Pierre Cornilleau 
  
Jean-Pierre Loh Éac 
  
Boundary stabilization and control of wave equations by means of a general multiplier method

Keywords: AMS Subject Classification: 93D15, 35L05, 35J25 wave equation, boundary stabilization, multiplier method

We describe a general multiplier method to obtain boundary stabilization of the wave equation by means of a (linear or quasi-linear) Neumann feedback. This also enables us to get Dirichlet boundary control of the wave equation. This method leads to new geometrical cases concerning the "active" part of the boundary where the feedback (or control) is applied. Due to mixed boundary conditions, the Neumann feedback case generate singularities. Under a simple geometrical condition concerning the orientation of the boundary, we obtain a stabilization result in linear or quasi-linear cases.

Introduction

In this paper we are concerned with control and stabilization of the wave equation in a multi-dimensional body Ω ⊂ R n .

Stabilization is obtained using a feedback law given by some part of the boundary of the spacial domain and some function defined on this part. The problem can be written as follows

           u ′′ -∆u = 0 in Ω × R * + , u = 0 on ∂Ω D × R * + , ∂ ν u = F on ∂Ω N × R * + , u(0) = u 0 in Ω , u ′ (0) = u 1 in Ω ,
where we denote by u ′ , u ′′ , ∆u and ∂ ν u the first time-derivative of u, the second time-derivative of the scalar function u, the standard Laplacian of u and the normal outward derivative of u on ∂Ω, respectively;

(∂Ω D , ∂Ω N ) is a partition of ∂Ω and F is the feedback function which may depend on state (u, u ′ ), position x and time t.

Our purpose here is to choose the feedback law, that is to say the feedback function F and the "active" part of the boundary, ∂Ω N , so that for every initial data, the energy function

E(t) = 1 2 Ω (|u ′ (t)| 2 + |∇u(t)| 2 ) dx ,
is decreasing with respect to time t, and vanishes as t -→ ∞.

Formally, we can write the time-derivative of E as follows

E ′ (t) = ∂ΩN F u ′ dσ ,
and a sufficient condition for E to be non-increasing would be: F u ′ ≤ 0 on ∂Ω N . Thanks to the multiplier method introduced by L.F. Ho [START_REF] Ho | Observabilité frontière de l'équation des ondes[END_REF] in the framework of Hilbert Uniqueness Method [START_REF] Lions | Contrôlabilité exacte, stabilisation et perturbation des systèmes distribués[END_REF], it can be shown that the energy function is uniformly decreasing as time t tends to ∞ by choosing x → m(x) = xx 0 , where x 0 is some given point in R n and

∂Ω N = {x ∈ ∂Ω / m(x).ν(x) > 0 } , F = -m.ν u ′ ,
where ν is the normal unit vector pointing outward of Ω. This method has been performed by many authors, see for instance Komornik and Zuazua [START_REF] Komornik | A direct method for the boundary stabilization of the wave equation[END_REF], Komornik [START_REF] Komornik | Exact controllability and stabilization ; the multiplier method[END_REF] and the references therein. Here we extend the above result for rotated multipliers defined in [START_REF] Osses | A rotated multiplier applied to the controllability of waves, elasticity and tangential Stokes control[END_REF] and we follow the analysis of singularities initiated by Grisvard [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF][START_REF] Grisvard | Contrôlabilité exacte des solutions de l'équation des ondes en présence de singularités[END_REF] and extended by Bey, Lohéac and Moussaoui [START_REF] Bey | Singularities of the solution of a mixed problem for a general second order elliptic equation and boundary stabilization of the wave equation[END_REF]. This last work leads to results in case of higher dimensional domains with a nonempty boundary interface Γ = ∂Ω N ∩ ∂Ω D under an additional geometrical assumption concerning the orientation of the boundary.

Concerning the control problem, our goal is to find v such that the solution of

           u ′′ -∆u = 0 u = 0 u = v u(0) = u 0 u ′ (0) = u 1 in Ω × (0, T ), on ∂Ω D × (0, T ), on ∂Ω N × (0, T ), in Ω, in Ω,
reaches an equilibrium at t = T . We here follow [START_REF] Ho | Observabilité frontière de l'équation des ondes[END_REF]: in this work, Ho used the multiplier technique. His main purpose was to prove an inverse inequality for the linear wave equation implying its exact controllability. He introduced the socalled exit condition: the control region must contain a subset of the boundary where the scalar product between the outward normal and the vector pointing from some origin towards the normal is positive. By varying the origin, a family of boundary controls satisfying the condition is obtained.

In the last decades, micro-local techniques and geometric optics analysis allowed to find geometrical characterization of control and minimal control time in the exact controllability of waves. This condition has been introduced in [START_REF] Bardos | Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary[END_REF] under the name of Geometric Control Condition (GCC). It generalized the previous exit condition.

There is a certain balance: with GCC, control time is optimal but the observability constant is not explicit. With exit condition, time is not optimal but observability constants can be explicit, which is very useful in theoretical and numerical estimations.

