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DISLOCATION MEASURE OF THE FRAGMENTATION OF A GENERAL

LÉVY TREE

GUILLAUME VOISIN

Abstract. Given a general critical or sub-critical branching mechanism and its associated
Lévy continuum random tree, we consider a pruning procedure on this tree using a Poisson
snake. It defines a fragmentation process on the tree. We compute the family of dislocation
measures associated with this fragmentation. This work generalizes the work made for a
Brownian tree [3] and for a tree without Brownian part [1].

1. Introduction

Continuous state branching processes (CSBP) have been introduced by Jirina [10] and it
is known since Lamperti [11] that these processes are the scaling limits of Galton-Watson
processes. They model the evolution of a large population on a long time interval. The law
of a CSBP is characterized by the so-called branching mechanism ψ. When the CSBP is
critical or sub-critical, one can associate a continuum random tree (CRT) which describes
the genealogy of the CSBP. The construction of fragmentation processes from CRTs have
already been studied by Abraham and Serlet [3] for the Brownian CRT (case where the Lévy
measure of ψ is null) and by Abraham and Delmas [1] for the CRT without Brownian part
(case where ψ has no quadratic part). In these works, Lévy Poisson snakes are used to create
marks on the CRT and to obtain a fragmentation process. In the first case, the marks are
built on the skeleton of the CRT, in the second, they are placed on the nodes. Abraham,
Delmas and Voisin [2] constructed a general pruning of a CRT where the marks are placed
on the whole CRT, skeleton and nodes. In this work, they study the law of the sub-tree
obtained after the pruning according to the marks.
The aim of this article is to study the fragmentation process associated with a general CRT
and more precisely the dislocation measure associated with. Note that this measure has been
studied in the Brownian case and in the case without Brownian part (see [3] and [1]).
The three following parts give a brief presentation of the mathematical objects and give the
main results.

1.1. The exploration process. The coding of the CRT by its height process is well known.
The height process of Aldous’ CRT [4] is a normalized Brownian excursion. In [13], Le Gall
and Le Jan associated with a Lévy process with no negative jumps that does not drift to
infinity, X = (Xt, t ≥ 0), a CSBP and a Lévy CRT which keeps track of the genealogy of
the CSBP. Let ψ be the Laplace exponent of the general process X. By the Lévy-Khintchine
formula, ψ is such that E

[

e−λXt
]

= etψ(λ) and can be expressed by

ψ(λ) = αλ+ βλ2 +

∫

(0,∞)
(e−λl − 1 + λl)π(dl)
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with α ≥ 0, β ≥ 0 and the Lévy measure π is a positive σ-finite measure on (0,∞) such that
∫

(0,∞)(l∧ l
2)π(dl) <∞. Following [8], we assume that X is of infinite variation, wich implies

that β > 0 or
∫

(0,1) lπ(dl) = +∞.

The height process H = (Ht, t ≥ 0) associated with the process X gives a distance (which
corresponds to the number of generations) between each individual labeled t and the root of
the CRT. This process is an important object but is not a Markov process in general. Thus we
introduce, the exploration process ρ = (ρt, t ≥ 0) which is a càd-làg, strong Markov process
taking values in Mf (R+), the set of finite measures on R+ endowed with the topology of
weak convergence. The height process can easily be recovered from the exploration process
as Ht = H(ρt) where H(µ) is the supremum of the closed support of the measure µ (with
the convention that H(0) = 0).
The definitions of these processes are recalled in Section 2.

1.2. The fragmentation. A fragmentation process is a Markov process which describes how
an object with given total mass evolves as it breaks into several fragments randomly as time
passes. This kind of processes has been widely studied in [6]. To be more precise, the state
space of a fragmentation process is the space of the non-increasing sequences of masses with
finite total mass

S↓ = {s = (s1, s2, . . . ); s1 ≥ s2 ≥ · · · ≥ 0 and

∞
∑

k=1

sk <∞}.

If we denote by Ps the law of a S↓-valued process Λ = (Λθ, θ ≥ 0) starting at s = (s1, s2, . . . ) ∈
S↓, we say that Λ is a fragmentation process if it is a Markov process such that θ 7→

∑

(Λθ)
is decreasing and if it fulfills the fragmentation property : the law of (Λθ, θ ≥ 0) under Ps
is the non-increasing reordering of the fragments of independent processes of respective laws
P(s1,0,... ), P(s2,0,... ),. . . In other words, each fragment behaves independently of the others, and
its evolution depends only of its initial mass. Hence, it suffices to study the laws Pr := P(r,0,... )

that is the law of the fragmentation process starting with a single mass r ∈ (0,∞).
In order to construct our fragmentation process, we need to place marks on the nodes of the
CRT and on the skeleton of the CRT. We follow the construction of [2]. However we have to
adapt this construction to obtain a process which depends on time θ.
Recall that the nodes of the CRT are represented by the Lévy measure π of the process X.
To construct a measure which marks these nodes, we use the jumps part of the definition of
the exploration process ρ. We also use a Poisson point measure (see Section 3.2) to increase
the number of marks according to the parameter θ.
For the marks on the skeleton of the CRT, we recall the construction of a Lévy Poisson snake
made in [8] but we introduce the new parameter θ. The marks will be attached by a Poisson
process with intensity 2βθ (see Section 3.1).
By cutting according to these marks, we obtain a set of fragments. Let s1, s2, . . . be the
”sizes” of these fragments ranked by non-increasing order completed with 0 if necessary
so that (s1, s2, . . . ) ∈ S↓. When time θ increases, the number of marks increases and the
fragments break again. Thus we obtain a process (Λθ, θ ≥ 0), Theorem 4.1 checks that this
process is a fragmentation.

