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Abstract

We study the boundary stabilization of the wave equation by means of a linear or non-linear

Neumann feedback. The rotated multiplier method leads to new geometrical cases concerning the

active part of the boundary where the feedback is applied. Due to mixed boundary conditions, these

cases generate singularities. Under a simple geometrical condition concerning the orientation of the

boundary, we obtain stabilization results in both cases.

Introduction

In this paper we are concerned with the stabilization of the wave equation in a multi-dimensional body
Ω ⊂ R

n by using a feedback law applied on some part of its boundary. The problem can be written as
follows 




u′′ − ∆u = 0 in Ω × R
∗
+ ,

u = 0 on ∂ΩD × R
∗
+ ,

∂νu = F on ∂ΩN × R
∗
+ ,

u(0) = u0 in Ω ,
u′(0) = u1 in Ω ,

where we denote by u′, u′′, ∆u and ∂νu the first time-derivative of u, the second time-derivative of the
scalar function u, the standard Laplacian of u and the normal outward derivative of u on ∂Ω, respectively;
(∂ΩD, ∂ΩN) is a partition of ∂Ω and F is the feedback function which may depend on the state (u, u′),
the position x and time t.
Our purpose here is to choose the feedback function F and the active part of the boundary, ∂ΩN , so that
for every initial data, the energy function

E(u, t) =
1

2

∫

Ω

(|u′(t)|2 + |∇u(t)|2) dx ,

is decreasing with respect to time t, and vanishes as t −→ ∞.
Formally, we can write the time derivative of E as follows

E′(u, t) =

∫

∂ΩN

Fu′ dσ ,

and a sufficient condition so that E is non-increasing is Fu′ ≤ 0 on ∂ΩN .
In the two-dimensional case and in the framework of Hilbert Uniqueness Method [11], it can be shown
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2 Stabilization using rotated multipliers

that the energy function is uniformly decreasing as t tends to ∞, by choosing m : x 7→ x − x0, where
x0 is some given point in R

n and

∂ΩN = {x ∈ ∂Ω / m(x).ν(x) > 0 } , F = −m.ν u′ ,

where ν is the normal unit vector pointing outward of Ω. This method has been performed by many
authors, see for instance [10] and references therein. Here we extend the above result for rotated multipli-
ers [15] by following [4], i.e. we take in account singularities which can appear when changing boundary
conditions along the interface Γ = ∂ΩN ∩ ∂ΩD.

1 Notations and main results

Let Ω be a bounded open connected set of R
n(n ≥ 2) such that

∂Ω is of class C2 in the sense of Nečas [14]. (1)

Let x0 be a fixed point in R
n. We denote by I the n×n identity matrix, by A a real n×n skew-symmetric

matrix and by d a positive real number such that d2 + ‖A‖2 = 1,where ‖ · ‖ stands for the usual 2-norm
of matrices. We now define the following vector function,

∀x ∈ R
n, m(x) = (dI + A)(x − x0) .

We consider a partition (∂ΩN , ∂ΩD) of ∂Ω such that

∣∣∣∣∣∣∣∣

Γ = ∂ΩD ∩ ∂ΩN is a C3-manifold of dimension n − 2,
m.ν = 0 on Γ,
∂Ω ∩ ω is a C3-manifold of dimension n − 1,
Hn−1(∂ΩD) > 0,

(2)

where ω is a suitable neighborhood of Γ and Hn−1 denotes the usual (n − 1)-dimensional Hausdorff
measure.
Let g : R → R be a measurable function such that

g is non-decreasing and ∃K > 0 : |g(s)| ≤ K|s| a.e.. (3)

Let us now consider the following wave problem

(S)





u′′ − ∆u = 0
u = 0
∂νu = −m.ν g(u′)
u(0) = u0

u
′

(0) = u1

in Ω × R
∗
+,

on ∂ΩD × R
∗
+,

on ∂ΩN × R
∗
+,

in Ω,
in Ω,

for some initial data
(u0, u1) ∈ H1

D(Ω) × L2(Ω) := H

with H1
D(Ω) = {v ∈ H1(Ω) / v = 0 on ∂ΩD}.

This problem is well-posed in H. Indeed, following Komornik [9], we define the non-linear operator W by

W(u, v) = (−v,−∆u),
D(W) = {(u, v) ∈ H1

D(Ω) × H1
D(Ω) / ∆u ∈ L2(Ω) and ∂νu = −m.ν g(v) on ∂ΩN},

so that (S) can be written in the form

{
(u, v)′ + W(u, v) = 0 ,
(u, v)(0) = (u0, u1) .

It is a classical fact that W is a maximal-monotone operator on H and that D(W) is dense in H for the
usual norm (see for instance [1]). Hence, for any initial data (u0, v0) ∈ D(W) there is a unique strong
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solution (u, v) such that u ∈ W1,∞(R; H1
D(Ω)) and ∆u ∈ L∞(R+; L2(Ω)). Moreover, for two initial data,

the corresponding solutions satisfy

∀t ≥ 0 , ‖(u1(t), v1(t)) − (u2(t), v2(t))‖H ≤ C‖(u1
0, v

1
0) − (u2

0, v
2
0)‖H .

Using the density of D(W), one can extend the map

D(W) −→ H

(uo, v0) 7−→ (u(t), v(t))

to a strongly continuous semi-group of contractions (S(t))t≥0 and define for (u0, v0) ∈ H the weak solution
(u(t), u′(t)) = S(t)(u0, u1) with the regularity u ∈ C(R+; H1

D(Ω)) ∩ C1(R+; L2(Ω)). We hence define the
energy function of solutions by

E(u, 0) =
1

2

∫

Ω

(|u1|2 + |∇u0|2) dx, E(u, t) =
1

2

∫

Ω

(|u′(t)|2 + |∇u(t)|2) dx if t > 0 .

