
HAL Id: hal-00369874
https://hal.science/hal-00369874

Submitted on 22 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomic Management Policy Specification: from
UML to DSML

Benoit Combemale, Laurent Broto, Xavier Crégut, Michel Daydé, Daniel
Hagimont

To cite this version:
Benoit Combemale, Laurent Broto, Xavier Crégut, Michel Daydé, Daniel Hagimont. Autonomic
Management Policy Specification: from UML to DSML. MoDELS 2008, Oct 2008, Toulouse, France.
pp.584-599, �10.1007/978-3-540-87875-9_41�. �hal-00369874�

https://hal.science/hal-00369874
https://hal.archives-ouvertes.fr

Pre
lim

in
ar

y
Ver

si
on

Autonomic Management Policy Specification:

from UML to DSML

Benoît Combemale, Laurent Broto, Xavier Crégut,

Michel Daydé, and Daniel Hagimont

Institut de Recherche en Informatique de Toulouse (UMR CNRS 5505)

Université de Toulouse. France.

first_name.last_name@irit.fr

Abstract. Autonomic computing is recognized as one of the most promizing

solutions to address the increasingly complex task of distributed environments’

administration. In this context, many projects relied on software components and

architectures to provide autonomic management frameworks. We designed such

a component-based autonomic management framework, but observed that the in-

terfaces of a component model are too low-level and difficult to use. Therefore,

we introduced UML diagrams for the modeling of deployment and management

policies. However, we had to adapt/twist the UML semantics in order to meet

our requirements, which led us to define DSMLs. In this paper, we present our

experience in designing the Tune system and its support for management policy

specification, relying on UML diagrams and on DSMLs. We analyse these two

approaches, pinpointing the benefits of DSMLs over UML.

1 Introduction

Today’s computing environments are becoming increasingly sophisticated. They in-

volve numerous complex software that cooperate in potentially large scale distributed

environments. These software are developed with very heterogeneous programming

models which rely on their own specific configuration facilities. Moreover, software

environments integrate components from different providers with proprietary manage-

ment interfaces. Therefore, the management1 of these software (installation, configura-

tion, repair, etc.) is a much complex task which consumes a lot of human ressources.

A very promising approach consists in implementing administration features as an

autonomic software. Such a software can be used to deploy and configure applica-

tions in a distributed environment. It can also monitor the environment and react to

events such as failures or overloads and reconfigure applications accordingly and au-

tonomously. Many works in this area have relied on a component model to provide

such an autonomic system support [1,2,3]. The basic idea is to encapsulate the managed

elements (legacy software) in software components (called wrappers) and to adminis-

trate the environment as a component architecture. We designed and implemented such

0 This work is supported by the SCORWARE RNTL project (contract ANR-06-TLOG-017).
1 we also use the term administration to refer to management operations.

Pre
lim

in
ar

y
Ver

si
on

a component-based autonomic management system (called Tune) and used it for the

management of complex legacy software infrastructures.

However, we rapidly observed that the interfaces of a component model are too

low-level and difficult to use. This led us to explore the introduction of higher level

formalisms for all the administration tasks (wrapping, configuration, deployment, re-

configuration). Our main motivation was to hide the details of the component model we

rely on and to provide a more abstract and intuitive specification interface (such speci-

fications are called management policies). We mainly relied on UML diagrams for the

modeling of management policies, but as we were not experts in modeling languages

and were more focussed on middleware issues, we made use of UML diagrams which

are very pragmatic and close to our needs, and we had to adapt/twist the UML seman-

tics in order to meet our requirements. This naturally led us to define Domain Specific

Modeling Languages (DSMLs) and their associated metamodels.

In this paper, we report on this experience which consisted in three steps: (1) design-

ing a component-based autonomic system, (2) introducing management policy specifi-

cation formalisms based on UML diagram and (3) defining several DSMLs for policy

specification. And we motivate the transition between each step.

The rest of the paper is structured as follows. Section 2 describes the design and

implementation of Tune, which provides a framework for component-based autonomic

administration. Section 3 presents our experience in providing UML diagram based

support for management policy specification. The DSML support introduced for policy

specification is presented in Section 4. After an overview of related works in Section 6,

we overview the lessons learned from these experiments in Section 5 and we conclude

in Section 7.

2 An Autonomic Management System

2.1 J2EE Use Case

The Java 2 Platform, Enterprise Edition (J2EE) defines a model for developing web

applications [4] in a multi-tiered architecture. Such applications are typically composed

of a web server (e.g. Apache), an application server (e.g. Tomcat) and a database server

(e.g. MySQL). Upon an HTTP client request, either the request targets a static web

document, in which case the web server directly returns that document to the client; or

the request refers to a dynamically generated document, in which case the web server

forwards that request to the application server. When the application server receives

a request, it runs one or more software components (e.g. Servlets, EJBs) that query

a database through a JDBC (Java DataBase Connection) driver. Finally, the resulting

information is used to generate a web document that is returned to the web client.