1.3. The dislocation measure. The evolution of the process Λ is described by a family
(νr, r ≥ 0) of σ-finite measures called dislocation measures. νr describes how a fragment of
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size r breaks into smaller fragments. The measure νr can be written as

νr = νnodr + νsker .

νnod corresponds to a mark that appears on the node whereas νske to a mark on the skeleton.
The expression of the measure νsker is the main result of this article :

Theorem 1.1. Let S be a subordinator with Laplace exponent ψ−1, let π∗ be its Lévy measure.

(1) For all non negative measurable function F on S↓,
∫

R+×S↓

F (x)νnodr (dx)π∗(dr) =

∫

π(dv)E [SvF ((∆Su, u ≤ v))]

where (∆Su, u ≤ v) represents the jumps of S before time v, ranked by decreasing
order.

(2) The measure νsker charges only the set of elements of S↓ of the form (x1, x2, 0, . . .)
with x1 ≥ x2 and x1 + x2 = r. It is the distribution of the non-increasing reordering
of the lengths given by the measure ν̂sker defined by
∫

R+×S↓

1

x2
(1 − e−λ1x1)(1 − e−λ2x2)ν̂sker (dx)π∗(dr) = 2βψ−1(λ1)ψ

−1(λ2).

Remark 1.2. Under ν̂sker (dx)π∗(dr), the lengths of the two fragments are independent.

Remark 1.3. The proof of Part 1 is the same as in [1]. Only Part 2 needs a proof.

2. The Lévy snake : notations and properties

2.1. The Lévy process. We consider a R-valued Lévy process (Xt, t ≥ 0) with no negative
jumps, starting from 0 characterized by its Laplace exponent ψ given by

ψ(λ) = α0λ+ βλ2 +

∫

(0,+∞)
π(dℓ)

(

e−λℓ−1 + 1ℓ<1λℓ
)

,

with β ≥ 0 and the Lévy measure π is a positive, σ-finite measure on (0,+∞) such that
∫

(0,+∞)(1 ∧ ℓ2)π(dℓ) <∞. We also assume that X

• has first moments (i.e.
∫

(0,+∞)(ℓ ∧ ℓ
2)π(dℓ) <∞),

• is of infinite variation (i.e. β > 0 or
∫

(0,1) ℓπ(dℓ) = +∞),

• does not drift to +∞.

With the first assumption, the Lévy exponent can be written as

ψ(λ) = αλ+ βλ2 +

∫

(0,+∞)
π(dℓ)

(

e−λℓ−1 + λℓ
)

,

with α ≥ 0 thanks to the third assumption.
Let J = {t ≥ 0;Xt 6= Xt−} be the set of jumping times of the process X.

For λ ≥ 1
ǫ
> 0, we have e−λl − 1 + λl ≥ 1

2λl1l≥2ǫ this implies that λ−1ψ(λ) ≥ α + β 1
ǫ

+
∫

(2ǫ,∞) lπ(dl). We deduce that

lim
λ→∞

λ

ψ(λ)
= 0.

Let I = (It, t ≥ 0) be the infimum process of X, It = inf0≤s≤tXs. We also denote for all
0 ≤ s ≤ t, the minimum of X on [s, t] :

Ist = inf
s≤r≤t

Xr.
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The point 0 is regular for the Markov process X − I, and −I is the local time of X − I at 0
(see [5], Chap. VII). Let N be the excursion measure of the process X − I away from 0, and
let σ = inf{t > 0;Xt − It = 0} be the lengths of the excursions of X − I under N. Notice
that, under N, X0 = I0 = 0.

Thanks to [5], Theorem VII.1, the right-continuous inverse of the process −I is a subor-
dinator with Laplace exponent ψ−1. We have already seen that this exponent has no drift,
because limλ→∞ λψ(λ)−1 = 0. We denote by π∗ its Lévy measure : for all λ ≥ 0

ψ−1(λ) =

∫

(0,∞)
π∗(dl)(1 − eλl).

Under N, π∗ is the law of the length of the excursions, σ. By decomposing the measure N

w.r.t. the distribution of σ, we get that N(dE) =
∫

(0∞) π∗(dr)Nr(dE), where (Nr, r ∈ (0,∞)) is

a measurable family of probability measures on the set of excursions such that Nr[σ = r] = 1
for π∗-a.e. r > 0.

