′
β > 0 and ϕβ> 0 be the line and

column (l1−norm 1) Perron vectors of Wβ associated to the spectral radius ρβ of
Wβ :

(6) ρβπ
′
β = π′

βWβ and ρβϕβ = Wβϕβ .

Under our hypothesis, ρβ > 0 is the algebraically simple real dominant eigenvalue
of Wβ . If A is in addition primitive (Am > 0 for some integer m), then all the other
eigenvalues of Wβ are strictly contained within the disk: |ρ| < ρβ , else some could
lie on the disk |ρ| = ρβ because of the underlying periodicity of the problem.

We shall let φβ:= ϕβ/
(

π′
βϕβ

)

in such a way that the Hadamard product of πβ and

φβ , namely the column vector πβ ∗φβ , with components πβ ∗φβ (i) = πβ (i)φβ (i),
has l1−norm 1 (i.e. π′

βφβ = 1).

Remarks: (i) When H (i, j) = H (j, i), Wβ is itself symmetric (Wβ = W ′
β) then

πβ = ϕβ and πβ ∗ φβ = ϕβ ∗ ϕβ/
(

ϕ′
βϕβ

)

. Then it is useful to introduce the

probability wave vector of l2−norm 1 : ψβ = ϕβ/
(

ϕ′
βϕβ

)1/2

in such a way that

πβ ∗ φβ = ψβ ∗ψβ .
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(ii) Letting εβ := 1 − ρβ/w
+
β ≥ 0 stand for the scaled spectral gap of the graph,

the equation giving the right eigenvector ϕβ may be recast as

εβϕβ =

(

I −
1

w+
β

Wβ

)

ϕβ =: −∆βϕβ ,

where ∆β = 1
w+

β

Wβ−I is a Laplacian of the graph. Observe that w+
β = ‖|Wβ |‖∞ is

the matrix norm induced by the l∞−vector norm so that ρβ/w
+
β ≤ 1 (i.e. εβ ≥ 0)

and that log ρβ/ logw+
β →β↑∞ 1. ▽

Consistently with (6), we shall let π′
0 > 0 and ϕ0> 0 stand for the line and column

Perron vectors of A = W0 with:

ρ0π
′
0 = π′

0A and ρ0ϕ0 = Aϕ0,

associated to the spectral radius ρ0 of A = W0. We shall let φ0:= ϕ0/ (π′
0ϕ0) so

that the Hadamard product π0 ∗ φ0 has l1−norm 1. Note that, since A = A′,

π0 = ϕ0 and π0 ∗ φ0 = ϕ0 ∗ϕ0/ (ϕ′
0ϕ0) =: ψ0 ∗ψ0 where ψ0 = ϕ0/ (ϕ′

0ϕ0)
1/2

is
the wave vector associated to A.

3. Random walks on graphs

In the study of weighted graphs, questions pertaining to counting are then rele-
vant. Once such weighted graphs have been introduced, it is useful to consider the
following particular class of random walks attached to such graphs.

Let 0 ≤ Π = [Π (i, j)] denote some stochastic matrix with column sums one: Π1 =
1. Let PWβ

be the set of stochastic matrices which are Wβ−consistent in the sense
that

(7) Π ∈ PWβ
⇔ {Π(i, j) = 0 whenever Wβ (i, j) = 0} .

Let µ′ > 0 be the line left Perron eigenvector of Π, satisfying: µ′ = µ′Π (the unique
invariant probability measure associated to Π). Clearly, to each such Π a positive
recurrent random walk (RW, say) can be associated.

3.1. A variational principle and first consequences. In this context, the fol-
lowing Gibbs-variational principle indeed holds [2], resulting from the Ruelle ther-
modynamic formalism [10]. It reads:

log ρβ = sup
Π∈PWβ



−
∑

i

µ (i)
∑

j

Π(i, j) log Π (i, j) +
∑

i

µ (i)
∑

j

Π(i, j) logWβ (i, j)





(8)

= sup
Π∈PWβ



−
∑

i

µ (i)
∑

j

Π(i, j) log Π (i, j)− β
∑

i

µ (i)
∑

j

Π(i, j)H (i, j)



 ,

where the supremum is attained for the unique stochastic matrix Π∗ which is
Wβ−consistent and defined by the Doob transform:

