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Abstract— This paper formalizes a methodology based on
Kriging, a technique developped by geostatisticians, for esti-
mating derivatives and integrals of signals that are only known
via possibly irregularly spaced and noisy observations. This
finds direct applications, e.g., in system identification when
differential algebra is used to express parameters as nonlinear
functions of the inputs and outputs and their derivatives. The
procedure is quite simple to implement, and allows confidence
intervals on the predicted values to be derived.

I. INTRODUCTION

Let f∗(x) be a real function defined on some com-
pact set X ⊂ R

d. The problem to be considered here
is the estimation of the derivative (or the integral) of f ∗

at any given x ∈ X from a finite set of observations
S = {(xi, f

obs
xi

), i = 1, . . . , n}. These observations may
be corrupted by (not necessarily white) noise, so f obs

xi
is

not equal to f(xi) in general. Moreover, the observations
need not be regularly sampled. Such a problem is frequently
encountered in system identification and control, for instance
when algebraic differential methods are used to express
parameters as nonlinear functions of the input and outputs
and their derivatives, see, e.g., [1], [4].

The methodology to be presented is based upon techniques
developed by Geostatisticians and known as Kriging and
Intrinsic Kriging. The possibility of estimating derivatives
and integrals via Kriging has already been suggested in
the context of Geostatistics [2] and we would like to call
the attention of the control community on its simplicity,
pertinence and performances. This paper will consist of two
parts. The first one will briefly recall the theory of Kriging
and Intrinsic Kriging, before considering the estimation of
derivatives and integrals with these methods. To the best
of our knowledge, the mathematical formalization of the
prediction of derivatives and integrals with intrinsic Kriging
had never been published. The second part of the paper
provides illustrative examples.

II. FROM LINEAR PREDICTION TO THE ESTIMATION OF
DERIVATIVES AND INTEGRALS

A. Random Processes and Kriging

Kriging can be used to approximate or interpolate data,
just as splines do. See, for instance, [2], [3], [6], [9]. As
splines, it is a kernel regression method [10], [13]. Its
specificity is that the kernel is chosen after a statistical
analysis of the data. Let (Ω,A, P) be a probability space and

L2(Ω,A, P) be the set of second-order real-valued random
variables defined on (Ω,A, P).

Definition 1: The set of all random variables F (ω, x) ∈
L2(Ω,A, P) obtained when x runs through X is called a
second-order random process with parameter x ∈ X.

Let m(x) = E[F (x)] be the mean of F (x), and k(x, y) =
cov(F (x), F (y)) = E[(F (x) − m(x))(F (y) − m(y))] be
its covariance function. The covariance function is positive
since

var

[ n∑

i=1

λiF (xi)

]
=

n∑

i,j=1

λiλjk(xi, xj) ≥ 0 ,

for all λi ∈ R, xi ∈ X and n > 0.
Let F1(x), . . . , Fq(x) be random processes defined on

the same probability space and parameter space X. Let
mα(x) be the mean of Fα(x) and kα,β(x, y) be the co-
variance E[(Fα(x) − mα(x))(Fβ(y) − mβ(y))], α, β ∈
{1, . . . , q}. Note that kα,β(x, y) = kβ,α(y, x) but in general
kα,β(x, y) 6= kα,β(y, x).

Assume, for the time being, that f ∗(x) is a trajectory
of F (x) (i.e., there exists ω ∈ Ω such that F (ω, x) =
f∗(x) for all x ∈ X) and that the observations are noise-
free. Each fobs

xi
= f∗(xi) is then a realization of the

random variable F (xi). The data S can then be inter-
polated by predicting F (x) given the random variables
F (x1), . . . , F (xn), which amounts to finding a function
F̂ (x) of F (x1), . . . , F (xn) that minimizes F (x) − F̂ (x)
in some sense. A predicted value is obtained by replacing
the random variables F (x1), . . . F (xn) by their realizations
fobs
1 , . . . , fobs

n in the expression of F̂ (x) (ω remaining
uncertain). Consider the class of linear predictors, which can
be written as

F̂ (x) =

n∑

i=1

λ̂i,xF (xi) .