2.2. The height process and the Lévy CRT. For all t ≥ 0, we consider the reversed

process at time t, X̂(t) = (X̂
(t)
s , 0 ≤ s ≤ t) defined by :

X̂(t)
s = Xt −X(t−s)− if 0 ≤ s < t,

and X̂
(t)
t = Xt. We denote by Ŝ(t) the supremum process of X̂(t) and L̂(t) the local time at

0 of Ŝ(t) − X̂(t) with the same normalization as in [1].

Definition 2.1. There exists a [0,∞]-valued lower semi-continuous process, called the height

process such that H0 = 0 and for all t ≥ 0, a.s. Ht = L̂
(t)
t . And a.s. for all s < t such that

Xs− ≤ Ist and for s = t, if ∆t > 0 then Hs < ∞ and for all t′ > t ≥ 0, the process H takes
all the values between Ht and Ht′ on the time interval [t, t′].

The height process (Ht, t ∈ [0, σ]) under N, codes a continuum genealogical tree, the Lévy
CRT (see [2], Section 2.2).

2.3. The exploration process. The height process is not a Markov process. But in general
it is a very simple function of a measure-valued Markov process, the exploration process.
If E is a polish space, we denote by B(E) (resp. B+(E)) the set of R-valued measurable (resp.
and non-negative) functions defined on E endowed with its Borel σ-field, and by M(E) (resp.
Mf (E)) the set of σ-finite (resp. finite) measures on E, endowed with the topology of vague
(resp. weak) convergence. For any measure µ ∈ M(E), and any function f ∈ B+(E), we
write

〈µ, f〉 =

∫

f(x)µ(dx).

The exploration process ρ = (ρt, t ≥ 0) is a Mf (R+)-valued process defined by, for every
f ∈ B+(R+), 〈ρt, f〉 =

∫

[0,t] dsI
s
t f(Hs), or equivalently

ρt(dr) = β1[0,Ht](r) dr +
∑

0<s≤t

Xs−<I
s
t

(Ist −Xs−)δHs(dr).

In particular, the total mass of ρt is 〈ρt, 1〉 = Xt − It.
For µ ∈ M(R+), we put

H(µ) = sup Supp µ,

where Supp µ is the closed support of µ with the convention H(0) = 0. We have
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Proposition 2.2. ([8], Lemma 1.2.2 and Formula (1.12))
Almost surely, for every t > 0,

• H(ρt) = Ht,
• ρt = 0 if and only if Ht = 0,
• if ρt 6= 0, then Supp ρt = [0,Ht],
• ρt = ρt− + ∆tδHt , where ∆t = 0 if t 6∈ J .

Remark 2.3. 〈ρt, 1〉 = Xt − It.

In the definition of the exploration process, as X starts from 0, we obtain ρ0 = 0 a.s.
To state the Markov property of ρ, we must first define the process ρ starting at any initial
measure µ ∈ Mf (R+). We recall the notations given in [8].

For a ∈ [0, 〈µ, 1〉], we write kaµ for the erased measure which is the measure µ erased by
a mass a backward from H(µ). In particular, 〈kaµ, 1〉 = 〈µ, 1〉 − a.

For ν, µ ∈ Mf (R+), and µ with compact support, we write [µ, ν] ∈ Mf (R+) for the
concatenation of the two measures.

Finally, we put for all µ ∈ Mf (R+) and for all t > 0,

ρ
µ
t =

[

k−Itµ, ρt].

We say that (ρµt , t ≥ 0) is the process ρ starting from ρ
µ
0 = µ, and write Pµ for its law. Unless

there is an ambiguity, we shall write ρt for ρµt . We also denote by P
∗
µ the law of ρµ killed

when it reaches 0.

Proposition 2.4. ([8], Proposition 1.2.3)
The process (ρt, t ≥ 0) is a càd-làg strong Markov process in Mf (R+).

Remark 2.5. As in [1], 0 is also a regular point for ρ. Notice that N is also the excursion
measure of the process ρ away from 0, and that σ, the length of the excursion, is N-a.e. equal
to inf{t > 0; ρt = 0}.

Exponential formula for the Poisson point process of jumps of the inverse subordinator of
−I gives (see also the beginning of the Section 3.2.2 [8]) that for λ > 0

N

[

1 − e−λσ
]

= ψ−1(λ).

2.4. The dual process and the representation formula. We shall need the Mf (R+)-
valued process η = (ηt, t ≥ 0) defined by

ηt(dr) = β1[0,Ht](r) dr +
∑

0<s≤t

Xs−<I
s
t

(Xs − Ist )δHs(dr).

This process is called the dual process of ρ under N (see Corollary 3.1.6 of [8]). We also
denote, for s ∈ [0, σ] fixed, κs = ρs + ηs. Recall the Poisson representation of (ρ, η) under N.
Let N (dx dl du) be a point Poisson measure on [0,+∞)3 with intensity

dx lπ(dl) 1[0,1](u)du.

