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DISLOCATION MEASURE OF THE FRAGMENTATION OF A GENERAL

LÉVY TREE

GUILLAUME VOISIN

Abstract. Given a general critical or sub-critical branching mechanism and its associated
Lévy continuum random tree, we consider a pruning procedure on this tree using a Poisson
snake. It defines a fragmentation process on the tree. We compute the family of dislocation
measures associated with this fragmentation. This work generalizes the work made for a
Brownian tree [3] and for a tree without Brownian part [1].

1. Introduction

Continuous state branching processes (CSBP) have been introduced by Jirina [16] and it
is known since Lamperti [17] that these processes are the scaling limits of Galton-Watson
processes. They model the evolution of a large population on a long time interval. The
law of a CSBP is characterized by the so-called branching mechanism, which is the Laplace
exponent of a spectrally positive Lévy process, ans is usually denoted by ψ. When the CSBP
is critical or sub-critical, one can associate a continuum random tree (CRT) which describes
the genealogy of the CSBP. Duquesne and Winkel [15] has constructed genealogical trees as-
sociated with super-critical branching processes, we also cite Delmas [12] for the construction
of the height process when the branching process is super-critical. Aldous and Pitman [7, 8]
did a pioneering work in fragmentation processes involving discrete and continuum trees.
The construction of fragmentation processes from CRTs have been studied by Abraham and
Serlet [3] for the Brownian CRT (in the case where the Lévy measure of ψ is null) and by
Abraham and Delmas [1] for the CRT without Brownian part (in the case where ψ has no
quadratic part). In these works, Lévy Poisson snakes are used to create marks on the CRT
and to obtain a fragmentation process. In the first case, the marks are built on the skeleton
of the CRT, in the second, they are placed on the nodes. Abraham, Delmas and Voisin [2]
constructed a general pruning of a CRT where the marks are placed on the whole CRT, skele-
ton and nodes. In this work, they study the law of the sub-tree obtained after the pruning
according to the marks.

The aim of this article is to study the fragmentation process associated with a general
CRT and more precisely the dislocation measure associated with this CRT. Note that this
measure has been studied in the Brownian case and in the case without Brownian part (see
[3] and [1]).

The three following parts give a brief presentation of the mathematical objects and give
the main results.

1.1. The exploration process. The coding of the CRT by its height process is well known.
The height process of Aldous’ CRT [6] is a normalized Brownian excursion. In [19], Le Gall
and Le Jan associated with a Lévy process with no negative jumps that does not drift to
infinity, X = (Xt, t ≥ 0), a CSBP and a Lévy CRT which keeps track of the genealogy of the
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CSBP. Let ψ be the Laplace exponent of the process X. By the Lévy-Khintchine formula
(and some additional assumptions on X, see Section 2.1), ψ is such that E

[

e−λXt
]

= etψ(λ)

and can be expressed by

ψ(λ) = αλ+ βλ2 +

∫

(0,∞)
(e−λl − 1 + λl)π(dl)

with α ≥ 0, β ≥ 0 and the Lévy measure π is a positive σ-finite measure on (0,∞) such
that

∫

(0,∞)(l ∧ l
2)π(dl) <∞. Following [13], we assume that X is of infinite variation, which

implies that β > 0 or
∫

(0,1) lπ(dl) = +∞. The term α is a drift term (if ψ(λ) = αλ, X is

a Cauchy process), β is the quadratic term (if ψ(λ) = βλ2, X is a Brownian motion) and π
gives the law of the jumps of X.

We first construct the height process H = (Ht, t ≥ 0) associated with the process X
(see Section 2.2). This process codes for a continuum random tree : each individual t is at
distance Ht from the root and the last common ancestor of the individuals s and t (s < t) is
at distance:

Hs,t = inf{Hu;u ∈ [s, t]}

(see Section 2.2 for a formal definition of a continuum random tree and its coding by the
height process).

This height process is an important object but is not a Markov process in general. Thus we
introduce the exploration process ρ = (ρt, t ≥ 0) which is a càd-làg, strong Markov process
taking values in Mf (R+), the set of finite measures on R+ endowed with the topology of
weak convergence. It is defined by :

ρt(dr) = β1[0,Ht](r) dr +
∑

0<s≤t

Xs−<I
s
t

(Ist −Xs−)δHs(dr)

where Ist = inf
s≤u≤t

Xu.

The height process can easily be recovered from the exploration process as Ht = H(ρt) where
H(µ) is the supremum of the closed support of the measure µ (with the convention that
H(0) = 0). Informally, ρt can be seen as a measure on the branch from the root to the
individual t which gives the intensity of the branching points (associated with individuals
situated ”on the right” of t) along that branch (see Bismut decomposition of Proposition 2.5
and the Poisson representation of the process of Lemma 3.5). We can hence see that the
regular part of the measure ρt gives birth to binary branching points whereas the atoms of
the measure (which correspond to jumps of the Lévy process X) lead to nodes of infinite
index.

1.2. The fragmentation. A fragmentation process is a Markov process which describes how
an object with given total mass evolves as it breaks into several fragments randomly as time
passes. This kind of processes has been widely studied in [10]. To be more precise, the state
space of a fragmentation process is the space of non-increasing sequences of masses with finite
total mass

S↓ = {s = (s1, s2, . . . ); s1 ≥ s2 ≥ · · · ≥ 0 and

∞
∑

k=1

sk <∞}.

We denote by Ps the law of a S↓-valued process Λ = (Λθ, θ ≥ 0) starting at s = (s1, s2, . . . ) ∈
S↓. For fixed θ > 0, we write (Λθ) = (Λθ1,Λ

θ
2, . . . ) ∈ S↓ and

∑

(Λθ) =
∑

i≥1 Λ
θ
i for the

sum of the masses of the elements at time θ. We say that Λ is a fragmentation process if it
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is a Markov process such that θ 7→
∑

(Λθ) is decreasing and if it fulfills the fragmentation
property : the law of (Λθ, θ ≥ 0) under Ps is the non-increasing reordering of the fragments of
independent processes of respective laws P(s1,0,... ), P(s2,0,... ),. . . In other words, each fragment
behaves independently of the others, and its evolution depends only of its initial mass. Hence,
it suffices to study the laws Pr := P(r,0,... ) that is the law of the fragmentation process starting
with a single mass r ∈ (0,∞).

We want to construct a fragmentation process by cutting a Lévy CRT into several subtrees.
The lengths of the height processes that code each subtrees, ranked in decreasing order, form
an element of S↓. In order to construct our fragmentation process, we need to place marks
on the CRT which give the different cut points and the number of marks must increase as
time passes.