(9) Π∗ (i, j) =
1

ρβ

Wβ (i, j)
φβ (j)

φβ (i)
.
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With Dφβ
:= diag

(

φβ

)

, this is also; Π∗ = 1
ρβ
D−1

φβ
WβDφβ

, in matrix form. The

corresponding invariant measure satisfying µ′
∗ = µ′

∗Π∗ can easily be checked to be:

(10) µ∗ = πβ ∗ φβ ,

the Hadamard product of the left and right eigenvectors of the weight matrix Wβ .
We shall call the RW with transition probability Π∗ the canonical RW consistent
with Wβ . Using this canonical RW construction, we get:

log ρβ = −
1

ρβ

∑

i

πβ (i)φβ (i)
∑

j

Wβ (i, j)
φβ (j)

φβ (i)
log

(

1

ρβ

φβ (j)

φβ (i)

)

= −
1

ρβ

∑

i

πβ (i)
∑

j

Wβ (i, j)φβ (j)
[

− log ρβ + logφβ (j)− log φβ (i)
]

= log ρβ +
∑

i

πβ (i)φβ (i) logφβ (i)−
1

ρβ

∑

i

πβ (i)
∑

j

Wβ (i, j)φβ (j) logφβ (j) ,

leading to the expression

ρβ =

∑

i πβ (i)
∑

j Wβ (i, j)φβ (j) logφβ (j)
∑

i πβ (i)φβ (i) logφβ (i)
,

in terms of the left and right Perron eigenvectors of Wβ . As a result, we obtain

(11) p (β) =: βτ (β) = − log

[

∑

i πβ (i)
∑

j A (i, j) e−βH(i,j)φβ (j) logφβ (j)
∑

i πβ (i)φβ (i) logφβ (i)

]

.

From (8), for all Wβ−consistent stochastic matrix Π 6= Π∗ :

(12) log ρβ > −
∑

i

µ (i)
∑

j

Π(i, j) log Π (i, j)− β
∑

i

µ (i)
∑

j

Π(i, j)H (i, j) .

In the right-hand-side of (12), s := −
∑

i µ (i)
∑

j Π(i, j) log Π (i, j) =:
∑

i µ (i) s (i)
is the equilibrium Shannon entropy production rate of the ergodic Markov chain
governed by Π and u :=

∑

i µ (i)
∑

j Π(i, j)H (i, j) =:
∑

i µ (i)u (i) its equilibrium

internal transition energy. It follows from (8) that the quantity p (β) := − log ρβ

is a universal lower bound for the equilibrium pressure production rate of all
Wβ−consistent walkers. Stated differently, defining the pressure of a consistent
RW governed by Π ∈ PWβ

, Π 6= Π∗, as:

pΠ (β) := β
∑

i

µ (i)
∑

j

Π(i, j)H (i, j) +
∑

i

µ (i)
∑

j

Π(i, j) log Π (i, j) ,

it holds that:

(13) for all Π 6= Π∗ ∈ PWβ
, pΠ (β) > p (β) = pΠ∗

(β) .

Remark: On the other hand, we also recall the Friedland-Karlin inequality [4] of
a similar flavor:

(14) p (β) = − log ρβ ≥
∑

i

πβ (i)φβ (i) logwβ (i)
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where, wβ := Wβ1 is the column-sum vector of Wβ : wβ (i) =
∑

j A (i, j) e−βH(i,j).

It gives a universal lower bound of p (β) in terms of the invariant measure µ∗ (i) =
πβ (i)φβ (i) associated to Π∗. △

3.2. The entropy production rate of the RW governed by Π ∈ PWβ
. We

need to say a few words on the way to compute the quantity s associated to some
Π. We refer to [8] for additional information. For each pair of connecting states
(i0, in) , define:

Πn
λ (i0, in) :=

∑

i1,..,in−1

n
∏

m=1

Π(im−1, im)
λ
,

where Π (im−1, im)
λ

is the (im−1, im) entry of Π∗λ, the Hadamard λ−power of Π,
λ > 0. Define the Rényi λ−entropy of all n−paths of the RW governed by Π and
started using the invariant measure µ to be

Rn (λ) :=
1

1− λ
log
∑

i0,in

µ (i0)Πn
λ (i0, in) .