In this context, the increasing number of Internet users has led to the need of highly

scalable and highly available services. To face high loads and provide higher scalability

of Internet services, a commonly used approach is the replication of servers in clus-

ters. Such an approach (Figure 1, legacy layer) usually defines a particular software

component in front of each set of replicated servers, which dynamically balances the

load among the replicas. Here, different load balancing algorithms may be used, e.g.

Random, Round-Robin, etc.

Pre
lim

in
ar

y
Ver

si
on

This example is characteristic of the management of a distributed software infras-

tructure where very heterogeneous servers are distributely deployed, configured and

interconnected in order to provide a global service. The management of the whole in-

frastructure can be very complex and requires a lot of expertise. Many files have to be

edited and configured consistently. Also, failures or load peaks (when the chosen degree

of replication is too low) must be treated manually.

2.2 Component-Based Autonomic Computing

Component-based management aims at providing a uniform view of a software envi-

ronment composed of different types of servers. Each managed server is encapsulated

into a component and the software environment is abstracted as a component architec-

ture. Therefore, deploying, configuring and reconfiguring the software environment is

achieved by using the tools associated with the used component-based middleware.

The component model we used in Tune is the Fractal model [5]. A Fractal compo-

nent is a runtime entity that is encapsulated and has one or several interfaces (access

points to a component that supports a finite set of methods). The signatures of inter-

face can be described by a standard Java interface declaration. Components can be as-

sembled to form a component architecture by binding components interfaces (different

types of bindings exists, including local bindings and distributed RMI-like bindings).

An (XML based) Architecture Description Language (ADL) allows describing an archi-

tecture and an ADL launcher can be used to deploy such an architecture. Finally, Fractal

provides a rich set of control interfaces for introspecting (observing) and reconfiguring

a deployed architecture, i.e. controlling components’ attributes and bindings.

Any software managed with Tune is wrapped into a Fractal component which inter-

faces its administration procedures. Therefore, the Fractal component model is used to

implement a management layer (Figure 1) on top of the legacy layer (composed of the

actual managed software). In the management layer, all components provide a manage-

ment interface for the encapsulated software, and the corresponding implementation

(the wrapper) is specific to each software (e.g. the Apache web server in the case of

J2EE). Fractal’s control interfaces allow managing the element’s attributes and bindings

with other elements, and the management interface of each component allows control-

ling its internal configuration state. Relying on this management layer, sophisticated

administration programs can be implemented, without having to deal with complex,

proprietary configuration interfaces (generally configuration files), which are hidden

in the wrappers. Here, we distinguish two important roles: (1) the role of the man-

agement and control interfaces is to provide a means for configuring components and

bindings between components. It includes methods for navigating in the component-

based management layer or modifying it to implement reconfigurations. (2) the role of

the wrappers is to reflect changes in the management layer onto the legacy layer. The

implementation of a wrapper for a specific software may also have to navigate in the

component management layer, to access key attributes of the components and generate

legacy software configuration files2.

2 e.g. for configuring an Apache, we need to access attributes from both the Apache component

and the Tomcat components it is bound with.

Pre
lim

in
ar

y
Ver

si
on

Fig. 1. Management layer for the J2EE application

2.3 Management Policy Specification

In a first prototype (Jade [2], a predecessor of Tune), the implementation of management

policies was directly relying on the interfaces of the Fractal component model:

– A wrapper was implemented as a Fractal component, developed in Java, which

main role is to reflect management/control operations onto the legacy software. For

instance, if we consider the wrapper of the Apache software, the assignment of the

port attribute of the wrapper is reflected in the httpd.conf file in which the port

attribute is defined. Similarly, setting up a binding between an Apache wrapper and

a Tomcat wrapper is reflected at the legacy layer in the worker.properties file.

– The description of a software architecture to be deployed was described in a Frac-

tal ADL file. This ADL file describes in an XML syntax the set of components

(wrappers) to instanciate (which will in turn deploy the associated legacy software

components), their bindings and their configuration attributes.

– Reconfigurations were developed in Java, relying on Fractal APIs. These APIs al-

low invoking components’ management interfaces or Fractal control interfaces for

assigning components’ attributes, adding/removing components and updating bind-

ings between components.

Component-based autonomic computing has proved to be a very convenient ap-

proach. The experiments we conducted with this first prototype for managing J2EE

infrastructures [2] (but also other distributed infrastructures such as Diet grid middle-

ware [6]) validated this design choice. Figure 2 illustrates an experiment which con-

sisted in automatically repairing (restarting) a failing Tomcat server (in the J2EE archi-

tecture of Figure 1). Initially, the load is balanced between the two replicas. When the

failure occurs, all the load is addressed to the second replica. After repair, the load is

again balanced between the two replicas.