There will be two sort of marks : some are lying on the nodes of infinite index whereas the
others are ”uniformly” distributed on the skeleton of the tree.

The nodes of the tree are marked independently and, at time θ, a node with mass m is
marked with probability 1 − e−mθ. To have a consistent construction as θ varies, we use a
coupling construction so that the marks present at time θ are still marks at a further time.

For the marks on the skeleton of the CRT, we use a Lévy Poisson snake similar to those of
[13] but we must introduce the new parameter θ. At fixed time θ, the marks on the lineage
of an individual t will be distributed as a Poisson process with intensity 2βθ1[0,Ht](r)dr, but
the marks on two common lineages must be the same and a coupling construction must also
apply.

By cutting according to these marks, we obtain a set of fragments. Let s1, s2, . . . be
the ”sizes” of these fragments ranked by non-increasing order completed with 0 if necessary
so that (s1, s2, . . . ) ∈ S↓. When time θ increases, the number of marks increases and the
fragments break again. Thus we obtain a process (Λθ, θ ≥ 0), Theorem 4.1 checks that this
process is a fragmentation process.

The choice of the parameters for the marks can be surprising as the pruning of [2] is much
more general but the particular pruning considered here leads to a pruned exploration process
that fulfills Lemma 3.4 which is necessary for getting a fragmentation process. We don’t know
if other pruning give such a property; one may conjecture that it is the only one.

1.3. The dislocation measure. The evolution of the process Λ is described by a family
(νr, r ≥ 0) of σ-finite measures called dislocation measures. νr describes how a fragment of
size r breaks into smaller fragments. In the case of self-similar fragmentations (with no loss
of mass), the dislocation measure characterizes the law of the fragmentation process. In the
general case, the characterization is an open problem.

To be more precise, we define T = {θ ≥ 0; Λθ 6= Λθ−} the set of jumping times of the
process Λ. The dislocation process of the CRT fragmentation

∑

θ∈T δθ,Λθ is a point process

with intensity dθ ν̃Λθ−(ds), where (ν̃x,x ∈ S↓) is a family of σ-finite measure on S↓. There
exists a family (νr, r > 0) of σ-finite measures on S↓ such that for any x = (x1, x2, . . . ) ∈ S↓

and any non-negative function F , defined on S↓,

∫

F (s)ν̃x(ds) =
∑

i≥1,xi>0

∫

F (xi,s)νxi(ds)

where xi,s is the decreasing reordering of the merging of the sequences s and x, where xi
has been removed of the sequence of x.
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We will show in Section 4.2 that the measure νr can be written as

νr = νnodr + νsker

where νnod corresponds to a mark that appears on the node whereas νske to a mark on the
skeleton.

The expression of the measure νsker is the main result of this article :

Theorem 1.1. Let S be a subordinator with Laplace exponent ψ−1, let π∗ be its Lévy measure.

(1) For all non negative measurable function F on S↓,
∫

R+×S↓

F (x)νnodr (dx)π∗(dr) =

∫

π(dv)E [SvF ((∆Su, u ≤ v))]

where (∆Su, u ≤ v) ∈ S↓ represents the jumps of S before time v, ranked by decreasing
order.

(2) The measure νsker charges only the set of elements of S↓ of the form (x1, x2, 0, . . .)
with x1 ≥ x2 and x1+x2 = r. It is the ”distribution” of the non-increasing reordering
of the lengths given by the measure ν̂sker defined by
∫

R+×S↓

1

x2
(1− e−λ1x1)(1− e−λ2x2)ν̂sker (dx)π∗(dr) = 2βψ−1(λ1)ψ

−1(λ2).

Remark 1.2. Under ν̂sker (dx)π∗(dr), the lengths of the two fragments are ”independent”.

Remark 1.3. We will see in Section 4.2 that the measure νnod is the same as the measure ν
in the case of a tree without Brownian part (β = 0). Thus the proof of Part 1 of Theorem
1.1 is the same as in [1]. Only Part 2 needs a proof.

2. The Lévy snake : notations and properties

2.1. The Lévy process. We consider a R-valued Lévy process (Xt, t ≥ 0) with no negative
jumps, starting from 0 characterized by its Laplace exponent ψ given by

ψ(λ) = α0λ+ βλ2 +

∫

(0,+∞)
π(dℓ)

(

e−λℓ−1 + 1ℓ<1λℓ
)

,

with β ≥ 0 and the Lévy measure π is a positive, σ-finite measure on (0,+∞) such that
∫

(0,+∞)(1 ∧ ℓ
2)π(dℓ) <∞. We also assume that X

• has first moments (i.e.
∫

(0,+∞)(ℓ ∧ ℓ
2)π(dℓ) <∞),

• is of infinite variation (i.e. β > 0 or
∫

(0,1) ℓπ(dℓ) = +∞),

• does not drift to +∞.

With the first assumption, the Lévy exponent can be written as

ψ(λ) = αλ+ βλ2 +

∫

(0,+∞)
π(dℓ)

(

e−λℓ−1 + λℓ
)

,

with α ≥ 0 thanks to the third assumption.
Let J = {t ≥ 0;Xt 6= Xt−} be the set of jumping times of the process X.

For λ ≥ 1
ǫ
> 0, we have e−λl − 1 + λl ≥ 1

2λl1l≥2ǫ this implies that λ−1ψ(λ) ≥ α + β 1
ǫ
+

∫

(2ǫ,∞) lπ(dl). We deduce that

lim
λ→∞

λ

ψ(λ)
= 0.
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Let I = (It, t ≥ 0) be the infimum process of X, It = inf0≤s≤tXs. We also denote for all
0 ≤ s ≤ t, the minimum of X on [s, t] :

Ist = inf
s≤r≤t

Xr.

The point 0 is regular for the Markov process X − I, and −I is the local time of X − I at
0 (see [9], Chap. VII). Let N be the excursion measure of the process X − I away from 0,
and let σ = inf{t > 0;Xt − It = 0} be the lengths of the generic excursion of X − I under N.
Notice that, under N, X0 = I0 = 0.

Thanks to [9], Theorem VII.1, the right-continuous inverse of the process −I is a subor-
dinator with Laplace exponent ψ−1. We have already seen that this exponent has no drift,
because limλ→∞ λψ(λ)−1 = 0. We denote by π∗ its Lévy measure : for all λ ≥ 0

ψ−1(λ) =

∫

(0,∞)
π∗(dl)(1 − eλl).