Note that with Π (in) :=
∏n

m=1 Π(im−1, im) the probability of the n−path in :=
{i0, i1, .., in} :

Rn (λ)→λ↑1 Sn = −
∑

in

µ (i0)Π (in) log Π (in) ,

the Shannon entropy of n−paths at equilibrium. Then, with α (λ) :=
∑

i µ (i)
∑

j Π(i, j)
λ

:

(15)
1

n
Rn (λ) →

n↑∞
r (λ) :=

1

1− λ
logα (λ)

where r (λ) is the Rényi-entropy production rate of the walker. As a result,

r (λ)→λ↑1 s = −
∑

i

µ (i)
∑

j

Π(i, j) log Π (i, j) = −α′ (1) .

This approach is useful to compute the Shannon-entropy production rate s for
specific Πs.

3.3. Random walks consistent with Wβ. We now exhibit and interpret some
important Wβ−consistent RWs in the light of quasi-stationary distributions for
substochastic RWs. By doing so, a probabilistic interpretation of ρβ, πβ and φβ

emerges.

Let us first normalize Wβ in the following way. Consider the matrix:

(16) W β :=
Wβ

‖Wβ‖
,

for some matrix-norm ‖Wβ‖ of Wβ . For example: ‖Wβ‖ = N maxi,j Wβ (i, j) or

‖Wβ‖ =
∑

i,j Wβ (i, j) or ‖Wβ‖ = w+
β = maxiwβ (i).

The spectral radius of W β now is ρβ = ρβ/ ‖Wβ‖ < 1 with the same left and right
strictly positive Perron eigenvectors πβ > 0 and ϕβ> 0 as for Wβ in (6). By doing

so, the matrix W β is substochastic in the sense that, with wβ := W β1 the column-

sum vector of Wβ , then: wβ (i) ∈ (0, 1] with wβ (i) < 1 for at least one i. To recast
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this problem into a stochastic problem, we may add an additional coffin state, say
∂ := {0} and look at the enlarged (N + 1)× (N + 1) stochastic matrix P :

(17) P =

[

1 0′

1−wβ W β

]

.

P now is the stochastic transition matrix of a RW, say {Xn} , having state {0} as
an additional absorbing state. Let τ0 be the first hitting time of ∂ = {0} for this
RW {Xn}.

Using this construction, clearly, the substochastic matrix Wβ turns out to be the
transition matrix of the processXn·I (τ0 > n) (i.e. Xn, restricted to the set τ0 > n).
In other words, with e′i0 the line-vector with a single 1 in position i0, 0 elsewhere,
we have

Pi0 (Xn = in, τ0 > n) = W
n

β (i0, in) = e′i0W
n

βein
, i0, in ∈ {1, ., N} .

Therefore,

(18) Pi0 (τ0 > n) = e′i0W
n

β1.

We note that Pi0 (τ0 = 1) = Pi0 (τ0 > 0) − Pi0 (τ0 > 1) = e′i0

(

I −W β

)

1 = 1 −

wβ (i0) , the probability mass defect of W β at state i0.

For all (i0, in), we have: limn↑∞

[

W
n

β (i0, in)
]1/n

= ρβ and, only when A is primitive

(irreducible and aperiodic), by the strong version of Perron-Frobenius theorem (see
[6])

(19) lim
n↑∞

ρ−n
β W

n

β = φβπ
′
β ,

where π′
β > 0 and φβ > 0, defined in (6), are the left- (right- ) eigenvectors of W β

associated to ρβ , chosen, as before, so as to satisfy π′
βφβ = 1. As a result of (18)

and (19), when A is primitive:

(20) lim
n↑∞

ρ−n
β Pi0 (τ0 > n) = φβ (i0) ,

meaning that τ0 is tail-equivalent to a geometric random variable with success prob-
ability ρβ . The latter formula therefore gives the limiting interpretation of φβ in
the context of the RW {Xn}. What about πβ?

Firstly, because π′
β is the left eigenprobability vector of W β with eigenvalue ρβ :

(21) Pπβ
(τ0 > n) :=

N
∑

i0=1

πβ (i0) Pi0 (τ0 > n) = π′
βW

n

β1 = ρn
β .

If the process is started with πβ , the law of τ0 is exactly geometrically distributed
on {1, 2, ..., N} with success probability ρβ.