In order to get stabilization results, we need further assumptions concerning the feedback function g

∃p ≥ 1 , ∃k > 0 , |g(s)| ≥ k min{|s|, |s|p} , a.e. . (4)

Concerning the boundary we assume

∂ΩN ⊂ {x ∈ ∂Ω /m(x).ν(x) ≥ 0} , ∂ΩD ⊂ {x ∈ ∂Ω /m(x).ν(x) ≤ 0}, (5)

and the additional geometric assumption

m.τ ≤ 0 on Γ , (6)

where τ (x) is the normal unit vector pointing outward of ∂ΩN at a point x ∈ Γ when considering ∂ΩN

as a sub-manifold of ∂Ω.

Remark 1 It is worth observing that it is not necessary to assume that

Hn−1({x ∈ ∂ΩN /m(x).ν(x) > 0}) > 0.

to get stabilization. In fact, our choice of m implies such properties (see examples in Section 4) whether
the energy tends to zero.

Since the pioneering work [12], it is now a well-known fact that Rellich type relations [16] are very useful
for the study of control and stabilization of the wave problem. As we said before, Komornik and Zuazua
[10] have shown how these relations can also help us to stabilize the wave problem. In order to generalize
it in higher dimension than 3, the key-problem is to show the existence of a decomposition of the solution
in regular and singular parts [6, 8] which can be applied to stabilization problems or control problems.
The first results towards this direction are due to Moussaoui [13], and Bey-Lohéac-Moussaoui [4] who
also have established a Rellich type relation in any dimension.
In this new case of Neumann feedback deduced from [15], our goal is to generalize those Rellich relations
to get stabilization results about (S) under assumptions (5), (6).
As well as in [9], we shall prove here two results of uniform boundary stabilization.

Exponential boundary stabilization

We here consider the case when p = 1 in (4). This is satisfied when g is linear,

∃α > 0 : ∀s ∈ R , g(s) = αs .

In these cases, the energy function is exponentially decreasing.

Theorem 1 Assume that geometrical conditions (2), (5) hold and that the feedback function g satisfies
(3) and (4) with p = 1.
Then under the further geometrical assumption (6), there exist C > 0 and T > 0 (independent of d) such
that for all initial data in H, the energy of the solution u of satisfies

∀t >
T

d
, E(u, t) ≤ E(u, 0) exp

(
1 − d

C
t
)

.

The above constants C and T depend only on the geometry.
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Rational boundary stabilization

We here consider the general case and we get rational boundary stabilization.

Theorem 2 Assume that geometrical conditions (2), (5) hold and that the feedback function g satisfies
(3) and (4) with p > 1.
Then under the further geometrical assumption (6), there exist C > 0 and T > 0 (independent of d) such
that for all initial data in H, the energy of the solution u of satisfies

∀t >
T

d
, E(u, t) ≤ C t2/(1−p) .

where C depends on the initial energy E(u, 0).

Remark 2 Taking advantage of the works of Banasiak-Roach [2] who generalized Grisvard’s results [6]
in the piecewise regular case, we will see that Theorems 1 and 2 remain true in the bi-dimensional case
when assumption (1) is replaced by following one

∂Ω is a curvilinear polygon of class C2 ,
each component of ∂Ω \ Γ is a C2-manifold of dimension 1 ,

(7)

and when condition (6) is replaced by

∀x ∈ Γ , 0 ≤ ̟x ≤ π and if ̟x = π , m(x).τ (x) ≤ 0 . (8)

where ̟x is the angle at the boundary in the point x.

These two results are obtained by estimating some integral of the energy function as well as in [9]. This
specific estimates are obtained thanks to an adapted Rellich relation.
Hence, this paper is composed of two sections. In the first one we build convenient Rellich relations and
in the second one we use it to prove Theorems 1 and 2.

2 Rellich relations

2.1 A regular case

We can easily build a Rellich relation corresponding to the above vector field m when considered functions
are smooth enough.

Proposition 3 Assume that Ω is an open set of R
n with boundary of class C2 in the sense of Nečas. If

u belongs to H2(Ω) then

2

∫

Ω

∆u (m.∇u) dx = d (n − 2)

∫

Ω

|∇u|2 dx +

∫

∂Ω

(
2∂νu (m.∇u) − m.ν |∇u|2

)
dσ .

Proof. Using Green-Riemann identity we get

2

∫

Ω

∆u (m.∇u) dx =

∫

∂Ω

2∂νu (m.∇u) dσ − 2

∫

Ω

∇u.∇(m.∇u) dx .

So, observing that

∇u.∇(m.∇u) =
1

2
m.∇(|∇u|2) + d|∇u|2 + (A∇u).∇u ,

and since A is skew-symmetric, we get

2

∫

Ω

∆u (m.∇u) dx =

∫

∂Ω

2∂νu (m.∇u) dσ − 2d

∫

Ω

|∇u|2 dx −
∫

Ω

m.∇(|∇u|2) dx .

With another use of Green-Riemann formula, we obtain the required result for div(m) = nd.
We will now try to extend this result to the case of an element u belonging less regular when Ω is smooth
enough.
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2.2 Bi-dimensional case

We begin by the plane case. It is the simplest case from the point of view of singularity theory and its
understanding dates from Shamir [17].