Under N, π∗ is the ”law” of the length of the excursions, σ. By decomposing the measure N

w.r.t. the distribution of σ, we get that N(dE) =
∫

(0,∞) π∗(dr)Nr(dE), where (Nr, r ∈ (0,∞))

is a measurable family of probability measures on the set of excursions (that is to say for all
A, r 7→ Nr(A) is B(R+)-measurable) and such that Nr[σ = r] = 1 for π∗-a.e. r > 0. (see [20]
for more details for the existence of such a decomposition)

2.2. The height process and the Lévy CRT. We first define a continuum random tree
(CRT) using the definition of Aldous [4, 5, 6].

Definition 2.1. We say that a metric space (T , d) is a real tree if : for u, v ∈ T ,

• there exists a unique isometry ψu,v : [0, d(u, v)] → T such that ψu,v(0) = u and
ψu,v(d(u, v)) = v,

• if (ws, 0 ≤ s ≤ 1) is an injective path on T such that w0 = u and w1 = v then
(ws, 0 ≤ s ≤ 1) = ψu,v([0, d(u, v)]).

A CRT is a random variable (T (ω), d(ω)) on a probability space (Ω,A,P) such that (T (ω), d(ω))
is a real tree for all ω ∈ Ω.

We can use a height function to define a genealogical structure on a CRT (see Aldous [6]).
Let g : R+ → R+ be a function with compact support, non trivial and such that g(0) = 0.
For s, t ∈ T , we say that g(s) is the generation of the individual s and that s is an ancestor
of t if g(t) = gs,t where

gs,t = inf{g(u), s ∧ t ≤ u ≤ s ∨ t}

is the generation of the last common ancestor of the individuals s and t.
We define an equivalence relation between two individuals:

t ∼ t′ ⇐⇒ d(t, t′) := g(t) + g(t′)− 2gt,t′ = 0.

That is to say g(t) = gt,t′ = g(t′). The quotient set [0, σ]/ ∼ equipped with the distance d
and the genealogical relation is then a CRT coded by g.

Let us now define a height process H associated with the Lévy process X, see Part 1.2
of Duquesne and Le Gall [13]. For all t ≥ 0, we consider the reversed process at time t,

X̂(t) = (X̂
(t)
s , 0 ≤ s ≤ t) defined by :

X̂(t)
s = Xt −X(t−s)− if 0 ≤ s < t,
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and X̂
(t)
t = Xt. We denote by Ŝ(t) the supremum process of X̂(t) and L̂(t) the local time at

0 of Ŝ(t) − X̂(t) with the same normalization as in [1].

Definition 2.2. There exists a [0,∞]-valued lower semi-continuous process, called the height
process such that, under N,

{

H0 = 0,

for all t ≥ 0, a.s. Ht = L̂
(t)
t .

And a.s. for all s < t such that Xs− ≤ Ist and for s = t, if ∆t > 0 then Hs < ∞ and for all
t′ > t ≥ 0, the process H takes all the values between Ht and Ht′ on the time interval [t, t′].

We say that a CRT coded by its associated height process H is a Lévy CRT.

2.3. The exploration process. The height process is not a Markov process in general. But
it is a very simple function of a measure-valued Markov process, the exploration process.
If E is a locally compact polish space, we denote by B(E) (resp. B+(E)) the set of R-valued
measurable (resp. and non-negative) functions defined on E endowed with its Borel σ-field,
and by M(E) (resp. Mf (E)) the set of σ-finite (resp. finite) measures on E, endowed with
the topology of vague (resp. weak) convergence. For any measure µ ∈ M(E), and any
function f ∈ B+(E), we write

〈µ, f〉 =

∫

f(x)µ(dx).

The exploration process ρ = (ρt, t ≥ 0) is a Mf (R+)-valued process defined by, for every
f ∈ B+(R+), 〈ρt, f〉 =

∫

[0,t] dsI
s
t f(Hs), or equivalently

ρt(dr) = β1[0,Ht](r) dr +
∑

0<s≤t

Xs−<I
s
t

(Ist −Xs−)δHs(dr).

In particular, the total mass of ρt is 〈ρt, 1〉 = Xt − It.
The exploration process also codes the Lévy CRT. Indeed, we can recover the height process

H from the exploration process. For µ ∈ M(R+), we put

H(µ) = sup Supp µ,

where Supp µ is the closed support of µ with the convention H(0) = 0.
To better understand what the exploration process is, let us give some of its properties.

For every t ≥ 0 such that ρt 6= 0, the support of the exploration process at time t is [0,Ht]:
Supp ρt = [0,Ht]. We also have ρt = 0 if and only if Ht = 0. We can finally describe the
jumps of the exploration process using the jumps of the Lévy process: ρt = ρt− + ∆tδHt ,
where ∆t = 0 if t 6∈ J . See [13], Lemma 1.2.2 and Formula (1.12) for more details.

In the definition of the exploration process, as X starts from 0, we obtain ρ0 = 0 a.s.
To state the Markov property of ρ, we must first define the process ρ starting at any initial
measure µ ∈ Mf (R+). We recall the notations given in [13].

For a ∈ [0, 〈µ, 1〉], we write kaµ for the erased measure which is the measure µ erased by
a mass a backward from H(µ), that is to say:

kaµ([0, r]) = µ([0, r]) ∧ (〈µ, 1〉 − a), for r ≥ 0.

In particular, 〈kaµ, 1〉 = 〈µ, 1〉 − a.
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For ν, µ ∈ Mf (R+), and µ with compact support, we write [µ, ν] ∈ Mf (R+) for the
concatenation of the two measures:

〈[µ, ν], f〉 = 〈µ, f〉+ 〈ν, f(H(µ) + ·)〉 , f ∈ B+(R+).

Finally, we put for all µ ∈ Mf (R+) and for all t > 0,

ρµt =
[

k−Itµ, ρt].

We say that (ρµt , t ≥ 0) is the process ρ starting from ρµ0 = µ, and write Pµ for its law. Unless
there is an ambiguity, we shall write ρt for ρ

µ
t . We also denote by P

∗
µ the law of ρµ killed

when it first reaches 0. Then we can state a useful property of the exploration process: the
process (ρt, t ≥ 0) is a càd-làg strong Markov process in Mf (R+). See [13], Proposition 1.2.3
for a proof.

Remark 2.3. As in [1], 0 is also a regular point for ρ. Notice that N is also the excursion
measure of the process ρ away from 0, and that σ, the length of the excursion, is N-a.e. equal
to inf{t > 0; ρt = 0}.

The exponential formula for the Poisson point process of jumps of τ , the inverse subordi-
nator of −I, gives (see also the beginning of the Section 3.2.2 [13]) that for λ > 0

N

[

1− e−λσ
]

= ψ−1(λ).

2.4. The dual process and the representation formula. We shall need the Mf (R+)-
valued process η = (ηt, t ≥ 0) defined by

ηt(dr) = β1[0,Ht](r) dr +
∑

0<s≤t

Xs−<I
s
t

(Xs − Ist )δHs(dr).