For all a > 0, we denote by Ma the law of the pair (µa, νa) of measures on R+ with finite
mass defined by, for any f ∈ B+(R+)

〈µa, f〉 =

∫

N (dx dl du)1[0,a](x)ulf(x) + β

∫ a

0
f(r)dr,

〈νa, f〉 =

∫

N (dx dl du)1[0,a](x)(1 − u)lf(x) + β

∫ a

0
f(r)dr.
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We also put M =
∫∞
0 dae−αaMa.

Proposition 2.6. ([8], Proposition 3.1.3) For every non-negative mesurable function F on
Mf (R+)2

N

[∫ σ

0
F (ρt, ηt)dt

]

=

∫

M(dµ dν)F (µ, ν)

where we recall that σ = inf{s > 0; ρs = 0} is the length of the excursion.

We also give the Bismut formula for the height process of the Lévy process.

Proposition 2.7. ([9], Lemma 3.4.)
For every non negative function F defined on B+([0,∞])2

N

[∫ σ

0
dsF ((H(s−t)+ , t ≥ 0), (H(s+t)∧σ , t ≥ 0))

]

=

∫

M(dµdν)

∫

P
∗
µ(dρ)P

∗
ν(dρ̃)F (H(ρ),H(ρ̃)).

3. The Lévy Poison snake

As in [2], we construct a Lévy Poisson snake which marks the Lévy CRT on its nodes and
on its skeleton. The aim is to fragment the CRT in several fragments using point processes
whose intensities depend on a parameter θ such that, if θ = 0, there is no marks on the CRT
and the number of marks increases with θ.

3.1. Marks on the skeleton. In order to mark the continuous part of the CRT and to keep
track of marks along the lineage of each individual, we construct a snake on E = M(R2

+)
where the parameter θ appears. To obtain a Polish space, we separate the space of the
parameter θ in bounded intervals.
We fix i ∈ N, thanks to [7] Section 3.1, Ei = Mf (R+ × [i, i + 1)) the set of finite measures
on R+ × [i, i+ 1) is a Polish space for the topology of weak convergence.
Thanks to [8], Chap. 4, there exists a Ei-valued process (W i

t , t ≥ 0) such that conditionally
on X,

(1) For each s ∈ [0, σ], W i
s is a Poisson measure on [0,Hs] × [i, i + 1) with intensity

2β1[0,Ht](dr) 1[i,i+1)(θ)dθ,

(2) For every s < s′, W i
s′(dr, dθ)1[0,Hs,s′ ]

(r) = W i
s(dr, dθ)1[0,Hs,s′ ]

(r).

We take the processes W i independently and we set mske
t =

∑

i∈N
W i
t .

If β = 0, the CRT has no Brownian part, in this case, there is no mark on the skeleton and
we set mske = 0.
For t ≥ 0 fixed, conditionnally on Ht, m

ske
t is Poisson point process with intensity

2β1[0,Ht](r)drdθ.

The process (ρ,mske) takes values in the space M̃f := Mf (R+) × M(R2
+). We denote by

(Fs, s ≥ 0) the canonical filtration on the space of càd-làg trajectories on the space M̃f .
Using Theorem 4.1.2 of [8] when H is continuous or the adapted result when H is not
continuous (Prop. 7.2, [2]), we get the following result

Proposition 3.1. (ρ,mske) is a strong Markov process with respect to the filtration (Fs+, s ≥
0).
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3.2. Mark on the nodes. When the Lévy measure of X is non trivial, we define the mark
process on the nodes of the CRT as in [1]. We use a Poisson point measure to introduce the
parameter θ. Conditionaly on X, we set

mnod
t (dr, dθ) =

∑

0<s≤t

Xs−<I
s
t

(Ist −Xs−)

(

∑

u>0

δVs,u(dθ)

)

δHs(dr).

with
∑

u>0

δVs,u is a point Poisson measure with intensity ∆s1u>0du.

If π = 0, it is the Brownian case and there is no mark on the nodes, thus we set mnod = 0.

3.3. The snake. We join the marks on the skeleton and the marks on the nodes of the CRT
in a mark process m = (mnod,mske). We write S = (ρ,m) the marked snake starting from
ρ0 = 0 and m0 = 0.
Let us recall the construction made in [2] to obtain a snake starting from an initial value
and then to write a strong Markov property for the snake. We consider the set S of triplets
(µ,Πnod,Πske) such that

• µ ∈ Mf (R+),

• Πnod can be written as Πnod(dr, dx) = µ(dr)Πnod
r (dx) where (Πnod

r , r > 0) is a family
of σ-finite measures on R+ and for every θ > 0, Πnod(R+ × [0, θ]) <∞,

• Πske ∈ M(R2
+) and

– Supp(Πske(.,R+)) ⊂ Supp(µ)
– for every x < H(µ) and every θ > 0, Πske([0, x] × [0, θ]) <∞,
– if µ(H(µ)) > 0, then for every θ > 0, Πske(R+ × [0, θ]) <∞

Then we define the snake S starting from an initial value (µ,Π) ∈ S, where Π = (Πnod,Πske),
we write Hµ

t = H(k−Itµ),

(mnod)
(µ,Π)
t =

[

Πnod1[0,Hµ
t ) + 1µ({Hµ

t })>0

k−Itµ({Hµ
t })Π

nod({Hµ
t }, .)