Theorem 4 Assume n = 2. Under geometrical conditions (2) and (7), let u ∈ H1(Ω) such that

∆u ∈ L2(Ω) , u/∂ΩD
∈ H3/2(∂ΩD) , ∂νu/∂ΩN

∈ H1/2(∂ΩN ) . (9)

Then 2∂νu (m.∇u) − m.ν |∇u|2 belongs to L1(∂Ω) and there exist some coefficients (cx)x∈Γ such that

2

∫

Ω

∆u(m.∇u) dx =

∫

∂Ω

(2∂νu (m.∇u) − m.ν |∇u|2) dσ +
π

4

∑

x∈Γ/̟x=π

c2
x

(m.τ )(x) .

Proof. We first begin by some considerations which will be used in the general case too. It is a classical
result that u ∈ H2(ω) for every open domain ω such that ω ⋐ Ω \ Γ. For sake of completeness, let us
recall the proof.
A trace result shows that there exists uR ∈ H2(ω) such that uR = u on ∂ΩD and ∂νuR = ∂νu on ∂ΩN .
Hence, setting f = ∆uR − ∆u ∈ L2(Ω), uS = u − uR satisfies





−∆uS = f
uS = 0
∂νuS = 0

in Ω ,
on ∂ΩD ,
on ∂ΩN .

(10)

• Now, if ω ⋐ Ω \ Γ ∪ ∂ΩD and ξ is a cut-off function such that ξ = 1 on ω and supp(ξ) ⊂ Ω, then for a
suitable g ∈ L2(Ω), uω = uSξ satisfies the Dirichlet problem

{
∆uω = g
uω = 0

on Ω ,
on ∂Ω ,

and using classical method of difference quotients ([6]), one can now conclude that uω ∈ H2(Ω), hence
uS ∈ H2(ω).
• Else, if ω ⋐ Ω \ Γ ∪ ∂ΩN , and ξ is a cut-off function such that ξ = 1 on ω and supp(ξ) ⊂ Ω, then for a
suitable g ∈ L2(Ω), uω = uSξ satisfies the Neumann problem

{
−∆uω + uω = g
∂νuω = 0

on Ω ,
on ∂Ω ,

and, using similar argument, one gets uS ∈ H2(ω).

Let Ωε = {x ∈ Ω / d(x, Γ) > ε}.
By compactness of Ωε, we get u ∈ H2(Ωε). An application of Proposition 3 to our particular situation
gives us the following relation

2

∫

Ωε

∆u (m.∇u) dx =

∫

∂Ωε

(2∂νu (m.∇u) − m.ν |∇u|2) dσ ,

and we will try to let ε → 0. Using derivatives with respect to ν and τ , we get

2

∫

Ωε

∆u (m.∇u) dx =

∫

∂Ωε

m.ν
(
(∂νu)2 − (∂τu)2

)
dσ + 2

∫

∂Ωε

m.τ (∂νu)(∂τu) dσ .

First, since ∆u ∈ L2(Ω) and u ∈ H1(Ω), Lebesgue dominated convergence theorem immediately gives

lim
ε→0

∫

Ωε

∆u (m.∇u) dx =

∫

Ω

∆u (m.∇u) dx .

Now, we work on boundary terms. Let us introduce the following partition of ∂Ωε: ∂̃Ωε = ∂Ωε ∩ ∂Ω,
∂Ω∗

ε = ∂Ωε∩Ω and use a decomposition result due to Banasiak and Roach [2]: every variational solution
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of (10) can be split as a sum of singular functions. There exist some coefficients (cx)x∈Γ and uR ∈ H2(Ω)
such that

u = uR +
∑

x∈Γ

cxUx

S =: uR + uS (11)

where Ux

S are singular functions which, in some neighborhood of x ∈ Γ, are defined in local polar
coordinates (see Fig. 1) by

Ux

S (r, θ) = ρ(r) r
π

2̟x sin
( π

2̟x

θ
)
.

with ρ some cut-off function.
Using the density of C1(Ω) in H2(Ω), we will be able to assume that uR ∈ C1(Ω).

Let us look at boundary terms on ∂̃Ωε first. We first claim that for some constant C > 0,

|m.ν| ≤ Cd(., Γ) .

In fact, if x ∈ Ω and x1 ∈ Γ which satisfies |x− x1| = d(x, Γ), one gets

m.ν(x) = m(x).(ν(x) − ν(x1)) + (m(x) − m(x1)).ν(x1) (observing that m.ν(x1) = 0) .

Hence, using the fact that ν is a piecewise C1 function (see Fig. 2), we get

|m.ν(x)| ≤ (‖m‖∞‖ν ′‖∞ + 1) d(x, Γ) .

Now, working in local coordinates, one gets

d(x, Γ) |∇u|2 ∈ L∞(∂Ω) .

Hence Lebesgue theorem implies

lim
ε→0

∫

g∂Ωε

m.ν
(
(∂νu)2 − (∂τu)2

)
dσ =

∫

∂Ω

m.ν
(
(∂νu)2 − (∂τu)2

)
dσ .

On the other hand, assumptions (9) give

∂νu/∂ΩN
∈ H1/2(∂ΩN ) , ∂τu/∂ΩN

∈ H−1/2(∂ΩN ) , ∂νu/∂ΩD
∈ H−1/2(∂ΩD) , ∂τu/∂ΩD

∈ H1/2(∂ΩD) .

Hence we get ∫

g∂Ωε

m.τ (∂νu)(∂τu) dσ −→
∫

∂Ω

m.τ (∂νu)(∂τu) dσ , as ε → 0 .

Now, we have to consider the boundary term on ∂Ω∗
ε, Iε(∇u).

