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Introduction

Continuous state branching processes (CSBP) have been introduced by Jirina [START_REF] Jirina | Stochastic branching processes with continuous state space[END_REF] and it is known since Lamperti [START_REF] John | The limit of a sequence of branching processes[END_REF] that these processes are the scaling limits of Galton-Watson processes. They model the evolution of a large population on a long time interval. The law of a CSBP is characterized by the so-called branching mechanism, which is the Laplace exponent of a spectrally positive Lévy process, ans is usually denoted by ψ. When the CSBP is critical or sub-critical, one can associate a continuum random tree (CRT) which describes the genealogy of the CSBP. Duquesne and Winkel [START_REF] Thomas | Growth of Lévy trees[END_REF] has constructed genealogical trees associated with super-critical branching processes, we also cite Delmas [START_REF] Delmas | Height process for super-critical continuous state branching process[END_REF] for the construction of the height process when the branching process is super-critical. Aldous and Pitman [START_REF] David | Inhomogeneous continuum trees and the entrance boundary of the additive coalescent[END_REF][START_REF] David | The standard additive coalescent[END_REF] did a pioneering work in fragmentation processes involving discrete and continuum trees. The construction of fragmentation processes from CRTs have been studied by Abraham and Serlet [START_REF] Romain | Poisson snake and fragmentation[END_REF] for the Brownian CRT (in the case where the Lévy measure of ψ is null) and by Abraham and Delmas [START_REF] Romain | Fragmentation associated with Lévy processes using snake[END_REF] for the CRT without Brownian part (in the case where ψ has no quadratic part). In these works, Lévy Poisson snakes are used to create marks on the CRT and to obtain a fragmentation process. In the first case, the marks are built on the skeleton of the CRT, in the second, they are placed on the nodes. Abraham, Delmas and Voisin [START_REF] Romain | Pruning a Lévy random continuum tree[END_REF] constructed a general pruning of a CRT where the marks are placed on the whole CRT, skeleton and nodes. In this work, they study the law of the sub-tree obtained after the pruning according to the marks.

The aim of this article is to study the fragmentation process associated with a general CRT and more precisely the dislocation measure associated with this CRT. Note that this measure has been studied in the Brownian case and in the case without Brownian part (see [START_REF] Romain | Poisson snake and fragmentation[END_REF] and [START_REF] Romain | Fragmentation associated with Lévy processes using snake[END_REF]).

The three following parts give a brief presentation of the mathematical objects and give the main results.

1.1. The exploration process. The coding of the CRT by its height process is well known. The height process of Aldous' CRT [START_REF] David | The continuum random tree III[END_REF] is a normalized Brownian excursion. In [START_REF] Gall | Branching processes in Lévy processes: The exploration process[END_REF], Le Gall and Le Jan associated with a Lévy process with no negative jumps that does not drift to infinity, X = (X t , t ≥ 0), a CSBP and a Lévy CRT which keeps track of the genealogy of the Date: February 25, 2010.
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CSBP. Let ψ be the Laplace exponent of the process X. By the Lévy-Khintchine formula (and some additional assumptions on X, see Section 2.1), ψ is such that E e -λXt = e tψ (λ) and can be expressed by ψ(λ) = αλ + βλ 2 + (0,∞) (e -λl -1 + λl)π(dl) with α ≥ 0, β ≥ 0 and the Lévy measure π is a positive σ-finite measure on (0, ∞) such that (0,∞) (l ∧ l 2 )π(dl) < ∞. Following [START_REF] Thomas | Random trees, Lévy processes and spatial branching processes[END_REF], we assume that X is of infinite variation, which implies that β > 0 or (0,1) lπ(dl) = +∞. The term α is a drift term (if ψ(λ) = αλ, X is a Cauchy process), β is the quadratic term (if ψ(λ) = βλ 2 , X is a Brownian motion) and π gives the law of the jumps of X.

We first construct the height process H = (H t , t ≥ 0) associated with the process X (see Section 2.2). This process codes for a continuum random tree : each individual t is at distance H t from the root and the last common ancestor of the individuals s and t (s < t) is at distance:

H s,t = inf{H u ; u ∈ [s, t]}
(see Section 2.2 for a formal definition of a continuum random tree and its coding by the height process). This height process is an important object but is not a Markov process in general. Thus we introduce the exploration process ρ = (ρ t , t ≥ 0) which is a càd-làg, strong Markov process taking values in M f (R + ), the set of finite measures on R + endowed with the topology of weak convergence. It is defined by :

ρ t (dr) = β1 [0,Ht] (r) dr + 0<s≤t X s-<I s t (I s t -X s-)δ Hs (dr)
where

I s t = inf s≤u≤t X u .
The height process can easily be recovered from the exploration process as H t = H(ρ t ) where H(µ) is the supremum of the closed support of the measure µ (with the convention that H(0) = 0). Informally, ρ t can be seen as a measure on the branch from the root to the individual t which gives the intensity of the branching points (associated with individuals situated "on the right" of t) along that branch (see Bismut decomposition of Proposition 2.5 and the Poisson representation of the process of Lemma 3.5). We can hence see that the regular part of the measure ρ t gives birth to binary branching points whereas the atoms of the measure (which correspond to jumps of the Lévy process X) lead to nodes of infinite index.

1.2. The fragmentation. A fragmentation process is a Markov process which describes how an object with given total mass evolves as it breaks into several fragments randomly as time passes. This kind of processes has been widely studied in [START_REF] Jean | Random fragmentation and coagulation processes[END_REF]. To be more precise, the state space of a fragmentation process is the space of non-increasing sequences of masses with finite total mass

S ↓ = {s = (s 1 , s 2 , . . . ); s 1 ≥ s 2 ≥ • • • ≥ 0 and ∞ k=1 s k < ∞}.
We denote by P s the law of a S ↓ -valued process Λ = (Λ θ , θ ≥ 0) starting at s = (s 1 , s 2 , . . . ) ∈ S ↓ . For fixed θ > 0, we write (Λ θ ) = (Λ θ 1 , Λ θ 2 , . . . ) ∈ S ↓ and (Λ θ ) = i≥1 Λ θ i for the sum of the masses of the elements at time θ. We say that Λ is a fragmentation process if it is a Markov process such that θ → (Λ θ ) is decreasing and if it fulfills the fragmentation property : the law of (Λ θ , θ ≥ 0) under P s is the non-increasing reordering of the fragments of independent processes of respective laws P (s 1 ,0,... ) , P (s 2 ,0,... ) ,. . . In other words, each fragment behaves independently of the others, and its evolution depends only of its initial mass. Hence, it suffices to study the laws P r := P (r,0,... ) that is the law of the fragmentation process starting with a single mass r ∈ (0, ∞).