In this paper we extend the family of multipliers recently introduced by Osses [START_REF] Osses | A rotated multiplier applied to the controllability of waves, elasticity and tangential Stokes control[END_REF].

Notations and main results

Let Ω be a bounded open connected set of R n (n ≥ 2) such that ∂Ω is C 2 in the sense of Nečas [START_REF] Nečas | Les méthodes directes en théorie des équations elliptiques[END_REF].

In the sequel, we denote by I the n × n identity matrix and by A s the symmetric part of a matrix A. Let m be a W 1,∞ (Ω) vector-field such that ess inf

Ω div(m) > ess sup Ω div(m) -2λ m ( 2 
)
where div is the usual divergence operator and λ m (x) is the smallest eigenvalue of the real symmetric matrix ∇m(x) s . Using Sobolev embedding, one may also assume that m ∈ C(Ω).

Remark 1

The set of all W 1,∞ (Ω) vector-fields such that [START_REF] Banasiak | On mixed boundary value problems of Dirichlet obliquederivative type in plane domains with piecewise differentiable boundary[END_REF] holds is an open cone. If m belongs to this set, we denote

c(m) = 1 2 ess inf Ω div(m) -ess sup Ω div(m) -2λ m .

Examples

• An affine example is given by m

(x) = (A 1 + A 2 )(x -x 0 ) ,
where A 1 is a definite positive matrix, A 2 a skew-symmetric matrix and x 0 any point in R n .

• A non linear example is m(x) = (dI + A)(x -x 0 ) + F(x) ,
where d > 0, A is a skew-symmetric matrix, x 0 any point in R n and F is a W 1,∞ (Ω) vector field such that ess sup

Ω ∇F s < d n ,
where • stands for the usual 2-norm of matrices.

We consider a partition (∂Ω N , ∂Ω D ) of ∂Ω such that

Γ = ∂Ω D ∩ ∂Ω N is a C 3 -manifold of dimension n -2 such that m.ν = 0 on Γ, ∃ ω neighborhood of Γ such that ∂Ω ∩ ω is a C 3 -manifold of dimension n -1, H n-1 (∂Ω D ) > 0 (H n-1 is the (n -1)-dimensional Hausdorff measure). (3) 
Furthermore, we assume

∂Ω N ⊂ {x ∈ ∂Ω / m(x).ν(x) ≥ 0} , ∂Ω D ⊂ {x ∈ ∂Ω / m(x).ν(x) ≤ 0} . (4) 
This assumption clearly implies: m.ν = 0 on Γ.

Boundary stabilization

Let g : R → R be a measurable function such that g is non-decreasing and ∃k + > 0 : |g(s)| ≤ k + |s| a.e. .

Let us now consider the following wave problem, (S)

           u ′′ -∆u = 0 u = 0 ∂ ν u = -m.ν g(u ′ ) u(0) = u 0 u ′ (0) = u 1 in Ω × R * + , on ∂Ω D × R * + , on ∂Ω N × R * + , in Ω , in Ω , where initial data satisfy (u 0 , u 1 ) ∈ H 1 D (Ω) × L 2 (Ω) with H 1 D (Ω) = {v ∈ H 1 (Ω) : v = 0 on ∂Ω D }. Problem (S)
is well-posed in this space. Indeed, following Komornik [START_REF] Komornik | Exact controllability and stabilization ; the multiplier method[END_REF], we define the non-linear operator

W on H 1 D (Ω) × L 2 (Ω) by W(u, v) = (-v, -∆u) , D(W) = {(u, v) ∈ H 1 D (Ω) × H 1 D (Ω) / ∆u ∈ L 2 (Ω) and ∂ ν u = -m.ν g(v) on ∂Ω N } ,
so that (S) can be written as follows, 2 (Ω) for the usual norm. Following Brézis [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF], we can deduce that for any initial data (u 0 , v 0 ) in D(W) there is a unique strong solution (u, v) such that u ∈ W 1,∞ (R; H 1 D (Ω)) and ∆u ∈ L ∞ (R + ; L 2 (Ω)). Moreover, for two initial data, the corresponding solutions satisfy

(u, v) ′ + W(u, v) = 0 , (u, v)(0) = (u 0 , u 1 ) . It is classical that W is a maximal-monotone operator on H 1 D (Ω) × L 2 (Ω) and that D(W) is dense in H 1 D (Ω)×L
∀t ≥ 0 , (u 1 (t), v 1 (t)) -(u 2 (t), v 2 (t)) H 1 D (Ω)×L 2 (Ω) ≤ (u 1 0 , v 1 0 ) -(u 2 0 , v 2 0 ) H 1 D (Ω)×L 2 (Ω)
. Using the density of D(W), one can extend the map

D(W) -→ H 1 D (Ω) × L 2 (Ω) (u 0 , v 0 ) -→ (u(t), v(t))
to a strongly continuous semi-group of contractions (S(t)) t≥0 and define for (u 0 , u