This process is called the dual process of ρ under N (see Corollary 3.1.6 of [13]). We also
denote, for s ∈ [0, σ] fixed, κs = ρs + ηs. Recall the Poisson representation of (ρ, η) under N.
Let N (dx dl du) be a point Poisson measure on [0,+∞)3 with intensity

dx lπ(dl) 1[0,1](u)du.

For all a > 0, we denote by Ma the law of the pair (µa, νa) of measures on R+ with finite
mass defined by, for any f ∈ B+(R+)

〈µa, f〉 =

∫

N (dx dl du)1[0,a](x)ulf(x) + β

∫ a

0
f(r)dr,

〈νa, f〉 =

∫

N (dx dl du)1[0,a](x)(1 − u)lf(x) + β

∫ a

0
f(r)dr.

We also put M =
∫∞
0 dae−αaMa.

Proposition 2.4. ([13], Proposition 3.1.3) For every non-negative measurable function F
on Mf (R+)

2

N

[∫ σ

0
F (ρt, ηt)dt

]

=

∫

M(dµ dν)F (µ, ν)

where we recall that σ = inf{s > 0; ρs = 0} is the length of the excursion.

We also give the Bismut formula for the height process of the Lévy process which gives a
spinal decomposition of the tree from a branch “uniformly randomly” chosen.
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Proposition 2.5. ([14], Lemma 3.4.)
For every non negative function F defined on B+([0,∞])2

N

[
∫ σ

0
dsF ((H(s−t)+ , t ≥ 0), (H(s+t)∧σ , t ≥ 0))

]

=

∫

M(dµdν)

∫

P
∗
µ(dρ)P

∗
ν(dρ̃)F (H(ρ),H(ρ̃)).

3. The Lévy Poison snake

As in [2], we construct a Lévy Poisson snake which marks the Lévy CRT on its nodes and
on its skeleton. The aim is to fragment the CRT in several fragments using point processes
whose intensities depend on a parameter θ such that, if θ = 0, there is no marks on the CRT
and the number of marks increases with θ.

3.1. Marks on the skeleton. In order to mark the continuous part of the CRT and to keep
track of marks along the lineage of each individual, we construct a snake on E = M(R2

+)
where the parameter θ appears. To obtain a Polish space, we separate the space of the
parameter θ in bounded intervals.
We fix i ∈ N, thanks to [11] Section 3.1, Ei = Mf (R+ × [i, i + 1)) the set of finite measures
on R+ × [i, i+ 1) is a Polish space for the topology of weak convergence.
Thanks to [13], Chap. 4, there exists a Ei-valued process (W i

t , t ≥ 0) such that conditionally
on X,

(1) For each s ∈ [0, σ], W i
s is a Poisson measure on [0,Hs] × [i, i + 1) with intensity

2β1[0,Ht](r)dr 1[i,i+1)(θ)dθ,

(2) For every s < s′, W i
s′(dr, dθ)1[0,Hs,s′ ]

(r) =W i
s(dr, dθ)1[0,Hs,s′ ]

(r),

where we recall that Hs,s′ = inf [s,s′]H.

We take the processes W i independently and we set mske
t =

∑

i∈NW
i
t .

If β = 0, the CRT has no Brownian part, in this case, there is no mark on the skeleton and
we set mske = 0.
For t ≥ 0 fixed, conditionally on Ht, m

ske
t is Poisson point process with intensity

2β1[0,Ht](r)drdθ.

The process (ρ,mske) takes values in the space M̃f := Mf (R+) × M(R2
+). We denote by

(Fs, s ≥ 0) the canonical filtration on the space of càd-làg trajectories on the space M̃f .
Using Theorem 4.1.2 of [13] when H is continuous or the adapted result when H is not
continuous (Prop. 7.2, [2]), we get the following result

Proposition 3.1. (ρ,mske) is a strong Markov process with respect to the filtration (Fs+, s ≥
0).

3.2. Mark on the nodes. We mark every jump of the process X, say s such that ∆s >
0, with an independent Poisson measure with intensity ∆s1u>0du, and this point Poisson

measure is denoted by
∑

u>0

δVs,u .

When the Lévy measure of X is non trivial, we define the mark process on the nodes of the
CRT as in [1]. We use a Poisson point measure to introduce the parameter θ. Conditionally
on X, we set

mnod
t (dr, dθ) =

∑

0<s≤t

Xs−<I
s
t

(Ist −Xs−)

(

∑

u>0

δVs,u(dθ)

)

δHs(dr).
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If π = 0, it is the Brownian case and there is no mark on the nodes, thus we set mnod = 0.

3.3. The snake. We join the marks on the skeleton and the marks on the nodes of the CRT
in a mark process m = (mnod,mske). We write S = (ρ,m) the marked snake starting from
ρ0 = 0 and m0 = 0.
Let us recall the construction made in [2] to obtain a snake starting from an initial value
and then to write a strong Markov property for the snake. We consider the set S of triplets
(µ,Πnod,Πske) such that

• µ ∈ Mf (R+),

• Πnod can be written as Πnod(dr, dx) = µ(dr)Πnodr (dx) where (Πnodr , r > 0) is a family
of σ-finite measures on R+ and for every θ > 0, Πnod(R+ × [0, θ]) <∞,

• Πske ∈ M(R2
+) and

– Supp(Πske(.,R+)) ⊂ Supp(µ)
– for every x < H(µ) and every θ > 0, Πske([0, x] × [0, θ]) <∞,
– if µ(H(µ)) > 0, then for every θ > 0, Πske(R+ × [0, θ]) <∞

Then we define the snake S starting from an initial value (µ,Π) ∈ S, where Π = (Πnod,Πske).
That is to say

S
(µ,Π)
0 := (ρµ0 , (m

nod)
(µ,Π)
0 , (mske)

(µ,Π)
0 ) = (µ,Π).

We write Hµ
t = H(k−Itµ) and H

µ
0,t = inf{Hµ

u ;u ∈ [0, t]}. We define

(mnod)
(µ,Π)
t =

[

Πnod1[0,Hµ
t )

+ 1µ({Hµ
t })>0

k−Itµ({H
µ
t })Π

nod({Hµ
t }, .)

µ({Hµ
t })

δHµ
t
Πnod
H

µ
t
,mnod

t

]

and (mske)
(µ,Π)
t =

[

Πske1[0,Hµ
0,t)
,mske

t

]

.

Notice that these definitions are coherent with the previous definitions of the processes mnod

and mske.
By using the strong Markov property for the process (ρ,mnod) (see [1], Proposition 3.1)
and Proposition 3.1, we obtain that the snake S is a càd-làg strong Markov process. See
Proposition 2.5 of [2].