We want to construct a fragmentation process by cutting a Lévy CRT into several subtrees. The lengths of the height processes that code each subtrees, ranked in decreasing order, form an element of S ↓ . In order to construct our fragmentation process, we need to place marks on the CRT which give the different cut points and the number of marks must increase as time passes.

There will be two sort of marks : some are lying on the nodes of infinite index whereas the others are "uniformly" distributed on the skeleton of the tree.

The nodes of the tree are marked independently and, at time θ, a node with mass m is marked with probability 1e -mθ . To have a consistent construction as θ varies, we use a coupling construction so that the marks present at time θ are still marks at a further time.

For the marks on the skeleton of the CRT, we use a Lévy Poisson snake similar to those of [START_REF] Thomas | Random trees, Lévy processes and spatial branching processes[END_REF] but we must introduce the new parameter θ. At fixed time θ, the marks on the lineage of an individual t will be distributed as a Poisson process with intensity 2βθ1 [0,Ht] (r)dr, but the marks on two common lineages must be the same and a coupling construction must also apply.

By cutting according to these marks, we obtain a set of fragments. Let s 1 , s 2 , . . . be the "sizes" of these fragments ranked by non-increasing order completed with 0 if necessary so that (s 1 , s 2 , . . . ) ∈ S ↓ . When time θ increases, the number of marks increases and the fragments break again. Thus we obtain a process (Λ θ , θ ≥ 0), Theorem 4.1 checks that this process is a fragmentation process.

The choice of the parameters for the marks can be surprising as the pruning of [START_REF] Romain | Pruning a Lévy random continuum tree[END_REF] is much more general but the particular pruning considered here leads to a pruned exploration process that fulfills Lemma 3.4 which is necessary for getting a fragmentation process. We don't know if other pruning give such a property; one may conjecture that it is the only one.

1.3. The dislocation measure. The evolution of the process Λ is described by a family (ν r , r ≥ 0) of σ-finite measures called dislocation measures. ν r describes how a fragment of size r breaks into smaller fragments. In the case of self-similar fragmentations (with no loss of mass), the dislocation measure characterizes the law of the fragmentation process. In the general case, the characterization is an open problem.

To be more precise, we define T = {θ ≥ 0; Λ θ = Λ θ-} the set of jumping times of the process Λ. The dislocation process of the CRT fragmentation θ∈T δ θ,Λ θ is a point process with intensity dθ νΛ θ-(ds), where (ν x , x ∈ S ↓ ) is a family of σ-finite measure on S ↓ . There exists a family (ν r , r > 0) of σ-finite measures on S ↓ such that for any x = (x 1 , x 2 , . . . ) ∈ S ↓ and any non-negative function F , defined on S ↓ ,

F (s)ν x (ds) = i≥1,x i >0 F (x i,s )ν x i (ds)
where x i,s is the decreasing reordering of the merging of the sequences s and x, where x i has been removed of the sequence of x.

We will show in Section 4.2 that the measure ν r can be written as ν r = ν nod r + ν ske r where ν nod corresponds to a mark that appears on the node whereas ν ske to a mark on the skeleton.

The expression of the measure ν ske r is the main result of this article :

Theorem 1.1. Let S be a subordinator with Laplace exponent ψ -1 , let π * be its Lévy measure.

(1) For all non negative measurable function F on S ↓ ,

R + ×S ↓ F (x)ν nod r (dx)π * (dr) = π(dv)E [S v F ((∆S u , u ≤ v))]
where (∆S u , u ≤ v) ∈ S ↓ represents the jumps of S before time v, ranked by decreasing order.

(2) The measure ν ske r charges only the set of elements of S ↓ of the form (x 1 , x 2 , 0, . . .) with x 1 ≥ x 2 and x 1 + x 2 = r. It is the "distribution" of the non-increasing reordering of the lengths given by the measure νske r defined by

R + ×S ↓ 1 x 2 (1 -e -λ 1 x 1 )(1 -e -λ 2 x 2 )ν ske r (dx)π * (dr) = 2βψ -1 (λ 1 )ψ -1 (λ 2 ).
Remark 1.2. Under νske r (dx)π * (dr), the lengths of the two fragments are "independent". Remark 1.3. We will see in Section 4.2 that the measure ν nod is the same as the measure ν in the case of a tree without Brownian part (β = 0). Thus the proof of Part 1 of Theorem 1.1 is the same as in [START_REF] Romain | Fragmentation associated with Lévy processes using snake[END_REF]. Only Part 2 needs a proof.

The Lévy snake : notations and properties

2.1. The Lévy process. We consider a R-valued Lévy process (X t , t ≥ 0) with no negative jumps, starting from 0 characterized by its Laplace exponent ψ given by

ψ(λ) = α 0 λ + βλ 2 + (0,+∞) π(dℓ) e -λℓ -1 + 1 ℓ<1 λℓ ,
with β ≥ 0 and the Lévy measure π is a positive, σ-finite measure on (0, +∞) such that

(0,+∞) (1 ∧ ℓ 2 )π(dℓ) < ∞. We also assume that X • has first moments (i.e. (0,+∞) (ℓ ∧ ℓ 2 )π(dℓ) < ∞),
• is of infinite variation (i.e. β > 0 or (0,1) ℓπ(dℓ) = +∞),

• does not drift to +∞. With the first assumption, the Lévy exponent can be written as

ψ(λ) = αλ + βλ 2 + (0,+∞) π(dℓ) e -λℓ -1 + λℓ ,
with α ≥ 0 thanks to the third assumption.

Let J = {t ≥ 0; X t = X t-} be the set of jumping times of the process X.

For λ ≥ 1 ǫ > 0, we have e -λl -1 + λl ≥ 1 2 λl1 l≥2ǫ this implies that λ -1 ψ(λ) ≥ α + β 1 ǫ + (2ǫ,∞) lπ(dl). We deduce that lim λ→∞ λ ψ(λ) = 0.
Let I = (I t , t ≥ 0) be the infimum process of X, I t = inf 0≤s≤t X s . We also denote for all 0 ≤ s ≤ t, the minimum of X on [s, t] :

I s t = inf s≤r≤t X r .
The point 0 is regular for the Markov process X -I, and -I is the local time of X -I at 0 (see [START_REF] Jean | Lévy processes[END_REF], Chap. VII). Let N be the excursion measure of the process X -I away from 0, and let σ = inf{t > 0; X t -I t = 0} be the lengths of the generic excursion of X -I under N.