µ({Hµ
t })

δHµ
t
Πnod
H

µ
t
,mnod

t

]

(mske)µ,Πt =
[

Πske1[0,H0,t),m
ske
t

]

Notice that these definitions are coherent with the previous definitions of the processes mnod

and mske.
By using the strong Markov property for the process mnod and Proposition 3.1, we obtain

Proposition 3.2. The snake S is strong Markov.

We write m(θ)(dr) = mske(dr, [0, θ])+mnod(dr, [0, θ]). Due to the properties of the Poisson
point measures, we obtain the following result.

Proposition 3.3. m
(θ+a)
t −m

(θ)
t is independent of m

(θ)
t and has the same law as m

(a)
t .

We still denote by Pµ (resp. P
∗
µ) the law of the snake (ρ,mnod,mske) starting from (µ, 0, 0)

(resp. and killed when it reaches 0). We also denote by N the law of the snake S when ρ is
distributed under N.

We define ψ(θ) by, for any θ ∈ R,
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ψ(θ)(λ) = ψ(θ + λ) − ψ(θ)

= α(θ)λ+ β(θ)λ2 +

∫

(0,+∞)
(e−λl − 1 + λl)π(θ)(dl)

with











α(θ) = α+ 2βθ +
∫

(0,+∞)(1 − e−θl)lπ(dl)

β(θ) = β

π(θ)(dl) = e−θlπ(dl).

Let ρ(θ) be the exploration process under the first marks given by m(θ). We can write its
key property :

Proposition 3.4. The exploration process ρ(θ) is associated to a Lévy process with Laplace
exponent ψ(θ).

3.4. Poisson representation of the snake. We decompose the process ρ under P
∗
µ ac-

cording to excursions of the total mass of ρ above its past minimum. More precisely, let
(αi, βi), i ∈ J be the excursion intervals of X − I above 0 under P

∗
µ. For i ∈ J , we define

hi = Hαi
and ρi by the formula : for t ≥ 0 and f ∈ B+(R+),

〈

ρit, f
〉

=

∫

(hi,+∞[
f(x− hi)ρ(αi+t)∧βi

(dx).

We write σi = inf{s > 0;
〈

ρis, 1
〉

= 0}.
We also define the mark process m above the intervals (αi, βi). For every t ≥ 0 and f ∈
B+(R2

+), we set
〈

m
i,a
t , f

〉

=

∫

(hi,+∞[
f(x− hi, θ)m

a
(αi+t)∧βi

(dx, θ)

with a = ske, nod. We set for all i ∈ J , mi = (mi,nod,mi,ske).

Lemma 3.5. (Lemma 4.2.4, [8])

Let µ ∈ Mf (R+). The point measure
∑

i∈J

δ(hi,Si) is under P
∗
µ a Poisson point measure with

intensity µ(dr)N(dS).

4. Links between the snake and the fragmentation

4.1. Construction of the fragmentation process. We are interested in the fragments of
the tree given by the marks process. We do the same construction as in [1], Section 4.1.

For fixed θ ≥ 0, we first construct an equivalence relation,Rθ, on [0, σ] under N or under
Nσ by :

sRθt⇔ m(θ)
s ([Hs,t,Hs]) = m

(θ)
t ([Hs,t,Ht]) = 0.

Two individuals, s and t, belong to the same equivalence class if they belong to the same
fragment, that is to say if there is no mark on their lineage down to their most recent
common ancestor. For each fixed j ∈ N, we get equivalence classes (Rj,k)k∈Jj

such that Rj,k

has positive Lebesgue measure and Rj,k represents the k-th fragment which has j marks on
its lineage.

For j ∈ N and k ∈ Jj , we set

A
j,k
t =

∫ t

0
1s∈Rj,kds and C

k,j
t = inf{u ≥ 0;Aj,ku > t},
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with the convention inf ∅ = σ. We also construct the process S̃j,k = (ρ̃j,k, m̃j,k) by : for every
f ∈ B+(R+), ϕ ∈ B+(R+,R+) and t ≥ 0,

〈

ρ̃
j,k
t , f

〉

=

∫

(H
C

j,k
0

,+∞)
f(x−H

C
j,k
0

)ρ
C

j,k
t

(dx)

〈

m̃
j,k
t , ϕ

〉

=

∫

(H
C

j,k
0

,+∞)×(θ,+∞)
ϕ(x−H

C
j,k
0
, v − θ)m

C
j,k
t

(dx, dv)

σ̃j,k corresponds to the Lebesgue measure of Rj,k.

We denote L(θ) = (ρ̃j,k; j ∈ N, k ∈ Jj) = (ρi; i ∈ I(θ)). We also define L(θ−) = (ρi; i ∈ I(θ−))
the set defined similarly but using the equivalence relation Rθ− which gives the fragments
just before time θ.