1 ) ∈ H 1 D (Ω) × L 2 (Ω) the weak solution (u(t), u ′ (t)) = S(t)(u 0 , u 1 ) with the regularity u ∈ C(R + ; H 1 D (Ω)) ∩ C 1 (R + ; L 2 (Ω))
. We hence define the energy function of solutions by

E(0) = 1 2 Ω (|u 1 | 2 + |∇u 0 | 2 ) dx and E(t) = 1 2 Ω (|u ′ (t)| 2 + |∇u(t)| 2 ) dx , for t > 0 .
In order to get stabilization results, we need further assumptions concerning the feedback function g

∃p ≥ 1 , ∃k -> 0 : |g(s)| ≥ k -min{|s|, |s| p } , a.e. , (6) 
and the additional geometric assumption

m.τ ≤ 0 on Γ , (7) 
where τ (x) is the normal unit vector pointing outward of ∂Ω N at a point x ∈ Γ when considering ∂Ω N as a sub-manifold of ∂Ω.

Remark 2 It is not necessary to assume that

H n-1 ({x ∈ ∂Ω N / m(x).ν(x) > 0}) > 0
to get stabilization. In fact, our choices of m imply such properties (see examples in Section 5) whether the energy tends to zero.

A main tool in this work is Rellich type relations [START_REF] Rellich | Darstellung der Eigenwerte von ∆u+λu durch ein Randintegral[END_REF]. They lead to results of controllability and stabilization for the wave problem (see [START_REF] Komornik | A direct method for the boundary stabilization of the wave equation[END_REF] and [START_REF] Ho | Observabilité frontière de l'équation des ondes[END_REF]). When the interface Γ is not empty, the keyproblem is to show the existence of a decomposition of the solution in a regular and a singular parts (see [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF][START_REF] Kozlov | Elliptic Boundary Value Problems in Domains with Point Singularities[END_REF]) in any dimension. The first results towards this direction are due to Moussaoui [START_REF] Moussaoui | Singularités des solutions du problème mêlé, contrôlabilité exacte et stabilisation frontière[END_REF], and Bey-Lohéac-Moussaoui [START_REF] Bey | Singularities of the solution of a mixed problem for a general second order elliptic equation and boundary stabilization of the wave equation[END_REF].

In this new case, our goal is to generalize those Rellich relations. This will lead us to get a stabilization result about (S) under ( 4), [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]. As well as in [START_REF] Komornik | Exact controllability and stabilization ; the multiplier method[END_REF], we shall prove here two results of uniform boundary stabilization.

Exponential boundary stabilization

We here consider the case when p = 1 in (6). This is satisfied when g is linear,

∃α > 0 : ∀s ∈ R , g(s) = αs .
In this case, the energy function is exponentially decreasing.

Theorem 1 Assume that conditions (1), ( 2), ( 3) and (4) hold and that the feedback function g satisfies ( 5) and (6) with p = 1.

Then under the further geometrical assumption [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF], there exist C > 0 and T > 0 such that for every initial data in H 1 D (Ω) × L 2 (Ω), the energy of the solution u of (S) satisfies

∀t > T , E(t) ≤ E(0) exp 1 - t C .
The above constants C and T do not depend on initial data.

Rational boundary stabilization

We here consider the case p > 1 and we get rational boundary stabilization.

Theorem 2 Assume that conditions (1), ( 2), ( 3) and (4) hold and that the feedback function g satisfies ( 5) and (6) with p > 1.

Then under the further geometrical assumption [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF], there exist C > 0 and T > 0 such that for every initial data in H 1 D (Ω) × L 2 (Ω), the energy of the solution u of (S) satisfies

∀t > T , E(t) ≤ C t 2/(1-p) .
where C depends on the initial energy E(0).

Remark 3 Taking advantage of the work by Banasiak and Roach [START_REF] Banasiak | On mixed boundary value problems of Dirichlet obliquederivative type in plane domains with piecewise differentiable boundary[END_REF] who generalized Grisvard's results [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] in the piecewise regular case, we will see that Theorems 1 and 2 remain true in the bi-dimensional case when assumption (1) is replaced by following one,

∂Ω is a curvilinear polygon of class C 2 , each component of ∂Ω \ Γ is a C 2 -manifold of dimension 1 , (8) 
and when condition (7) is replaced by

∀x ∈ Γ , 0 ≤ ̟ x ≤ π and if ̟ x = π , m(x).τ (x) ≤ 0 . ( 9 
)
where ̟ x is the angle of the boundary at point x.

Boundary control problem

Our problem consists in finding T 0 such that for each T > T 0 and for every (u 0 , u 1 ) ∈ L 2 (Ω) × H -1 (Ω), there exists v ∈ L 2 (∂Ω N × (0, T )) in such a way that the solution of the wave equation

(Σ)            u ′′ -∆u = 0 u = 0 u = v u(0) = u 0 u ′ (0) = u 1 in Ω × (0, T ) , on ∂Ω D × (0, T ) , on ∂Ω N × (0, T ) , in Ω , in Ω . satisfies u(T ) = u ′ (T ) = 0 in Ω. ( 10 
)
Theorem 3 Assume that (1), ( 2), ( 3) and (4) hold.