Notice that, under N, X 0 = I 0 = 0.

Thanks to [START_REF] Jean | Lévy processes[END_REF], Theorem VII.1, the right-continuous inverse of the process -I is a subordinator with Laplace exponent ψ -1 . We have already seen that this exponent has no drift, because lim λ→∞ λψ(λ) -1 = 0. We denote by π * its Lévy measure : for all λ ≥ 0

ψ -1 (λ) = (0,∞) π * (dl)(1 -e λl ).
Under N, π * is the "law" of the length of the excursions, σ. By decomposing the measure N w.r.t. the distribution of σ, we get that N(dE) = (0,∞) π * (dr)N r (dE), where (N r , r ∈ (0, ∞)) is a measurable family of probability measures on the set of excursions (that is to say for all A, r → N r (A) is B(R + )-measurable) and such that N r [σ = r] = 1 for π * -a.e. r > 0. (see [START_REF] Rangachari | Probability measures on metric spaces[END_REF] for more details for the existence of such a decomposition) 2.2. The height process and the Lévy CRT. We first define a continuum random tree (CRT) using the definition of Aldous [START_REF] Aldous | The continuum random tree II: an overview[END_REF][START_REF] Aldous | The continuum random tree I[END_REF][START_REF] David | The continuum random tree III[END_REF]. Definition 2.1. We say that a metric space (T , d) is a real tree if : for u, v ∈ T ,

• there exists a unique isometry

ψ u,v : [0, d(u, v)] → T such that ψ u,v (0) = u and ψ u,v (d(u, v)) = v, • if (w s , 0 ≤ s ≤ 1) is an injective path on T such that w 0 = u and w 1 = v then (w s , 0 ≤ s ≤ 1) = ψ u,v ([0, d(u, v)]).
A CRT is a random variable (T (ω), d(ω)) on a probability space (Ω, A, P) such that (T (ω), d(ω)) is a real tree for all ω ∈ Ω.

We can use a height function to define a genealogical structure on a CRT (see Aldous [START_REF] David | The continuum random tree III[END_REF]). Let g : R + → R + be a function with compact support, non trivial and such that g(0) = 0. For s, t ∈ T , we say that g(s) is the generation of the individual s and that s is an ancestor of t if g(t) = g s,t where g s,t = inf{g(u), s ∧ t ≤ u ≤ s ∨ t} is the generation of the last common ancestor of the individuals s and t.

We define an equivalence relation between two individuals:

t ∼ t ′ ⇐⇒ d(t, t ′ ) := g(t) + g(t ′ ) -2g t,t ′ = 0.
That is to say g(t) = g t,t ′ = g(t ′ ). The quotient set [0, σ]/ ∼ equipped with the distance d and the genealogical relation is then a CRT coded by g.

Let us now define a height process H associated with the Lévy process X, see Part 1.2 of Duquesne and Le Gall [START_REF] Thomas | Random trees, Lévy processes and spatial branching processes[END_REF]. For all t ≥ 0, we consider the reversed process at time t,

X(t) = ( X(t) s , 0 ≤ s ≤ t) defined by : X(t) s = X t -X (t-s)-if 0 ≤ s < t,
and X(t) t = X t . We denote by Ŝ(t) the supremum process of X(t) and L(t) the local time at 0 of Ŝ(t) -X(t) with the same normalization as in [START_REF] Romain | Fragmentation associated with Lévy processes using snake[END_REF]. Definition 2.2. There exists a [0, ∞]-valued lower semi-continuous process, called the height process such that, under N, We say that a CRT coded by its associated height process H is a Lévy CRT.

H 0 = 0, for all t ≥ 0,
2.3. The exploration process. The height process is not a Markov process in general. But it is a very simple function of a measure-valued Markov process, the exploration process. If E is a locally compact polish space, we denote by B(E) (resp. B + (E)) the set of R-valued measurable (resp. and non-negative) functions defined on E endowed with its Borel σ-field, and by M(E) (resp. M f (E)) the set of σ-finite (resp. finite) measures on E, endowed with the topology of vague (resp. weak) convergence. For any measure µ ∈ M(E), and any function f ∈ B + (E), we write

µ, f = f (x)µ(dx). The exploration process ρ = (ρ t , t ≥ 0) is a M f (R + )-valued process defined by, for every f ∈ B + (R + ), ρ t , f = [0,t] d s I s t f (H s ), or equivalently ρ t (dr) = β1 [0,Ht] (r) dr + 0<s≤t X s-<I s t (I s t -X s-)δ Hs (dr).
In particular, the total mass of ρ t is ρ t , 1 = X t -I t .

The exploration process also codes the Lévy CRT. Indeed, we can recover the height process H from the exploration process. For µ ∈ M(R + ), we put

H(µ) = sup Supp µ,
where Supp µ is the closed support of µ with the convention H(0) = 0.

To better understand what the exploration process is, let us give some of its properties. For every t ≥ 0 such that ρ t = 0, the support of the exploration process at time t is [0, H t ]: Supp ρ t = [0, H t ]. We also have ρ t = 0 if and only if H t = 0. We can finally describe the jumps of the exploration process using the jumps of the Lévy process: ρ t = ρ t -+ ∆ t δ Ht , where ∆ t = 0 if t ∈ J . See [START_REF] Thomas | Random trees, Lévy processes and spatial branching processes[END_REF], Lemma 1.2.2 and Formula (1.12) for more details.

In the definition of the exploration process, as X starts from 0, we obtain ρ 0 = 0 a.s. To state the Markov property of ρ, we must first define the process ρ starting at any initial measure µ ∈ M f (R + ). We recall the notations given in [START_REF] Thomas | Random trees, Lévy processes and spatial branching processes[END_REF].

For a ∈ [0, µ, 1 ], we write k a µ for the erased measure which is the measure µ erased by a mass a backward from H(µ), that is to say:

k a µ([0, r]) = µ([0, r]) ∧ ( µ, 1 -a), for r ≥ 0.
In particular, k a µ, 1 = µ, 1a.