Assume, moreover, that F (x) is a zero-mean process
(m(x) = 0, ∀x ∈ X), an hypothesis that will be relaxed in
Section II-B. The best predictor or Kriging predictor F̂ (x) of
F (x) is the orthogonal projection of F (x) onto the subspace

HS = span{F (xi), i = 1, . . . , n} .



Since

(F (x) − F̂ (x), F (xi))L2(Ω,A,P) = 0 ⇒

k(x, xi) −
n∑

j=1

λ̂j,xk(xj , xi) = 0 , (1)

for i = 1, . . . , n, the scalars λ̂i,x, i = 1, . . . , n, are obtained
by solving a linear system of equations.

Proposition 1 (Kriging): Let F1(x), . . . , Fq(x) be
second-order random processes, with zero mean, and
covariance functions kα,β(x, y). The best predictor of Fα(x)
from Fαi

(xi), i = 1, . . . , n, is the orthogonal projection of
Fα(x) onto HS = span{Fαi

(xi), i = 1, . . . , n}, written as

F̂α(x) =

n∑

i=1

λ̂i,xFαi
(xi) , (2)

where the λ̂i,xs are the solution of the linear system1 of
equations

Kλ̂x = kx . (3)

In (3), K is the n×n covariance matrix of the random vector
FS = (Fα1

(x1), . . . , Fαn
(xn))T, λ̂x = (λ̂1,x, . . . , λ̂n,x)T

is the vector of the Kriging coefficients, and kx =
(kα,α1

(x, x1), . . . , kα,αn
(x, xn))T is the covariance vector

of FS and Fα(x). Confidence intervals are obtained by
evaluating the variance of Fα(x) − F̂α(x).

B. Intrinsic Kriging and Intrinsic Random Functions
Intrinsic Kriging (IK) [8] extends linear prediction to the

case where the mean of F (x) is unknown. In this framework,
the function f∗ generating the data is assumed to fluctuate
around m(x), which can be written as a linear parametric
function bTr(x), where b and r(x) are l-dimensional vec-
tors. Let N be the vector space {bTr(x), b ∈ R

l} and F (x)
be a random process with mean m(x) ∈ N . The main idea
of IK is to find some linear transformations of F (x) filtering
out the mean so as to consider a zero-mean process again.

We first recall the notion of generalized random processes.
Let Λ̃ be the vector space of finite-support measures, i.e. the
space of linear combinations

∑n
i=1 λiδxi

, where δx stands
for the Dirac measure, such that for any B ⊂ X, δx(B)
equals one if x ∈ B and zero otherwise. Let Λ̃N⊥ be the
subset of the elements of Λ̃ that vanish on N . Thus, λ ∈ Λ̃
implies

〈λ, f〉 :=

n∑

i=1

λif(xi) = 0 , ∀ f ∈ N .

Definition 2: A symmetric function k : X × X → R is
conditionally positive with respect to N if, for all λ ∈ Λ̃N⊥ ,
k(λ, λ) ≥ 0, where k(λ, µ), λ, µ ∈ Λ̃N⊥ , is defined by

k(λ, µ) :=

n,m∑

i,j=1

λiµjk(xi, yj) .

1K in (3) is generally a full rank matrix since covariances are most
often positive definite functions. However, adapted solving techniques such
as rank reduction must be used when the condition number of K is large,
which may happen for instance when two observations are close in the space
of factors.

If, moreover, k(λ, λ) = 0 implies λ = 0, for all λ ∈ Λ̃N⊥ ,
then k(x, y) is conditionally positive definite.

