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Abstract. In this study, we present a method to remove ocular artifacts
from electroencephalographic (EEG) recordings. This method is based
on the detection of the EOG activation periods from a reference EOG
channel, definition of covariance matrices containing the nonstationary
information of the EOG, and applying generalized eigenvalue decompo-
sition (GEVD) onto these matrices to rank the components in order of
resemblance with the EOG. An iterative procedure is further proposed
to remove the EOG components in a deflation fashion.

1 Introduction

Electroencephalography (EEG) is a widely used technique for analyzing and
interpreting human cerebral activity. EEG signals are usually interpreted by
means of spectral and topographical measures that reflect global activity of the
brain network. However, EEG measures are always contaminated by non-cerebral
signals, which may disturb the interpretation of the brain activity. This issue has
become a recurrent problem, for example in Brain-Computer Interfaces (BCI),
where it has been proved to decrease classification error rates [11].

Ocular artifacts generally occur during blinking or saccades of the eye, and
are featured by high amplitude transient artifacts that defect the EEG. They are
best recorded by an Electrooculogram (EOG) electrode or a pair of electrodes
located close to the eyes. The high amplitude peaks are not seen on all channels,
but mainly (and almost exclusively) on the fronto-paretal channels in combina-
tion with the occipital electrodes. These peaks are considered as one of the most
considerable artifacts in EEG studies [7].

A common way of removing these artifacts is to apply independent compo-
nent analysis (ICA) on multichannel EEG recordings and to remove the com-
ponents which show a maximal correlation with a reference EOG channel [6, 5].
However, it is not always possible to associate the components extracted by ICA
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to the EOG in an automatic and unsupervised manner. Moreover, EEG record-
ings can be rather noisy, and since ICA is based on a measure of independence
(and not a measure of signal “cleanness”), the noise in the input channels can be
amplified in the output, which again makes the detection of the true EOG com-
ponent rather difficult. Lastly, most ICA methods are blind to Gaussian noise
and as a consequence spread the Gaussian noise among the components.

Another common way of removing EOG artifacts from the EEG is to use a
subtraction-based approach [8]. Here, the idea is to use the clean EOG recordings
to remove ocular signals from EEG by a simple subtraction of a scaled EOG. Yet
there is no evidence that EOG recordings are free of EEG. Thus by subtracting
EOG we can also remove EEG signals of interest.

In recent works we have shown the applicability of Generalized Eigenvalue
Decomposition (GEVD) for separating pseudo-periodic maternal ECG from fetal
ECG signals recorded from the maternal abdomen [9]. In that work, one of the
advantages of GEVD over other source separation techniques was the ability
of ranking the extracted components in order of periodicity, which provided a
means of automatic and unsupervised ECG decomposition and filtering. In this
work, we develop a similar idea based on GEVD for the automatic detection and
removal of EOG artifacts from multichannel EEG recordings.

The remainder of this paper is organized as follows: in section 2, we present
a general nonlinear framework to decompose signals into independent subspaces
using GEVD; the results of this method are presented in section 3 over simulated
and real signals. The last section is devoted to conclusion and perspectives.

2 Method

2.1 Linear Transform

Suppose that we have an array of N EEG channels x(t), and a reference EOG
channel denoted by EOG(t). Due to the spiky nature of the EOG, it is possible
to detect the onset and offset times of the EOG artifact from the reference EOG
channel. To do so, we define E(t), the averaged power of the EOG signal (or,
alternatively the variance) within a sliding window of length w around t, as

E(t)
.
=

1

w

w/2
∑

τ=−w/2

EOG(t − τ)2 . (1)

Using this definition, an EOG is detected whenever E(t) passes some predefined
threshold th. The active periods of the EOG may therefore be defined as

ta
.
= {t|E(t) > th} . (2)

As we will note later, the procedure of finding the offsets and onsets of the
EOG does not need to be perfect, and the results can be further improved in a
recursive procedure.
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We now seek linear transforms of the multichannel recordings x(t), that max-
imally resemble the EOG (in the sense that the power of the extracted signals
are concentrated during the active time periods). Therefore, if we denote the
linear mixture as y(t) = bT x(t), we can try to maximize the cost function

ζ(b) =
Eta

{

y2(ta)
}

Et {y2(t)}
, (3)

where Et{·} represents averaging over t. Here, the idea is to find linear mixtures
of the input signals, with a maximal energy during the EOG activation time ta,
while minimizing the global component energy. Equation (3) may be rewritten
as

ζ(b) =
bT

Eta

{

x(ta)x(ta)T
}

b

bT
Et {x(t)x(t)T }b

, (4)

which is in the form of the Rayleigh Quotient [10, 3], and may be solved by the
joint diagonalization of two covariance matrices: the covariance matrix of the
EEG channels over the whole dataset, and the covariance matrix of the data
during the active periods of the EOG, respectively defined as

Cx
.
= Et{x(t)x(t)T } , (5)

Ax
.
= Eta

{x(ta)x(ta)T } . (6)

The intuition behind this method is to achieve decorrelated components that
are at the same time globally and locally decorrelated. We already have a sense
about the global decorrelation, which is achieved by sphering Cx. In addition,
the diagonalization of Ax assures that the achieved components are also locally
decorrelated over the active EOG epochs, too. This assures that the later ex-
tracted components have no redundancy up to second order statistics.

