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We solve a finite range two-channel model for three resonant identical bosons. The model pro-
vides a minimal description of the various magnetic Feshbach resonances in single species ultra-cold
bosonic systems, including off-resonant scattering. We obtain important insights into the inter-
pretation of seminal experiments: the three-body recombination rate measured in Sodium and the
Efimov resonances observed in Cæsium. This approach quantifies non universal effects appearing
for a finite magnetic field detuning.

PACS numbers: 34.50.Cx 03.65.Nk 03.75.Kk 05.30.Jp

One of the main issues in current ultracold physics is to
achieve highly correlated quantum gases. In these studies
the magnetic Feshbach resonance is a crucial ingredient:
it permits to tune the strength of the two-body inter-
action measured by the s-wave scattering length to an
arbitrarily large value, while the atomic density remains
constant. However for dilute bosonic gases, such highly
correlated states are very unstable as a consequence of
three-body recombinations into deep molecular bound
states [1, 2]. Therefore, in the last decade an impres-
sive effort has been made both theoretically and exper-
imentally, for a deep understanding of three-body prop-
erties in these systems. Universality concepts borrowed
from Nuclear physics together with the specificity of ul-
tracold atoms where an explicit energy scale separation
occurs in scattering processes have led to unsuspected
physical insights in this domain [3, 4]. For example,
the so-called Efimov states have been observed for the
first time in a resonant ultracold Cæsium gas [5]. For
scattering lengths much larger than the range of inter-
atomic forces, Universal Theory [4] permits a powerful
analysis of three-body properties without any knowledge
of the short range details of the real interatomic forces.
For narrow resonances like the one observed in Ref.[2],
it is possible to fully determine the Efimov spectrum at
resonance using the effective range approach [6, 7]. De-
spite their success, these approaches are not designed for
a description of three-body properties at finite detun-
ing, where off-resonant scattering effects come into play.
Experiments on Efimov states in Ref. [9] clearly exhibit
some non universal behavior which cannot be taken into
account by the Universal Theory. Moreover, the peak
in three-body losses in Ref. [2] occurs for relatively large
magnetic detuning where the effective range approach is
inoperant. In this letter, we solve the three-boson prob-
lem by using a two-channel model including the short
range character of interatomic forces. The model de-
scribes all the various type of magnetic Feshbach reso-
nances: broad, narrow or in the neighborhood of a shape
resonance. Results of the model compare quantitatively
with experiments of Ref. [2], highlighting the importance

of off-resonant effects in narrow resonances. Concerning
the experiments in Refs. [5, 9], our results show that the
observed violation of universality follows from the fact
that the resonance in the atom-dimer scattering appears
in a domain where the range of interatomic forces is not
negligible as compared to the scattering length.

We first introduce the finite range two-channel model.
The two channels refer to the ’open’ channel populated
by atoms which are identical ultra-cold bosons of mass
m, and to the ’closed’ channel where fundamentals enti-
ties are couples of two tightly bound atoms that we here
call ’molecules’. The model takes a simple form in the
second quantized form, where the operator ak annihilates
an atom in the open channel with momentum k, while bk
annihilates a molecule of wavevector k in the closed chan-
nel. Both ak and bk obey standard bosonic commutation

rules [ak, a†
k′ ] = [bk, b†

k′ ] = (2π)3δ(k − k
′), corresponding

to the choice 〈r|k〉 = exp(ik · r) for the plane wave state.
Any other commutator vanishes. The Hamiltonian is
similar to the ones introduced for two-component or fully
polarized fermions in Refs. [10, 11]:

H =

∫

dk

(2π)3

[

ǫka†
k
ak +

( ǫk
2

+ Emol

)

b†
k
bk

]

+
g0

2

∫

dkdKdk′

(2π)9
χ∗

kχk′ a†
K

2
−k′

a†
K

2
+k′

aK

2
+k

aK

2
−k

+ Λ

∫

dkdK

(2π)6

(

χ∗
k

b†
K

aK

2
−k

aK

2
+k

+ h.c.
)

. (1)

The first two terms in Eq. (1) are the kinetic op-
erators in the open and closed channel respectively:
ǫk = ~

2k2/(2m), and Emol is the internal energy of the
molecular state in the closed channel, defined with re-
spect to the zero energy in the open channel. The mag-
netic tunability of the interaction strength is due to the
fact that Emol is an affine function of the magnetic field B
with the slope δµ, where δµ is the difference between the
magnetic moments for an atomic pair in the open and
closed channel. The second line in Eq. (1) mimics the
interatomic force in the open channel which is responsi-
ble for the background scattering. In a real system it is
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characterized by an attractive van der Waals tail, and the
van der Waals constant C6 sets up the short range scale
of this pairwise interaction: RvdW = 1

