
Autonomic Management Policy Specification
from UML to DSML

Benôıt Combemale Laurent Broto
Xavier Crégut Michel Daydé Daniel Hagimont

Institut de Recherche en Informatique de Toulouse (UMR CNRS 5505)
2, rue Charles Camichel - BP 7122

F-31071 Toulouse Cedex 7
firstname.lastname@irit.fr

October 3rd, 2008
MoDELS 2008

Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 1 / 22

firstname.lastname@irit.fr

Outline

1 Autonomic Management Policy Specification
Autonomic Computing
Component-Based Autonomic Computing
Management Policy Specification

2 UML-Based Autonomic Computing Policies Specification
Motivations
A Wrapping Description Language
UML-Based Formalism for Architecture Schemas
UML-based Formalism for (Re)Configuration Procedures

3 DSML-Based Autonomic Computing Policies Specification
The Configuration Description Language
The Wrapping Description Language
The other DSML

4 Conclusion
Lessons Learned
Future Works

Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 2 / 22

Autonomic Management Policy Specification

Plan

1 Autonomic Management Policy Specification
Autonomic Computing
Component-Based Autonomic Computing
Management Policy Specification

2 UML-Based Autonomic Computing Policies Specification
Motivations
A Wrapping Description Language
UML-Based Formalism for Architecture Schemas
UML-based Formalism for (Re)Configuration Procedures

3 DSML-Based Autonomic Computing Policies Specification
The Configuration Description Language
The Wrapping Description Language
The other DSML

4 Conclusion
Lessons Learned
Future Works

Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 3 / 22

Autonomic Management Policy Specification Autonomic Computing

Motivations for Autonomic Computing

Computing environments are becoming increasingly sophisticated:

numerous complex software
that cooperate in potentially large scale distributed environments
heterogeneous programming models
specific configuration facilities
components from different vendors with proprietary management interfaces

Consequence: Their management is a much complex task
⇒ consumes a lot of human resources

One solution: Autonomic computing

IBM, The Vision of Autonomic Computing. IEEE Computer Magazine, 2003
⇒ Automatic deployment
⇒ Self-management: self-configuration, -optimization, -healing, -protection.

Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 4 / 22

Autonomic Management Policy Specification Component-Based Autonomic Computing

JEE Use Case: Automatic restart of a failing Tomcat server

J2EE Use Case

multi-tiered application

Apache, Tomcat, MySQL
Load Balancer

self-repair, self-sizing

LB

Apache

Apache

Tomcat

Tomcat

MySQL

One scenario : Automatic restart of a tomcat server on software fault

Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 5 / 22

Autonomic Management Policy Specification Component-Based Autonomic Computing

Component-Based Autonomic Computing

Basic idea: to maintain a consistent and homogeneous view of the legacy

Relying on a component model
Each managed server is encapsulated into a component
Software architecture is abstracted as a component architecture

Implemented as a component-based autonomic management system (Tune)

Tune (Toulouse University Network) relies on the Fractal component model

Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 6 / 22

Autonomic Management Policy Specification Management Policy Specification

Management Policy Specification

First implementation: (Jade, predecessor of Tune):

Management policies directly relying on the Fractal component model:

A wrapper was implemented by a Fractal component, developped in Java
reflect management operation onto the legacy software

assigning port attribute on the wrapper is reflected in the http.conf file
setting up a binding between an Apache wrapper and a tomcat one is reflected
in the worker.properties file

A Fractal ADL1 file describes the software to be deployed (XML syntax)

components/wrappers to instantiate
their attributes
their relationships

Reconfigurations: administration programs or autonomic managers

are developped in Java, relying on the Fractal APIs.
may have to navigate on the component model (e.g. configuring Apache)
do not need to deal with configuration files or legacy layer (wrappers and ADL)

1Architecture Description Language
Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 7 / 22

UML-Based Autonomic Computing Policies Specification

Plan

1 Autonomic Management Policy Specification
Autonomic Computing
Component-Based Autonomic Computing
Management Policy Specification

2 UML-Based Autonomic Computing Policies Specification
Motivations
A Wrapping Description Language
UML-Based Formalism for Architecture Schemas
UML-based Formalism for (Re)Configuration Procedures

3 DSML-Based Autonomic Computing Policies Specification
The Configuration Description Language
The Wrapping Description Language
The other DSML

4 Conclusion
Lessons Learned
Future Works

Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 8 / 22

UML-Based Autonomic Computing Policies Specification Motivations

Evaluation of the first implementation

Relying directly on the component model is too low level, one has to:

learn yet another framework (Fractal component model)

write wrappers and reconfigurations

write the XML Fractal ADL file describing the deployment in extension

contains many similar lines (replica) =⇒ copy/paste!