3 UML-Based Autonomic Computing Policies Specification

As our system was used by external users (external to our group), we rapidly observed

that the interfaces of a component model are too low-level and difficult to use. In order

Pre
lim

in
ar

y
Ver

si
on

Fig. 2. Automatic restart of a Tomcat server on software fault

to implement wrappers (to encapsulate existing software), to describe deployed archi-

tectures and to implement reconfiguration programs, the administrator of the environ-

ment has to learn (yet) another framework, the Fractal component model in our case.

More precisely, our previous experiments showed us that:

– wrapping components is difficult to implement. The developper needs to have a

good understanding of the component model we use (Fractal). Regarding wrapping,

our approach is to introduce a Wrapping Description Language which is used to

specify the behavior of wrappers. A WDL specification is interpreted by a generic

wrapper Fractal component, the specification and the interpreter implementing an

equivalent wrapper. Therefore, an administrator doesn’t have to program any im-

plementation of Fractal component.

– architectures are not very easy to describe. ADLs are generally very verbose and

still require a good understanding of the underlying component model. Moreover,

if we consider large scale software infrastructure such as those deployed over a

grid, describing an architecture composed of a thousand of servers requires an

ADL description file of several thousands of lines. Our approach is to reuse UML

formalisms for graphically describing architecture schemas. First, a UML based

graphical description of such an architecture is much more intuitive than an ADL

specification, as it doesn’t require expertise of the underlying component model.

Second, the introduced architecture schema is more abstract than the previous ADL

specification, as it describes the general organisation of the application to deploy

(types of software, interconnection pattern) in intension, instead of describing in

extension all the software instances that may compose the architecture. This is par-

ticularly interesting for grid applications where thousands of servers have to be

deployed.

– autonomic managers (reconfiguration policies) are difficult to implement as they

have to be programmed using the management and control interfaces of the man-

agement layer. This also requires a strong expertise regarding the used component

model. Our approach is to reuse UML State Diagrams to define workflows of oper-

ations that have to be performed for reconfiguring the managed environment. One

of the main advantage of this approach, besides simplicity, is that state diagrams

manipulate the entities described in the deployment schema and reconfigurations

can only produce a concrete architecture which comforms to the abstract schema,

thus enforcing reconfiguration correctness.

We detail these three aspects in the next sub-sections.

Pre
lim

in
ar

y
Ver

si
on

wrapper: String = "apache.xml"

legacyFile: String = "apache.tgz"

serverName: String = "webserver"

user: String = "combemale"

group: String = "users"

serverRoot: String = "/www"

listen: Int = 8080

host-family: String = "cluster1"

initial: Int = 2

Apache

wrapper: String = "tomcat.xml"

legacyFile: String = "tomcat.tgz"

httpPort: Int = 8080

ajpPort: Int = 8009

lbFactor: Int = 100

host-family: String = "cluster1"

initial: Int = 2

Tomcat
wrapper: String = "mysql.xml"

legacyFile: String = "mysql.tgz"

port: Int = 9001

username: String = "combemale"

password: String = "password"

host-family: String = "cluster1"

initial: Int = 1

MySQL

wrapper: String = "client.xml"

legacyFile: String = "client.tgz"

httpPort: Int = 8080

host-family: String = "cluster1"

initial: Int = 1

LB

1..3

1

1..4

1..3

1

1..4

wrapper: String = "probelb.xml"

legacyFile: String = "distrib-probe.tgz"

initial: Int = 1

ProbeLB
wrapper: String = "probeapache.xml"

legacyFile: String = "distrib-probe.tgz"

initial: Int = 2

ProbeApache
wrapper: String = "probetomcat.xml"

legacyFile: String = "distrib-probe.tgz"

initial: Int = 2

ProbeTomcat
wrapper: String = "probemysql.xml"

legacyFile: String = "distrib-probe.tgz"

initial: Int = 1

ProbeMySQL

1

1

1

1

1

1

1

1

Fig. 3. Architecture schema for J2EE

3.1 UML-based formalism for architecture schemas

We adapted the UML class diagram formalism in order to allow specification of archi-

tecture schemas, as illustrated in Figure 3 where such a schema is defined for a J2EE

organization. An architecture schema describes the overall organization of a software

infrastructure to be deployed. At deployment time, the schema is interpreted to deploy

a component architecture. Each element (the boxes) corresponds to a software which

can be instantiated in several component replicas. A link between two elements gener-

ates bindings between the components instanciated from these elements. Each binding

between two components is bi-directional (actually implemented by 2 bindings in op-

posite directions), which allows navigation in the component architecture in order to

fetch any configuration attribute of the software infrastructure.

An element includes a set of configuration attributes for the software. Most of these

attributes are specific to the software, but few attributes are predefined by Tune and

used for deployment: wrapper gives the name of the WDL description of the wrapper,

legacyFile gives the archive which contains the legacy software, hostFamily gives a hint

regarding the dynamic allocation of the nodes where the software should be deployed,

initial gives the number of instances which should be deployed.