2 (mC6/~
2)1/4. In

the present model, for simplicity we choose a separable
interaction, with a Gaussian weight χk = exp(−k2b2/2)
imposing a cut-off at short distances: b ≡ O(RvdW). The
last term in Eq. (1) describes the coupling between the
two channels and models the Feshbach resonance mech-
anism (we choose Λ ∈ R). The inter-channel coupling is
also taken into account via the same Gaussian weight χk

as in the open channel interacting term.
We now determine the different parameters of the

model from measured two-body properties. For this pur-
pose we solve the two-body scattering problem in the
center of mass frame. For an incident plane wave of
energy E = ~

2k2
0/m and momentum k0, the two-body

state is a coherent superposition of one molecule plus

two atoms: |Ψ〉 = (βb†
0

+
∫

dk
(2π)3 Aka†

k
a†
−k

)|0〉, where Ak

is the atomic wave function in the form:

Ak = (2π)3δ(k − k0) +
4π~

2

m

f(E)

2ǫk − E − i0+
, (2)

and f(E) is the scattering amplitude. Remarkably, the
s-wave scattering length (denoted by a) obtained in this
two-channel model can be exactly identified with the fol-
lowing expression which is known to be very accurate in
the vicinity of a Feshbach resonance [12]:

a = abg

(

1 − ∆B
B − B0

)

. (3)

In Eq. (3), abg is the background scattering length, and
∆B is the width of the resonance located at the mag-
netic field B0. One finds abg = bg0

√
π/(g0 − gc

0), with

gc
0 = −4π3/2

~
2b/m, an energy detuning from resonance

ν = Emol − 2Λ2/g0 + δµ∆B where ν = δµ(B − B0) and a
resonance width ∆B = 8π~

2Λ2abg/(mg2
0δµ). This last

relation implies that the energy width δµ∆B always has
the same sign as the background scattering length abg.
We checked that this property is indeed verified for the
various resonances reported in Ref. [12]. Using these pa-
rameters, the scattering amplitude admits a simple ex-
pression for E = −~

2q2/m < 0 (k0 = iq and q > 0):

1

f(E)
= qerfc(qb) − e−q2b2

abg

(

1 − δµ∆B
E − ν + δµ∆B

)

. (4)

We use experimental or theoretical spectroscopic data
on the two-body bound states as a way to choose a pre-
cise value for b (in absence of such data, we arbitrar-
ily set b = RvdW). In order to avoid any confusion the
two-body bound states are denoted by ’dimers’ and are
distinct from the molecular state. Their binding energies
E = −Edim = −~

2q2
dim/m < 0 are poles of f(E). In what

follows, we briefly sketch their spectrum as a function of
the energy detuning ν. For ν < 0, there is a branch
terminating at zero energy for ν = 0−: this branch re-
sults from the interchannel coupling and is denoted be-
low as the Feshbach dimer’s branch. Furthermore, in the

case abg > b
√

π, another branch exists for all possible
values of the detuning. Away from the Feshbach reso-
nance and for ν > 0, it results from the direct coupling
in the open channel and we denote it as the ’background
dimer’ branch. For decreasing values of ν there is an
avoided crossing between the two branches. We checked
for several resonances that a choice of b of the order of
RvdW permits to describe the lowest dimer’s branch over
a wide range of magnetic field detuning. In Fig. (1), we
compare the results of the model with the experimental
data of the resonance located at B0 ∼ −11.7 G for Cæ-
sium [8, 9] (∆B ≃ 28.7 G, abg ≃ 1720a0, RvdW ≃ 101a0

and δµ ≃ 2.3|µB| [12]). The system is in the vicinity
of a shape resonance (abg ≫ RvdW) and the spectrum
displayed corresponds to the branch of the background
dimer. We found very good agreement for b = 0.7RvdW.
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FIG. 1: Comparison between experimental dimer’s energies
in 133Cs obtained at Innsbruck (black losanges) [8] and results
of the two-channel model for b = 0.7RvdW (black line). Inset:
detail of the deviation of the spectrum from the universal law
Edim = ~

2/(ma2) (dashed line).