Consider now the conditional probability Pi0 (Xn = in | τ0 > n).

Recalling Pi0 (Xn = in, τ0 > n) = e′i0W
n

βein
, by Bayes rule, we get

Pi0 (Xn = in | τ0 > n) =
e′i0W

n

βein

e′i0W
n

β1
=

e′i0

(

ρ−n
β W

n

β

)

ein

e′i0

(

ρ−n
β W

n

β

)

1
,
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showing that, independently of the starting point i0

Pi0 (Xn = in | τ0 > n) →
n↑∞

e′i0

(

φβπ
′
β

)

ein

e′i0

(

φβπ
′
β

)

1
= πβ (in) .

Such a probability measure πβ is called a Yaglom limit [11] of {Xn}.

Further, with Pπβ
(·) :=

∑N
i=1 πβ (i0) Pi0 (·), for each n, in ∈ {1, 2, .., N} :

(22) Pπβ
(Xn = in | τ0 > n) :=

Pπβ
(Xn = in, τ0 > n)

Pπβ
(τ0 > n)

=
π′

βW
n

βein

π′
βW

n

β1
= πβ (in) ,

and this precisely means that πβ is the (unique) quasi-stationary distribution
(QSD) of {Xn}. As is well-known for Markov chains with finite state-space ab-
sorbed at ∂, we observe that the Yaglom limit coincides with its QSD. When A is
primitive (strongly connected and aperiodic), Equations (21), (22) and (20) provide
a natural interpretation of ρβ , πβ and φβ in terms of the RW governed by P in
(17) and its stopping time τ0.

We refer to [7] for additional informations on QSD and Yaglom limits in the context
of population dynamics.

Remark: When A is irreducible but not primitive (the underlying topological
graph is strongly connected but periodic), only the following weaker form of the
Perron-Frobenius theorem holds true [6]

lim
K↑∞

1

K

K
∑

n=1

ρ−n
β W

n

β = φβπ
′
β .

With φ+
β = maxi φβ (i), φ−

β = mini φβ (i), Equation (20) has to be weakened into

φ−
β /φ

+
β ≤ ρ

−n
β Pi0 (τ0 > n) ≤ φ+

β /φ
−
β , for all n, i0.

The quantity ρ−n
β Pi0 (τ0 > n) may oscillate and not tend to some limit; however

− 1
n log Pi0 (τ0 > n)→ ρβ still holds true. △

The above construction of the RW {Xn} allows now to interpret two fundamental
Wβ−consistent RWs.

The locally conditioned random walk: With Dwβ
:= diag(wβ), the transition

matrix of the one-step conditioned process (X1 | τ0 > 1) is:

Π (i, j) =
e′iW βej

e′iW β1
= e′i

[

D−1
wβ
W β

]

ej =
e′iWβej

e′iWβ1
= e′i

[

D−1
wβ
Wβ

]

ej,

normalizing each line i by e′iWβ1 = wβ (i) . Clearly, Π1 = 1 and the RW with
transition matrix :

(23) Π = D−1
wβ
Wβ

is Wβ−consistent. Note that Π is invariant under the scaling Wβ →W β .
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Let µ be the invariant associated to this Π. It holds, [9], that

µ (i) =
(I −Π)i,i
∑

i (I −Π)i,i

where (I −Π)i,i is the cofactor of the (i, i)−entry of the matrix I−Π. Then, if
←−
Π is

the transition matrix of the reversed (backward in time) chain of Π at equilibrium:
←−
Π ′ = DµΠD−1

µ . In general,
←−
Π 6= Π and detailed balance may not hold.

Global conditioning and the canonical process. Consider now the proper
Markov chain whose transition probabilities are obtained by the Doob transform:

Π∗ (i, j) = ρ−1
β

φβ (j)

φβ (i)
W β (i, j) = ρ−1

β

φβ (j)

φβ (i)
Wβ (i, j) , i, j ∈ {1, .., N} ,

satisfying Π∗1 = 1. In matrix form:

(24) Π∗ = ρ−1
β D−1

φβ
WβDφβ

,

and Π∗ is also invariant under the scaling Wβ → W β . An important property of
this RW is the following: The probability Π∗ (in) :=

∏n
m=1 Π∗ (im−1, im) of the

n−path in is

Π∗ (in) = ρ−n
β Wβ (in)

n
∏

m=1

φβ (im)

φβ (im−1)
= ρ−n

β Wβ (in)
φβ (in)

φβ (i0)
.