The schema in Figure 3 describes a J2EE organization where one Load-Balancer,

two Apaches, two Tomcats and one MySQL should be deployed. A probe is linked with

each software, which monitors the liveness of the server in order to trigger a repair pro-

cedure. In this schema, a cardinality is associated with each link. It which constrains the

interconnection of the deployed components. An intensional schema may be ambigu-

ous, i.e. the actual deployed component architecture (bindings between components)

will depend on the implemented deployment runtime. However, the user may describe

a more extensional schema which will better fit his requirements.

The schema in Figure 3 deploys a component architecture as illustrated in Figure 1.

3.2 A Wrapping Description Language

Upon deployment, the above schema is parsed and for each element, a number of Fractal

components are created. These components implement the wrappers for the deployed

software, which provide control over the software. Each wrapper component is an in-

stance of a generic wrapper which is actually an interpreter of a WDL specification.

A WDL description defines a set of methods that can be invoked to configure or

reconfigure the wrapped software. The workflow of methods that have to be invoked in

Pre
lim

in
ar

y
Ver

si
on

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>

<wrapper name=’apache’>

<method name="start" class="wrapper.util.GenericStart" method="start_with_linux" >

<param ... /> <param ... /> </method>

<method name="configure" class="wrapper.util.ConfigurePlainText" method="configure">

<param ... /> <param ... /> </method>

<method name="addWorkers" class="wrapper.util.ConfigurePlainText" method="configure">

<param name="config-file" value="conf/worker.properties" />

<param name="worker.list" value="Tomcat.nodeName" /> </method>

<method name="stop" class="appli.wrapper.util.GenericStop" method="stop_with_linux" >

<param ... /> <param ... /> </method>

</wrapper>

Fig. 4. A WDL specification

order to configure and reconfigure the overall software environment is defined thanks

to a formalism introduced in Section 3.3. Generally, a WDL specification (illustrated in

Figure 7) provides start and stop operations for controlling the activity of the software,

and a configure operation for reflecting the values of the attributes (defined in the UML

architecture schema) in the configuration files of the software. Notice that the values of

these attributes can be modified dynamically. Other operations can be defined according

to the specific management requirements of the wrapped software, these methods being

implemented in Java.

The main motivation for the introduction of WDL are (i) to hide the complexity of

the underlying component model (Fractal) and (ii) that most of the needs should be met

with a finite set of generic Java methods implementations (that can be therefore reused).

We covered the needs of our usecases with very few methods, plaintext and XML file

accessors and a shell command launcher. A method definition includes the description

of the parameters that should be passed when the method is invoked. These parameters

may be String constants, attribute values or combinaison of both (String expressions).

All the attributes defined in the architecture schema can be used to pass the configured

attributes as parameters of the method invocations.

It is sometimes necessary to navigate in the deployed component architecture in

order to configure the software. For instance, in a J2EE architecture, an Apache may be

bound to several Tomcats. At the legacy layer level, the worker.properties configuration

file of Apache must include the list of the nodes where the Tomcats have been launched.

Therefore in Figure 7, the addWorkers method in the Apache wrapper must receive

this list of nodes in order to configure the worker.properties file. The syntax of the

method parameters in the wrapper allows navigating in the management layer in order

to access the component attributes (in this case the nodeName attribute of each Tomcat),

following the bindings between the Apache component and the Tomcat components.

Tomcat.nodeName returns the list of nodeName attributes of the Tomcat components

which are bound with the current Apache component.

3.3 UML-based formalism for (re)configuration procedures

Reconfigurations are triggered by events. An event can be generated by a specific mon-

itoring component (e.g. probes in the architecture schema) or by a wrapped legacy soft-

ware which already includes its own monitoring functions.

Pre
lim

in
ar

y
Ver

si
on

Fig. 5. State diagrams for repair and start

Whenever a wrapper component is instanciated, a communication pipe is created

(typically a Unix pipe) that can be used by the wrapped legacy software to generate

an event, following a specified syntax which allows for parameter passing. Notice that

the use of pipes allows any software (implemented in any language environment such

as Java or C++) to generate events. An event generated in the pipe associated with the

wrapper is transmitted to the administration node where it can trigger the execution

of reconfiguration programs (in our current prototype, the administration code, which

initiates deployment and reconfiguration, is executed on one administration node, while

the administrated software is managed on distributed hosts). An event is defined as an

event type, the name of the component which generated the event and eventually an

argument (all of type String).

For the definition of reactions to events, we reused the UML state diagrams formal-

ism which allows specifying reconfiguration. Such a state diagram defines the workflow

of operations that must be applied in reaction to an event. An operation in a state dia-

gram can assign an attribute or a set of attributes of components, or invokes a method

or a set of methods of components. To designate the components on which the oper-

ations should be performed, the syntax of the operations in the state diagrams allows

navigation in the component architecture, similarly to the wrapping language.