Let FG(λ) be a linear application defined on Λ̃N⊥ , with
values in L2(Ω,A, P). Assume that FG(λ) is zero-mean for
all λ and that cov[FG(λ), FG(µ)] = k(λ, µ), where k(x, y)
is a conditionally positive definite function. Then, FG(λ) is
called a generalized random process. Such a random process
is no longer defined on X but on a space of measures, and
k(x, y) is called a generalized covariance (see Section II-
E). Let H̃N⊥ be the subspace of L2(Ω,A, P) generated by
FG(λ), λ ∈ Λ̃N⊥ . Since random variables in H̃N⊥ are zero-
mean, the inner product of L2(Ω,A, P) can be expressed in
H̃N⊥ as

(FG(λ), FG(µ))L2(Ω,A,P) = k(λ, µ) =
∑

i,j

λiµjk(xi, yj) ,

where λ =
∑

i λiδxi
and µ =

∑
j µjδyj

are in Λ̃N⊥ . Thus,
the bilinear form k(λ, µ) endows Λ̃N⊥ and H̃N⊥ with a
structure of pre-Hilbert space. The completions HN⊥ and
ΛN⊥ of H̃N⊥ and Λ̃N⊥ under this inner product define
isomorphic Hilbert spaces. FG(λ) can be extended on ΛN⊥

by continuity. The generalized random process FG(λ) is used
as a random model. Simplifying hypotheses are introduced
in the next paragraph.

Intrinsic Random Functions (IRF) are obtained when gen-
eralized random processes are endowed with a stationarity
property. IRF are flexible models to use since unknown
means can be conveniently dealt with and stationarity makes
the inference of the parameters of their (generalized) covari-
ance function feasible. Let τh : Λ̃N⊥ → Λ̃ be the translation
operator such that for λ =

∑
i λiδxi

∈ Λ̃N⊥ , τhλ =∑
i λiδxi+h. Assume that Λ̃N⊥ is stable under translation. N

must therefore be itself a stable space of functions under τh.
Assume further that the generalized covariance k(x, y) is
invariant by translation. In the following, we shall write k(h)
with h = x − y instead of k(x, y), when the covariance is
assumed to be stationary. Then τh is continuous and can be
uniquely extended on ΛN⊥ .

Definition 3: Let FG(λ) be a zero-mean generalized ran-
dom process defined on ΛN⊥ , with stationary generalized
covariance k(h). The random process h 7→ F (τhλ), λ ∈
ΛN⊥ , is therefore weakly stationary. FG(λ), λ ∈ ΛN⊥ , is
then an Intrinsic Random Function.

The stability of N under the group of translations im-
plies that N is necessarily a vector space of exponential–
polynomial functions [7]. Such a space is generated by
functions that can be written as xleaTx, where a is a real
or complex vector, l is the vector-valued index (l1, . . . , ld)
and xl = xl1

[1] · · ·x
ld
[d]. (For a vector-valued index l, we shall

write |l| = l1 + · · · + lq.) For N to be stable by linear
combinations and translations, the monomials xl must form
a complete basis. We restrict ourselves to the case where N
is a vector space of polynomials of degree at most equal to l.
Let Nl = span{xl, ∀ l such that |l| ≤ l} and Λ̃l = Λ̃N⊥

l
.

Let Λl be a completion of Λ̃l under the inner product k(λ, µ).
If the IRF FG(λ) is defined on Λl, FG(λ) is an IRF of order l,



or IRF(l) in short.
Proposition 2: Any IRF(l) is an IRF(l + 1).

Proof: This follows from the fact that the spaces Λl

are nested:
Λl+1 ⊂ Λl ,

and that any IRF FG(λ) defined on Λl will be stationary on
Λl+1.