Then if T > 2 m ∞ c(m) , for every initial data (u 0 , u 1 ) ∈ L 2 (Ω) × H -1 (Ω), there exists a control function v ∈ L 2 (∂Ω N × (0, T ))
such that the corresponding solution of (Σ) satisfies final condition [START_REF] Komornik | Exact controllability and stabilization ; the multiplier method[END_REF].

Our paper is organized as follows.

In Section 2, we extend Rellich relations (Theorems 5 and 6) for elliptic problems with mixed boundary conditions.

In Section 3, we apply these relations to prove some stabilization results with linear or quasi-linear Neumann feedback (Theorems 1 and 2).

In Section 4, we extend some observability and controllability results for the wave equation (Proposition 11 and Theorem 3).

In Section 5, we detail affine examples in the case of a square domain.

Rellich relation

Here, we briefly extend Rellich relation obtained in [START_REF] Bey | Singularities of the solution of a mixed problem for a general second order elliptic equation and boundary stabilization of the wave equation[END_REF], [START_REF] Cornilleau | Nonlinear Neumann boundary stabilization of the wave equation using rotated multipliers[END_REF] to our framework.

A regular case

We can easily build a Rellich relation corresponding to the above vector-field m when considered functions are smooth enough. With another use of Green-Riemann formula, we obtain the required formula thanks to a classical approximation.

We will now try to extend this result to the case of a less regular element u when Ω is smooth enough.

Bi-dimensional case

We begin by the plane case: it is the simplest case from the point of view of singularity theory, and its understanding dates from Shamir [START_REF] Shamir | Regularity of mixed second order elliptic problems[END_REF].

Theorem 5 Assume n = 2. Under the geometrical conditions (8) and (3), let u ∈ H 1 (Ω) such that

∆u ∈ L 2 (Ω) , u /∂ΩD ∈ H 3/2 (∂Ω D ) , ∂ ν u /∂ΩN ∈ H 1/2 (∂Ω N ) .
Then 2∂ ν u(m.∇u) -(m.ν)|∇u| 2 ∈ L 1 (∂Ω) and there exist some coefficients (c x ) x∈Γ such that

2 Ω ∆u m.∇u dx = Ω (div(m)I -2(∇m) s )(∇u, ∇u) dx + ∂Ω (2∂ ν u m.∇u -m.ν |∇u| 2 ) dσ + π 4 x/̟x=π c 2 x (m.τ )(x) .
Proof. We follow the proof of Theorem 4 in [START_REF] Cornilleau | Nonlinear Neumann boundary stabilization of the wave equation using rotated multipliers[END_REF] to get this result.

Remark 4

As in Theorem 4 of [START_REF] Cornilleau | Nonlinear Neumann boundary stabilization of the wave equation using rotated multipliers[END_REF], the assumption H 1 (∂Ω D ) > 0 is not necessary in the above proof.

General case

We now state the result in higher dimension.

Theorem 6 Assume n ≥ 3. Under geometrical conditions (1) and Proof. We exactly follow the proof of Theorem 5 in [START_REF] Cornilleau | Nonlinear Neumann boundary stabilization of the wave equation using rotated multipliers[END_REF] to get this result.

(3), let u ∈ H 1 (Ω) such that ∆u ∈ L 2 (Ω) , u /∂ΩD ∈ H 3/2 (∂Ω D ) , ∂ ν u /∂ΩN ∈ H 1/2 (∂Ω N ) .

Linear and quasi-linear stabilization

We begin by writing the following consequence of results of Section 2.

Corollary 7 Assume that t → (u(t), u ′ (t)) is a strong solution of (S) and that geometrical additional assumption [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] if n ≥ 3 (or (9) if n = 2) holds, then, for every time t, u(t) satisfies Proof. Indeed, under theses hypotheses, for each time t, (u(t), u ′ (t)) ∈ D(W) so that u(t) satisfies hypotheses of Theorems 5 or 6. The result follows immediately from [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] or [START_REF] Kozlov | Elliptic Boundary Value Problems in Domains with Point Singularities[END_REF]. The main tool in the proof of Theorems 1, 2 is the following result (see proof in [START_REF] Komornik | Exact controllability and stabilization ; the multiplier method[END_REF]) which will be applied with α = p -1 2 .

Proposition 8 Let E : R + → R + be a non-increasing function such that there exist α ≥ 0 and C > 0 which fulfill

∀t ≥ 0, ∞ t E α+1 (s)ds ≤ CE(t).
Then, setting T = CE α (0), one gets

if α = 0 , ∀t ≥ T, E(t) ≤ E(0) exp 1 - t T , if α > 0 , ∀t ≥ T, E(t) ≤ E(0) T + αT T + αt 1/α .
As usual in this context, we will perform the multiplier method to a suitable m. Putting M u = 2m.∇u + au with a a constant to be defined later, we prove the following result.