The matrix that jointly diagonalizes the matrix pair (Ax, Cx) is in fact the
solution to the GEVD problem written as

{

UAxUT = Λ

UCxUT = I
, (7)

where Λ is a diagonal matrix containing the generalized eigenvalues on its diag-
onal in descending order, and U is the matrix containing the generalized eigen-
vectors on its columns3.

The decomposed signals may now be found by

y(t) = UT x(t) , (8)

where the elements of y(t) correspond to a linear transformation of the original
data x(t) that are ranked according to their resemblance with the EOG acti-
vation epochs. This means that y1(t) contains the most information regarding

3 Note that, contrary to the eigenvalues of symmetric matrices that are mutually
orthogonal, generalized eigenvectors, i.e., the columns of U , are not generally or-
thogonal to each other; but following (7) they are “Cx-orthogonal" [10], p. 344. It
means that each column of U is orthogonal to every column of Cx.
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the EOG while yN (t) is the least resembling the EOG. Another interpretation
for the method is that y1(t) is the most dominant component of the EOG while
having the least contribution in the overall energy of the signals (corresponding
to the smallest eigenvalue of Cx). On the other hand yN (t) is the main non-EOG
component, with the least EOG contamination (corresponding to the smallest
eigenvalue of Ax, i.e., having the least contribution of the active EOG epochs).

2.2 Signal/Noise Separation

Up to now, the components have been ranked according to their resemblance with
the EOG through a linear transformation. The next step is to remove the ocular
artifacts from the most contaminated components using a linear or nonlinear
transformation. The result of this noise removal, denoted by z

.
= (z1, · · · , zN )T ,

can be expressed as

∀i ∈ [1, ..., N ] zi(t) = yi(t) − fi[yi(t)] , (9)

The denoising transform must be carefully chosen to remove ocular artifacts from
the most contaminated signals, while preserving the non-EOG components. A
simple but efficient choice is

f :

{

fi(u) = u , i ∈ [1, ...,M ]
fi(u) = 0 , i ∈ [M + 1, ..., N ]

. (10)

This transform removes the first M (M ≪ N) components contaminated by
ocular artifacts and keeps the remaining N −M components unchanged. There-
fore, in order to find the EOG free components, we can eliminate the first few
components of y(t) and transform back the rest of the components using the
inverse of the matrix U . The number of eliminated components M depends on
the number of expected dimensions of the EOG subspace. Note that due to the
elimination of the first M components, the rank of the multichannel signals are
reduced to N − M .

2.3 Iterative Improvements

So far, we have removed the most dominant EOG components through a com-
bination of a linear transformation, denoising, and back-projection. The results
may be further improved by repeating the upper mentioned method in a recur-
sive procedure. To do so, we can use y1(t), the component which most resembles
the EOG, to re-estimate the onset and offsets of the EOG and its activation
epochs using a smaller energy threshold th, and to recalculate Cx, Ax, and the
other steps of the algorithm in each iteration. By repeating this procedure in
several iterations, a better estimate of the EOG will be achieved. This iterative
extension of the algorithm is of special interest for the cases in which a good
EOG reference is not available. Therefore, we start with a coarse EOG onset
and offset estimate; but we improve this estimate in the next iterations.
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3 Experiments

Simulated Data. In order to test the method, we generate artificial EEG con-
taminated by ocular artifacts. The signals are generated as follows:

x(t) = EEG(t) + β (k1 · · · kN )
T

EOG(t) , (11)

where (1) EEG(t) is generated using a multivariate autoregressive filter (Yule-
Walker order p = 8, cf. [1] for details), trained using N = 4 channels of artifact-
free EEG data, (2) EOG(t) results from the convolution of a typical blink seg-
ment, extracted from real EOG data, and an ensemble of Dirac impulses having
a Poisson distribution with parameter λ = 0.2 Hz, (3) β is a scale parameter
to adjust the signal-to-noise ratio (SNR) and (4) (k1, · · · , kN )T is a vector of
gain under a linear hypothesis between EOG and EEG, for all i, ki ∼ N (1, 0.3)
. A multivariate autoregressive filter has been preferred over a multi-univariate
autoregressive filter, because the multivariate filter naturally takes into account
spatial correlations of the data and learns those correlations from the real data.

Our approach is compared with a classical ICA approach for EOG removal,
based on FastICA [4]. The input of the algorithm consists of the N EEG channels
x(t) and the EOG channel EOG(t). FastICA seeks the most independent N + 1
components. We then remove the component which is the most correlated to the
EOG, by setting it to zero. Components are then back-projected onto the sensor
space.