Remark: Λl can be viewed as a set of finite-difference (in-
crement) type operators. The condition for λ =

∑n
i=1 λiδxi

to be in Λ0 can be expressed as
∑n

i=1 λi = 0. Thus, λ =∑n
i=1 λi(δxi

−δx1
), so λ is a linear combination of increment

measures δxi
− δx1

. For l > 0, generalized increments
are obtained. Note that if X is a space of dimension d, a
minimum of

(
d+l

l

)
points have to be taken to fully specify

an element of Λl.
A generalized random process can be viewed as a class of

equivalence of random processes defined on X with mean in
N . If F (x), x ∈ X, is a second-order random process, with
mean in N and covariance k(x, y), the linear application

F : Λ̃N⊥ → H
λ =

∑n
i=1 λiδxi

7→ F (λ) =
∑n

i=1 λiF (xi) ,

extends F (x) on Λ̃N⊥ , where H stands for the Hilbert space
generated by F (x), x ∈ X. Since the mean of F (x) is in
N , F (λ), λ ∈ ΛN⊥ , is a zero-mean random variable, as λ

filters out any function of N . Assume that k(x, y) is positive
definite. Then (λ, µ)Λ̃

N⊥
:= (F (λ), F (µ))H defines an inner

product on Λ̃N⊥ . Let ΛN⊥ be the completion of Λ̃N⊥ under
this inner product and extend F (λ) on ΛN⊥ by continuity.
A generalized random process is thus obtained. The next
paragraph indicates how the procedure may be reversed.

Definition 4: Let FG(λ) be a generalized random process
defined on ΛN⊥ . A second-order random process F (x), x ∈
X, is a representation of FG(λ) if

FG(λ) = F (λ), ∀λ ∈ ΛN⊥ .

If FG(λ) is an IRF(l), its representations can be written
explicitly by taking appropriate measures λ ∈ Λl [8]. If
F0(x) is any representation of FG(λ), other representations
of FG(λ) can be written as

F (x) = F0(x) +

q∑

i=1

Bipi(x) , (4)

where the pis form a basis of Nl and the Bis are any second-
order random variables [8]. Thus, the representations of an
IRF(l) constitutes a class of random processes with mean in
Nl.

C. Derivation

In this section the notion of derivative of an IRF is
developed. The aim is to estimate the derivative of a function
f∗ modeled by an IRF(l), which means that f ∗ comprises
an unknown polynomial drift of degree at most equal to l.
To simplify presentation, assume that x ∈ R . Extension to
the multi-dimensional case is straightforward.

Recall that a zero-mean stationary second-order random
process F (x) with covariance function k(h) is mean-square
differentiable at x if

Fh(x) =
1

h
(F (x + h) − F (x)) (5)

converges in mean square when h → 0. The limit exists
if and only if k(2)(0) exists, and F (x) is then mean-
square differentiable at all x. The limit process is called
the derivative process and denoted by F (1)(x). Higher-order
derivatives are obtained by iteration, and it is straightforward
to check that

cov[F (q)(x), F (r)(y)] = (−1)(r)k(q+r)(x − y) . (6)

Let FG(λ) be an IRF(l), with generalized covariance k(h).
The difficulty for defining the derivative of FG(λ) lies in the
fact that neither FG(λ) nor its derivatives can be defined
point-wise. Thus, the notion of differentiability cannot be
defined using the variance of an expression such as (5).

To define a derivative, we must use elements of Λl. Since
for λ =

∑
i λiδxi

∈ Λl, τhλ ∈ Λl, ∀h ∈ R, define

λh =
1

h
(τhλ − λ) ∈ Λl.

Definition 5: An IRF(l) FG(λ) is mean-square differen-
tiable at λ ∈ Λl if FG(λh) converges in mean square as
h → 0. When the limit exists, it is denoted by F

(1)
G (λ).

Proposition 3: Let FG(λ) be an IRF(l), with generalized
covariance k(h). If k(2)(h) exists for all h, then FG(λ) is
mean-square differentiable for all λ in Λl, in which case
F

(1)
G (λ) is an IRF(l) with generalized covariance −k(2)(h).