We now define our fragmentation process Λθ = (Λθ1,Λ
θ
2, . . . ) as the sequence of non trivial

Lebesgue measure of the equivalence classes of Rθ, (σ̃j,k, j ∈ N, k ∈ Jj), ranked in decreasing
order. Notice that this sequence is at most countable. If it is finite, we complete the sequence
with zeros, such that N-a.s. and Nσ-a.e.

Λθ ∈ S↓ = {(x1, x2, . . . ), x1 ≥ x2 ≥ · · · ≥ 0,
∑

xi <∞}.

We write Pσ the law of (Λθ, θ ≥ 0) under Nσ and by convention P0 is the Dirac mass at
(0, 0, . . . ) ∈ S↓. We get the following result which is similar to [1], Theorem 1.1

Theorem 4.1. For π∗(dr)-almost every r, under Pr, (Λθ, θ ≥ 0) is a S↓-valued fragmentation
process.

This Theorem is a direct consequence of the following Lemma

Lemma 4.2. ([1], Lemma 4.3)

Under N, the law of the family (S̃j,k, j ∈ N, k ∈ Jj), conditionaly on (σ̃j,k, j ∈ N, k ∈ Jj), is
the law of Lévy Poisson snakes distributed respectively as Nσ̃j,k .

Proof. It is based on Proposition 3.4 (which gives the law of two lowest fragment) and on the
special Markov property ([2], Theorem 4.2) which gives the law of the exploration process
above the first marks. �

4.2. Another representation of the fragmentation. We give an another representation
of the fragmentation by using a Poisson point measure under the epigraph of the height
process. Recall that for every t ∈ [0, σ],

κt(dr) = 2β1[0,Ht](r)(dr) +
∑

0<s≤t

Xs−<I
s
t

(Xs −Xs−)δHs(dr).

Conditionally on the process H (or equivalently on ρ), we set a Poisson point process
Q(dθ, ds, da) under the epigraph of H with intensity dθ qρ(ds, da) where

qρ(ds, da) =
ds κs(da)

ds,a − gs,a

= qskeρ (ds, da) + qnodρ (ds, da)
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with























qnodρ (ds, da) =
ds

ds,a − gs,a

∑

0<u≤s

Xu−<Iu
s

(Xu −Xu−)δHu(da)

qskeρ (ds, da) =
2β ds 1[0,Hs](a)da

ds,a − gs,a

with ds,a = sup{u ≥ s,min{Hv, v ∈ [s, u]} ≥ a} and gs,a = inf{u ≤ s,min{Hv, v ∈ [s, u]} ≥
a}. [gs,a, ds,a] is the set of individuals of the CRT with common ancestor s after generation
a.

We use a notation for the fragments of the CRT obtained from a mark (s, a) under the
epigraph of H. For s and a such that s ∈ [0, σ] and 0 ≤ a ≤ Hs, we denote the fragments of

the Lévy snake (ρi, i ∈ Ĩ) by :

• the open intervals of the excursion of H after s and above a : ((αi, βi), i ∈ Ĩ+) which
are such that αi > s, Hαi

= Hβi
= a and for every s′ ∈ (αi, βi), Hs′ > a and Hs,s′ = a.

• the open intervals of the excursion of H before s and above a : ((αi, βi), i ∈ Ĩ−)
which are such that βi < s, Hαi

= Hβi
= a and for every s′ ∈ (αi, βi), Hs′ > a and

Hs,s′ = a.
• the excursion is, ofH above a and which contains s : (αis , βis) such that αis < s < βis ,
Hαis

= Hβis
= a and for every s′ ∈ (αis , βis), Hs′ > a and Hs,s′ = a.

• the excursion i0 of H under a : {s ∈ [0, σ];Hs,s′ < a} = [0, αi0) ∪ (βi0 , σ]

We write Ĩ = Ĩ− ∪ Ĩ+ ∪{is, i0}. For the mark on the skeleton (s, a), the set Ĩ− ∪ Ĩ+ is empty.

We are interested in the computation of ν̃ρ, the law of the process (ρi, i ∈ Ĩ) under N.

5. The dislocation process

Let T be the set of jumping times of the Poisson process Q. For θ ∈ T , we consider the
processes L(θ) = (ρi; i ∈ I(θ)) and L(θ−) = (ρi; i ∈ I(θ−)) defined in the Section 4.1. The life

times (σ(ρi); i ∈ I(θ)) (resp. (σ(ρi); i ∈ I(θ−)) ), ranked by decreasing order, of these Lévy
snakes correspond to the ”sizes” of the fragments at time θ (resp. before time θ). Notice

that, for θ ∈ T fixed, the families L(θ) and L(θ−) change in one family : the snake ρiθ breaks
in one family (ρi, i ∈ Ĩθ) ∈ L(θ). Thus we get

L(θ) =
(

L(θ−) \ {ρiθ}
)

∪ {ρi; i ∈ Ĩ(θ)}.