For example, let’s consider the diagram in Figure 5 (on the top) which is the reaction

to a Tomcat (software) failure. The event (fixTomcat) is generated by a probeTomcat

component instance, therefore the this variable references this probeTomcat component

instance. Then:

– this.stop will invoke the stop method on the probing component (to prevent the

generation of multiple events),
– this.Tomcat.start will invoke the start method on the Tomcat component instance

linked with the probe. This is the actual repair of the faulting Tomcat server,
– this.start will restart the probe associated with the Tomcat.

Notice that state diagram’s operations are expressed using the elements defined in

the architecture schema, and are applied on the actually deployed component architec-

ture. The current version of Tune also provides operations which re-deploy components

(change location or add component instances) while enforcing the defined abstract ar-

chitecture schema.

A particular diagram is used to start the deployed J2EE environment, as illustrated

in Figure 5 (on the bottom). In this diagram, when an expression starts with the name of

Pre
lim

in
ar

y
Ver

si
on

an element in the architecture schema (Apache, Tomcat...), the semantics is to consider

all the instances of the element, which may result in multiple method invocations. The

starting diagram ensures that (1) configuration files must be generated, then (2) the

servers must be started following the order Tomcat, Apache and LB (no constraint on

MySQL). For each type of server, the server is started before its probe.

4 DSML-Based Autonomic Computing Policies Specification

Our first experiments with Tune focussed on the use of XML and UML to take advan-

tage of well-known paradigms and of many existing open source tools. We used the

UML2.0 graphical editors provided by the TOPCASED Eclipse-based toolkit [7] for

the description of architectures and reconfiguration diagrams. However, the use of this

unified language led us to specialize (pragmatically but sometimes awkwardly) its ini-

tial semantics in order to adapt it according to our needs. Because it is difficult to take

into account this semantics specialization at the tools level, the user is let with all the

freedom offered by UML.

For this reason, we are currently studying the possibility to define a dedicated meta-

model for management policies definition. This allows us to define a constrained ab-

stract syntax and a dedicated concrete syntax, relying on generic or generative tools,

such as TCS [8] or Syntaks [9] for textual formalisms and TOPCASED [7] or GMF [10]

for graphical formalisms. For each point of view that we have taken into account in

Tune, we present the corresponding metamodel, offering a constrained, domain-specific

and user-friendly languages.

4.1 The Configuration Description Language

The first language is the homogeneous definition of the application architecture. The

UML-based formalism introduced in Section 3.1 was very close to the UML class dia-

gram (rather than the UML component diagram, which can be quite confusing), reusing

the concepts of classes, attributes and associations with multiplicities. However, the ob-

jective was mainly to reuse the expressiveness of the graphical notation, but with a

domain specific semantic. The DSML we introduce here proposes a simple intentional

architecture description language which allows to reify the heterogenous structural ar-

chitecture of the legacy level. We call this language the Configuration Description Lan-

guage (CDL). The main subset of the metamodel is depicted in Figure 6, also with an

illustration with the model of the J2EE example of Section 3.

The main concept of this view is the SoftwareElement describing a particular type of

software with its own configuration, management, and life cycle procedures. Each Soft-

wareElement is described by a set of properties (ownedAttributes), with an initial value

(defaultValue), which are used by the administrator to reify the configurable attributes of

the legacy software that the SoftwareElement represents. Note that a particular software

can be reified by different SoftwareElements with different configuration properties.

The configuration language allows to describe an architecture in intension. This

means here that each described SoftwareElement can be deployed into several instances.

The architecture of the legacy level is intentionally reified through the definition of

Pre
lim

in
ar

y
Ver

si
on

Software

Element

name: String
filename: String

Attribute

name: String
type: DataType
default: Literal Intentional

Link
name: String
lower: Int
upper: Int

0..*
owned
Attributes

0..*

bindingstarget 1
Element

Interface

name: String

provided
Interface

 1

0..1

opposite

LB
(client.tgz)

Apache
(apache.tgz)

Tomcat
(tomcat.tgz)

MySQL
(mysql.tgz)

1 1..3 1..3 1..4 1..4 1

lb apache apache tomcat tomcat mysql

port: Int = 9001

username: String = "combemale"

password: String = "password"

user: String = "root"

httpPort: Int = 8080

ajpPort: Int = 8009

lbFactor: Int = 100

serverName: String = "webServer"

user: String = "combemale"

group: String = "users"

serverRoot: String = "/www"

listen: Int = 8002port: Int = 8080

ProbeLB
(distributed-

probe.tgz)

Probe

Apache
(distributed-

probe.tgz)

Probe

Tomcat
(distributed-

probe.tgz)

Probe

MySQL
(distributed-

probe.tgz)

1

1

1

1
1

1

1

1

sourceElement

Fig. 6. The Configuration Description Language

bindings (IntentionalLink), allowing to connect a SoftwareElement to another, and ex-

pressing a multiplicity (lower & upper) and a role (name). The multiplicity expresses

the range of instances of the target SoftwareElement for each one of the source Softwa-

reElement. The role allows navigation with a query language relying on OCL [11]. It is

also possible to define bi-directional bindings by defining an opposite bindings.