Consequences:

lots of work, loss of time and money

error-prone

=⇒ still consumes a lot of resources! Self-return to initial state :D

Solution: Leverage the level of abstraction... using the UML notation:

it is a widely-used graphical notation (and a fashioned one ;)

it is supported by a great number of tools

Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 9 / 22

UML-Based Autonomic Computing Policies Specification Motivations

A UML-Based Management System

Avoid writing wrappers:
Wrapping Description Language (WDL)
Generic wrapper Fractal component
... not related to UML

Describe deployment in intension
uses the UML class diagram
types of software, attributes and bindings
much more intuitive than an ADL file

Reconfigurations as workflows

uses UML state machines
manipulates entities described in the
deployment and reconfigurations

The Tune runtime automatically
deploys the architecture
run reconfigurations

⇒ the Fractal component model is hidden

UML diagrams

Deployment

(re)
Configurations

Wrapper
Wrapper

Wrapper

System representation

TUNe
Runtime

Wrapper

Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 10 / 22

UML-Based Autonomic Computing Policies Specification A Wrapping Description Language

The Wrapping Description Language
An example

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<wrapper name=’apache’>

<method name="start" class="wrapper.util.GenericStart" method="start_with_linux" >
<param ... /> <param ... /> </method>

<method name="configure" class="wrapper.util.ConfigurePlainText" method="configure">
<param ... /> <param ... /> </method>

<method name="addWorkers" class="wrapper.util.ConfigurePlainText" method="configure">
<param name="config-file" value="conf/worker.properties" />
<param name="worker.list" value="Tomcat.nodeName" /> </method>

<method name="stop" class="appli.wrapper.util.GenericStop" method="stop_with_linux" >
<param ... /> <param ... /> </method>

</wrapper>

XML file: easy to parse, not so difficult to write

parameters values implies a navigation of the architecture schema

example: Tomcat.nodeName

Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 11 / 22

UML-Based Autonomic Computing Policies Specification UML-Based Formalism for Architecture Schemas

Architecture schema for J2EE

wrapper: String = "apache.xml"
legacyFile: String = "apache.tgz"
serverName: String = "webserver"
user: String = "combemale"
group: String = "users"
serverRoot: String = "/www"
listen: Int = 8080
host-family: String = "cluster1"
initial: Int = 2

Apache

wrapper: String = "tomcat.xml"
legacyFile: String = "tomcat.tgz"
httpPort: Int = 8080
ajpPort: Int = 8009
lbFactor: Int = 100
host-family: String = "cluster1"
initial: Int = 2

Tomcat
wrapper: String = "mysql.xml"
legacyFile: String = "mysql.tgz"
port: Int = 9001
username: String = "combemale"
password: String = "password"
host-family: String = "cluster1"
initial: Int = 1

MySQL

wrapper: String = "client.xml"
legacyFile: String = "client.tgz"
httpPort: Int = 8080
host-family: String = "cluster1"
initial: Int = 1

LB

1..3
1

1..4
1..3

1
1..4

wrapper: String = "probelb.xml"
legacyFile: String = "distrib-probe.tgz"
initial: Int = 1

ProbeLB
wrapper: String = "probeapache.xml"
legacyFile: String = "distrib-probe.tgz"
initial: Int = 2

ProbeApache
wrapper: String = "probetomcat.xml"
legacyFile: String = "distrib-probe.tgz"
initial: Int = 2

ProbeTomcat
wrapper: String = "probemysql.xml"
legacyFile: String = "distrib-probe.tgz"
initial: Int = 1

ProbeMySQL
1

1

1

1
1

1

1

1

reuse of the class diagram

architecture described in intension:
one classe represent one type of the software elements
multiplicity to indicate a constraint on the number of binded replicas
initial attributes indicates the initial number of replicas of this software element

common attributes: wrapper and legacyFile

other attributes specific to the considered legacy software element

inconsistencies identified by the Tune runtime

Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 12 / 22

UML-Based Autonomic Computing Policies Specification UML-based Formalism for (Re)Configuration Procedures

State machine diagrams for repair and start

Describes the workflow of operations that must be called

An activity diagram would have been a better choice!

An annotation is used to identify the event which triggers this reconfiguration

The name of one state is used to describe an operation call

Operation calls navigate on the architecture

Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 13 / 22

DSML-Based Autonomic Computing Policies Specification

Plan

1 Autonomic Management Policy Specification
Autonomic Computing
Component-Based Autonomic Computing
Management Policy Specification

2 UML-Based Autonomic Computing Policies Specification
Motivations
A Wrapping Description Language
UML-Based Formalism for Architecture Schemas
UML-based Formalism for (Re)Configuration Procedures

3 DSML-Based Autonomic Computing Policies Specification
The Configuration Description Language
The Wrapping Description Language
The other DSML

4 Conclusion
Lessons Learned
Future Works

Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 14 / 22

DSML-Based Autonomic Computing Policies Specification

Overall architecture

Each point of view relies on
a Domain Specific Modeling
Language (DSML),

Each language is supported
by constrained tools
(editors).

The Tune runtime compiles
mograms into the Fractal
component model.