We now turn to the central part of the present work
by investigating the problem of three interacting bosons.
The general three-body eigenstate of Eq. (1) of energy E
in the total center of mass frame, is a coherent superpo-
sition of three atoms plus one atom and one molecule:

|Ψ〉 =

∫
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(2π)3
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In Eq.(5) AK,k and βK are respectively the atomic and
the atom-molecule wavefunctions. For E > 0, the atomic
wavefunction contains an eigenstate of the atomic kinetic

operator A
(0)
K,k, and for all E ∈ R, AK,k can written as:

AK,k = A
(0)
K,k + Λχkβeff

K /(Erel − 2ǫk + i0+), (6)
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where Erel = ~
2k2

rel/m = E −3~
2K2/(4m) is the relative

energy between a pair of atoms and the third atom. For
convenience, we introduced in Eq. (6) the effective atom-
molecule wavefunction βeff

K
:

βeff
K

= βK × (Erel − ν + δµ∆B)/(Emol − ν + δµ∆B). (7)

The three-boson problem for this model is solved by find-
ing the solutions of the integral equation which is deduced
from the stationary Schrödinger equation:

m|χkrel
|2βeff

K

4π~2f(Erel)
− 2

∫

dk

(2π)3

βeff
k

χ∗
K

2
+k

χ
K+ k

2

ǫk + ǫK + ǫK+k − E − i0+

= −
∫

dk

(2π)3
χ∗

k

Λ

(

A
(0)
K,k + 2A

(0)

−K

2
+k,− 3K

4
−k

2

)

. (8)

Remarkably all the two-body physics, contained in the
scattering amplitude f(E), appears in the diagonal part
of Eq. (8). Nearby a resonance, in the limit where
|a| → ∞, Eq. (8) converges asymptotically in the low-
energy regime (i.e. for kb ≪ 1 and Kb ≪ 1) toward
the so-called Skorniakov Ter-Martirosian equation of
Ref. [13], while the high energy limit of the integral ker-
nel acts as an ultra-violet cut-off and the Thomas collapse
is avoided [14]. As the magnetic detuning |B − B0| is in-
creased, off-resonant effects come into play and the model
can be used to quantify deviation from the universal the-
ory [3, 4]. To this end, we numerically solved Eq. (8)
using two independent codes for several Feshbach reso-
nances. We report in the following our results concerning
the resonances studied experimentally in Refs. [1, 2, 5, 9].
First, we investigate the spectrum of trimers made of
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FIG. 2: Spectrum of bound states in 133Cs (B0 ∼ −11.7 G).
Solid lines: trimers; dashed line: dimers; dotted horizontal
line: “High energy” limit −~

2/(mR2
vdW); doted vertical lines:

position of the Efimov resonances observed in the experiment
(at 7.5 G and 25 G resp.); Crosses: thresholds computed with
the two-channel model (at 10.3 G and 23.2 G resp.).

Cæsium atoms for the Feshbach resonance at −11.7 G.
Trimers are obtained by searching negative energy solu-
tions (or E < −Edim if a shallow dimer exists) of Eq. (8)

where A(0) = 0. At resonance (ν = 0), we recover the
Efimov spectrum: En = E0e

−2πn/s0 , (n ∈ N) where E0

is the energy of the lowest Efimov state [of the order of
−~

2/(mR2
vdW)] and s0 = 1.00624 [3, 4]. In Fig. (2) we

plot the spectrum as a function of the magnetic field. Our
model predicts four important features: (i) The existence
of two Efimov branches extending in the regions of posi-
tive and negative B. Each branch is continuous through
the formal limit |B| = ∞. Other Efimov branches are lo-
cated in a small interval near B0; (ii) The threshold of the
first Efimov branch at 10.3 G observed in Ref.[5] at 7.8 G;
(iii) The two trimer branches hit the background dimer
branch in a non universal region where short range details
of the interatomic forces are not negligible –see inset of
Fig.(1)– and where our model gives qualitative informa-
tions only; (iv) In experiments reported in Ref. [9], the
magnetic field was decreased from a large detuning and
a dimer-trimer resonance loss was found at ∼ 25 G. The
present model shows that the observed threshold corre-
sponds to the second trimer branch. The disagreement
between theoretical and experimental thresholds follows
from item (iii). Moreover the asymptotic behavior of the
wave function at distances r ≪ a is a crucial ingredient
in Universal Theory and follows from taking the ’unitary
approximation’ of the scattering amplitude f ∼ −1/ik at
intermediate momentum 1/a ≪ k ≪ min(1/RvdW, 1/re),
where re is the effective range. However, at the ob-
served threshold ∼ 25 G, a/RvdW ∼ 4 and from Eq. (4),
a/re ∼ 2. Hence, in this detuning region there is no clear
separation of momentum scale and the ’unitary approxi-
mation’ for intermediate momentum is not correct. This
fact gives an important insight in the deviation from pre-
diction of Ref. [4] concerning the ratio between the scat-
tering lengths at the two observed thresholds.