For ν, µ ∈ M f (R + ), and µ with compact support, we write [µ, ν] ∈ M f (R + ) for the concatenation of the two measures:

[µ, ν], f = µ, f + ν, f (H(µ) + •) , f ∈ B + (R + ).
Finally, we put for all µ ∈ M f (R + ) and for all t > 0,

ρ µ t = k -It µ, ρ t ].
We say that (ρ µ t , t ≥ 0) is the process ρ starting from ρ µ 0 = µ, and write P µ for its law. Unless there is an ambiguity, we shall write ρ t for ρ µ t . We also denote by P * µ the law of ρ µ killed when it first reaches 0. Then we can state a useful property of the exploration process: the process (ρ t , t ≥ 0) is a càd-làg strong Markov process in M f (R + ). See [START_REF] Thomas | Random trees, Lévy processes and spatial branching processes[END_REF], Proposition 1.2.3 for a proof.

Remark 2.3. As in [START_REF] Romain | Fragmentation associated with Lévy processes using snake[END_REF], 0 is also a regular point for ρ. Notice that N is also the excursion measure of the process ρ away from 0, and that σ, the length of the excursion, is N-a.e. equal to inf{t > 0; ρ t = 0}.

The exponential formula for the Poisson point process of jumps of τ , the inverse subordinator of -I, gives (see also the beginning of the Section 3.2.2 [START_REF] Thomas | Random trees, Lévy processes and spatial branching processes[END_REF]) that for λ > 0

N 1 -e -λσ = ψ -1 (λ).
2.4. The dual process and the representation formula. We shall need the M f (R + )valued process η = (η t , t ≥ 0) defined by

η t (dr) = β1 [0,Ht] (r) dr + 0<s≤t X s-<I s t (X s -I s t )δ Hs (dr).
This process is called the dual process of ρ under N (see Corollary 3.1.6 of [START_REF] Thomas | Random trees, Lévy processes and spatial branching processes[END_REF]). We also denote, for s ∈ [0, σ] fixed, κ s = ρ s + η s . Recall the Poisson representation of (ρ, η) under N. Let N (dx dl du) be a point Poisson measure on [0, +∞) 3 with intensity

dx lπ(dl) 1 [0,1] (u)du.
For all a > 0, we denote by M a the law of the pair (µ a , ν a ) of measures on R + with finite mass defined by, for any

f ∈ B + (R + ) µ a , f = N (dx dl du)1 [0,a] (x)ulf (x) + β a 0 f (r)dr, ν a , f = N (dx dl du)1 [0,a] (x)(1 -u)lf (x) + β a 0 f (r)dr. We also put M = ∞ 0 dae -αa M a . Proposition 2.4. ([13], Proposition 3.1.3) For every non-negative measurable function F on M f (R + ) 2 N σ 0 F (ρ t , η t )dt = M(dµ dν)F (µ, ν)
where we recall that σ = inf{s > 0; ρ s = 0} is the length of the excursion.

We also give the Bismut formula for the height process of the Lévy process which gives a spinal decomposition of the tree from a branch "uniformly randomly" chosen. Proposition 2.5. ( [START_REF] Thomas | Probabilistic and fractal aspects of Lévy trees[END_REF], Lemma 3.4.) For every non negative function

F defined on B + ([0, ∞]) 2 N σ 0 dsF ((H (s-t) + , t ≥ 0), (H (s+t)∧σ , t ≥ 0)) = M(dµdν) P * µ (dρ)P * ν (dρ)F (H(ρ), H(ρ)).

The Lévy Poison snake

As in [START_REF] Romain | Pruning a Lévy random continuum tree[END_REF], we construct a Lévy Poisson snake which marks the Lévy CRT on its nodes and on its skeleton. The aim is to fragment the CRT in several fragments using point processes whose intensities depend on a parameter θ such that, if θ = 0, there is no marks on the CRT and the number of marks increases with θ.

3.1. Marks on the skeleton. In order to mark the continuous part of the CRT and to keep track of marks along the lineage of each individual, we construct a snake on E = M(R 2 + ) where the parameter θ appears. To obtain a Polish space, we separate the space of the parameter θ in bounded intervals. We fix i ∈ N, thanks to [START_REF] Dawson | Measure-valued Markov processes[END_REF] Section 3.1,

E i = M f (R + × [i, i + 1)) the set of finite measures on R + × [i, i + 1
) is a Polish space for the topology of weak convergence. Thanks to [START_REF] Thomas | Random trees, Lévy processes and spatial branching processes[END_REF], Chap. 4, there exists a E i -valued process (W i t , t ≥ 0) such that conditionally on X,

each s ∈ [0, σ], W i s is a Poisson measure on [0, H s ] × [i, i + 1) with intensity 2β1 [0,Ht] (r)dr 1 [i,i+1) (θ)dθ, (2) For every s < s ′ , W i s ′ (dr, dθ)1 [0,H s,s ′ ] (r) = W i s (dr, dθ)1 [0,H s,s ′ ] (r), where we recall that H s,s ′ = inf [s,s ′ ] H. (1) For 
We take the processes W i independently and we set m ske t = i∈N W i t . If β = 0, the CRT has no Brownian part, in this case, there is no mark on the skeleton and we set m ske = 0. For t ≥ 0 fixed, conditionally on H t , m ske t is Poisson point process with intensity 2β1 [0,Ht] (r)drdθ.

The process (ρ, m ske ) takes values in the space Mf := M f (R + ) × M(R 2 + ). We denote by (F s , s ≥ 0) the canonical filtration on the space of càd-làg trajectories on the space Mf . Using Theorem 4.1.2 of [START_REF] Thomas | Random trees, Lévy processes and spatial branching processes[END_REF] when H is continuous or the adapted result when H is not continuous (Prop. 7.2, [START_REF] Romain | Pruning a Lévy random continuum tree[END_REF]), we get the following result Proposition 3.1. (ρ, m ske ) is a strong Markov process with respect to the filtration (F s+ , s ≥ 0).

3.2.

Mark on the nodes. We mark every jump of the process X, say s such that ∆ s > 0, with an independent Poisson measure with intensity ∆ s 1 u>0 du, and this point Poisson measure is denoted by u>0 δ Vs,u .

When the Lévy measure of X is non trivial, we define the mark process on the nodes of the CRT as in [START_REF] Romain | Fragmentation associated with Lévy processes using snake[END_REF]. We use a Poisson point measure to introduce the parameter θ. Conditionally on X, we set

m nod t (dr, dθ) = 0<s≤t X s-<I s t (I s t -X s-) u>0
δ Vs,u (dθ) δ Hs (dr).

If π = 0, it is the Brownian case and there is no mark on the nodes, thus we set m nod = 0.

