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We solve a finite range two-channel model for three resonant identical bosons. The model provides
a minimal description of the various magnetic Feshbach resonances realized in single species ultra-
cold bosonic systems, including off-resonant scattering. We obtain important insights into the
interpretation of seminal experiments: the three-body recombination rate measured in Sodium and
the Efimov resonances observed in Cæsium. This approach quantifies non universal effects appearing
for a finite magnetic field detuning.

PACS numbers: 21.45.+v,05.30.Jp,03.65.Nk

One of the main issues in actual ultracold physics is to
achieve highly correlated quantum gases. The achieve-
ment of a vortex lattice at the BEC-BCS crossover for
two-spin components fermions, represents a spectacu-
lar success in this emerging field [1]. In these studies
the magnetic Feshbach resonance is a crucial ingredient,
which allows one to tune the strength of the two-body
interaction measured by the s-wave scattering length to
an arbitrarily large value, while the atomic density re-
mains constant. However for dilute bosonic gases, such
highly correlated states are very unstable as a conse-
quence of three-body recombinations into deep molec-
ular bound states [2, 3]. Therefore, in the last decade an
impressive effort has been made both theoretically and
experimentally, for a deep understanding of three-body
properties in these systems. Universality concepts bor-
rowed from Nuclear physics together with the specificity
of ultracold Atomic physics, where an explicit scales sep-
aration occurs in scattering process, have led to unsus-
pected physical insights in this domain [4, 5]. For exam-
ple, the so-called Efimov states have been observed in a
resonant ultracold Cæsium gas [6]. For very large scat-
tering length, Universal Theory [5] permits a powerful
analysis of three-body properties without any knowledge
of the short range details of the real interatomic forces.
Furthermore, for narrow resonances it is possible to fully
determine the Efimov spectrum at resonance using the ef-
fective range approach [7, 8]. Despite their success, these
theories are not designed for a description of three-body
properties at finite detuning, where off-resonant scatter-
ing effects can be important. Experiments on Efimov
states in Ref. [9] clearly exhibit some non universal be-
havior which cannot be taken into account by the Uni-
versal Theory. Moreover, the peak in three-body losses
even for a narrow resonance occurs for relatively large
magnetic detuning where the effective range approach is
inoperant [3]. In this letter, we solve the three-boson
problem using a finite range two-channel model which is
able to describe the various type of magnetic Feshbach
resonances: broad, narrow or in the neighborhood of a
shape resonance; the model also qualitatively includes

the short range character of interatomic forces. Results
of the model compare quantitatively with experiments of
Ref. [3], highlighting the importance of off-resonant ef-
fects in narrow resonances. Concerning the experiments
in Refs. [6, 9], our results suggest that the observed vi-
olation of universality follows from two different causes:
first, the two observed Efimov resonances do not belong
to the same branch; second, the resonance in the atom-
dimer scattering appears in a domain where the short
range details of the interatomic forces are not negligible.

We first introduce the finite range two-channel model.
The two channels refer to the ’open’ channel populated
by atoms which are identical ultra-cold bosons of mass
m, and to the ’closed’ channel where fundamentals enti-
ties are couples of two tightly bound atoms that we here
call ’molecules’. The model takes a simple form in the
second quantized form, where the operator ak annihilates
an atom in the open channel with momentum k, while bk
annihilates a molecule of wavevector k in the closed chan-
nel. Both ak and bk obey standard bosonic commutation

rules [ak, a†
k′ ] = [bk, b†

k′ ] = (2π)3δ(k − k
′), corresponding

to the choice 〈r|k〉 = exp(ik · r) for the plane wave state.
Any other commutator vanishes. The Hamiltonian is
similar to the ones introduced for two-component or fully
polarized fermions in Refs. [10, 11]:
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The first two terms in Eq. (1) are the kinetic op-
erators in the open and closed channel respectively:
ǫk = ~

2k2/(2m), and Emol is the internal energy of the
molecular state in the closed channel, defined with re-
spect to the zero energy in the open channel. The mag-
netic tunability of the interaction strength is due to the
fact that Emol is an affine function of the magnetic field
B with the slope δµ, where δµ is the difference between
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the magnetic moments for an atomic pair in the open and
closed channel. The second line in Eq. (1) mimics the in-
teratomic force in the open channel which is responsible
for the background scattering. In a real system it is char-
acterized by an attractive van der Waals tail, and the van
der Waals constant C6 sets up the short range scale of
this pairwise interaction: RvdW = 1

2 (mC6/~
2)1/4. In the

present model, for simplicity we choose a separable inter-
action, with a Gaussian weight χk = exp(−k2b2/2) which
imposes a cut-off at short distances: b ≡ O(RvdW). The
last term in Eq. (1) describes the coupling between the
two channels and thus models the Feshbach resonance
mechanism (we choose Λ ∈ R). The inter-channel cou-
pling is also taken into account via the same Gaussian
weight χk as in the open channel interacting term.