It is a quadratic form with respect to ∇u and using (11), one can decompose it as follows,

Iε(∇uR) + 2Jε(∇uR,∇uS) + Iε(∇uS) ,

where Jε is the corresponding bilinear form.
Concerning Iε(∇uR), regularity of m gives the estimate

|Iε(∇uR)| ≤ C

∫

∂Ω∗

ε

|∇uR|2 dσ

This term is O(ε) since ∇uR is bounded on Ω.
For the term Iε(∇uS), we first observe that, adjusting the cut-off functions, the supports of ux

S and uy

S

are disjoint, provided that x 6= y. Hence, using decomposition (11), we can write

Iε(∇uS) =
∑

x∈Γ

c2
x

∫

Cε(x)

(2∂νux

S(m.∇ux

S) − m.ν |∇ux

S |2) dσ .

If ̟x < π, one gets

2∂νux

S(m.∇ux

S) − m.ν |∇ux

S |2 = O(ε
π

̟x

−2) , on Cε(x) .
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x

∂ΩD

ωx

∂ΩN

Figure 1: Shape of the boundary near an angular point x.

Hence, after integrating on Cε(x), we get lim
ε→0

Ix

1 (ε) = 0.

If ̟x = π, we will need the following identity

2∂νux

S (m.∇ux

S) − m.ν |∇ux

S |2 =
1

4ε
(m.τ )(x) , on Cε(x) .

One can observe that Cε(x) behaves as a half-circle when ε → 0. An integration gives

lim
ε→0

∫

Cε(x)

(
2(ν.∇ux

S)(m.∇ux

S) − m.ν |∇ux

S |2
)
dσ =

π

4
(m.τ )(x).

ν(x)

τ (x)

∂ΩD∂ΩN

θ

Cε(x)

τ (y)

ν(y)

x

y

Figure 2: Unit vectors ν(x), τ (x), ν(y) and τ (y) when ∂Ω is regular at x.

Finally, the bilinear term Jε(∇uR,∇uS) can be written entirely
∫

∂Ω∗

ε

∂νuR (m.∇uS) dσ +

∫

∂Ω∗

ε

∂νuS (m.∇uR) dσ −
∫

∂Ω∗

ε

(m.ν) (∇uR.∇uS) dσ .

Using the regularity of m and Cauchy-Schwarz inequality, we get an estimate of the form

|Jε(∇uR,∇uS)| ≤ C
(∫

∂Ω∗

ε

|∇uR|2 dσ
)1/2(∫

∂Ω∗

ε

|∇uS |2 dσ
)1/2

.

We have seen that the first term in this inequality vanishes when ε → 0. For the second one, we now
observe that, if ε is small enough

∂Ω∗
ε =

⊔

x∈Γ

Cε(x) ,

where Cε(x) is an arc of circle of radius ε centered at x. Then, we may write
∫

∂Ω∗

ε

|∇uS |2 dσ ≤ 2
∑

x,y∈Γ

c2
y

∫

Cε(x)

|∇Uy

S |2 dσ .
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A similar computation shows that, for x ∈ Γ,

∫

Cε(x)

|∇Ux

S |2 dσ = O(1). Moreover, if x 6= y, Uy

S is

bounded near x, we get

∫

Cε(x)

|∇Uy

S |2 dσ = O(ε). This completes the proof.

Remark 3 The assumption H1(∂ΩD) > 0 is not necessary in the above proof. We will now see why we
need this assumption on the Dirichlet part in higher dimension.

2.3 General case

We now state the result in general dimension.

Theorem 5 Assume n ≥ 3. Under geometrical conditions (1) and (2), let u ∈ H1(Ω) such that

∆u ∈ L2(Ω) , u/∂ΩD
∈ H3/2(∂ΩD) , ∂νu/∂ΩN

∈ H1/2(∂ΩN ) . (12)

Then, 2∂νu (m.∇u)− m.ν |∇u|2 belongs to L1(∂Ω) and there exists ζ ∈ H1/2(Γ) such that

2

∫

Ω

∆u (m.∇u) dx = d(n − 2)

∫

Ω

|∇u|2 dx +

∫

∂Ω

(2∂νu (m.∇u) − m.ν |∇u|2) dσ +

∫

Γ

m.τ |ζ|2 dγ .

Proof. We will essentially follow [4]. As in the plane case, we set Ωε = {x ∈ Ω; d(x, Γ) > ε}. For any
given ε > 0, we may apply the identity of Proposition 3

2

∫

Ωε

∆u (m.∇u) dx = d(n − 2)

∫

Ωε

|∇u|2 dx +

∫

∂Ωε

(2∂νu (m.∇u) − m.ν |∇u|2) dσ ,

and we will again analyze the behavior of each term as ε → 0.
• First, since ∆u ∈ L2(Ω) and u ∈ H1(Ω), Lebesgue dominated convergence theorem immediately gives

lim
ε→0

∫

Ωε

∆u (m.∇u) dx =

∫

Ω

∆u (m.∇u) dx , lim
ε→0

∫

Ωε

|∇u|2 dx =

∫

Ω

|∇u|2 dx .

Below we shall consider boundary terms. We define ∂̃Ωε = ∂Ωε ∩ ∂Ω and ∂Ω∗
ε = ∂Ωε ∩ Ω (see Fig. 3).

∂Ω∗
ε

Γ

x∗

Cε(x
∗)

∂̃Ωε ∩ ∂ΩN

∂̃Ωε ∩ ∂ΩD

Figure 3: Picture of ∂Ω∗
ε and ∂̃Ωε

• Let us consider boundary integral terms on ∂̃Ωε.
As well as in the plane case, there exists some constant C > 0 such that |m.ν| ≤ C d(., Γ). Thus, using
the fact that

d(., Γ)|∇u|2 ∈ L1(∂Ω)

(see [4], Proposition 3), we can use again Lebesgue theorem to conclude that, as ε → 0,

∫

g∂Ωε

m.ν |∇u|2 dσ →
∫

∂Ω

m.ν |∇u|2 dσ .
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For the second integral, denoting by ∇∂Ω the tangential gradient along ∂Ω, we write that

∂νu (m.∇u) = m.ν |∂νu|2 + ∂νu (m.∇∂Ωu) .