We write m(θ)(dr) = mske(dr, [0, θ])+mnod(dr, [0, θ]). Due to the properties of the Poisson
point measures, we obtain the following result.

Proposition 3.2. m
(θ+θ′)
t −m

(θ)
t is independent of m

(θ)
t and has the same law as m

(θ′)
t .

We still denote by Pµ (resp. P∗
µ) the law of the snake (ρ,mnod,mske) starting from (µ, 0, 0)

(resp. and killed when it reaches 0). We also denote by N the law of the snake S when ρ is
distributed under N.

We define ψ(θ) by, for any θ ∈ R,

ψ(θ)(λ) = ψ(θ + λ)− ψ(θ)

= α(θ)λ+ β(θ)λ2 +

∫

(0,+∞)
(e−λl − 1 + λl)π(θ)(dl)

with











α(θ) = α+ 2βθ +
∫

(0,+∞)(1− e−θl)lπ(dl)

β(θ) = β

π(θ)(dl) = e−θlπ(dl).
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For fixed θ ≥ 0 and t ∈ [0, σ], we define the set A
(θ)
t of individuals of the Lévy CRT without

marks on their lineage and its right-continuous inverse C
(θ)
t given by the formulas:

A
(θ)
t =

∫ t

0
1
m

(θ)
s =0

ds and C
(θ)
t = inf{s > 0;A(θ)

s > t}.

We define the exploration process ρ(θ) which describes the sub tree under the first marks

given by m(θ) : ρ
(θ)
t = ρ

C
(θ)
t

. Let F (θ) = (F
(θ)
t , t ≥ 0) be the filtration generated by pruned

Lévy Poisson snake S(θ) = (ρ(θ),m(θ)) completed the usual way. We also denote σ(θ) =

inf{t > 0; ρ
(θ)
t = 0} and X(θ) the Lévy process with Laplace exponent ψ(θ).

We can write the key property of ρ(θ) proved by Abraham, Delmas and Voisin [2].

Proposition 3.3 (Theorem 1.1 [2]). The exploration process ρ(θ) is associated with a Lévy
process with Laplace exponent ψ(θ).

The next Lemma is also crucial for getting a fragmentation process and explains the choice
of the parameters of the pruning. It has been proved by Abraham and Delmas [1], see
the comments under their Lemma 1.6. Notice that the proof of Abraham and Delmas is
established in the general case when the quadratic coefficient β is nonnegative.

Lemma 3.4. For π∗(dr) a.e. r, the “law” of ρ(θ) under N, conditionally on σ(θ) = r is the
same as the ”law” of ρ under N, conditionally on σ = r.

3.4. Poisson representation of the snake. We decompose the process ρ under P
∗
µ ac-

cording to excursions of the total mass of ρ above its past minimum. More precisely, let
(αi, βi), i ∈ J be the excursion intervals of X − I above 0 under P

∗
µ. For i ∈ J , we define

hi = Hαi
and ρi by the formula : for t ≥ 0 and f ∈ B+(R+),

〈

ρit, f
〉

=

∫

(hi,+∞)
f(x− hi)ρ(αi+t)∧βi(dx).

We write σi = inf{s > 0;
〈

ρis, 1
〉

= 0}.
We also define the mark process m above the intervals (αi, βi). For every t ≥ 0 and f ∈
B+(R

2
+), we set

〈

mi,a
t , f

〉

=

∫

(hi,+∞)
f(x− hi, θ)m

a
(αi+t)∧βi

(dx, θ)

with a = ske, nod. We set for all i ∈ J , mi = (mi,nod,mi,ske). It is easy to adapt the proof of
Lemma 4.2.4 of [13] to get the following Poisson representation.

Lemma 3.5. Let µ ∈ Mf (R+). The point measure
∑

i∈J

δ(hi,Si) is under P
∗
µ a Poisson point

measure with intensity µ(dr)N(dS).

3.5. Special Markov property. We fix θ ≥ 0. We define O(θ) as the interior of the set

{s ≥ 0, m(θ)
s 6= 0}.

We write O(θ) =
⋃

i∈Ĩ(ai, bi) and we say that (ai, bi) are the excursions intervals of the Lévy

marked snake S(θ) = (ρ(θ),m(θ)) away from {s ≥ 0;m
(θ)
s = 0}. We set hi = Hai and we define

the process S(θ),i = (ρ(θ),i,m(θ),i) above the excursion intervals ((ai, bi), i ∈ Ĩ) as previously.
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If Q is a measure on S and ϕ is a non-negative measurable function defined on the mea-
surable space R+ × Ω× S, we denote by

Q[ϕ(u, ω, ·)] =

∫

S

ϕ(u, ω,S)Q(dS).

We now recall the special Markov property proved by Abraham, Delmas and Voisin [2].
It gives the distribution of the Lévy snake ”above” the ”first” marks of the marked CRT
knowing the part of the pruned CRT where the root belongs to.

Theorem 3.6 ([2], Theorem 4.2 ). (Special Markov property)
We fix θ > 0. Let φ be a non-negative measurable function defined on R+ × S such that

t 7→ φ(t, ω,S) is progressively F
(θ)
∞ -measurable for any S ∈ S. Then, we have P-a.s.

(1) E



exp



−
∑

i∈Ĩ

ϕ(A(θ)
ai
, ω,S(θ),i)





∣

∣

∣

∣

F (θ)
∞





= exp

(

−

∫ ∞

0
du 2βθN

[

1− e−ϕ(u,ω,·)
]

)

exp

(

−

∫ ∞

0
du

∫

(0,∞)
(1− e−θℓ)π(dℓ)

(

1− E
∗
ℓ [e

−ϕ(u,ω,·)]
)

)

.

Furthermore, the law of the excursion process
∑

i∈Ĩ

δ
(A

(θ)
ai
,ρ

(θ)
ai−

,S(θ),i)
, given F

(θ)
∞ , is the law of a

Poisson point measure with intensity 1u≥0du δρ(θ)u
(dµ)

(

2βθN(dS) +

∫

(0,∞)
(1− e−θℓ)π(dℓ)P∗

ℓ (dS)

)

.

4. Links between the snake and the fragmentation

4.1. Construction of the fragmentation process. We are interested in the fragments of
the tree given by the marks process. We do the same construction as in [1], Section 4.1.

For fixed θ ≥ 0, we first construct an equivalence relation,Rθ, on [0, σ] under N or under
Nσ by :

sRθt⇔ m(θ)
s ([Hs,t,Hs]) = m

(θ)
t ([Hs,t,Ht]) = 0.