We now determine the different parameters of the
model from measured two-body properties. For this pur-
pose we solve the two-body scattering problem in the
center of mass frame. For an incident plane wave of
energy E = ~

2k2
0/m and momentum k0, the two-body

state is a coherent superposition of one molecule plus

two atoms: |Ψ〉 = (βb†
0

+
∫

dk
(2π)3 Aka†

k
a†
−k

)|0〉, where Ak

is the atomic wave function and takes the form:

Ak = (2π)3δ(k − k0) +
4π~

2

m

f(E)

2ǫk − E − i0+
, (2)

and f(E) is the scattering amplitude. Remarkably, the
s-wave scattering length (denoted by a) obtained in this
two-channel model can be exactly identified with the fol-
lowing expression which is known to be very accurate in
the vicinity of a Feshbach resonance [12]:

a = abg

(

1 − ∆B
B − B0

)

. (3)

In Eq. (3), abg is the background scattering length, and
∆B is the width of the resonance located at the mag-
netic field B0. One finds abg = bg0

√
π/(g0 − gc

0), with

gc
0 = −4π3/2

~
2b/m, an energy detuning from resonance

ν = Emol − 2Λ2/g0 + δµ∆B where ν = δµ(B − B0) and a
resonance width ∆B = 8π~

2Λ2abg/(mg2
0δµ). This last

relation implies that the energy width δµ∆B always has
the same sign as the background scattering length abg.
We checked that this property is indeed verified for the
various resonances reported in Ref. [12]. Using these pa-
rameters, the scattering amplitude admits a simple ex-
pression for E = −~

2q2/m < 0 (k0 = iq and q > 0):

1

f(E)
= qerfc(qb) − e−q2b2

abg

(

1 − δµ∆B
E − ν + δµ∆B

)

. (4)

We use experimental or theoretical spectroscopic data
on the two-body bound states as a way to choose a pre-
cise value for b (in absence of such data, we arbitrar-
ily set b = RvdW). In order to avoid any confusion the
two-body bound states are denoted by ’dimers’ and are
distinct from the molecular state. Their binding energies
E = −Edim = −~

2q2
dim/m < 0 are poles of f(E). In what

follows, we briefly sketch their spectrum as a function of
the energy detuning ν. For ν < 0, there is a branch
terminating at zero energy for ν = 0−: this branch re-
sults from the interchannel coupling and is denoted be-
low as the Feshbach dimer’s branch. Furthermore, in the
case abg > b

√
π, another branch exists for all possible

values of the detuning. Away from the Feshbach reso-
nance and for ν > 0, it results from the direct coupling
in the open channel and we denote it as the ’background
dimer’ branch. For decreasing values of ν there is an
avoided crossing between the two branches. We checked
for several resonances that a choice of b of the order of
RvdW permits to describe the lowest dimer’s branch over
a wide range of magnetic field detuning. In Fig. (1), we
compare the results of the model with the experimental
data of the resonance located at B0 ∼ −11.7 G for Cæ-
sium [9] (∆B ≃ 28.7 G, abg ≃ 1720a0, RvdW ≃ 101a0

and δµ ≃ 2.3|µB| [12]). The system is in the vicinity
of a shape resonance (abg ≫ RvdW) and the spectrum
displayed corresponds to the branch of the background
dimer. We found very good agreement for b = 0.7RvdW.
Finally, we note that due to the interchannel coupling,
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FIG. 1: Comparison between experimental dimer’s energies
in 133Cs obtained by the group of R. Grimm at Innsbrück
(black losanges) and results of the two-channel model for b =
0.7RvdW (black line). Inset: detail of the deviation of the
spectrum from the universal law Edim = ~

2/(ma2) (dashed
line).

the dimer has in general a non vanishing occupation prob-
ability in the closed channel; in what follows, we denote
this probability by pclosed.