The first term is integrable. The second one is, on ∂ΩN , the product of a H1/2 term by a H−1/2 one and,
on ∂ΩD, the product of a H−1/2 term by a H1/2 one. Hence, Lebesgue theorem gives again, as ε → 0,

∫

g∂Ωε

∂νu (m.∇u) dσ →
∫

∂Ω

∂νu (m.∇u) dσ .

• Let us now consider boundary integral terms on ∂Ω∗
ε.

We assume that ε 6 ε0 and we define ωε0 := Ω\Ωε0 . As well as in the plane case, we can write

u = uR + uS (13)

where uS is the variational solution of some homogeneous mixed boundary problem and uR belongs to
H2(ωε0). Working by approximation if necessary, we can suppose that uR ∈ C1(ωε0). Considering the
same quadratic form as in the bi-dimensional case, this leads to the following splitting

∫

∂Ω∗ε

(2∂νu (m.∇u) − m.ν |∇u|2) dσ = Iε(∇uR) + Iε(∇uS) + 2Jε(∇uR,∇uS) .

Since ∇uR ∈ L∞(ωε0) and Hn−1(∂Ω∗
ε) → 0 as ε → 0, the first term Iε(∇uR) clearly vanishes.

As above, the bilinear term Jε(∇uR,∇uS) is

∫

∂Ω∗

ε

∂νuR (m.∇uS) dσ +

∫

∂Ω∗

ε

∂νuS (m.∇uR) dσ −
∫

∂Ω∗

ε

(m.ν) (∇uR.∇uS) dσ .

Using the regularity of m and Cauchy-Schwarz inequality, we get an estimate of the form

|Jε(∇uR,∇uS)| 6 C
(∫

∂Ω∗

ε

|∇uR|2 dσ
)1/2(∫

∂Ω∗

ε

|∇uS |2 dσ
)1/2

. (14)

As above, it is clear that the first term vanishes as ε → 0.
In order to analyze Iε(∇uS) we will need further results.
To begin with, we introduce some notations.
Every x ∈ ∂Ω∗

ε belongs to a unique plane x∗ + 〈τ ∗, ν∗〉 (setting: τ
∗ = τ (x∗), ν

∗ = ν(x∗)) and more
precisely to an arc-circle Cε(x

∗) of center x∗ ∈ Γ and of radius ε (the figure is similar to Fig. 2 in the
plane x∗ + 〈τ ∗, ν∗〉 ). We define

Dε(x
∗) := ωε ∩ (x∗ + 〈τ ∗, ν∗〉) .

For any x ∈ Dε0(x
∗), we separate the derivatives of u along the sub-manifold x − x∗ + Γ with the

co-normal derivatives

∇u(x) = ∇Γu(x) + ∇2u(x) , ∇Γu(x) ∈ Tx∗Γ, ∇2u(x) ∈ 〈τ ∗, ν∗〉 . (15)

Using methods of difference quotients (see for instance [4], Theorem 4), one gets ∇Γu ∈ H1(ωε0) i.e.
∇ΓuS ∈ H1(ωε0). We shall also need the following result concerning the behavior of boundary integrals.

Lemma 6 Let ε0 > 0. Assume that u is such that u = 0 on ∂ωε0 ∩ ∂ΩD,

∀x∗ ∈ Γ , u(x∗, .) ∈ H1(Dε0(x
∗)) ,

and (
x∗ 7−→ ‖u(x∗, .)‖H1(Dε0(x∗))

)
∈ L2(Γ) .

Then there exists C > 0 depending only on Ω such that, for any ε sufficiently small,
∫

Γ

‖u(x∗, .)‖2
L2(Cε(x∗)) dγ(x∗) ≤ Cε

∫

Γ

‖u(x∗, .)‖2
H1(Dε(x∗)) dγ(x∗) .
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Proof of Lemma 6. We begin by changing coordinates as well as in [4]. For every x∗
0 ∈ Γ, there exists

ρ0 > 0, a C2- diffeomorphism Θ from an open neighborhood W of x∗
0 to B(ρ0) := Bn−2(ρ0)×B2(ρ0) (see

Fig. 5) such that

Θ(x∗
0) = 0 ,

Θ(W ∩ Ω) = {y ∈ B(ρ0) / yn > 0} ,

Θ(W ∩ ∂ΩD) = {y ∈ B(ρ0) / yn−1 > 0 , yn = 0} ,

Θ(W ∩ ∂ΩN ) = {y ∈ B(ρ0) / yn−1 < 0 , yn = 0} ,

Θ(W ∩ Γ) = {y ∈ B(ρ0) / yn−1 = 0 , yn = 0} := γ(ρ0) .

W

∂WD
∂WN

Figure 4: The set W .

Reducing ε0 if necessary, we may assume that Dε0(x
∗
0) ⊂ W .

We then get, writing for x ∈ W, Θ(x) = (Y, ỹ) ∈ R
n−2 × R

2 and v := u ◦ Θ−1,
∫

W∩Γ

∫

Cε(x∗)

u2 dℓ dγ(x∗) =

∫

γ(ρ0)

∫

Θ(Cε(x∗))

v2 dℓ(ỹ) dY .