Let νσ(ρ) be the distribution of the decreasing lengths of Lévy snakes under ν̃ρ, integrated
w.r.t. the law of ρ conditionally on σ(ρ), that is to say, for any non-negative measurable
function F defined on S↓

∫

S↓

F (x)νr(dx) = Nr

[
∫

F ((σi, i ∈ Ĩ))ν̃ρ(d(ρ
i, i ∈ Ĩ))

]

where the (σi, i ∈ Ĩ) are the lengths of the fragments (ρi, i ∈ Ĩ) ranked in decreasing order.

5.1. Computation of dislocation measure. We are interested in the family of dislocation
measures (νr, r > 0). Recall that N(.) =

∫

R+
π∗(dr)Nr(.). The computation is easier under
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N, then we compute for any λ ≥ 0 :
∫

R+×S↓

F (x)νr(dx)π∗(dr) = N

[
∫

qρ(ds, da)F ((σi, i ∈ Ĩ))

]

= N

[∫

qnodρ (ds, da)F ((σi, i ∈ Ĩ))

]

+ N

[∫

qskeρ (ds, da)F (σi0 , σis)

]

where we use the decomposition of qρ for the second equality. The first part has already been
computed in [1]. Jumping times of the process ρ are represented by a subordinator W with
Laplace exponent ψ′−α. Then we construct the length of the excursions of the snake by SW
where S is a subordinator with exponent ψ−1, independent of W . Then we have :

N

[

e−λσ
∫

qnodρ (ds, da)F ((σi, i ∈ Ĩ))

]

=

∫

π(dv)E
[

Sve
−λSvF ((∆Su, u ≤ v))

]

.

We now compute the second part. Thanks to the definition of the snake, ρske = 0 if and only
if β = 0 and in this case, we don’t put mark on the skeleton of the tree. We assume that
β > 0 and we write the main theorem of this article :

Theorem 5.1. We set λ1 > 0 and λ2 > 0.

N

[∫

qskeρ (ds, da)σise−λ1σ
is−λ2σ

i0

]

=
2β

ψ′ψ−1(λ1)ψ′ψ−1(λ2)

We recall that the measure ν̂sker gives the law of the non-reordering of the two lengths
given by the fragmentation from νsker .

Corollary 5.2. For λ1 > 0 and λ2 > 0, we get
∫

R+×S↓

1

x2
(1 − e−λ1x1)(1 − e−λ2x2)ν̂sker (dx)π∗(dr) = 2βψ−1(λ1)ψ

−1(λ2)

Thus, under ν̂sker (dx)π∗(dr), the lengths of the two fragments are independent.

Proof of Corollary 5.2. We use Theorem 5.1, let x1 and x2 be the lengths of the fragments
from νskeρ ranked by decreasing order among the elements of x ∈ S↓, we get

∫

R+×S↓

x1e
−λ1x1−λ2x2 ν̂sker (dx)π∗(dr) =

2β

ψ′ψ−1(λ1)ψ′ψ−1(λ2)
.

We integrate w.r.t. λ1 and we take the primitive which vanishes in 0, and we do the same
with λ2, we get the result. �

Proof of Theorem 5.1. In order to prove the theorem, we computeA2 := N
[∫

qskeρ (ds, da)G(σis , σ)
]

where G(x, y) = xe−λ1x−λ2y.

A2 = N

[

2β

∫ σ

0
ds

∫

1

ds,a − gs,a
G(σis , σ)1(0≤a≤Hs)da

]

= N

[

2β

∫ σ

0
ds

∫

1

ds,a − gs,a
G(ds,a − gs,a, σ)1(0≤a≤Hs)da

]

.

We denote for 0 ≤ s ≤ σ and 0 ≤ a ≤ Hs fixed

ds,a − s = inf{t ≥ 0,H(s+t)∧σ ≤ a} = J2(a)

s− gs,a = inf{t ≥ 0,H(s−t)+ ≤ a} = J1(a).
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We get
ds,a − gs,a = J2(a) + J1(a),

σ = J2(0) + J1(0),

A2 = N

[

2β

∫ σ

0
ds

∫

10≤a≤Hsda
G(J1(a) + J2(a), J1(0) + J2(0))

J1(a) + J2(a)

]

.

We use the generalization for Lévy processes of Bismut formula, Proposition 2.7.

A2 = 2β

∫

M(dµdν)E

[
∫

10≤a≤H(µ)da
G(Jν(a) + Jµ(a), Jν(0) + Jµ(0))

Jν(a) + Jµ(a)

]

= 2β

∫

M(dµdν)10≤a≤H(µ)daE
∗
µ

[

e−λ1J
µ(a)−λ2J

µ(0)
]

E
∗
ν

[

e−λ1J
ν(a)−λ2J

ν(0)
]

where Jµ(a) is the first passage time of the process H(µ) at level a. By the Poisson-
nian decomposition of ρ under P

∗
µ w.r.t. the excursions of ρ above its minimum, under P

∗
µ,

we replace respectively Jµ(0) and Jµ(a) by
∑

i∈Iσ
i and

∑

hi≥a
σi. We separate

∑

i∈Iσ
i =

∑

hi≥a
σi +

∑

hi<a
σi.