We now turn to the central part of the present work
by investigating the problem of three interacting bosons.
The general three-body eigenstate of Eq. (1) of energy E
in the total center of mass frame, is a coherent superpo-
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sition of three atoms plus one atom and one molecule:

|Ψ〉 =

∫

dK

(2π)3
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In Eq.(5) AK,k and βK are respectively the atomic and
the atom-molecule wavefunctions. For positive total en-
ergy E, the atomic wavefunction contains an eigenstate

of the atomic kinetic operator A
(0)
K,k, and for all E ∈ R,

AK,k can written as:

AK,k = A
(0)
K,k + Λχkβeff

K /(Erel − 2ǫk + i0+), (6)

where Erel = ~
2k2

rel/m = E −3~
2K2/(4m) is the relative

energy between a pair of atoms and the third atom. For
convenience, we have introduced in Eq. (6) the effective
atom-molecule wavefunction βeff

K
:

βeff
K

= βK × (Erel − ν + δµ∆B)/(Emol − ν + δµ∆B). (7)

The three-bosons problem for this model is solved by
finding the solutions of an integral equation which is de-
duced from the stationary Schrödinger equation:
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Remarkably all the two-body physics, contained in the
scattering amplitude f(E), appears in the diagonal part
of Eq. (8). We have solved numerically Eq. (8) using
two independent codes for several Feshbach resonances.
We report in the following our results concerning the
resonances studied experimentally in Refs. [2, 3, 6, 9].
First, we investigate the spectrum of trimers made of
Cæsium atoms for the Feshbach resonance at −11.7 G.
Trimers are obtained by searching negative energy so-
lutions (or E < −Edim if a shallow dimer exists) of
Eq. (8), thus without the source term (A(0) = 0).
At resonance (ν = 0), we recover the Efimov spectrum:
En = E0e

−2πn/s0 , (n ∈ N) where E0 is the energy of the
lowest Efimov state [of the order of −~

2/(mR2
vdW)] and

s0 = 1.00624 [4, 5]. In Fig. (2) we plot the spectrum
as a function of the magnetic field. Our model predicts
four important features: (i) The existence of two Efimov
branches which extend in the regions of positive and neg-
ative B. Each branch is continuous through the formal
limit |B| = ∞. Other Efimov branches are located in a
small interval near B0; (ii) The threshold of the first Efi-
mov branch at 10.3 G observed in Ref.[6] at 7.8 G; (iii)
Hitting of the two branches with the background dimer
branch occurs in a non universal region where short range
details of the interatomic forces are not negligible –see in-
set of Fig.(1)– and where our model gives qualitative in-
formations only; (iv) In experiments reported in Ref. [9],

-100 -80 -60 -40 -20 0 20 40 60 80 100

Magnetic field [ G ]

-0.0001

-0.001

-0.01

-0.1

-1

-10

E
/h

 [
 M

H
z 

]

FIG. 2: Spectrum of bound states in 133Cs (B0 ∼ −11.7 G).
Solid lines: trimers; dashed line: dimers; dotted horizontal
line: “High energy” limit −~

2/(mR2
vdW); doted vertical lines:

position of the Efimov resonances observed in the experiment
(at 7.5 G and 25 G respectively); Crosses: thresholds com-
puted with the two-channel model (at 10.3 G and 23.2 G
respectively).

the magnetic field was decreased from a large detuning
value and the hitting of a trimer and of the background
dimer branches was found at ∼ 25 G. The present model
shows that the observed threshold corresponds to the sec-
ond trimer branch. The disagreement between theoreti-
cal and experimental threshold values follows from item
(iii). To conclude, the ratio between the two measured
threshold values of B does not fulfill the prediction of
Universal Theory because they don’t belong to the same
branch. Furthermore, the ratio for thresholds of a same
branch is also not universal as a consequence of (iii).

In this last part, we study the recombination of three
incoming atoms of vanishing total energy into one two-
body bound state and one atom. This is the main process
responsible for the short life time of a resonant BEC in
a dipolar trap. Experimentally, it is measured via the
atomic loss rate which is defined for N atoms trapped in
a cubic box of size L by:

Ṅ = −αrecN(N − 1)(N − 2)/L6, (9)

where αrec is the three-body recombination constant.
The atomic loss rate plotted as a function of the mag-
netic field detuning exhibits a large peak centered at
the resonance. We limit our analysis to the standard
regime where for a given detuning there exists at most
one shallow dimer only (abg is of the order of RvdW

or negative). There are two distinct regimes in the re-
combination process: (a) In the regime of negative en-
ergy detuning (ν < 0) the formation rate of Feshbach
dimers is the dominant loss mechanism. This dimer is
an eigenstate of the model Hamiltonian in Eq. (1) and in
this framework, the recombination constant can be com-
puted exactly; in what follows, it is denoted by αFesh

rec ;
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FIG. 3: Three-body recombination constant αrec as a func-
tion of the magnetic field B for the narrow Feshbach resonance
in 23Na at 907 G. The three different symbols correspond to
different ramp speeds of the magnetic field across the reso-
nance. Solid line: theoretical prediction. The vertical line at
resonance is due to the existence of narrow oscillations of αrec

also predicted in Refs. [7, 8].