For a bridge n−path for which i0 = in, Π∗ (in) = ρ−n
β Wβ (in) reduces, up to a

scaling constant, to the weight Wβ (in) of the n−path in.

The invariant probability distribution µ∗ on {1, .., N} satisfying µ′
∗Π∗ = µ′

∗ exists.
It is given explicitly by µ∗ = πβ ∗ φβ and so:

(25) µ∗ (i) = πβ (i)φβ (i) , i = 1, .., N.

Doob transforms have to do with conditioning a process on its lifetime. The Markov
chain with one-step transition probability matrix Π∗ may be shown to be the one
of the process whose one-step transition probability distribution is:

(26) Π∗ (i, j) = lim
n↑∞

Pi (X1 = j | τ0 > n) ,

corresponding to Xn conditioned to never hit the coffin state ∂ = {0} in the distant
future; see [7]. This process has a unique invariant measure given by µ∗ in (25).

Defining as before
←−
Π∗ by:

←−
Π ′

∗ = Dµ
∗
Π∗D

−1
µ

∗

, we can ask conditions under which

detailed balance
←−
Π ∗ = Π∗ holds. We have

←−
Π ′

∗ = ρ−1
β Dπβ

Dφβ
D−1

φβ
WβDφβ

D−1
φβ
D−1

πβ
= ρ−1

β Dπβ
WβD

−1
πβ

so that
←−
Π∗ = ρ−1

β D−1
πβ
W ′

βDπβ
showing that reversibility holds when Wβ = W ′

β

since if this is the case: πβ = φβ .

No extra state. We emphasize here that there are some alternative ways to force
the substochastic problem into a stochastic one. Assume A (i, i) > 0 for each i,
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in which case AN−1 > 0 and A necessarily is primitive. Consider the stochastic
matrix Π which is Wβ−consistent:

(27) Π = Wβ +D1−wβ
,

where D1−wβ
:= diag(1−wβ), satisfying Π1 = 1. In that case, the mass defect

vector 1−wβ is transferred to the diagonal entries of W β to make it stochastic,
without appealing to an extra coffin-state. Note that Π in (27) no longer is invariant
under the scaling Wβ →W β and so this normalization is norm-dependent.

4. Special cases

1. The topological case. Assume β = 0. In this case, W0 = A and

log ρ0 > s = −
∑

i

µ (i)
∑

j

Π(i, j) log Π (i, j)

for all A−consistent matrix Π 6= Π0
∗ with: Π0

∗ (i, j) = 1
ρ0

A (i, j) φ0(j)
φ0(i) . log ρ0 > 0

interprets as the maximal entropy production rate of all Markov chains governed
by such Πs. The RW with transition matrix Π0

∗ is termed the maximal entropy

random walk in [3]. Its invariant measure is µ∗ (i) = ψ0 (i)
2
. When Π = D−1

a
A,

with a = A1, the invariant measure is µ (i) = a (i) /
∑

i a (i) , proportional to the
node degrees. Then s =

∑

i a (i) log a (i) /
∑

i a (i) and log ρ0 > s is an inequality
first discussed in [3]. When disorder is present, the canonical RW associated to
W0 = A was also shown therein to exhibit localization properties.

Consider the general inequality (12) for all Wβ−consistent stochastic matrix Π 6=

Π∗ =: 1
ρβ
Wβ (i, j)

φβ(j)

φβ(i) . Choosing for Π the above particular value: Π = Π0
∗, we

obtain
log ρβ > log ρ0 − β

∑

i

ψ0 (i)2
∑

j

Π0
∗ (i, j)H (i, j) .

Therefore, the average transition energy

(28) α0 :=
∑

i

ψ0 (i)
2
∑

j

Π0
∗ (i, j)H (i, j)

interprets as the slope at β = 0 of the graph pressure function β → p (β), namely:

α0 = p
′

(0) . We have f (α0) = −p (0) = log ρ0.