Setting

B+
2 (ρ) := {ỹ = (yn−1, yn) ∈ B2(ρ) / yn > 0} , C+

2 (ρ) := {ỹ = (yn−1, yn) ∈ ∂B2(ρ) / yn > 0} ,

we first observe that we can choose ρx∗ such that {Y } × B+
2 (ρ) ⊂ Θ(Dε(x

∗)). Hence denoting by π2 the
projection on {0Rn−2} × R

2, the change of variables

π2(Θ(Cε(x
∗))) −→ C+

2 (ρ)

ỹ 7−→ z = ρ
ỹ

|ỹ|

gives the estimate ∫

Θ(Cε(x∗))

v(Y, ỹ)2 dℓ(ỹ) ≤ C

∫

C+
2 (ρ)

v(Y, z)2 dℓ(z) (16)

for a constant C depending only on x∗
0.

We will now estimate this latter integral in terms of ‖∇2v‖L2({y′}×B+
2 (ρ)). Setting vρ(ỹ) := v(Y, ỹ), one

gets ∇vρ ∈ L2(B+
2 (1)) and

‖∇vρ‖L2(B+
2 (1)) = ‖∇2v‖L2({y′}×B+

2 (ρ)) , ‖vρ‖L2(C+
2 (1)) = ρ−

1
2 ‖v‖L2({y′}×C+

2 (ρ)) .

Observing that vρ = 0 on B++
2 (1) := {(yn−1, yn) ∈ B+

2 (1) / yn > 0}, trace theorem and Poincaré
inequality give, for some universal constant C > 0, the estimate

∫

C+
2 (ρ)

v2(y′, ỹ) dℓ(ỹ) ≤ Cρ‖∇2v‖2
L2({Y }×B+

2 (ρ))
.
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Hence, thanks to (16), one gets
∫

Θ(Cε(x∗))

v2(Y, ỹ) dℓ(ỹ) ≤ Cρx∗‖∇2v‖2
L2({Y }×B+

2 (ρ
x
∗ ))

.

x∗
∂ΩD

O

Ω

Θ(x∗, .)

∂ΩN

ν(x∗)

Figure 5: The C2-diffeomorphism Θ(x∗, .) in the plane x∗ + 〈τ ∗, ν∗〉.

Observing that ρx∗ is uniformly O(ε) on W ∩ Γ and the diffeomorphism Θ(x∗, .) (see Fig. 6), we can
conclude that, for some constant Cx

∗

0
depending only on x∗

0

∫

Θ(Cε(x∗))

v2(Y, ỹ) dℓ(ỹ) ≤ Cx
∗

0
ε‖u(x∗, .)‖2

H1(Θ−1({Y }×B+
2 (ρ)))

≤ Cx
∗

0
ε‖u(x∗, .)‖2

H1(Dε(x∗)) .

Hence, after an integration on W ∩ Γ
∫

W∩Γ

∫

Cε(x∗)

u2 dℓ dγ(x∗) ≤ Cx
∗

0
ε

∫

W∩Γ

‖u(x∗, .)‖2
H1(Dε(x∗)) dγ(x∗) .

We finally complete the proof by using a partition of unity on the open sets (Wx
∗

0
)x∗

0∈Γ.
End of proof of Lemma 6. �

Let us come back to our problem. Using (15) for uS, Pythagore theorem gives
∫

∂Ω∗

ε

|∇uS |2 dσ =

∫

∂Ω∗

ε

|∇ΓuS |2 dσ +

∫

∂Ω∗

ε

|∇2uS|2 dσ .

Applying Lemma 6 to ∇ΓuS , we get that the first term vanishes as ε → 0. As well as in the bi-dimensional
case, we will see that the second term above is bounded, using more information on uS.
Thanks to [4] (Theorem 4) and Borel-Lebesgue theorem, we may write

uS(x) = η(x∗)US(x − x∗) := η(x∗)Ux
∗

S (x) , on ωε0 , (17)

with US locally diffeomorphic to Shamir function, and η ∈ H1/2(Γ). We then get, thanks to Fubini
theorem ∫

∂Ω∗

ε

|∇2uS |2 dσ =

∫

Γ

η(x∗)2
∫

Cε(x∗)

|∇2U
x
∗

S |2 dℓ dγ(x∗) ,

and, as well as in the bi-dimensional case, we show that this term is bounded by O(1) ‖η‖2
L2(Γ). We have

now proven that the second term in (14) is bounded, that is

Jε(∇uR) → 0 , as ε → 0 .

To treat the last term Iε(∇uS), we will use similar tools. The splitting (13) for uS gives us

Iε(∇uS) = Iε(∇2uS) + Iε(∇ΓuS) + 2Jε(∇2uS ,∇ΓuS) .

As above, the term Iε(∇ΓuS) is estimated by

∫

∂Ω∗

ε

|∇ΓuS|2 dσ. It then vanishes for ε → 0.

The bilinear term is estimated by

(∫

∂Ω∗

ε

|∇2uS |2 dσ
)1/2(∫

∂Ω∗

ε

|∇ΓuS|2 dσ
)1/2

,
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it then tends to zero since the first term is bounded and the second one vanishes for ε → 0.
For the last term Iε(∇2uS), we use (17) and Fubini theorem to write it

∫

Γ

η(x∗)2
∫

Cε

(
(x∗)

2(ν.∇2U
x
∗

S )(m.∇2U
x
∗

S ) − m.ν |∇2U
x
∗

S |2
)
dℓ dγ(x∗) .

We first work in the plane x∗ + 〈τ ∗,−ν
∗〉 and, as above, we get

lim
ε→0

∫

Cε(x∗)

(2(ν.∇2U
x
∗

S )(m.∇2U
x
∗

S ) − m.ν |∇2U
x
∗

S |2) dℓ =
π

4
m(x∗).τ (x∗).

Moreover, for any ε > 0, this integral term on Cε(x
∗) is dominated by

π

2
‖m‖∞ ∈ L1(Γ). So dominated

convergence theorem applies and finally

lim
ε→0

Iε(∇2uS) =
π

4

∫

Γ

η2m.τ dγ .