Proof: Let λ =
∑n

i=1 λiδxi
be in Λl. Then

‖FG(λh)‖2 =
1

h2

∥∥∥∥FG

( n∑

i=1

λi(δxi+h − δxi
)

)∥∥∥∥
2

=
1

h2

n∑

i,j=1

λiλj(2k(xi − xj)

−k(xi − xj + h) − k(xi − xj − h)) .

Assume further that k(h) is twice differentiable for all h ∈ R.
Then ‖FG(λh)‖ converges when h → 0 and

lim
h→0

‖FG(λh)‖2 = −
n∑

i,j=1

λiλjk
(2)(xi − xj) .

It follows that F
(1)
G (λ) is a generalized random process on

Λl with zero-mean and generalized covariance −k(2)(h).
Remark that the convergence of FG(λh) in L2(Ω,A, P)

when h → 0 is equivalent to the convergence of λh in Λl.
Let λ(1) = limh→0 λh, if allowable. We shall then identify
F

(1)
G (λ) and FG(λ(1)).
Proposition 4: Let FG(λ) be an IRF(l) and F (x) be a

representation. Then, F (1)(x) is a representation of F
(1)
G (λ).

Proof: For all λ ∈ Λl,

F
(1)
G (λ) = lim

h→0
FG(λh) = lim

h→0
F (λh) = F (λ(1)) = F (1)(λ) .



Order r derivatives are denoted by F
(r)
G (λ) and λ(r). Given

λ =
∑

i λiδ
(qi)
xi and µ =

∑
j µjδ

(rj)
yj in Λl, it is easy to check

that

cov[FG(λ), FG(µ)] =
∑

i,j

(−1)rjλiµjk
(qi+rj)(xi − yj) .

It becomes now possible to predict the derivatives of a
representation of an IRF(l). The case where observations
are corrupted by additive noise is directly studied. Ob-
served values then correspond to realizations of the random
variables F obs(xi) = F (xi) + Ni, i = 1, . . . , n, where
F (x) is an unknown representation of FG(λ), and the Nis
are zero-mean random variables independent of F (x), with
covariance matrix KN . When the noise is white, KN =

σ2
NIn. A linear predictor F̂ (r)(x) of F (r)(x) can be written

as
F̂ (r)(x) =

∑

i

λ̂i,xF obs(xi) .

In IK the prediction error F (x) − F̂ (x) is minimized
under the constraint δx −

∑
λ̂i,xδxi

∈ Λl. To deal with
derivatives, we similarly minimize var[F (r)(x) − F̂ (r)(x)]
under the constraint

δ(r)
x −

∑

i

λ̂i,xδxi
∈ Λl . (7)

The solution can be obtained using var[F (δ
(r)
x −∑

i λ̂i,xδxi
)] = var[FG(δ

(r)
x −

∑
i λ̂i,xδxi

)]. One can then
check that the coefficients λ̂i,x, i = 1, . . . , n, are solutions
of a system of linear equations, which can be written in
matrix form as

(
K + KN P T

P 0

)(
λ̂x

µ

)
=

(
k

(r)
x

p
(r)
x

)
, (8)

where K is the n × n matrix of generalized covariances
k(xi − xj), P = (xj

i)l,n
i=0, j=1 is a (l + 1) × n matrix, µ is

a vector of Lagrange coefficients, k
(r)
x is a vector of size n

with entries k(r)(x − xi) and p
(r)
x is a vector of size l + 1

with entries (xi)(r), i = 0, . . . , l. Note that

(xi)(r) =

{
0 if i < r

i!
(i−r)!x

i−r if i ≥ r

The variance of the prediction error is given by

var[F (r)(x)− F̂ (r)(x)] = −k(2r)(0)−

(
λ̂

µ

)T
(

k
(r)
x

p
(r)
x

)
.

It can be used to assess confidence intervals, as illustrated
in Section III.