Lemma 9 For any 0 ≤ S < T < ∞, the following inequality holds

T S E p-1 2 Ω (div(m) -a)(u ′ ) 2 + (a -div(m))I + 2(∇m) s (∇u, ∇u) dx dt ≤ -E p-1 2 Ω u ′ M u dx T S + p -1 2 T S E p-3 2 E ′ Ω u ′ M u dx dt + T S E p-1 2 ∂ΩN m.ν (u ′ ) 2 -|∇u| 2 -g(u ′ )M u dσ dt .
Proof. We here follow [START_REF] Conrad | Decay of solutions of the wave equation in a star-shaped domain with non linear boundary feedback[END_REF].

We Use the fact that u is solution of (S) and we observe that

u ′′ M u = (u ′ M u) ′ -u ′ M u ′ .
Then an integration by parts gives

0 = T S E p-1 2 Ω (u ′′ -∆u) M u dx dt = E p-1 2 Ω u ′ M u dx T S - p -1 2 T S E p-3 2 E ′ Ω u ′ M u dx dt - T S E p-1 2 Ω (u ′ M u ′ + ∆u M u) dx dt .
Corollary 7 now gives

Ω ∆u M u dx ≤ a Ω ∆u u dx + Ω (div(m)I -2(∇m) s )(∇u, ∇u) dx + ∂Ω (2∂ ν u m.∇u -m.ν |∇u| 2 ) dσ .
Consequently, Green-Riemann formula leads to

Ω ∆u M u dx ≤ Ω ((div(m) -a)I -2(∇m) s )(∇u, ∇u) dx + ∂Ω (∂ ν u M u -m.ν |∇u| 2 ) dσ .
Using boundary conditions and the fact that ∇u = ∂ ν u ν on ∂Ω D , we then get

Ω ∆uM u dx ≤ Ω ((div(m) -a)I -2(∇m) s )(∇u, ∇u) dx - ∂ΩN m.ν (g(u ′ ) M u + |∇u| 2 ) dσ .
On the other hand, another use of Green formula gives us

Ω u ′ M u ′ dx = Ω (a -div(m))(u ′ ) 2 dx + ∂ΩN m.ν |u ′ | 2 dσ .
We complete the proof by summing up above estimates.

Let us now prove Theorems 1 and 2.

Proof. Following [START_REF] Komornik | Exact controllability and stabilization ; the multiplier method[END_REF] and [START_REF] Conrad | Decay of solutions of the wave equation in a star-shaped domain with non linear boundary feedback[END_REF], we will prove the estimates for (u 0 , u 1 ) ∈ D(W) which will be sufficient thanks to a density argument. Using Lemma 9, we have to find a such that div(m) -a and (a -div(m))I + 2(∇m) s are uniformly minorized on Ω, that is, almost everywhere on Ω

div(m) -a ≥ c , 2λ m + (a -div(m)) ≥ c , (11) 
for some positive constant c. The latter condition is then equivalent to find a which fulfills

ess inf Ω div(m) > a > ess sup Ω div(m) -2λ m ,
and its existence is now garanted by [START_REF] Banasiak | On mixed boundary value problems of Dirichlet obliquederivative type in plane domains with piecewise differentiable boundary[END_REF]. Moreover, it is straightforward to see that the greatest value of c such that (11) holds is

1 2 ess inf Ω div(m) -ess sup Ω div(m) -2λ m = c(m) ,
and obtained for a = a 0 := 1 2 ess inf

Ω div(m) + ess sup Ω div(m) -2λ m .
With this value a 0 , we apply Lemma 9 and get 2c(m)

T S E p+1 2 dt ≤ -E p-1 2 Ω u ′ M u dx T S + p -1 2 T S E p-3 2 E ′ Ω u ′ M u dx dt + T S E p-1 2 ∂ΩN m.ν (u ′ ) 2 -|∇u| 2 -g(u ′ )M u dσ dt .

Young and Poincaré inequality gives

Ω u ′ M u dx ≤ CE(t) .
It follows then 2c(m)

T S E p+1 2 dt ≤ C(E p+1 2 (T ) + E p+1 2 (S)) + C T S E p-1 2 E ′ dt + T S E p-1 2 ∂ΩN m.ν (u ′ ) 2 -|∇u| 2 -g(u ′ )M u dσ dt . Let dσ m = m.ν dσ. If we observe that E ′ (t) = - ∂ΩN g(u ′ )u ′ dσ m ≤ 0, we get, for a constant C > 0 independent of E(0) if p = 1, 2c(m) T S E p+1 2 dt ≤ CE(S) + T S E p-1 2 ∂ΩN (u ′ ) 2 -|∇u| 2 -g(u ′ )M u dσ m dt.
Using the definition of M u and Young inequality, we get for any