A2 = 2β

∫

M(dµdν)

∫

10≤a≤H(µ)daE
∗
µ



exp



−(λ1 + λ2)
∑

hi≥a

σi − λ2

∑

hi<a

σi









E
∗
ν



exp



−(λ1 + λ2)
∑

hi≥a

σi − λ2

∑

hi<a

σi







 .

Using standard properties of Poisson point measures, the atoms above level a are indepen-
dent of the atoms below, the expectations can be separated.

E
∗
µ

[

e
−(λ1+λ2)

P

hi≥aσ
i−λ2

P

hi<aσ
i
]

= E
∗
µ

[

e
−(λ1+λ2)

P

hi≥aσ
i
]

E
∗
µ

[

e
−λ2

P

hi<aσ
i
]

.

We use Lemma 3.5, and the equality ψ−1(λ) = N
[

1 − e−λσ
]

, we get

E
∗
µ

[

e
−(λ1+λ2)

P

hi≥aσ
i
]

= e−µ([a,H(µ)])N[1−e−(λ1+λ2)σ] = e−µ([a,b])ψ−1(λ1+λ2).

And we do the same for the second expectation.

A2 = 2β

∫ ∞

0
dbe−αb

∫ b

0
daMb

[

e−(µ+ν)([a,b])ψ−1(λ1+λ2)e−(µ+ν)([0,a))ψ−1(λ2)
]

.

Then,

Mb

[

e−((µ+ν)([a,b])ψ−1(λ1+λ2)e−(µ+ν)([0,a))ψ−1(λ2)
]

= Mb

[

e−((µ+ν)([a,b])ψ−1(λ1+λ2)
]

Mb

[

e−(µ+ν)([0,a))ψ−1(λ2)
]

= e−2(b−a)βψ−1(λ1+λ2)exp

(

−

∫ b

a

dx

∫ ∞

0
lπ(dl)(1 − e−lψ

−1(λ1+λ2))

)

e−2aβψ−1(λ2)exp

(

−

∫ a

0
dx

∫ ∞

0
lπ(dl)(1 − e−lψ

−1(λ2))

)

= eαbe−(b−a)ψ′ψ−1(λ1+λ2)−aψ′ψ−1(λ2).
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We recall the expression of A2

A2 = 2β

∫ ∞

0
db
e−bψ

′ψ−1(λ2) − e−bψ
′ψ−1(λ1+λ2)

ψ′ψ−1(λ1 + λ2) − ψ′ψ−1(λ2)

=
2β

ψ′ψ−1(λ1 + λ2) − ψ′ψ−1(λ2)

(

1

ψ′ψ−1(λ2)
−

1

ψ′ψ−1(λ1 + λ2)

)

=
2β

ψ′ψ−1(λ2)ψ′ψ−1(λ1 + λ2)
.

We use the equality N
[∫

qskeρ (ds, da)σisG(σis , σ)
]

= N

[

∫

qskeρ (ds, da)σise−(λ1+λ2)σis−λ2σ
i0
]

,

we finally get the result. �

5.2. Brownian case. A similar result has been obtained in [3] in the Brownian case and
conditionally on σ = 1. We consider a standard Brownian motion with Laplace exponent

ψ(λ) = λ2

2 and we denote by Γ(de) the law of the Brownian excursion e. Thanks to [12],
Section VIII.3, the height process of the Brownian motion is given by Ht = 2(Xt − It). We
resume the computation of [3] by taking marks under the epigraph of H, we get

∫

F (σis , σ)ν(ds) =

∫

Γ(de)

∫ σ

0
ds

∫ 2e(s)

0
dt
F (σis , σ)

σis

where ν is the dislocation measure of [3]. The computation of [3] uses the law the two
independent 3-dimensional Bessel processes, then we get

∫

F (σis , σ)ν(ds) =
1

4π

∫ 1

0

dz
√

z(1 − z)

∫ ∞

0
dσ
F (σz, σ)

σz
.

As before, we compute with F (x, y) = xe−λ1x−λ2y.
∫

F (σis , σ)ν(ds) =
1

4π

∫ 1

0

dz
√

z(1 − z)

∫ ∞

0
dσe−λ1σz−λ2σ

=
1

4π

∫ 1

0

dz
√

z(1 − z)

1

λ1z + λ2

For the end of this computation, we use the two changes of variable : z ↔ sin2x and then
t ↔ tanx.

∫

F (σis , σ)ν(ds) =
1

2π

∫ π
2

0

dx

λ1sin2x+ λ2

=
1

2π

∫ ∞

0

dt

(λ1 + λ2)t2 + λ2

We integrate a last time, we get the same result as in Theorem 5.1 :
∫

F (σis , σ)ν(ds) =
1

4

1
√

λ2(λ1 + λ2)
.
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uum tree, preprint
[3] Romain ABRAHAM and Laurent SERLET. Poisson snake and fragmentation. Elect. J. of Probab., 7,

2002.
[4] David ALDOUS. The continuum random tree III. Ann. Probab., 21(1):248–289, 1993.
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processes, volume 281. Astérisque, 2002.
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