D. Integration

This problem can be viewed as the prediction of a function
f(x) from observations of its derivative. Formally, this is
equivalent to the previous problem, with straightforward
adaptation.

E. Choice and estimation of the covariance

Once the covariance function is chosen, the procedure of
estimating a derivative is quite simple to implement, since
it boils down to solving a linear system. The question of
the choice of the covariance is now considered. Asymptotic
results [11], [14] suggest that satisfactory performance may
be obtained even if the covariance is chosen incorrectly.
It could therefore be argued that covariance choice is not
an important issue. However, for satisfactory performance
with a finite and often relatively small number of samples,
a proper choice of the covariance turns out to be very
important.

Any classical parametrized covariance can be used as
a generalized covariance. For instance, [11] advocates the
Matérn covariance, which can be written as

k(h) =
σ2

2ν−1Γ(ν)

(
2ν1/2‖h‖

ρ

)ν

Kν

(
2ν1/2‖h‖

ρ

)
,

where Kν is the modified Bessel function of the second kind,
ν > 0 controls the regularity (the differentiability) of the
covariance at the origin, σ2 > 0 is the variance (k(0) = σ2),
and ρ > 0 is a scale parameter.

Polynomial covariances are also a useful class of gener-
alized covariances [8]. Given an order l, they can be written
as

k(h) =

l∑

p=0

(−1)p+1ap‖h‖
2p+1 with ap > 0, ∀p .

Note that this expression is linear in its parameters ap. For
example, intrinsic Kriging based on a covariance written as
−a0‖h‖ gives a piecewise-linear interpolation.

We use Maximum Likelihood to estimate the vector θ of
the parameters of a covariance kθ(x, y) when the mean
of the covariance is known [5]. Let F (x) be a zero-mean
Gaussian random process with covariance kθ(x, y). Assume
also that the observation noise is Gaussian. Let K(θ) be
the covariance matrix of FS = [F (x1), . . . , F (xn)]T and
KN (θ′) be the covariance matrix of the random vector N of
the measurement noise, assumed Gaussian, with zero mean
and a covariance depending on some parameter vector θ′.

To simplify presentation, take θ̄ = [θT, θ′T]T and K(θ̄) =
K(θ)+KN(θ′). The log-likelihood of the data can then be
written as

L(fobs | θ̄) = −
n

2
log 2π −

1

2
log det K(θ̄)

−
1

2
fobsTK(θ̄)−1fobs . (9)

In the following paragraph we recall the Restricted Max-
imum Likelihood (REML) approach to estimating the co-
variance parameters of a random process with unknown
mean. Instead of the likelihood function of the data, REML
maximizes that of the increments (or generalized increments)
of these data [11].

Let FG(λ) be a Gaussian IRF(l). Let F obs be the random
observation vector, the sum of FS = [F (x1), . . . , F (xn)]T,
with F (x) a representation of FG(λ), and some zero-mean



measurement noise vector. Let P = (xli

j )q,n
i,j=1 be the q × n

matrix of basis functions of Nl evaluated on {x1, . . . , xn}.
Since the dimension of Nl is q, the dimension of the space
of the measures with support {x1, . . . , xn} that cancel out
the functions of Nl is n− q. Assume an n× (n− q) matrix
W with rank n − q has been found, such that

PW = 0 .

(The columns of W are in the kernel of P .) The columns
of W are therefore the coefficients of measures with support
{x1, . . . , xn},

∑n
j=1 wi,jδxj

∈ Λl. Then Z = W TF obs is a
Gaussian random vector taking its values in R

n−q, with zero
mean and covariance matrix W T(K(θ) + KN(θ′))W =
W TK(θ̄)W , where K(θ) is the generalized covariance
matrix with entries kθ(xi − xj) and where KN (θ′) is the
covariance matrix of the observation noise. The random
vector Z is a contrast vector. The log-likelihood of the
contrasts is given by

L(z | θ̄) = −
n − q

2
log 2π −

1

2
log det(W TK(θ̄)W )

−
1

2
zT(W TK(θ̄)W )−1z . (10)

Various methods may be employed to compute the matrix
W . We favor the QR decomposition of P T

P T = (Q1 | Q2)

(
R

0

)
,

where (Q1 | Q2) is an n × n orthogonal matrix and R is a
q × q upper triangular matrix. It is trivial to check that the
columns of Q2 form a basis of the kernel of P , so we may
chose W = Q2. Note that W TW = In−q .