ε 0 > 0 2c(m) T S E p+1 2 dt ≤ CE(S) + T S E p-1 2 ∂ΩN (u ′ ) 2 (1 + m 2 ∞ ) + α 2 4ε 0 g(u ′ ) 2 + ε 0 u 2 dσ m dt .
Now, using Poincaré inequality, we can choose ε 0 > 0 such that

ε 0 ∂ΩN u 2 dσ m ≤ c(m) 2 Ω |∇u| 2 dx ≤ c(m)E . So we conclude c(m) T S E p+1 2 dt ≤ CE(S) + C T S E p-1 2 ∂ΩN (u ′ ) 2 + g(u ′ ) 2 dσ m dt .
We split ∂Ω N to bound the last term of this estimate 5) and ( 6), we get

∂Ω 1 N = {x ∈ ∂Ω N / |u ′ (x)| > 1} , ∂Ω 2 N = {x ∈ ∂Ω N / |u ′ (x)| ≤ 1} . Using (
T S E p-1 2 ∂Ω 1 N (u ′ ) 2 + g(u ′ ) 2 dσ m dt ≤ C T S E p-1 2 ∂ΩN u ′ g(u ′ ) dσ m dt ≤ CE(S) ,
where C depends on E(0) if p = 1.

On the other hand, using ( 5), ( 6), Jensen inequality and boundedness of m, one successively obtains

∂Ω 2 N (u ′ ) 2 + g(u ′ ) 2 dσ m ≤ C ∂Ω 2 N (u ′ g(u ′ )) 2/(p+1) dσ m ≤ C ∂Ω 2 N u ′ g(u ′ ) dσ m 2 p+1 ≤ C(-E ′ ) 2 p+1 .
Hence, using Young inequality again, we get for every ε > 0

T S E p-1 2 ∂Ω 2 N (u ′ ) 2 + g(u ′ ) 2 dσ m dt ≤ T S (εE p+1 2 -C(ε)E ′ ) dt ≤ ε T S E p+1 2 dt + C(ε)E(S) .
Finally we get, for some C(ε) and C independent of E(0

) if p = 1 c(m) T S E p+1 2 dt ≤ C(ε)E(S) + εC T S E p+1 2 
dt .

Choosing now εC ≤ c(m) 2 , one obtains c(m) T S E p+1 2 dt ≤ CE(S) ,
and Theorems can be deduced from Lemma 8.

Remark 5

As stated before, we can replace m by λm for any positive λ. One can wonder what happens to the speed of stabilization θ = c(m) C found in Theorem 3. In fact, a careful estimation of all terms shows that one can obtain

C = k -+ k + λ 2 + k + a 2 0 4 (1 + C P )C T r λ 3 ,
where C P denotes the Poincaré constant and C T r the norm of the trace application T r : H 1 (Ω) → L 2 (∂Ω).

The speed found in our proof is consequently

θ = c(m) k - λ + k + λ + k + a 2 0 4 (1 + C P )C T r λ 2 -1
.

It can be shown that θ reaches a maximum at some point

λ 0 ∈ min k - k + a 2 0 (1 + C P )C T r 1/3 , 2 a 2 0 (1 + C P )C T r , k - k + .
Besides, θ tends to 0 when λ → 0 or ∞. The details are left to the reader but the previous proof works also in this case.

Observability and controllability results

It is well-known that micro-local techniques [START_REF] Bardos | Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary[END_REF] characterize all partitions of the boundary such that this result holds, but constants are not explicit. Thus, using this new choice of multiplier, we will enlarge the set of geometric examples with explicit knowledge of constants. We here follow [START_REF] Osses | A rotated multiplier applied to the controllability of waves, elasticity and tangential Stokes control[END_REF].

Preliminary settings

Following HUM method [START_REF] Lions | Contrôlabilité exacte, stabilisation et perturbation des systèmes distribués[END_REF], controlabillity of problem (Σ) is equivalent to observability of its adjoint problem. the solution of the control problem is equivalent to studying the observability properties of the adjoint problem. For each pair of initial conditions (ϕ 0 , ϕ 1 ) ∈ H 1 0 (Ω) × L 2 (Ω), let us consider the solution ϕ of the following wave problem,

(Σ ′ )        ϕ ′′ -△ϕ = 0 ϕ = 0 ϕ(0) = ϕ 0 ϕ ′ (0) = ϕ 1 in Ω × (0, T ) , on ∂Ω × (0, T ) , in Ω , in Ω .
Observability of (Σ ′ ) is equivalent to the existence of a constant C < ∞ independent of (ϕ 0 , ϕ 1 ) such that

E 0 = 1 2 Ω |ϕ 1 | 2 + |∇ϕ 0 | 2 dx C ∂ΩN ×(0,T )
|∂ ν ϕ| 2 dσ dt .