The proof is now complete with ζ =

√
π

2
η.

We will now apply Rellich relation to the stabilization of solutions of (S).

3 Proof of linear and non-linear stabilization

We begin by writing the following consequence of Section 2.

Corollary 7 Assume that t 7→ (u(t), u′(t)) is a strong solution of (S) and that the geometrical additional
assumption (5) if n ≥ 3 or (6) if n = 2 holds. Then for every time t, u(t) satisfies

2

∫

Ω

∆u(m.∇u) dx ≤ d(n − 2)

∫

Ω

|∇u|2 dx +

∫

∂Ω

(2∂νu (m.∇u) − m.ν |∇u|2) dσ .

Proof. Indeed, under theses hypotheses, for each time t, (u(t), u′(t)) ∈ D(W) so that u(t) satisfies (9)
or (12). The corollary is then an application of Theorem 4 or 5.

We will be able to prove Theorems 1 and 2 showing that, for α =
p − 1

2
, one can apply the following

result [9].

Proposition 8 Let E : R+ → R+ a non-increasing function such that there exists α ≥ 0 and C > 0
which fulfills

∀t ≥ 0,

∫ ∞

t

Eα+1(s) ds ≤ CE(t).

Then, setting T = CEα(0), one gets

if α = 0, ∀t ≥ T, E(t) ≤ E(0) exp
(
1 − t

T

)
,

if α > 0, ∀t ≥ T, E(t) ≤ E(0)
(T + αT

T + αt

)1/α

.

We come back to our proof now.

Proof. Following [9] and [5], we will prove the estimates for (u0, u1) ∈ D(W) which, using den-
sity of the domain, will be sufficient to get the result for all solutions.
Setting Mu = 2m.∇u + d(n − 1)u, we prove the following result.

Lemma 9 For any 0 ≤ S < T < ∞, one gets

2d

∫ T

S

E
p+1
2 dt ≤ −

[
E

p−1
2

∫

Ω

u′Mu dx
]T

S
+

p − 1

2

∫ T

S

E
p−3
2 E′

∫

Ω

u′Mu dx dt

+

∫ T

S

E
p−1
2

∫

∂ΩN

m.ν
(
(u′)2 − |∇u|2 − g(u′)Mu

)
dσ dt .
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Proof of Lemma 9. Using the fact that u satisfies (S) and observing that u′′Mu = (u′Mu)′ − u′Mu′,
an integration by parts gives

0 =

∫ T

S

E
p−1
2

∫

Ω

(u′′ − ∆u)Mu dx dt

=
[
E

p−1
2

∫

Ω

u′Mu dx
]T

S
− p − 1

2

∫ T

S

E
p−3
2 E′

∫

Ω

u′Mu dx dt −
∫ T

S

E
p−1
2

∫

Ω

(u′Mu′ + ∆uMu) dx dt .

Corollary 7 now gives
∫

Ω

∆u Mu dx ≤ d(n − 1)

∫

Ω

∆u u dx + d(n − 2)

∫

Ω

|∇u|2 dx +

∫

∂Ω

(2∂νu (m.∇u) − m.ν |∇u|2) dσ .

hence, Green-Riemann formula leads to
∫

Ω

∆u Mu dx ≤ −d

∫

Ω

|∇u|2 dx +

∫

∂Ω

(∂νu Mu − m.ν |∇u|2) dσ .

Using boundary conditions and the fact that ∇u = ∂νu ν on ∂ΩD, we get
∫

Ω

∆u Mu dx ≤ −d

∫

Ω

|∇u|2 dx −
∫

∂ΩN

m.ν
(
g(u′)Mu + |∇u|2

)
dσ .

On the other hand, using div(m) = nd, another use of Green formula gives us
∫

Ω

u′ Mu′ dx = −d

∫

Ω

|u′|2 dx +

∫

∂ΩN

m.ν |u′|2 dσ .

End of proof of Lemma 9. �

Coming back to our problem, Young inequality gives

∣∣∣
∫

Ω

u′ Mu dx
∣∣∣ ≤ CE(t) .

Lemma 9 shows that

2d

∫ T

S

E
p+1
2 dt ≤ C

(
E

p+1
2 (T ) + E

p+1
2 (S)

)
+ C

∫ T

S

E
p−1
2 E′ dt

+

∫ T

S

E
p−1
2

∫

∂ΩN

m.ν
(
|u′|2 − |∇u|2 − g(u′)Mu

)
dσ dt .

For simplicity, let dσm = m.ν dσ. Observing that E′(t) = −
∫

∂ΩN

g(u′)u′ dσm ≤ 0, we get, for a constant

C > 0 independent of E(0) if p = 1,

2d

∫ T

S

E
p+1
2 dt ≤ CE(S) +

∫ T

S

E
p−1
2

∫

∂ΩN

(
|u′|2 − |∇u|2 − g(u′)Mu

)
dσm dt .

Using the definition of Mu and Young inequality, we get, for any ε > 0,

2d

∫ T

S

E
p+1
2 dt ≤ CE(S) +

∫ T

S

E
p−1
2

∫

∂ΩN

(
[u′|2 +

(
‖m‖2

∞ +
d2(n − 1)2

4ε

)
g(u′)2 + εu2

)
dσm dt .

Now, using Poincaré inequality, we can choose ε > 0 such that

ε

∫

∂ΩN

m.ν u2 dσ ≤ d

2

∫

Ω

|∇u|2 dx ≤ dE .