III. EXAMPLES

A. Estimation of derivatives

Figure 1 represents a system output and its derivative. We
see that the prediction of the derivative from a number of
irregularly spaced noise-free observations of this output is
satisfactory. Confidence intervals for this prediction can be
provided, which is one of the advantages of the methodology
advocated here. As could be expected, the uncertainty inter-
vals are narrower close to the locations of the observations
but, may be more surprisingly, when two observations are
close enough, prediction is best between these observations.

The experiment is repeated in Figure 2, now with the
addition of noise on the observations. Again the prediction
is quite satisfactory, and the potential applications of such
predictors are numerous.

B. Black-box model with prior information on derivatives

The previous examples illustrate only partially the possi-
bilities offered by Kriging for the prediction of the derivatives
of a signal. In Figure 3, observations of both the function
and its derivative are used. This makes it possible to improve
prediction, for instance by taking into account the knowledge
that the value of the derivative at time zero is zero. This is
an opportunity for introducing some prior information in a
black-box model [12].
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Fig. 1. Top: f(x), x ∈ [0, 1], and 10 noise-free irregularly sampled
observations (squares). Bottom: predicted value of the derivative of f(x)
(bold solid line) from previous observations. True derivative (plain solid
line) and 95% confidence intervals (dashed lines) are shown. Vertical bars
indicate the positions of the observations.
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Fig. 2. Top: f(x), x ∈ [0, 1], and 20 noisy irregularly sampled observations
(squares). Standard deviation of the noise is 0.2. Bottom: predicted value
of the derivative of f(x) (bold solid line) from previous observations. True
derivative (plain solid line) and 95% confidence intervals (dashed lines) are
shown. Vertical bars indicate the positions of the observations.
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Fig. 3. Approximation (bold solid line) of the sinc function (plain solid
line) from noisy observations (squares) taking into account the derivative of
the sinc function at positions indicated by the vertical bars.

C. Approximation of a function from observations of its
derivative — integration.

To conclude this section, let us apply Kriging to integration
(Figure 4). Note that at least one observation of f is required
in order to specify an initial condition. This approach may be
extended to the numerical integration of partial differential
equations. It may also be used to model nonlinear dynamical
systems described by the state equation ẋ = f(x, u), which
constitutes a promising perspective.

IV. CONCLUSIONS AND PERSPECTIVES

The methodology presented and formalized in this paper
provides tools for solving two basic problems in control and
signal processing, namely the differentiation and the integra-
tion of possibly multivariable signals that are only known
via possibly noisy and irregularly sampled observations. It
is based on intrinsic Kriging, a general-purpose technique
for black-box modeling developed by geostatisticians during
more than 50 years but still relatively ignored by the control
community. As demonstrated by the examples treated, the
resulting methodology is quite versatile and allows prior
information, e.g., on boundary values of the derivative to
be taken into account. Another distinctive feature of this
statistically-based approach is that it allows confidence in-
tervals on the predicted values of the derivative or integral
to be provided. If the covariance function is chosen a priori,
the technique requires only the solution of linear systems of
equations. Better results, however, are to be expected if this
covariance function is estimated from the data, for instance
by maximum likelihood or Bayesian estimation. Numerical
differentiation finds direct applications, e.g., in the frame-
work of algebraic differential methods for parameter and
state estimation, while the possibilities offered by numerical
integration in the context of dynamical system modeling look
very promising.
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