System representation

TUNe
Runtime

TUNe.ecore

RDL
.ecore

WDL
.ecore

DDL
.ecore

system
.TUNe

<<conformsTo>>

Deployment
Description
Language

Wrapping
Description
Language

Reconfiguration
Description
Language

Configuration
Description
Language

CDL
.ecore

Wrapper
Wrapper

Wrapper
Wrapper

Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 15 / 22

DSML-Based Autonomic Computing Policies Specification The Configuration Description Language

The Configuration Description Language

Software
Element

name: String
filename: String

Attribute
name: String
type: DataType
default: Literal Intentional

Link
name: String
lower: Int
upper: Int

0..*
owned
Attributes 0..*

bindingstarget 1
Element

Interface
name: String

provided
Interface

 1

0..1

opposite

LB
(client.tgz)

Apache
(apache.tgz)

Tomcat
(tomcat.tgz)

MySQL
(mysql.tgz)

1 1..3 1..3 1..4 1..4 1
lb apache apache tomcat tomcat mysql

port: Int = 9001
username: String = "combemale"
password: String = "password"
user: String = "root"

httpPort: Int = 8080
ajpPort: Int = 8009
lbFactor: Int = 100

serverName: String = "webServer"
user: String = "combemale"
group: String = "users"
serverRoot: String = "/www"
listen: Int = 8002port: Int = 8080

ProbeLB
(distributed-
probe.tgz)

Probe
Apache

(distributed-
probe.tgz)

Probe
Tomcat

(distributed-
probe.tgz)

Probe
MySQL

(distributed-
probe.tgz)

1
1

1
1

1
1

1
1

sourceElement

Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 16 / 22

DSML-Based Autonomic Computing Policies Specification The Wrapping Description Language

The Wrapping Description Language

Software
Element

filename: String

Wrapper
name: String

elements 0..*

0..1 wrapper

Method
name: String

0..*

methods

ownedParameter 0..*

Implementation
body: String

1 imp

Parameter
name: String
type: DataType
default: Literal

Textual concrete syntax, easier to use than XML one.

Developped using TCS (Textual Concrete Syntax)

provides a full-featured eclipse editor (color, folding, error detection, etc.)

Only a couple of hours

Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 17 / 22

DSML-Based Autonomic Computing Policies Specification The other DSML

The other DSML

Deployment Description Language

Software
Element

filename: String

AbstractNode
name: String

Deployment
initial: Int

deployments 0..*

Policy
body: String

policy 1

LB Apache Tomcat MySQL

Cluster1
policy = "policy.Cluster1"

11 12

Cluster2
policy = "policy.Cluster2"

1

node

1

Reconfiguration Description Language

Not shown here
Inspired by the UML activity diagram
But simplified with useless elements removed

Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 18 / 22

Conclusion

Plan

1 Autonomic Management Policy Specification
Autonomic Computing
Component-Based Autonomic Computing
Management Policy Specification

2 UML-Based Autonomic Computing Policies Specification
Motivations
A Wrapping Description Language
UML-Based Formalism for Architecture Schemas
UML-based Formalism for (Re)Configuration Procedures

3 DSML-Based Autonomic Computing Policies Specification
The Configuration Description Language
The Wrapping Description Language
The other DSML

4 Conclusion
Lessons Learned
Future Works

Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 19 / 22

Conclusion Lessons Learned

Lessons Learned
User viewpoint

Higher level of the abstraction in the definition of the system

facilitates the learning and the adoption of the tool
improves productivity for new and experimented users

Tune 1.0 consists in reusing the UML notation with one main advantage

many high quality UML editors are available

but has several drawbacks

the UML semantics is tailored in a misleading way for UML users
the Tune parser for UML models depends on the used UML editor

TUne 1.1 is based on DSML and provides:

better focus on domain concepts
well-founded notation based on metamodels and OCL constraints
better user assistance :

either by enforcing the construction of consistent models
or by pointing out errors in models

but new editors have to be developped

may be generated thanks to editor generators: Topcased, TCS, GMF...

Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 20 / 22

Conclusion Lessons Learned

Lessons Learned
Correctness

The adopted approach favors correctness of managed applications :

the definition of the management layer :

hides complex configuration files
all configurable entities are homogeneously manipulated (reified)

the definition of an application pattern and its enforcement :

the deployed architecture is generated from the architecture schema
the architecture schema may be used to check consistency of reconfigurations

the definition of a well-founded user-friendly notation:

it favors understanding of the users on their models
consistency of models is enforced or checked by the editors
before they are parsed by the Tune runtime

Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 21 / 22

Conclusion Future Works

Future works

Complete the editing tools for all administration points of view

One DSML with multiple views/diagrams or several related DSML

Embedded DSML: for navigating on the deployment schema (ADL)

Use a transformation language to implement the Tune runtime

Models should not only used to describe policies but also to handle the
management layer:
Model-Driven System Management (MDSM)

Crégut et al. (IRIT) Autonomic Management Policy Specification MoDELS – October 3rd, 2008 22 / 22

	Autonomic Management Policy Specification
	Autonomic Computing
	Component-Based Autonomic Computing
	Management Policy Specification

	UML-Based Autonomic Computing Policies Specification
	Motivations
	A Wrapping Description Language
	UML-Based Formalism for Architecture Schemas
	UML-based Formalism for (Re)Configuration Procedures

	DSML-Based Autonomic Computing Policies Specification
	The Configuration Description Language
	The Wrapping Description Language
	The other DSML

	Conclusion
	Lessons Learned
	Future Works