2. The potential case: Assume H (i, j) = U (j) − U (i) for some potential U
attached to the nodes of the graph. In this case, the matrixKβ definingWβ is called
a potential kernel. Firstly, in this case, it follows from (28) and the equilibrium
property of

(

µ∗ = ψ0 ∗ ψ0,Π
0
∗

)

that:

(29) α0 :=
∑

i

ψ0 (i)2
∑

j

Π0
∗ (i, j) [U (j)− U (i)] = 0.

We conclude that the singularity spectrum of all graph with potential kernel Kβ

attains its maximum at α0 = 0.

With vβ the column-vector with entries vβ (i) = exp−βU (i), we get:

(30) Wβ := A ∗Kβ = D−1
vβ
ADvβ

.
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We have wβ = Wβ1 = D−1
vβ
Avβ and Dwβ

= D−1
vβ
DAvβ

. Note that Wβ is diagonally
similar to A so that the spectral radius of Wβ is ρ0, independently of β.

- Consider first the RW with transition matrix Π = D−1
wβ
Wβ = D−1

Avβ
ADvβ

. Its

invariant measure is characterized by: µ′ = µ′Π. Recalling A = A′, we find
µ ∝ Dvβ

Avβ , with normalized entries weighting output degree nodes with lowest
U :

(31) µ (i) =
∑

j

A (i, j) e−β(Ui+Uj)/
∑

i,j

A (i, j) e−β(Ui+Uj).

This RW with transition matrix Π is reversible because
←−
Π = D−1

µ Π′Dµ = Π.

- Secondly, consider the canonical RW consistent with Wβ = D−1
vβ
ADvβ

. The right

eigenvectorφβ ofWβ = D−1
vβ
ADvβ

is φβ = D−1
vβ
φ0. It is associated to the eigenvalue

ρ0. Thus the canonical RW has transition matrix Π∗ is given by:

(32) Π∗ = ρ−1
0 D−1

φβ
WβDφβ

= ρ−1
0 D−1

φ0
ADφ0

= Π0
∗.

Its invariant measure is π∗ = ψ0 ∗ ψ0. The canonical RW consistent with the po-
tential weight matrix Wβ = D−1

vβ
ADvβ

always coincides with the canonical RW

consistent with its adjacency matrix A governed by Π0
∗.

With Π = D−1
wβ
Wβ with entries

Π (i, j) = A (i, j) e−β(U(j)−U(i))/
∑

j

A (i, j) e−β(U(j)−U(i)),

and with invariant measure µ (i) displayed in (31), for all β, we get

log ρ0 > −
∑

i

µ (i)
∑

j

Π(i, j) log Π (i, j)− β
∑

i

µ (i)
∑

j

Π(i, j) (U (j)− U (i))

= −
∑

i

µ (i)
∑

j

Π(i, j) log Π (i, j) = s.

We conclude that for potential kernels Kβ, the entropy production rate of the RW
with probability transition matrix Π = D−1

wβ
Wβ = D−1

wβ
[A ∗Kβ] is always bounded

above by log ρ0.

Remark: The Wβ−consistent RW with transition matrix Π = D−1
wβ
Wβ associated

to the weight kernel Wβ = ADvβ
was also considered in [5]. For this model, the

cost of a transition from i to j only depends on the terminal state, regardless of
where one starts from. Although the latter is not in the potential class, its invariant
measure is also given by (31). ▽

3. The symmetric case. If H (i, j) = H (j, i), then Wβ = W ′
β itself. For example

H (i, j) = |U (j)− U (i)| for some potential U attached to the nodes of the graph,
or H (i, j) is some distance (ultrametric or not) between nodes i and j. In this
case, for all β, the invariant measure µ∗ of the canonical RW governed by Π∗ =
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1
ρβ
D−1

φβ
WβDφβ

, is:

(33) µ∗ = ψβ ∗ψβ

and the corresponding RW is reversible.

When Wβ = W ′
β , the invariant measure associated to Π = D−1

wβ
Wβ satisfying

µ′ = µ′Π is given by:

µ (i) =
wβ (i)
∑

i wβ (i)
=

∑

j A (i, j) e−βH(i,j)

∑

i,j A (i, j) e−βH(i,j)
.

We have
←−
Π ′ = DµΠD−1

µ = Dwβ
D−1

wβ
WβD

−1
wβ

= WβD
−1
wβ

= Π′ so that
←−
Π = Π :

detailed balance also holds.
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