Let us define the operator W 0 on H 1 0 (Ω) × L 2 (Ω) by

W 0 (ϕ, ψ) = (-ψ, -∆ϕ) , D(W 0 ) = {(ϕ, ψ) ∈ H 1 0 (Ω) × H 1 0 (Ω) / ∆ϕ ∈ L 2 (Ω)} ,
so that (Σ ′ ) can be written as follows, (ϕ, ψ) ′ + W 0 (ϕ, ψ) = 0 , (ϕ, ψ)(0) = (ϕ 0 , ϕ 1 ) .

Remark 7 If (ϕ, ψ) ∈ D(W 0 ), ϕ is the solution of some Dirichlet Laplace problem and hence regular (that is ϕ ∈ H 2 (Ω)).

W 0 is a maximal-monotone operator on H 1 0 (Ω) × L 2 (Ω) and D(W 0 ) is dense in H 1 0 (Ω) × L 2 (Ω) for the usual norm. Using Hille-Yosida Theorem, it generates a unitary semi-group on H 1 0 (Ω) × L 2 (Ω), we denote its value applied at (ϕ 0 , ϕ 1 ) at time t by (ϕ(t), ϕ ′ (t)). As a consequence, we get conservation of energy.

Proposition 10 If t 0 and ϕ is a weak solution of (Σ ′ ), then

E(t) = 1 2 Ω (|ϕ ′ (t)| 2 + |∇ϕ(t)| 2 ) dx = E 0 .
A weak solution of (Σ ′ ) hence belongs to C(R + ; H 1 D (Ω)) ∩ C 1 (R + ; L 2 (Ω)). A solution with (ϕ 0 , ϕ 1 ) ∈ D(W 0 ) is called a strong solution and satisfies (ϕ, ϕ ′ ) ∈ C(R + ; D(W 0 )).

Inverse inequality and exact controllability

We keep similar notations as in Section 2:

a 0 = 1 2 ess inf Ω div(m) + ess sup Ω div(m) -2λ m . Proposition 11 If T > 2 m ∞ c(m)
, for each weak solution ϕ of (Σ ′ ), the following inequality holds

E 0 ess sup ∂ΩN |m.ν| 2 c(m)T -2 m ∞ ∂ΩN ×(0,T ) |∂ ν ϕ| 2 dσ dt .
Remark 8 In the case m(x) = (dI + A)(xx 0 ) with A skew-symmetric matrix, we recover classical results (see [START_REF] Komornik | A direct method for the boundary stabilization of the wave equation[END_REF], [START_REF] Osses | A rotated multiplier applied to the controllability of waves, elasticity and tangential Stokes control[END_REF]).

Proof. Let (ϕ 0 , ϕ 1 ) ∈ D(W 0 ). We use again M ϕ = 2m.∇ϕ + a 0 ϕ. Using the fact that ϕ is solution of (Σ ′ ) and observing that

ϕ ′′ M ϕ = (ϕ ′ M ϕ) ′ -ϕ ′ M ϕ ′ , we get 0 = T 0 Ω (-ϕ ′′ + ∆ϕ)M ϕ dx dt = - Ω ϕ ′ M ϕ dx T 0 + T 0 Ω (ϕ ′ M ϕ ′ + ∆ϕM ϕ) dx dt .
As well as in the proof of Theorems 1 and 2, one uses Green-Riemann formula and Proposition 4 to get

Ω ∆ϕM ϕ dx = Ω ((div(m) -a 0 )I -2(∇m) s )(∇ϕ, ∇ϕ) dx + ∂Ω (∂ ν ϕM ϕ -m.ν |∇ϕ| 2 ) dσ .
Dirichlet boundary conditions lead to

Ω ∆ϕM ϕ dx = Ω ((div(m) -a 0 )I -2(∇m) s )(∇ϕ, ∇ϕ) dx + ∂ΩN m.ν |∂ ν ϕ| 2 dσ .
On the other hand, another use of Green formula gives us

Ω ϕ ′ M ϕ ′ dx = Ω (a 0 -div(m))|ϕ ′ | 2 dx ,
so, we finally get, using the same minoration as in proof of Theorems 1 and 2

c(m) T 0 Ω |ϕ ′ | 2 + |∇ϕ| 2 dx dt - Ω ϕ ′ M ϕ dx T 0 + ∂ΩN m.ν |∂ ν ϕ| 2 dσ . (12) 
Using the conservation of the energy, the left hand side in [START_REF] Ho | Observabilité frontière de l'équation des ondes[END_REF] is 2cT E 0 . It only remains to estimate the term -

Ω ϕ ′ M ϕ dx T 0 to end the proof.
Let us fix a time t ∈ {0, T }. Cauchy-Schwarz inequality leads to

- Ω ϕ ′ M ϕ dx Ω |ϕ ′ | 2 1/2 Ω |M ϕ| 2 1/2
Denoting by . the L 2 (Ω)-norm, we get the following splitting which ends the proof of Proposition 11, using the density of the domain. Now we can deduce our exact controllability result (Theorem 3) from Proposition 11 following HUM method (see [START_REF] Lions | Contrôlabilité exacte, stabilisation et perturbation des systèmes distribués[END_REF], Chapter IV).