3.3. The snake. We join the marks on the skeleton and the marks on the nodes of the CRT in a mark process m = (m nod , m ske ). We write S = (ρ, m) the marked snake starting from ρ 0 = 0 and m 0 = 0. Let us recall the construction made in [START_REF] Romain | Pruning a Lévy random continuum tree[END_REF] to obtain a snake starting from an initial value and then to write a strong Markov property for the snake. We consider the set S of triplets (µ, Π nod , Π ske ) such that

• µ ∈ M f (R + ),
• Π nod can be written as Π nod (dr, dx) = µ(dr)Π nod r (dx) where (Π nod r , r > 0) is a family of σ-finite measures on R + and for every θ > 0,

Π nod (R + × [0, θ]) < ∞, • Π ske ∈ M(R 2 + ) and -Supp(Π ske (., R + )) ⊂ Supp(µ) -for every x < H(µ) and every θ > 0, Π ske ([0, x] × [0, θ]) < ∞, -if µ(H(µ)) > 0, then for every θ > 0, Π ske (R + × [0, θ]) < ∞
Then we define the snake S starting from an initial value (µ, Π) ∈ S, where Π = (Π nod , Π ske ). That is to say

S (µ,Π) 0 := (ρ µ 0 , (m nod ) (µ,Π) 0 , (m ske ) (µ,Π) 0 ) = (µ, Π).
We write

H µ t = H(k -It µ) and H µ 0,t = inf{H µ u ; u ∈ [0, t]}. We define (m nod ) (µ,Π) t = Π nod 1 [0,H µ t ) + 1 µ({H µ t })>0 k -It µ({H µ t })Π nod ({H µ t }, .) µ({H µ t }) δ H µ t Π nod H µ t , m nod t and (m ske ) (µ,Π) t = Π ske 1 [0,H µ 0,t ) , m ske t .
Notice that these definitions are coherent with the previous definitions of the processes m nod and m ske . By using the strong Markov property for the process (ρ, m nod ) (see [START_REF] Romain | Fragmentation associated with Lévy processes using snake[END_REF], Proposition 3.1) and Proposition 3.1, we obtain that the snake S is a càd-làg strong Markov process. See Proposition 2.5 of [START_REF] Romain | Pruning a Lévy random continuum tree[END_REF]. We write m (θ) (dr) = m ske (dr, [0, θ]) + m nod (dr, [0, θ]). Due to the properties of the Poisson point measures, we obtain the following result.

Proposition 3.2. m (θ+θ ′ ) t -m (θ) t is independent of m (θ) t
and has the same law as m

(θ ′ ) t .
We still denote by P µ (resp. P * µ ) the law of the snake (ρ, m nod , m ske ) starting from (µ, 0, 0) (resp. and killed when it reaches 0). We also denote by N the law of the snake S when ρ is distributed under N.

We define ψ (θ) by, for any θ ∈ R,

ψ (θ) (λ) = ψ(θ + λ) -ψ(θ) = α (θ) λ + β (θ) λ 2 + (0,+∞) (e -λl -1 + λl)π (θ) (dl) with      α (θ) = α + 2βθ + (0,+∞) (1 -e -θl )lπ(dl) β (θ) = β π (θ) (dl) = e -θl π(dl).
For fixed θ ≥ 0 and t ∈ [0, σ], we define the set A (θ) t of individuals of the Lévy CRT without marks on their lineage and its right-continuous inverse C (θ) t

given by the formulas:

A (θ) t = t 0 1 m (θ) s =0 ds and C (θ) t = inf{s > 0; A (θ) s > t}.
We define the exploration process ρ (θ) which describes the sub tree under the first marks given by m (θ) : ρ

(θ) t = ρ C (θ) t . Let F (θ) = (F (θ)
t , t ≥ 0) be the filtration generated by pruned Lévy Poisson snake S (θ) = (ρ (θ) , m (θ) ) completed the usual way. We also denote σ(θ) = inf{t > 0; ρ (θ) t = 0} and X (θ) the Lévy process with Laplace exponent ψ (θ) . We can write the key property of ρ (θ) proved by Abraham, Delmas and Voisin [START_REF] Romain | Pruning a Lévy random continuum tree[END_REF]. Proposition 3.3 (Theorem 1.1 [START_REF] Romain | Pruning a Lévy random continuum tree[END_REF]). The exploration process ρ (θ) is associated with a Lévy process with Laplace exponent ψ (θ) .

The next Lemma is also crucial for getting a fragmentation process and explains the choice of the parameters of the pruning. It has been proved by Abraham and Delmas [START_REF] Romain | Fragmentation associated with Lévy processes using snake[END_REF], see the comments under their Lemma 1.6. Notice that the proof of Abraham and Delmas is established in the general case when the quadratic coefficient β is nonnegative. Lemma 3.4. For π * (dr) a.e. r, the "law" of ρ (θ) under N, conditionally on σ (θ) = r is the same as the "law" of ρ under N, conditionally on σ = r.

3.4.

Poisson representation of the snake. We decompose the process ρ under P * µ according to excursions of the total mass of ρ above its past minimum. More precisely, let (α i , β i ), i ∈ J be the excursion intervals of X -I above 0 under P * µ . For i ∈ J, we define h i = H α i and ρ i by the formula : for t ≥ 0 and f ∈ B + (R + ),

ρ i t , f = (h i ,+∞) f (x -h i )ρ (α i +t)∧β i (dx).
We write σ i = inf{s > 0; ρ i s , 1 = 0}. We also define the mark process m above the intervals (α i , β i ). For every t ≥ 0 and f ∈ B + (R 2 + ), we set

m i,a t , f = (h i ,+∞) f (x -h i , θ)m a (α i +t)∧β i (dx, θ)
with a = ske, nod. We set for all i ∈ J, m i = (m i,nod , m i,ske ). It is easy to adapt the proof of Lemma 4.2.4 of [START_REF] Thomas | Random trees, Lévy processes and spatial branching processes[END_REF] to get the following Poisson representation.

Lemma 3.5. Let µ ∈ M f (R + ). The point measure i∈J δ (h i ,S i ) is under P * µ a Poisson point
measure with intensity µ(dr)N(dS).

3.5. Special Markov property. We fix θ ≥ 0. We define O (θ) as the interior of the set {s ≥ 0, m (θ) s = 0}. We write O (θ) = i∈ Ĩ (a i , b i ) and we say that (a i , b i ) are the excursions intervals of the Lévy marked snake S (θ) = (ρ (θ) , m (θ) ) away from {s ≥ 0; m (θ) s = 0}. We set h i = H a i and we define the process S (θ),i = (ρ (θ),i , m (θ),i ) above the excursion intervals ((a i , b i ), i ∈ Ĩ) as previously.