(b) In the regime ν > 0 there is no shallow dimer and
the deep bound states populated in inelastic scattering
processes are not described by our model Hamiltonian.
In this case, we denote the recombination constant by
αdeep

rec . In both regimes the source term in Eq.(6) is

A
(0)
K,k = (2π)6δ(K)δ(k) and corresponds to the incoming

atomic wave function in the three-body scattering pro-
cess. In the first regime [case (a)], the outgoing dimer
and atom created by inelastic scattering have a relative
momentum 2√

3
qdim. Thus, the dimer formation man-

ifests itself as an outgoing wave in the atom-molecule
wave function, and the wave function βK has a pole at
K = 2√

3
qdim + i0+; we denote the residue of this pole by

γ. In order to evaluate αFesh
rec , we enclose the three incom-

ing atoms in a fictitious box of arbitrary large size L and
impose periodic boundary conditions. The wave function
is then deduced from Eq. (5) with: |Ψbox〉 ≃ |Ψ〉/L9/2.
The rate of molecule formation is obtained in configura-
tion space by computing the total flux of the probability
current associated with the atom-molecule wave function
(relative particle of reduced mass 2m/3) through the box
surface. Since the flying dimer has a probability pclosed

to be in the closed channel, we divide this total flux by

pclosed thus obtaining the atomic loss rate Ṅ . By com-
paring this expression with the case N = 3 in Eq. (9),
one obtains:

αFesh
rec = 2

√
3~q3

dim|γ|2/(9πmpclosed). (10)

In the regime ν > 0 [case (b)], the recombination rate
can be evaluated on a qualitative basis only. The idea
is to compute in the fictitious box of size L the prob-
ability P< of finding the three atoms or the atom and
the molecule in a volume of the order of R3

vdW. This
calculation is thus performed in configuration space by
using the full three-body state in Eq. (5). Using the fact
that RvdW defines the short range scale, the loss rate is
obtained by using dimensional analysis: Ṅ ∝ − ~P<

mR2
vdW

,

and finally the recombination constant is estimated by:

αdeep
rec = ~L6P<

mR2
vdW

. Finally, we applied this formalism for

the narrow resonance [i.e. δµ∆B ≪ ~
2

ma2
bg

] in 23Na at

B0 ≃ 907 G [2] (∆B ≃ 1 G, δµ ≃ 3.8|µB|, abg ≃ 63a0 and
RvdW ≃ 44.5a0 [12]). Fig. (3) shows a dramatic agree-
ment of our results (for b = RvdW) with the experiments
in Ref. [3]. It has been shown that three-body properties
in narrow resonances can be fully described within the
effective range approximation by using the two param-
eters a and R⋆ = ~

2/(mδµ∆B) only [7]. However, this
latter approach gives reasonable results in the immediate
vicinity of the resonance, for detuning hardly accessible
experimentally. In the zero range limit (b → 0), when the
parameters a and R⋆ are held fixed, and abg ≡ 0(b) van-
ishes (but abg 6= b

√
π), the present model coincides with

the effective range approach exactly. Hence, in realistic
situations where b and abg are both finite, it allows one
to quantifies consistently off-resonant effects. We verified
that αrec in Fig. (3) is not very sensible on the precise
choice for b ≡ 0(RvdW), which is a consequence of the
universal character of a narrow resonance.

To conclude, we modeled the short range character
of interatomic forces using the single parameter b, thus
avoiding the complexity of more detailed approaches
[13, 14]. This way, the model captures the main physi-
cal features in three resonant bosons systems thanks to
a rather simple formalism.

We thank Y. Castin, F. Ferlaino, R. Grimm for fruitful
discussions and W. Ketterle for providing us with exper-
imental data. LPTMC is UMR 7600 of CNRS and its
Cold Atoms group is associated with IFRAF.
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