4.2 The Wrapping Description Language

The second language allows the definition of a wrapper and its relation with Softwa-

reElements. In the Wrapping Description Language introduced in Section 3.2, a wrap-

per was described in an XML dialect, only enabling runtime checks by the Tune ma-

chinery. With this DSML, it becomes possible to introduce static consistency checks re-

garding the architecture schema it may reference, especially for the navigation clauses

included in method parameters.

The corresponding metamodel is presented in Figure 7, also with an illustration with

a model defined with a specialized textual editor. A Wrapper describes methods which

define actions that can be applied on the encapsulated software component. A wrapper

may be referenced by different SoftwareElements (with different properties). A Method

can be parametrized (ownedParameter) with any property (of the SoftwareElement) of

the configuration description in which the wrapper is used, the OCL-based navigation

language allowing to fetch the effective parameter values. The method implementations

(imp) are given in the form of a reference to a program (currently a string referring to a

Java class).

Note that this view must be consistent with the architectural view described with

the CDL. We have thus defined OCL constraints to verify that the wrapper associated

with a software element defines at least the methods provided by the interface.

Pre
lim

in
ar

y
Ver

si
on

Software

Element

filename: String

Wrapper

name: String

elements 0..*

0..1 wrapper

Method

name: String
0..*

methods

ownedParameter 0..*

Implementation

body: String

1 imp

Parameter

name: String
type: DataType
default: Literal

Fig. 7. The Wrapping Description Language

Software

Element

filename: String

AbstractNode

name: String

Deployment

initial: Int

deployments 0..*

Policy

body: String

policy 1

LB Apache Tomcat MySQL

Cluster1
policy = "policy.Cluster1"

11 12

Cluster2
policy = "policy.Cluster2"

1

node

1

Fig. 8. The Deployment Description Language

4.3 The Deployment Description Language

The third language is used to define by intention or by extension, the real deployment

of instances of each software component on system’s nodes. In the UML-based for-

malisms described in Section 3.1, deployment policies were specified thanks to the

initial and host-family attributes in the Architecture schema.

The introduced deployment DSML is described by the metamodel presented in Fig-

ure 8, also with the illustration with the J2EE example. For this, we define for each

SoftwareElement a set of Deployments, describing a real number of instances (initial)

to be deployed on a node (AbtractNode). Nodes are known as "abstract" because they

define a deployment policy (policy). Abstract nodes include the deployment informa-

tion required to implement a deployment strategy, e.g. the physical address of a (single)

real node on which instances should be deployed, or a list of physical addresses and an

allocation function (for a cluster).

Note that this view must be consistent with the view described with the CDL. For

instance, the number of deployed instances must be compatible with the multiplicities

described in the configuration.

The clear separation of the deployment and architecture concerns allows to define

several deployment orders for the same SoftwareElement (i.e. on different nodes), and to

define different deployment models for the same architecture model. Finally, we clearly

identify the concept of node.

4.4 The Reconfiguration Description Language

The last DSML allows the definition of reconfiguration policies. In the UML-based for-

malism introduced in Section 3.3, reconfiguration actions were expressed in terms of

Pre
lim

in
ar

y
Ver

si
on

state diagrams, where we awkwardly inserted elementary actions as the state name. In

accordance with the UML semantics, we decided to represent reconfiguration actions

as activity diagrams in this DSML. Moreover, we introduced support in the DSML for

the life cycle definition, allowing a clear description of links between events and re-

configuration actions, similarly to ECA (Event/Condition/Action) rules which typically

used. This life cycle is expressed as a state diagram, where transitions are trigerred by

events and execute reconfiguration actions defined as activity diagram.

We are inspired by the UML metamodel to express state diagrams (i.e. life cycles)

and activity diagrams (i.e. reconfiguration policies). We don’t reproduce this DSML

metamodel since it is very similar to that of UML (with useless elements withdrawn).

5 Lessons Learned

5.1 Users’viewpoint

Dealing with autonomic management policies, we have experienced the definition of

higher level formalisms than the one used by the underlying Fractal components. The

main motivation is to provide a formalism easier to understand and facilitating the def-

inition of the views describing an application. These views are parsed by the Tune

runtime in order to configure a Fractal component architecture. The first main benefit

of this approach is to ease the learning and the adoption of the tool, for new users but

also for experienced users. As an example, one student with no preliminary knowledge

has been able to deploy his first application within two hours after a one hour seminar

whereas several days were previously required

In a first step, we have built our views by using UML diagrams, thus being close

to a well-known and largely-adopted notation. Furthermore, it was possible to use the

numerous available UML tools, providing the users with high level tools. Nevertheless,

reusing the UML notation had one important drawback: we had to tailor the semantics

of the diagrams we reused (the class and statemachine diagrams). Thus, we deviated

from a standard UML model. For example, we used the name of a state to describe a

method call rather that the UML behavior concept.