So we conclude

d

∫ T

S

E
p+1
2 dt ≤ CE(S) + C

∫ T

S

E
p−1
2

∫

∂ΩN

(
(u′)2 + g(u′)2

)
dσm dt .
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We split ∂ΩN to bound the last term of the above estimate

∂Ω1
N = {x ∈ ∂ΩN ; |u′(x)| > 1}, ∂Ω2

N = {x ∈ ∂ΩN ; |u′(x)| ≤ 1} .

Using (3) and (4), we get

∫ T

S

E
p−1
2

∫

∂Ω1
N

(
|u′|2 + g(u′)2

)
dσm dt ≤ C

∫ T

S

E
p−1
2

∫

∂ΩN

u′g(u′) dσm dt ≤ CE(S) ,

where C neither depend on E(0) if p = 1.
On the other hand, using (3), (4); Jensen inequality and boundedness of m, one successively obtains

∫

∂Ω2
N

(
(u′)2 + g(u′)2

)
dσm ≤ C

∫

∂Ω2
N

(u′g(u′))2/(p+1) dσm ≤ C
(∫

∂Ω2
N

u′g(u′) dσm

) 2
p+1 ≤ C(−E′)

2
p+1 .

Hence, using Young inequality again, we get for every ε > 0

∫ T

S

E
p−1
2

∫

∂Ω2
N

(
(u′)2 + g(u′)2

)
dσm dt ≤

∫ T

S

(εE
p+1
2 − C(ε)E′) dt ≤ ε

∫ T

S

E
p+1
2 dt + C(ε)E(S) .

Finally, we get, for some C(ε) and C independent of E(0) if p = 1

d

∫ T

S

E
p+1
2 dt ≤ C(ε)E(S) + εC

∫ T

S

E
p+1
2 dt .

Choosing now εC ≤ d

2
, Theorems 1 and 2 result from Proposition 8.

4 Examples and numerical results

4.1 Examples

We here consider the case when Ω is a plane convex polygonal domain. The normal unit vector pointing
outward of Ω is piecewise constant and the nature of boundary conditions involved by the multiplier
method can be determined on each edge, independently of other edges.
Along each edge, vector ν is constant and the boundary conditions are defined by the sign of

m(x).ν(x) = (Rθ(x − x0)).ν(x) = (x − x0).R−θ(ν(x)) .

Hence we build ν, R−θ(ν) and we we can determine the sign of above coefficient with respect to the
position of x0. To this end, we construct two straight lines, orthogonal with respect to R−θ(ν) so that
each of them contains one vertex of the considered edge.
This determines a belt and if x0 belongs to this belt, we obtained mixed boundary conditions along this
edge, if x0 does not belong to this belt, then we get Dirichlet or Neumann boundary conditions along
whole the edge (see Figure 6).

ν

θ
R−θ(ν)

NN DD

Figure 6: Boundary conditions along some edge depending on the position of x0.

Performing this method for a square, Ω = (0, 1)2, we show in Figure 7 the different cases of boundary
conditions depending on the position of x0. Three main cases are considered
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1. 0 < θ <
π

4
: above belts controlling opposite edges have a non-empty intersection, which is a belt

of positive thickness,

2. θ =
π

4
: this intersection is a straight line,

3.
π

4
< θ <

π

2
: the intersection is empty.

The case when θ is negative can be easily deduced by symmetry.
In the three above cases, there are four angular sectors (shaded areas in Figure 7) such that if x0 belongs
to one of them, then geometrical condition (6) is satisfied.

Figure 7: Shape of boundary data with respect to x0 (from left to right, cases 1,2,3).

4.2 Numerical results

We perform numerical experiments by considering the following case

Ω = (0, 1)2 , ∂ΩD =
(
{0} ×

[
0,

1

2

])
∪

([
0, 1

]
× {0}

)
, ∂ΩN = ∂Ω \ ∂ΩD ,

and using above vector field
m(x) = Rθ(x − x0) .

We only consider the case of a linear feedback. Let us write down the problem.




u′′ − ∆u = 0
u = 0
∂νu = −m.ν u′

u(0) = u0

u
′

(0) = u1

in Ω × R
∗
+ ,

on ∂ΩD × R
∗
+ ,

on ∂ΩN × R
∗
+ ,

in Ω ,
in Ω .

We will investigate cases when θ varies in [0, arctan(2)]. A particular case is given in Figure 8.
Our aim here is to study numerically the variations of the speed of stabilization with respect to the
position of x0 and the value of θ.
To this end, we have built a finite differences scheme (in space). This leads to a linear second order
differential equation

U ′′ + BU ′ + KU = 0 , (18)

where B is the feedback matrix and −K is the discretized Laplace operator.
Let us define V = K1/2U . Above differential equation can be rewritten as follows

(
V
U ′

)′

=

(
0

−K1/2
K1/2

−B

) (
V
U ′

)

and the energy function can be approximated by
1

2
(〈U, KU〉 + ‖U ′‖2) =

1

2
(‖V ‖2 + ‖U ′‖2).

The decreasing rate is given by the highest eigenvalue of above matrix. Results of our computations are



16 Stabilization using rotated multipliers

Ω

∂ΩN
θ

Dθ
∂ΩD

b

c

a

d

α

Figure 8: When x0 belongs to Dθ, geometrical condition (6) is satisfied at α.
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Figure 9: Dependance of the decreasing rate with respect to θ, λ.

shown in Figure 9 where we built the decreasing rate as a function depending on θ and the position of
x0 represented by the abscissa λ along Dθ.

It can be observed that in this case, the decreasing rate is increasing with θ and the best position for x0

is the origin of half-line Dθ.
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[3] Bardos, C., Lebeau, G., Rauch, J., 1992, Sharp sufficient conditions for the observation, control
and stabilization of waves from the boundary. SIAM J. Control Optim., 30, no 5, 1024-1065.
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RMA 8, Masson, Paris.
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