If Q is a measure on S and ϕ is a non-negative measurable function defined on the measurable space R + × Ω × S, we denote by

Q[ϕ(u, ω, •)] = S ϕ(u, ω, S)Q(dS).
We now recall the special Markov property proved by Abraham, Delmas and Voisin [START_REF] Romain | Pruning a Lévy random continuum tree[END_REF]. It gives the distribution of the Lévy snake "above" the "first" marks of the marked CRT knowing the part of the pruned CRT where the root belongs to.

Theorem 3.6 ([2], Theorem 4.2 ). (Special Markov property)

We fix θ > 0. Let φ be a non-negative measurable function defined on

R + × S such that t → φ(t, ω, S) is progressively F (θ)
∞ -measurable for any S ∈ S. Then, we have P-a.s.

(1) E   exp   - i∈ Ĩ ϕ(A (θ) a i , ω, S (θ),i )   F (θ) ∞   = exp - ∞ 0 du 2βθN 1 -e -ϕ(u,ω,•) exp - ∞ 0 du (0,∞) (1 -e -θℓ )π(dℓ) 1 -E * ℓ [e -ϕ(u,ω,•) ] .
Furthermore, the law of the excursion process

i∈ Ĩ δ (A (θ) a i ,ρ (θ) 
a i -,S (θ),i ) , given F (θ) 
∞ , is the law of a Poisson point measure with intensity

1 u≥0 du δ ρ (θ) u (dµ) 2βθN(dS) + (0,∞)
(1e -θℓ )π(dℓ)P * ℓ (dS) .

4. Links between the snake and the fragmentation 4.1. Construction of the fragmentation process. We are interested in the fragments of the tree given by the marks process. We do the same construction as in [START_REF] Romain | Fragmentation associated with Lévy processes using snake[END_REF], Section 4.1.

For fixed θ ≥ 0, we first construct an equivalence relation,R θ , on [0, σ] under N or under N σ by :

sR θ t ⇔ m (θ) s ([H s,t , H s ]) = m (θ)
t ([H s,t , H t ]) = 0. Two individuals, s and t, belong to the same equivalence class if they belong to the same fragment, that is to say if there is no mark on their lineage down to their most recent common ancestor. From the equivalence relation R θ , we get the family of sets G j of individuals with j marks in their lineage.

As we put marks on infinite nodes of the CRT, for θ > 0, for fixed j ∈ N, the set G j can be written as an infinite union of sub-intervals of [0, σ]. We get

G j = k∈J j R j,k
such that R j,k has positive Lebesgue measure. For j ∈ N and k ∈ J j , we set

A j,k t = t 0 1 s∈R j,k ds and C k,j t = inf{u ≥ 0; A j,k u > t},
with the convention inf ∅ = σ. We also construct the process Sj,k = (ρ j,k , mj,k ) by : for every

f ∈ B + (R + ), ϕ ∈ B + (R + , R + ) and t ≥ 0, ρj,k t , f = (H C j,k 0 ,+∞) f (x -H C j,k 0 )ρ C j,k t (dx) mj,k t , ϕ = (H C j,k 0 ,+∞)×(θ,+∞) ϕ(x -H C j,k 0 , v -θ)m C j,k t (dx, dv) σj,k corresponds to the Lebesgue measure of R j,k . We denote L (θ) = (ρ j,k ; j ∈ N, k ∈ J j ) = (ρ i ; i ∈ I (θ)
). We also define L (θ-) = (ρ i ; i ∈ I (θ-) ) the set defined similarly but using the equivalence relation R θ-which gives the fragments just before time θ.

We now define the process Λ θ = (Λ θ 1 , Λ θ 2 , . . . ) as the sequence of non trivial Lebesgue measure of the equivalence classes of R θ , (σ j,k , j ∈ N, k ∈ J j ), ranked in decreasing order. Notice that, when θ > 0, this sequence is infinite. When θ = 0, Λ 0 is the entire tree and we denote Λ 0 = (Λ 0 , 0, . . . ). Then we have that N-a.s. and N σ -a.e. Λ θ ∈ S ↓ .

We write P σ the law of (Λ θ , θ ≥ 0) under N σ and by convention P 0 is the Dirac mass at (0, 0, . . . ) ∈ S ↓ . Theorem 4.1. For π * (dr)-almost every r, under P r , (Λ θ , θ ≥ 0) is a S ↓ -valued fragmentation process.

Sketch of proof.

As the proof is exactly the same as for [START_REF] Romain | Fragmentation associated with Lévy processes using snake[END_REF], Theorem 1.1., we only give the main ideas of the proof and refer to [START_REF] Romain | Fragmentation associated with Lévy processes using snake[END_REF] for precise details.

1st step. Thanks to Proposition 3.3, the first sub-excursion ρ0,0 is "distributed" under N as ρ (θ) . Moreover, by Lemma 3.4 and the construction of the Poisson snake conditionally given ρ, the law of S0,0 conditionally on {σ 0,0 = s} is N s .

2nd step. By the special Markov property, Theorem 3.6, using the same notations as in this theorem, we have that, under N conditionally on σ0,0 = s, the processes (S (θ),i , i ∈ Ĩ) are given by a Poisson measure with intensity s2βθN(dS) + s (0,+∞)

(1e -θℓ )π(dℓ)P * ℓ (dS)

and are independent of S0,0 . Moreover, by the Poisson representation of the probability measure P * ℓ (Lemma 3.5), we get that the excursions of the snake S "above the first mark", that we denote (S 1,k , k ∈ J 1 ), form under N an i.i.d. family of processes with "distribution" N.

3rd step By induction on the number of marks, we get the following lemma Lemma 4.2. Under N, the law of the family ( Sj,k , j ∈ N, k ∈ J j ), conditionally on (σ j,k , j ∈ N, k ∈ J j ), is the law of independent Lévy Poisson snakes distributed respectively as N σj,k .