One solution, would have been to define a real UML profile rather than only reusing

the graphical notation and tools but we would have also inherited the complexity of

the UML metamodel. So, we investigated the use of DSMLs. It allows focussing on

only the domain specific concepts and to define adapted views (as an example, the

UML architecture schema has been split into two views, the configuration description

language and the deployment description language). The semantics of the notation is

well-founded because it is defined by a (MOF) metamodel completed by a set of OCL

constraints to express constraints that are not captured by the metamodel itself.

Obviously, UML tools are not usable with our newly-defined DSMLs. So we had

to develop new editors. The TOPCASED tool [7] has been used to generate the graph-

ical editors. When sticking at the possibilities of this editor generator, some hours are

sufficient to have a functional editor. If additional functionalities are required, the gen-

erated code has to be manually adapted. These adaptations may be time consuming but

the base editor is really usable as is. We have also used TCS [8], a tool that permits

Pre
lim

in
ar

y
Ver

si
on

to define a concrete syntax and the associated Eclipse editor (including colour, folding,

name completion, etc). So we have been able to provide in a couple of hours a textual

syntax for WDL that is easier to use that the XML like syntax.

Finally, the graphical and textual generated editors provide better user assistance

than the UML editors because they enforce the construction of coherent models con-

forming to the DSML definition, including OCL constraints. So, users can see their

mistakes before the Tune runtime reports them.

5.2 Correctness

The adopted approach favors correctness of managed applications for 3 main reasons:

– the definition of the management layer. Thanks to the management layer (com-

posed of wrappers), the administrator of a software infrastructure does not have to

manipulate complex configuration files, as in a J2EE clustered architecture. All the

configurable entities (attributes, bindings, etc.) are reified in the management layer

and can be homogeneously manipulated.

– the definition of an application pattern and its enforcement. The deployed appli-

cation architecture is generated from the definition of a pattern (the architecture

schema). Any reconfiguration described with the Reconfiguration Description Lan-

guage can only result in an architecture which complies with this pattern.

– the definition of a user-friendly notation that favors the understanding of the users

on their models is another step in the right direction. Indeed, the users are enforced

to build coherent models, especially in the DSML approach, or are informed of

possible mistakes without having to wait until their models are parsed by the Tune

runtime. The application is then automatically generated.

6 Related Works

Autonomic computing is an appealing approach that aims at simplifying the hard task of

system management, thus building self-healing, self-tuning, and self-configuring sys-

tems [12]. Management solutions for legacy systems are usually proposed as ad-hoc

solutions that are tied to particular legacy system implementations (e.g. [13] for self-

tuning cluster environments). This unfortunately reduces reusability and requires auto-

nomic management procedures to be reimplemented each time a legacy system is taken

into account in a particular context. Moreover, the architecture of managed systems is

often very complex (e.g. multi-tier architectures), which requires advanced support for

its management.

Relying on a component model for managing legacy software infrastructure has

been investigated by several projects [1,2,3] and has proved to be a very convenient

approach, but in most cases, the autonomic policies have to be programmed using the

programming interface of the underlying component model (a framework for imple-

menting wrappers, configuration APIs or deployment ADLs) which is too low level and

still error prone.

Pre
lim

in
ar

y
Ver

si
on

Therefore, many projects explored model-driven approaches for designing auto-

nomic management policies. Some of them proposed frameworks for modeling auto-

nomic systems, e.g. a self-healing [14], a self-protecting [15], or a resource manage-

ment system [16], the management system implementation being generated from the

described management model. The modeling of such a system can still be quite complex

and the integration within a legacy software organisation tricky. Some other projects

proposed frameworks and runtimes for modeling the managed system and maintaining

consistency between the managed system and its model at runtime [17,18]. The main

advantage is well defined representation of the managed system, on which management

policies can be applied. The tune system falls into this category, even if our management

layer relies on the Fractal component model. Tune relies on DSML for the specification

of a software architecture, its deployment and reconfiguration. These languages ensure

that only consistent system states can result from deployment and reconfiguration.

Finally, some projects considered interactions between policies, mainly in order to

deal with conflicts [19,20]. We are currently working on a DSML which should allow

such coordinating between reconfiguration policies.

7 Conclusion and Perspectives

We are investigating the design and implementation of an autonomic system called

Tune. Tune relies on a component model in order to administrate a legacy software

infrastructure as a component architecture. Tune provides support for encapsulating

(wrapping) software, describing the software architecture to manage and its deployment

in a physical environment, and describing the dynamic reconfiguration policies to be

applied autonomously. Our experiments with Tune led us to the conclusion that higher-

level support was required for assisting administrators in policy description tasks.

For this purpose, our first experiments focused on the use of UML-based formalisms.

These experiments confirmed the interest of raising up the abstraction level but we had

to specialize the UML semantics according to the requirements of the considered field.

It was difficult to take into account this specialization in the tools we reused. In a sec-

ond step, we worked on the definition of a dedicated metamodel. The expected benefits

are two-fold: to provide a formal definition of Tune’s languages, and to statically and

dynamically validate the policies described by administrators with customized editors.