Two individuals, s and t, belong to the same equivalence class if they belong to the same
fragment, that is to say if there is no mark on their lineage down to their most recent common
ancestor. From the equivalence relation Rθ, we get the family of sets Gj of individuals with
j marks in their lineage.

As we put marks on infinite nodes of the CRT, for θ > 0, for fixed j ∈ N, the set Gj can
be written as an infinite union of sub-intervals of [0, σ]. We get

Gj =
⋃

k∈Jj

Rj,k

such that Rj,k has positive Lebesgue measure. For j ∈ N and k ∈ Jj , we set

Aj,kt =

∫ t

0
1s∈Rj,kds and Ck,jt = inf{u ≥ 0;Aj,ku > t},
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with the convention inf ∅ = σ. We also construct the process S̃j,k = (ρ̃j,k, m̃j,k) by : for every
f ∈ B+(R+), ϕ ∈ B+(R+,R+) and t ≥ 0,

〈

ρ̃j,kt , f
〉

=

∫

(H
C
j,k
0

,+∞)
f(x−H

C
j,k
0

)ρ
C

j,k
t

(dx)

〈

m̃j,k
t , ϕ

〉

=

∫

(H
C
j,k
0

,+∞)×(θ,+∞)
ϕ(x−H

C
j,k
0
, v − θ)m

C
j,k
t
(dx, dv)

σ̃j,k corresponds to the Lebesgue measure of Rj,k.
We denote L(θ) = (ρ̃j,k; j ∈ N, k ∈ Jj) = (ρi; i ∈ I(θ)). We also define L(θ−) = (ρi; i ∈ I(θ−))

the set defined similarly but using the equivalence relation Rθ− which gives the fragments
just before time θ.

We now define the process Λθ = (Λθ1,Λ
θ
2, . . . ) as the sequence of non trivial Lebesgue

measure of the equivalence classes of Rθ, (σ̃
j,k, j ∈ N, k ∈ Jj), ranked in decreasing order.

Notice that, when θ > 0, this sequence is infinite. When θ = 0, Λ0 is the entire tree and we
denote Λ0 = (Λ0, 0, . . . ). Then we have that N-a.s. and Nσ-a.e.

Λθ ∈ S↓.

We write Pσ the law of (Λθ, θ ≥ 0) under Nσ and by convention P0 is the Dirac mass at
(0, 0, . . . ) ∈ S↓.

Theorem 4.1. For π∗(dr)-almost every r, under Pr, (Λ
θ, θ ≥ 0) is a S↓-valued fragmentation

process.

Sketch of proof. As the proof is exactly the same as for [1], Theorem 1.1., we only give the
main ideas of the proof and refer to [1] for precise details.

1st step. Thanks to Proposition 3.3, the first sub-excursion ρ̃0,0 is “distributed” under N
as ρ(θ). Moreover, by Lemma 3.4 and the construction of the Poisson snake conditionally
given ρ, the law of S̃0,0 conditionally on {σ̃0,0 = s} is Ns.

2nd step. By the special Markov property, Theorem 3.6, using the same notations as in
this theorem, we have that, under N conditionally on σ̃0,0 = s, the processes (S(θ),i, i ∈ Ĩ)
are given by a Poisson measure with intensity

s2βθN(dS) + s

∫

(0,+∞)
(1− e−θℓ)π(dℓ)P∗

ℓ (dS)

and are independent of S̃0,0.
Moreover, by the Poisson representation of the probability measure P

∗
ℓ (Lemma 3.5), we

get that the excursions of the snake S “above the first mark”, that we denote (S1,k, k ∈ J1),
form under N an i.i.d. family of processes with “distribution” N.

3rd step By induction on the number of marks, we get the following lemma

Lemma 4.2. Under N, the law of the family (S̃j,k, j ∈ N, k ∈ Jj), conditionally on (σ̃j,k, j ∈
N, k ∈ Jj), is the law of independent Lévy Poisson snakes distributed respectively as Nσ̃j,k .

The theorem then follows easily. �
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4.2. Another representation of the fragmentation. We give an another representation
of the fragmentation by using a Poisson point measure under the epigraph of the height
process. Recall that for every t ∈ [0, σ],

κt(dr) = 2β1[0,Ht](r)(dr) +
∑

0<s≤t

Xs−<I
s
t

(Xs −Xs−)δHs(dr).

Conditionally on the process H (or equivalently on ρ), we set a Poisson point process
Q(dθ, ds, da) under the epigraph of H with intensity dθ qρ(ds, da) where

qρ(ds, da) =
ds κs(da)

ds,a − gs,a

= qskeρ (ds, da) + qnodρ (ds, da)

with























qnodρ (ds, da) =
ds

ds,a − gs,a

∑

0<u≤s

Xu−<Ius

(Xu −Xu−)δHu(da)

qskeρ (ds, da) =
2β ds 1[0,Hs](a)da

ds,a − gs,a
with ds,a = sup{u ≥ s,min{Hv, v ∈ [s, u]} ≥ a} and gs,a = inf{u ≤ s,min{Hv, v ∈ [s, u]} ≥
a}. [gs,a, ds,a] is the set of individuals of the CRT with common ancestor s after generation
a.

Proposition 4.3. Conditionally on the process H, the mark process m and the Poisson point
process Q have same distribution

Proof. Conditionally on H and under N, for fixed t ∈ [0, σ], mske
t is a Poisson point process

with intensity 2β1[0,Ht](a)da dθ. For an individual t, marks on the skeleton are uniform from
the height h1 to the height h2. Thanks to snake property, if a mark appears at height a on
the lineage of the individual t, it also appears for all children of t, that is to say the mark
appears from gt,a to dt,a. We have

∫∫

D

2βθda ds

ds,a − gs,a
= 2β(h2 − h1)

where D = {(a, s) ∈ [h1, h2] × [gt,a, dt,a]} because for a ∈ [h1, h2] fixed, ∀s ∈ [gt,h, dt,h],

gs,a = gt,a and ds,a = dt,a. (See Figure 1). Thus the point process qske give the same marks

as the process mske.