The theorem then follows easily. Conditionally on the process H (or equivalently on ρ), we set a Poisson point process Q(dθ, ds, da) under the epigraph of H with intensity dθ q ρ (ds, da) where q ρ (ds, da) = ds κ s (da) d s,ag s,a

= q ske ρ (ds, da) + q nod ρ (ds, da) For an individual t, marks on the skeleton are uniform from the height h 1 to the height h 2 . Thanks to snake property, if a mark appears at height a on the lineage of the individual t, it also appears for all children of t, that is to say the mark appears from g t,a to d t,a . We have

with            q nod ρ (ds, da) = ds d s,a -g s,a 0<u≤s X u-<I u s (X u -X u-)δ Hu (da) q ske ρ (ds, da) = 2β ds 1 [0,Hs] (a)da d s,a -g s,a with d s,a = sup{u ≥ s, min{H v , v ∈ [s, u]} ≥ a} and g s,a = inf{u ≤ s, min{H v , v ∈ [s, u]} ≥ a}. [g s,a , d s,a ] is
D 2βθda ds d s,a -g s,a = 2β(h 2 -h 1 )
where

D = {(a, s) ∈ [h 1 , h 2 ] × [g t,a , d t,a ]} because for a ∈ [h 1 , h 2 ] fixed, ∀s ∈ [g t,h , d t,h ],
g s,a = g t,a and d s,a = d t,a . (See Figure 1). Thus the point process q ske give the same marks as the process m ske .

Conditionally on H, under N, for fixed t ∈ [0, σ], m nod t puts marks on a node at height H u < t proportionally to the size ∆ u of the node. By construction of m nod , if a mark appears at height H u = a on the lineage of an individual t, it also appears from g t,a to d t,a . We have

D ∆ u θδ Hu (da)ds d s,a -g s,a = θ∆ u where D = {(a, s) ∈ [0, H t ] × [g t,a , d t,a ]}.
Thus the point process q nod give the same marks as the process m nod .

The equality m = m ske + m nod ends the proof. We use a notation for the fragments of the CRT obtained from a mark (s, a) under the epigraph of H. For s and a such that s ∈ [0, σ] and 0 ≤ a ≤ H s , we denote the fragments of the Lévy snake (ρ i , i ∈ Ĩ) by :

• the open intervals of the excursion of H after s and above a : ((α i , β i ), i ∈ Ĩ+ ) which are such that α i > s, H α i = H β i = a and for every s ′ ∈ (α i , β i ), H s ′ > a and H s,s ′ = a. • the open intervals of the excursion of H before s and above a : ((α i , β i ), i ∈ Ĩ-) which are such that β i < s, H α i = H β i = a and for every s ′ ∈ (α i , β i ), H s ′ > a and H s,s ′ = a. • the excursion i s , of H above a and which contains s

: (α is , β is ) such that α is < s < β is , H α is = H β is = a and for every s ′ ∈ (α is , β is ), H s ′ > a and H s,s ′ > a. • the excursion i 0 of H without the mark (s, a) : {s ∈ [0, σ]; H s,s ′ < a} = [0, α i 0 ) ∪ (β i 0 , σ]
We write Ĩ = Ĩ-∪ Ĩ+ ∪ {i s , i 0 } (see Figure 2). Then the family (ρ i , i ∈ Ĩ) contains the exploration processes of the fragments obtained when a single cutpoint is selected. We are interested in the computation of νρ , the "law" of (ρ i , i ∈ Ĩ) under N(dρ)q ρ (ds, da).

Figure 2. Fragments of the Lévy snake obtained from a mark (s, a)

α i0 α is s β is β i0 σ Ĩ+ Ĩ- a

The dislocation process

Let T be the set of jumping times of the Poisson process Q. For θ ∈ T , we consider the processes L (θ) = (ρ i ; i ∈ I (θ) ) and L (θ-) = (ρ i ; i ∈ I (θ-) ) defined in the Section 4.1. The life times (σ(ρ i ); i ∈ I (θ) ) (resp. (σ(ρ i ); i ∈ I (θ-) ) ), ranked by decreasing order, of these Lévy snakes correspond to the "sizes" of the fragments at time θ (resp. before time θ). Notice that, for θ ∈ T fixed, the families L (θ) and L (θ-) change in one family : the snake ρ i θ breaks in one family (ρ i , i ∈ Ĩ(θ) ) ∈ L (θ) . Thus we get

L (θ) = L (θ-) \ {ρ i θ } ∪ {ρ i ; i ∈ Ĩ(θ) }.
Let ν r be the distribution of the decreasing lengths of Lévy snakes under νρ , integrated w.r.t. the law of ρ conditionally on σ(ρ) = r, that is to say, for any non-negative measurable function

F defined on S ↓ S ↓ F (x)ν r (dx) = N r F ((σ i , i ∈ Ĩ))ν ρ (d(ρ i , i ∈ Ĩ))
where the (σ i , i ∈ Ĩ) are the lengths of the fragments (ρ i , i ∈ Ĩ) ranked in decreasing order. The family of measures (ν r , r > 0) is then the family of dislocation measures defined in the Section 1.3. Indeed, the formula above means that ν r gives the distribution of the lengths of the fragments (ranked by decreasing order) coming from the dislocation of one fragment of size r. For x = (x i , i ∈ I (θ) ) ∈ S ↓ , if we consider the dislocation of all the fragments of x with respective sizes x i > 0, we found the formula of the dislocation measure ν x i given in Section 1.3:

F (s)ν x (ds) = i≥1,x i >0 F (x i,s )ν x i (ds)
where νx is defined as the intensity of a Poisson point process and is the law of the lengths (x i , i > 0). 5.1. Computation of dislocation measure. We are interested in the family of dislocation measures (ν r , r > 0). Recall that N(.) = R + π * (dr)N r (.). The computation is easier under N, then we compute for any λ ≥ 0 : R + ×S ↓ F (x)ν r (dx)π * (dr) = N q ρ (ds, da)F ((σ i , i ∈ Ĩ))

= N q nod ρ (ds, da)F ((σ i , i ∈ Ĩ)) + N q ske ρ (ds, da)F (σ i 0 , σ is )

where we use the decomposition of q ρ for the second equality. The first part has already been computed in [START_REF] Romain | Fragmentation associated with Lévy processes using snake[END_REF]. Jumping times of the process ρ are represented by a subordinator W with Laplace exponent ψ ′α. Then we construct the length of the excursions of the snake by S W where S is a subordinator with exponent ψ -1 , independent of W . Then we have :

N e -λσ q nod ρ (ds, da)F ((σ i , i ∈ Ĩ)) = π(dv)E S v e -λSv F ((∆S u , u ≤ v)) .

We now compute the second part. Thanks to the definition of the snake, ρ ske = 0 if and only if β = 0 and in this case, we don't put mark on the skeleton of the tree. We assume that β > 0 and we write the key lemma of this article which prove the Part 2 of the Theorem 1.1.