This work opens many perspectives on which we are currently working. Although

we already prototyped few specialized editors, we plan to provide editing tools for all

the administration points of view considered by Tune. Also, the Tune developpers are

currently extending the reconfiguration capabilities of Tune and the metamodel and the

associated editing tools will evolve accordingly. In the longer term, we plan to revisit

the design of the Tune system, considering that the management layer (illustrated in

Figure 1) should be managed as a model (instead of a component architecture at the

middleware level). This means that models would not only be used to describe policies,

but would further be used to maintain the internal state of the Tune system. We refer

to this new MDE field as Model-Driven System Administration. We are convinced that

it is now essential to increase the abstraction level of software management, not only

during the design but also during their development and administration.

Pre
lim

in
ar

y
Ver

si
on

References

1. Garlan, D., Cheng, S., Huang, A., Schmerl, B., Steenkiste, P.: Rainbow: Architecture-based

self adaptation with reusable Infrastructure. In: IEEE Computer, 37(10). (2004)
2. Hagimont, D., Bouchenak, S., Palma, N.D., Taton, C.: Autonomic Management of Clustered

Applications. In: IEEE International Conference on Cluster Computing. (2006)
3. Oriezy, P., Gorlick, M., Taylor, R., Johnson, G., Medvidovic, N., Quilici, A., Rosenblum, D.,

A.Wolf: An Architecture-Based Approach to Self-Adaptive Software. In: IEEE Intelligent

Systems 14(3). (1999)
4. Microsystems, S.: Java 2 Platform Enterprise Edition (J2EE). http://java.sun.com/j2ee/
5. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The Fractal Component

Model and its Support in Java. In: Software - Practice and Experience, special issue on

Experiences with Auto-adaptive and Reconfigurable Systems. (September 2006)
6. Toure, M., Berhe, G., Stolf, P., Broto, L., Depalma, N., Hagimont, D.: Autonomic Man-

agement for Grid Applications. In: 16th Euromicro International Conference on Parallel,

Distributed and network-based Processing. (February 2008)
7. The TOPCASED Project: http://www.topcased.org/
8. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual concrete

syntaxes in model engineering. In: Proceedings of the 5th International Conference on Gen-

erative Programming and Component Engineering, ACM (October 2006) 249–254
9. Muller, P.A., Fleurey, F., Fondement, F., Hassenforder, M., Schneckenburger, R., Gérard, S.,

Jézéquel, J.M.: Model-driven analysis and synthesis of concrete syntax. In: Proceedings of

the 9th IEEE/ACM International Conference on Model Driven Engineering Languages and

Systems. Volume 4199 of LNCS., Springer (October 2006) 98–110
10. GMF: Graphical Modeling Framework. http://www.eclipse.org/gmf/
11. Object Management Group: UML Object Constraint Language (OCL) 2.0. (June 2005)
12. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. In: IEEE Computer

Magazine, 36(1). (2003)
13. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dynamic Provisiong of Multi-Tier Internet

Applications. In: 2nd International Conference on Autonomic Computing. (June 2005)
14. Jiang, M., Zhang, J., Raymer, D., Strassner, J.: A Modeling Framework for Self-Healing

Software Systems. In: Workshop “Models@run.time” at the 10th International Conference

on model Driven Engineering Languages and Systems. (2007)
15. Pena, J., Hinchey, M.G., Sterritt, R., Ruiz-Cortes, A., Resinas, M.: A model-driven architec-

ture approach for modeling, specifying and deploying policies in autonomous and autonomic

systems. In: 2nd IEEE International Symposium on Dependable, Autonomic and Secure

Computing, IEEE Computer Society (2006) 19–30
16. Barrett, K., Davy, S., Strassner, J., Jennings, B., van der Meer, S., Donnelly, W.: A model

based approach for policy tool generation and policy analysis. In: Proc. 1st IEEE Global

Information Infrastructure Symposium, IEEE (2007) 99–105
17. Sriplakich, P., Waignier, G., Le Meur, A.F.: Enabling Dynamic Co-Evolution of Models and

Runtime Applications. In: 1st IEEE International Workshop on Model-Driven Development

of Autonomic Systems, IEEE Computer Society (July 2008)
18. Rohr, M., Boskovic, M., Giesecke, S., Hasselbring, W.: Model-driven Development of Self-

managing Software Systems. In: Workshop “Models@run.time” at the 9th International

Conference on model Driven Engineering Languages and Systems (MoDELS). (2006)
19. Agrawal, D., Lee, K.W., Lobo, J.: Policy-based management of networked computing sys-

tems. Communications Magazine, IEEE 43(10) (October 2005) 69–75
20. Davy, S., Barrett, K., Serrano, M., Strassner, J., Jennings, B., van der Meer, S.: Policy In-

teractions and Management of Traffic Engineering Services Based on Ontologies. Network

Operations and Management Symposium (September 2007) 95–105