The method proposed in this paper and FastICA, abbreviated GEVD and
ICA, respectively, are evaluated by comparing the first N components of the
back-projected signals and the EEG generated by the multivariate autoregressive
filter. The idea behind this evaluation procedure is that a perfect denoising would
lead to perfect recovery of the multivariate autoregressive process EEG(t), free
of any EOG contamination. We therefore define the error signals as a function
of the denoised processes resulting from ICA and GEVD (xICA and xGEVD,
respectively) as

ǫICA(t) = xICA − EEG(t) (12)

ǫGEVD(t) = xGEVD − EEG(t) , (13)

from which we can define the following performance index (in decibels):

Q = 10 log

(

1

N

N
∑

i=1

V(ǫGEVDi
(t))

V(ǫICAi
(t))

)

where V(·) denotes the variance operator. This index is built such that a positive
value indicates that ICA outperforms GEVD, while a negative index indicates
that GEVD outperforms ICA.

Figure 1 shows the results obtained for simulated data. Two signal lengths
are considered (50000 and 100000 points). Two hundred simulations are done for
each box-plot. The SNR tuned by β, is varying between -10dB and 30dB. These
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values are chosen by considering that a blinking artifact can have an amplitude
of up to 100 times stronger than the EEG. Such a condition would yield an SNR
of between -10dB to 0dB, depending on the blinking rate.

In the GEVD method, only the first component given by GEVD is removed.
This choice is due to the rather simple method used to generate the EOG and
EEG mixture. Moreover, in this case the iterative EOG improvement method
is not used, since the EOG onsets and offsets are already known. We highlight
the fact that in our simulation scenario, the simulation condition for the ICA
method is better than it is for real signals, since we provide it with the clean
EOG channel, directly.

Our method based on GEVD is shown to clearly outperform a classical ICA
approach for a large set of SNRs (t-test highly significant). This effect is much
more significant for low SNRs, showing that our method is of particular interest
for bad conditionings of the signals.

Fig. 1. Method comparison: for different values of initial signal to noise ratios between
EEG and EOG, we performed 200 simulations. The performance index is positive when
ICA performs better than GEVD whereas it is negative otherwise.

Real Data. We also evaluate our algorithm using a BCI experiment dataset4

[2]. The data consists of 22 EEG channels and three EOG channels. The inter-
electrode distance is about 3.5 cm. The signals are sampled with 250 Hz and
bandpass filtered between 0.5 and 100 Hz. An additional 50 Hz notch filter is
used to suppress power-line noise.

The back-projected signals after removing the first EOG component are de-
picted in Fig. 2. In this example, due to the quality of one of the EOG channel,
no improvements are achieved by iterating the method. This figure only shows
two of the 22 denoised EEG channels. The first one, Fz, is known to be highly
contaminated by EOG artifacts because it is close to the eyes. Fig. 2 shows that
the EOG component is removed from this channel and also that the EEG signal

4 BCI competition IV, dataset 2a, subject A05 [2]
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Fig. 2. Denoising of two specific channels, Fz and Cz electrodes (left and right, respec-
tively). From top to bottom, the signals are (1) initial EEG, (2) denoised EEG, (3)
residuals, and (4) EOG recordings.

outside blink contamination is kept perfectly unchanged. Channel Cz, known to
be less contaminated than Fz is also drawn (Fig. 2 middle). While not as clear
as in the first presented channel, we can see that the most important part of the
EOG contamination is removed from the channel.

To illustrate the interest of the iterative method, we then show that due to the
high amplitude features of the EOG contamination, we can even use some EEG
channels to evaluate the active periods of EOG. This is of particular interest
when no EOG channel is provided. Such a situation is illustrated in Fig. 3 where
we have started with a noisy EEG reference and improved this reference after
two iterations of GEVD.

4 Conclusion

We presented an automatic method to remove ocular artifacts from EEG mea-
surements. Our algorithm outperformed a classical approach based on indepen-
dent component analysis of EEG data. This method is a special case of a more
general framework designed to generally decompose multivariate signals into in-
dependent subspaces. This flexible framework allows to choose different criteria
for determining the optimal linear transform. In this paper, the nonstationarity
of the EOG was used; but in other applications other prior information such as
the periodicity or spectral contrast may be used.

In future works, further improvements can be achieved by replacing our sim-
ple component nulling function by some wavelet-based denoising method applied
on the first few channels. In that case, it is expected that we separate the EOG
from the EEG, without reducing the rank of the EEG signals.
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Fig. 3. Iterative improvements of the estimation of EOG. We start from a noisy EEG
channel (up). The active periods is then determined according to the energy of the
noisy EEG channel. We then select the first component to iterate the method: the
active periods of the (i + 1)th iteration are determined using the energy of the first
component extracted in the i

th iteration.
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