In this last part, we study the recombination of three
incoming atoms of vanishing total energy into one two-
body bound state and one atom. This is the main process
responsible for the short life time of a resonant BEC in
a dipolar trap. Experimentally, it is measured via the
atomic loss rate which is defined for N atoms trapped in
a cubic box of size L by:

Ṅ = −αrecN(N − 1)(N − 2)/L6, (9)

where αrec is the three-body recombination constant.
The atomic loss rate plotted as a function of the mag-
netic field detuning exhibits a large peak centered at the
resonance. We limit our analysis to the standard regime
where for a given detuning there exists at most one shal-
low dimer only (abg is of the order of RvdW or nega-
tive). There are two distinct regimes in the recombina-
tion process: (a) In the regime of negative energy detun-
ing (ν < 0) the formation rate of Feshbach dimers is the
dominant loss mechanism. This dimer is an eigenstate of
the model Hamiltonian in Eq. (1) and the recombination
constant can be computed exactly; in what follows, it is
denoted by αFesh

rec ; (b) In the regime ν > 0 there is no shal-
low dimer and the deep bound states populated in inelas-
tic scattering processes are not described by our model
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FIG. 3: Three-body recombination constant αrec as a func-
tion of the magnetic field B for the narrow Feshbach resonance
in 23Na at 907 G. The three different symbols correspond to
different ramp speeds of the magnetic field across the reso-
nance in Ref. [2]. Solid line: prediction of the two-channel
model, dashed line: prediction of the effective range model in
Ref. [6]. The vertical line at resonance is due to the existence
of narrow oscillations of αrec also predicted in Refs. [6, 7].

Hamiltonian. In this case, we denote the recombination
constant by αdeep

rec . In both regimes the source term in

Eq.(6) is A
(0)
K,k = (2π)6δ(K)δ(k) and corresponds to the

incoming atomic wave function in the three-body scatter-
ing process. In the first regime [case (a)], the outgoing
dimer and atom created by inelastic scattering have a
relative momentum 2√

3
qdim. The dimer formation man-

ifests itself as an outgoing wave in the atom-molecule
wave function, and the wave function βK has a pole at
K = 2√

3
qdim + i0+; we denote the residue of this pole by

γ. In order to evaluate αFesh
rec , we enclose the three incom-

ing atoms in a fictitious box of arbitrary large size L and
impose periodic boundary conditions. The wave function
is then deduced from Eq. (5) with |Ψbox〉 ≃ |Ψ〉/L9/2.
The rate of molecule formation is obtained in configura-
tion space by computing the total flux of the probabil-
ity current associated with the atom-molecule wave func-
tion (relative particle of reduced mass 2m/3) through the
box surface. Since the flying dimer has a non vannishing
probability (pclosed) to be in the closed channel, we di-

vide this total flux by pclosed thus obtaining the atomic
loss rate Ṅ . By comparing this expression with the case
N = 3 in Eq. (9), one obtains:

αFesh
rec = 2

√
3~q3

dim|γ|2/(9πmpclosed). (10)

In the regime ν > 0 [case (b)], the recombination rate
can be evaluated on a qualitative basis only. The idea
is to compute in the fictitious box of size L the prob-
ability P< of finding the three atoms or the atom and
the molecule in a volume of the order of R3

vdW. This
calculation is performed in configuration space by using
Eq. (5). Since RvdW gives the typical size of deep bound
states, the loss rate is obtained by dimensional analysis
with Ṅ ∝ − ~P<

mR2
vdW

, and finally the recombination con-

stant is estimated by: αdeep
rec = ~L6P<

mR2
vdW

. We applied this

formalism for the narrow resonance [i.e. δµ∆B ≪ ~
2

ma2
bg

]

in 23Na at B0 ≃ 907 G [1] (∆B ≃ 1 G, δµ ≃ 3.8|µB|,
abg ≃ 63a0 and RvdW ≃ 44.5a0 [12]). Fig. (3) shows a
dramatic agreement of our results (for b = RvdW) with
the experiments in Ref. [2]. Three-body properties in
narrow resonances are usually described within the effec-
tive range approximation by using the two parameters a
and R⋆ = ~

2/(mδµ∆B) [6]. As shown in Fig. (3), this
latter approach gives reasonable results very close to the
resonance only. In the zero range limit (b → 0), when
the parameters a and R⋆ are held fixed, and abg ≡ 0(b)
vanishes (but abg 6= b

√
π), the present model coincides

with the effective range approach exactly. Therefore, in
realistic situations where b and abg are both finite, this
two-channel model quantifies consistently off-resonant ef-
fects. We verified that αrec in Fig. (3) is not very sensible
to the precise choice for b ≡ 0(RvdW), showing that for
a narrow resonance the present model gives quantitative
results for the deviation from universality.

To conclude, we presented a rather simple formalism
to capture the main physical features in resonant three-
bosons systems. The short range details of interatomic
forces are described by one parameter only, so that we
avoided the complexity of more detailed models [15, 16].
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