Conditionally on H, under N, for fixed t ∈ [0, σ], mnod
t puts marks on a node at height

Hu < t proportionally to the size ∆u of the node. By construction of mnod, if a mark appears
at height Hu = a on the lineage of an individual t, it also appears from gt,a to dt,a. We have

∫∫

D

∆uθδHu(da)ds

ds,a − gs,a
= θ∆u

where D = {(a, s) ∈ [0,Ht]× [gt,a, dt,a]}. Thus the point process qnod give the same marks

as the process mnod.
The equality m = mske +mnod ends the proof. �
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Figure 1. Marks under the epigraph of H

σ

h2

h1
a

tgt,a dt,a

We use a notation for the fragments of the CRT obtained from a mark (s, a) under the
epigraph of H. For s and a such that s ∈ [0, σ] and 0 ≤ a ≤ Hs, we denote the fragments of

the Lévy snake (ρi, i ∈ Ĩ) by :

• the open intervals of the excursion of H after s and above a : ((αi, βi), i ∈ Ĩ+) which
are such that αi > s, Hαi

= Hβi = a and for every s′ ∈ (αi, βi), Hs′ > a andHs,s′ = a.

• the open intervals of the excursion of H before s and above a : ((αi, βi), i ∈ Ĩ−)
which are such that βi < s, Hαi

= Hβi = a and for every s′ ∈ (αi, βi), Hs′ > a and
Hs,s′ = a.

• the excursion is, ofH above a and which contains s : (αis , βis) such that αis < s < βis ,
Hαis

= Hβis
= a and for every s′ ∈ (αis , βis), Hs′ > a and Hs,s′ > a.

• the excursion i0 of H without the mark (s, a) : {s ∈ [0, σ];Hs,s′ < a} = [0, αi0) ∪
(βi0 , σ]

We write Ĩ = Ĩ− ∪ Ĩ+ ∪ {is, i0} (see Figure 2). Then the family (ρi, i ∈ Ĩ) contains the
exploration processes of the fragments obtained when a single cutpoint is selected. We are
interested in the computation of ν̃ρ, the ”law” of (ρi, i ∈ Ĩ) under N(dρ)qρ(ds, da).

Figure 2. Fragments of the Lévy snake obtained from a mark (s, a)

αi0 αis s βis βi0
σ

Ĩ+Ĩ
−

a
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5. The dislocation process

Let T be the set of jumping times of the Poisson process Q. For θ ∈ T , we consider the
processes L(θ) = (ρi; i ∈ I(θ)) and L(θ−) = (ρi; i ∈ I(θ−)) defined in the Section 4.1. The life

times (σ(ρi); i ∈ I(θ)) (resp. (σ(ρi); i ∈ I(θ−)) ), ranked by decreasing order, of these Lévy
snakes correspond to the ”sizes” of the fragments at time θ (resp. before time θ). Notice

that, for θ ∈ T fixed, the families L(θ) and L(θ−) change in one family : the snake ρiθ breaks
in one family (ρi, i ∈ Ĩ(θ)) ∈ L(θ). Thus we get

L(θ) =
(

L(θ−) \ {ρiθ}
)

∪ {ρi; i ∈ Ĩ(θ)}.

Let νr be the distribution of the decreasing lengths of Lévy snakes under ν̃ρ, integrated
w.r.t. the law of ρ conditionally on σ(ρ) = r, that is to say, for any non-negative measurable
function F defined on S↓

∫

S↓

F (x)νr(dx) = Nr

[∫

F ((σi, i ∈ Ĩ))ν̃ρ(d(ρ
i, i ∈ Ĩ))

]

where the (σi, i ∈ Ĩ) are the lengths of the fragments (ρi, i ∈ Ĩ) ranked in decreasing order.
The family of measures (νr, r > 0) is then the family of dislocation measures defined in the

Section 1.3. Indeed, the formula above means that νr gives the distribution of the lengths
of the fragments (ranked by decreasing order) coming from the dislocation of one fragment

of size r. For x = (xi, i ∈ I(θ)) ∈ S↓, if we consider the dislocation of all the fragments of
x with respective sizes xi > 0, we found the formula of the dislocation measure νxi given in
Section 1.3:

∫

F (s)ν̃x(ds) =
∑

i≥1,xi>0

∫

F (xi,s)νxi(ds)

where ν̃x is defined as the intensity of a Poisson point process and is the law of the lengths
(xi, i > 0).

5.1. Computation of dislocation measure. We are interested in the family of dislocation
measures (νr, r > 0). Recall that N(.) =

∫

R+
π∗(dr)Nr(.). The computation is easier under

N, then we compute for any λ ≥ 0 :
∫

R+×S↓

F (x)νr(dx)π∗(dr) = N

[
∫

qρ(ds, da)F ((σ
i, i ∈ Ĩ))

]

= N

[∫

qnodρ (ds, da)F ((σi, i ∈ Ĩ))

]

+N

[∫

qskeρ (ds, da)F (σi0 , σis)

]

where we use the decomposition of qρ for the second equality. The first part has already been
computed in [1]. Jumping times of the process ρ are represented by a subordinator W with
Laplace exponent ψ′−α. Then we construct the length of the excursions of the snake by SW
where S is a subordinator with exponent ψ−1, independent of W . Then we have :

N

[

e−λσ
∫

qnodρ (ds, da)F ((σi, i ∈ Ĩ))

]

=

∫

π(dv)E
[

Sve
−λSvF ((∆Su, u ≤ v))

]

.

We now compute the second part. Thanks to the definition of the snake, ρske = 0 if and only
if β = 0 and in this case, we don’t put mark on the skeleton of the tree. We assume that
β > 0 and we write the key lemma of this article which prove the Part 2 of the Theorem 1.1.



16 GUILLAUME VOISIN

Lemma 5.1. We set λ1 > 0 and λ2 > 0.

N

[∫

qskeρ (ds, da)σise−λ1σ
is−λ2σi0

]

=
2β

ψ′ψ−1(λ1)ψ′ψ−1(λ2)
.

We recall that the measure ν̂sker gives the law of the non-reordering of the two lengths
given by the fragmentation from νsker .

Proof of Part 2 of Theorem 1.1. We use Lemma 5.1, let x1 and x2 be the lengths of the
fragments from νskeρ ranked by decreasing order among the elements of x ∈ S↓, we get

∫

R+×S↓

x1e
−λ1x1−λ2x2 ν̂sker (dx)π∗(dr) =

2β

ψ′ψ−1(λ1)ψ′ψ−1(λ2)
.

We integrate w.r.t. λ1 and we take the primitive which vanishes in 0, and we do the same
with λ2. We get that, for λ1 > 0 and λ2 > 0,

∫

R+×S↓

1

x2
(1− e−λ1x1)(1− e−λ2x2)ν̂sker (dx)π∗(dr) = 2βψ−1(λ1)ψ

−1(λ2).

Thus, under ν̂sker (dx)π∗(dr), the lengths of the two fragments are independent. �

Proof of Lemma 5.1. In order to prove the lemma, we compute A2 := N
[∫

qskeρ (ds, da)G(σis , σ)
]

where G(x, y) = xe−λ1x−λ2y.