A 2 = 2β M(dµdν) 1 0≤a≤H(µ) daE * µ   exp   -(λ 1 + λ 2 ) h i ≥a σ i -λ 2 h i <a σ i     E * ν   exp   -(λ 1 + λ 2 ) h i ≥a σ i -λ 2 h i <a σ i     .
Using standard properties of Poisson point measures, the atoms above level a are independent of the atoms below, the expectations can be separated.

E * µ e -(λ 1 +λ 2 ) h i ≥a σ i -λ 2 h i <a σ i = E * µ e -(λ 1 +λ 2 ) h i ≥a σ i E * µ e
-λ 2 h i <a σ i .

We use Lemma 3.5, and the equality ψ -1 (λ) = N 1e -λσ , we get

E * µ e
-(λ 1 +λ 2 ) h i ≥a σ i = e -µ([a,H(µ)])N[1-e -(λ 1 +λ 2 )σ ] = e -µ([a,b])ψ -1 (λ 1 +λ 2 ) .

And we do the same for the second expectation. = e αb e -(b-a)ψ ′ ψ -1 (λ 1 +λ 2 )-aψ ′ ψ -1 (λ 2 ) . We recall the expression of A 2

A 2 = 2β ∞ 0 db e -bψ ′ ψ -1 (λ 2 ) -e -bψ ′ ψ -1 (λ 1 +λ 2 ) ψ ′ ψ -1 (λ 1 + λ 2 ) -ψ ′ ψ -1 (λ 2 ) = 2β ψ ′ ψ -1 (λ 1 + λ 2 ) -ψ ′ ψ -1 (λ 2 ) 1 ψ ′ ψ -1 (λ 2 ) - 1 ψ ′ ψ -1 (λ 1 + λ 2 ) = 2β ψ ′ ψ -1 (λ 2 )ψ ′ ψ -1 (λ 1 + λ 2 )
.

We use the equality N q ske ρ (ds, da)σ is G(σ is , σ) = N q ske ρ (ds, da)σ is e -(λ 1 +λ 2 )σ is -λ 2 σ i 0 , we finally get the result.

Brownian case.

A similar result has been obtained by Abraham and Serlet [START_REF] Romain | Poisson snake and fragmentation[END_REF] in the Brownian case and conditionally on σ = 1. They use the same construction of the marks on the skeleton given by Aldous and Pitman [START_REF] David | The standard additive coalescent[END_REF].

We consider a standard Brownian motion with Laplace exponent ψ(λ) = λ 2 2 and we denote by Γ(de) the law of the Brownian excursion e. Thanks to [START_REF] Gall | Spatial branching processes, random snakes and partial differential equations[END_REF], Section VIII.3, the height

4. 2 .

 2 Another representation of the fragmentation. We give an another representation of the fragmentation by using a Poisson point measure under the epigraph of the height process. Recall that for every t ∈ [0, σ], κ t (dr) = 2β1 [0,Ht] (r)(dr) + 0<s≤t X s-<I s t (X s -X s-)δ Hs (dr).

Proposition 4 . 3 .

 43 the set of individuals of the CRT with common ancestor s after generation a. Conditionally on the process H, the mark process m and the Poisson point process Q have same distribution Proof. Conditionally on H and under N, for fixed t ∈ [0, σ], m ske t is a Poisson point process with intensity 2β1 [0,Ht] (a)da dθ.

Figure 1 .

 1 Figure 1. Marks under the epigraph of H

A 2

 2 b e -(µ+ν)([a,b])ψ -1 (λ 1 +λ 2 ) e -(µ+ν)([0,a))ψ -1 (λ 2 ) . Then, M b e -((µ+ν)([a,b])ψ -1 (λ 1 +λ 2 ) e -(µ+ν)([0,a))ψ -1 (λ 2 ) = M b e -((µ+ν)([a,b])ψ -1 (λ 1 +λ 2 ) M b e -(µ+ν)([0,a))ψ -1 (λ 2 ) = e -2(b-a)βψ -1 (λ 1 +λ 2 ) exp -)(1e -lψ -1 (λ 1 +λ 2 ) )e -2aβψ -1 (λ 2 ) exp -)(1e -lψ -1 (λ 2 ) )

  And a.s. for all s < t such that X s-≤ I s t and for s = t, if ∆ t > 0 then H s < ∞ and for all t ′ > t ≥ 0, the process H takes all the values between H t and H t ′ on the time interval [t, t ′ ].

	a.s. H t =	L(t)

t .
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Lemma 5.1. We set λ 1 > 0 and λ 2 > 0.

N

q ske ρ (ds, da)σ is e -λ 1 σ is -λ 2 σ i 0 = 2β ψ ′ ψ -1 (λ 1 )ψ ′ ψ -1 (λ 2 ) .

We recall that the measure νske r gives the law of the non-reordering of the two lengths given by the fragmentation from ν ske r . Proof of Part 2 of Theorem 1.1. We use Lemma 5.1, let x 1 and x 2 be the lengths of the fragments from ν ske ρ ranked by decreasing order among the elements of x ∈ S ↓ , we get

.

We integrate w.r.t. λ 1 and we take the primitive which vanishes in 0, and we do the same with λ 2 . We get that, for λ 1 > 0 and λ 2 > 0,

Thus, under νske r (dx)π * (dr), the lengths of the two fragments are independent. Proof of Lemma 5.1. In order to prove the lemma, we compute

We denote for 0 ≤ s ≤ σ and 0 ≤ a ≤ H s fixed

We use the generalization for Lévy processes of Bismut formula, Proposition 2.5.

where J µ (a) is the first passage time of the process H (µ) at level a. By the Poissonnian decomposition of ρ under P * µ w.r.t. the excursions of ρ above its minimum, under P * µ , we replace respectively J µ (0) and J µ (a) by i∈I σ i and h i ≥a σ i . We separate i∈I σ i =

process of the Brownian motion is given by H t = 2(X t -I t ). We resume the computation of [START_REF] Romain | Poisson snake and fragmentation[END_REF] by taking marks under the epigraph of H, we get

where ν is the dislocation measure of [START_REF] Romain | Poisson snake and fragmentation[END_REF]. The computation of [START_REF] Romain | Poisson snake and fragmentation[END_REF] uses the law the two independent 3-dimensional Bessel processes, then we get

As before, we compute with F (x, y) = xe -λ 1 x-λ 2 y .

For the end of this computation, we use the two changes of variable : z ↔ sin 2 x and then t ↔ tanx.

We integrate a last time, we get the same result as in Lemma 5.1 :

.