M ϕ 2 = 2m.∇ϕ 2 + a 2 0 ϕ 2 + 4a 0 Ω ϕ m.∇ϕ dx .

Example

Let us consider here the case of a square domain Ω = (0, 1) 2 with the following affine multiplier,

m(x) = cot θ 1 1 -1 cot θ 2 (x -x 0 ) (13) 
where θ 1 and θ 2 belong to 0, π 2 . We will discuss the dependence of ∂Ω N and ∂Ω D on x 0 . First let us consider one edge [ab] of Ω with its normal unit vector ν. One can easily see that m(x).ν(x) = 1 sin θ (xx 0 ).ν θ , where θ = θ 1 (resp. In this case, at this interface point x 1 , we get with similar notations, m(x 1 ).τ (x 1 ) = 1 sin θ (x 1x 0 ).τ θ .

Then additional geometric assumption [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] is not satisfied if x 0 belongs to half-belt B + θ (see Fig. 1). We now can describe every situation by considering only three following cases (see Fig. 2), (C1):

0 < θ 1 ≤ θ 2 < π 4 , ( C2 
): 0 < θ 1 < π 4 ≤ θ 2 < π 2 , ( C3 
): π 4 ≤ θ 1 ≤ θ 2 < π 2 .
We also show a fully detailled partition in some particular case coresponding to (C2) (see Fig. 3). 

Proposition 4 2 Ω

 42 Assume that Ω is a open set of R n with boundary of class C 2 in the sense of Nečas. If u belongs to H 2 (Ω) then ∆u m.∇u dx = Ω (div(m)I -2(∇m) s )(∇u, ∇u) dx + ∂Ω (2∂ ν u m.∇um.ν |∇u| 2 ) dσ . Proof. Using Green-Riemann identity we get Ωε ∆u m.∇u dx = ∂Ωε ∂ ν u m.∇u dσ -Ωε ∇u.∇(m.∇u) dx . So, observing that ∇u.∇(m.∇u) = 1 2 m.∇(|∇u| 2 ) + ∇u.(∇m)∇u = 1 2 m.∇(|∇u| 2 ) + (∇m) s (∇u, ∇u), for smooth functions u, we get 2 Ωε ∆u m.∇u dx = ∂Ωε 2∂ ν u m.∇u dσ -2 Ωε (∇m) s (∇u, ∇u) dx -Ωε m.∇(|∇u| 2 ) dx .

Then 2 Ω

 2 2∂ ν u(m.∇u) -(m.ν)|∇u| 2 ∈ L 1 (∂Ω) and there exists ζ ∈ H 1/2 (Γ) such that ∆u m.∇u dx = Ω (div(m)I -2(∇m) s )(∇u, ∇u) dx + ∂Ω (2∂ ν u m.∇um.ν |∇u| 2 ) dσ + Γ m.τ |ζ| 2 dγ .

2 Ω

 2 ∆u m.∇u dx ≤ Ω (div(m)I -2(∇m) s )(∇u, ∇u) dx + ∂Ω (2∂ ν u m.∇um.ν |∇u| 2 ) dσ .

Remark 6 1 p 1 p

 611 In fact, one can replace the feedback law m.ν g(u ′ ) by a more general one g(x, u ′ ) provided that, for some constant c > 1,c -1 (m.ν) ≤ |g(x, s)| ≤ c(m.ν) for a.e. x ∈ ∂Ω N and |s| 1 , c -1 (m.ν)|s| ≤ |g(x, s)| ≤ c(m.ν)|s|for a.e. x ∈ ∂Ω N and |s| 1 .

Green-

  Riemann formula and Dirichlet boundary conditions giveΩ ϕ m.∇ϕ dx = -1 2 Ω div(m)|ϕ| 2 dx ,and since a 0 -2div(m) a 0 -div(m) -c(m) a.e., we finally get that M ϕ 2 m ∞ ∇ϕ .Consequently, with Young inequality, we get the following estimatem)T -2 m ∞ E 0 ∂ΩN m.ν |∂ ν ϕ| 2 dσ ,

θ 2 )

 2 if [ab] ⊂ [0, 1] × {0, 1} (resp. {0, 1} × [0, 1]) and ν θ is deduced from ν by rotation of angle -θ. Without any restriction, we suppose a.ν θ < b.ν θ . Then there exists an interface point along [ab] if and only if x 0 belongs to the beltB θ = {x ∈ R 2 / a.ν θ < x.ν θ < b.ν θ } .

Figure 1 :

 1 Figure 1: If x 0 belongs to B - θ , we get mixed boundary conditions along [ab] and condition (7) is satisfied.

Figure 2 :Figure 3 :

 23 Figure 2: Cases (C1), (C2), (C3). Condition (7) is not satisfied in colored regions.