A2 = N

[

2β

∫ σ

0
ds

∫

1

ds,a − gs,a
G(σis , σ)1(0≤a≤Hs)da

]

= N

[

2β

∫ σ

0
ds

∫

1

ds,a − gs,a
G(ds,a − gs,a, σ)1(0≤a≤Hs)da

]

.

We denote for 0 ≤ s ≤ σ and 0 ≤ a ≤ Hs fixed

ds,a − s = inf{t ≥ 0,H(s+t)∧σ ≤ a} = J2(a)

s− gs,a = inf{t ≥ 0,H(s−t)+ ≤ a} = J1(a).

We get
ds,a − gs,a = J2(a) + J1(a),

σ = J2(0) + J1(0),

A2 = N

[

2β

∫ σ

0
ds

∫

10≤a≤Hsda
G(J1(a) + J2(a), J1(0) + J2(0))

J1(a) + J2(a)

]

.

We use the generalization for Lévy processes of Bismut formula, Proposition 2.5.

A2 = 2β

∫

M(dµdν)E

[∫

10≤a≤H(µ)da
G(Jν(a) + Jµ(a), Jν(0) + Jµ(0))

Jν(a) + Jµ(a)

]

= 2β

∫

M(dµdν)10≤a≤H(µ)daE
∗
µ

[

e−λ1J
µ(a)−λ2Jµ(0)

]

E
∗
ν

[

e−λ1J
ν(a)−λ2Jν(0)

]

where Jµ(a) is the first passage time of the process H(µ) at level a. By the Poisson-
nian decomposition of ρ under P∗

µ w.r.t. the excursions of ρ above its minimum, under P∗
µ,

we replace respectively Jµ(0) and Jµ(a) by
∑

i∈Iσ
i and

∑

hi≥a
σi. We separate

∑

i∈Iσ
i =

∑

hi≥a
σi +

∑

hi<a
σi.
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A2 = 2β

∫

M(dµdν)

∫

10≤a≤H(µ)daE
∗
µ



exp



−(λ1 + λ2)
∑

hi≥a

σi − λ2
∑

hi<a

σi









E
∗
ν



exp



−(λ1 + λ2)
∑

hi≥a

σi − λ2
∑

hi<a

σi







 .

Using standard properties of Poisson point measures, the atoms above level a are indepen-
dent of the atoms below, the expectations can be separated.

E
∗
µ

[

e
−(λ1+λ2)

∑
hi≥aσ

i−λ2
∑

hi<aσ
i
]

= E
∗
µ

[

e
−(λ1+λ2)

∑
hi≥aσ

i
]

E
∗
µ

[

e
−λ2

∑
hi<aσ

i
]

.

We use Lemma 3.5, and the equality ψ−1(λ) = N
[

1− e−λσ
]

, we get

E
∗
µ

[

e
−(λ1+λ2)

∑
hi≥aσ

i
]

= e−µ([a,H(µ)])N[1−e−(λ1+λ2)σ] = e−µ([a,b])ψ
−1(λ1+λ2).

And we do the same for the second expectation.

A2 = 2β

∫ ∞

0
dbe−αb

∫ b

0
daMb

[

e−(µ+ν)([a,b])ψ−1(λ1+λ2)e−(µ+ν)([0,a))ψ−1(λ2)
]

.

Then,

Mb

[

e−((µ+ν)([a,b])ψ−1(λ1+λ2)e−(µ+ν)([0,a))ψ−1(λ2)
]

= Mb

[

e−((µ+ν)([a,b])ψ−1(λ1+λ2)
]

Mb

[

e−(µ+ν)([0,a))ψ−1(λ2)
]

= e−2(b−a)βψ−1(λ1+λ2)exp

(

−

∫ b

a

dx

∫ ∞

0
lπ(dl)(1 − e−lψ

−1(λ1+λ2))

)

e−2aβψ−1(λ2)exp

(

−

∫ a

0
dx

∫ ∞

0
lπ(dl)(1 − e−lψ

−1(λ2))

)

= eαbe−(b−a)ψ′ψ−1(λ1+λ2)−aψ′ψ−1(λ2).
We recall the expression of A2

A2 = 2β

∫ ∞

0
db
e−bψ

′ψ−1(λ2) − e−bψ
′ψ−1(λ1+λ2)

ψ′ψ−1(λ1 + λ2)− ψ′ψ−1(λ2)

=
2β

ψ′ψ−1(λ1 + λ2)− ψ′ψ−1(λ2)

(

1

ψ′ψ−1(λ2)
−

1

ψ′ψ−1(λ1 + λ2)

)

=
2β

ψ′ψ−1(λ2)ψ′ψ−1(λ1 + λ2)
.

We use the equality N
[∫

qskeρ (ds, da)σisG(σis , σ)
]

= N

[

∫

qskeρ (ds, da)σise−(λ1+λ2)σis−λ2σi0
]

,

we finally get the result. �

5.2. Brownian case. A similar result has been obtained by Abraham and Serlet [3] in the
Brownian case and conditionally on σ = 1. They use the same construction of the marks on
the skeleton given by Aldous and Pitman [8].

We consider a standard Brownian motion with Laplace exponent ψ(λ) = λ2

2 and we denote
by Γ(de) the law of the Brownian excursion e. Thanks to [18], Section VIII.3, the height
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process of the Brownian motion is given by Ht = 2(Xt − It). We resume the computation of
[3] by taking marks under the epigraph of H, we get

∫

F (σis , σ)ν(ds) =

∫

Γ(de)

∫ σ

0
ds

∫ 2e(s)

0
dt
F (σis , σ)

σis

where ν is the dislocation measure of [3]. The computation of [3] uses the law the two
independent 3-dimensional Bessel processes, then we get

∫

F (σis , σ)ν(ds) =
1

4π

∫ 1

0

dz
√

z(1 − z)

∫ ∞

0
dσ
F (σz, σ)

σz
.

As before, we compute with F (x, y) = xe−λ1x−λ2y.
∫

F (σis , σ)ν(ds) =
1

4π

∫ 1

0

dz
√

z(1− z)

∫ ∞

0
dσe−λ1σz−λ2σ

=
1

4π

∫ 1

0

dz
√

z(1− z)

1

λ1z + λ2

For the end of this computation, we use the two changes of variable : z ↔ sin2x and then
t ↔ tanx.

∫

F (σis , σ)ν(ds) =
1

2π

∫ π
2

0

dx

λ1sin2x+ λ2

=
1

2π

∫ ∞

0

dt

(λ1 + λ2)t2 + λ2

We integrate a last time, we get the same result as in Lemma 5.1 :
∫

F (σis , σ)ν(ds) =
1

4

1
√

λ2(λ1 + λ2)
.
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