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ABSTRACT. In this paper, we study the Gevrey regularity of weak solution for a class of linear and
quasilinear Fokker-Planck equations.

1. INTRODUCTION

Recently, a lot of progress has been made on the study for the spatially homogeneous Boltzmann
equation without angular cutoff, cf. [E, E, E, @} and references therein, which shows that the singularity
of collision cross-section yields some gain of regularity in the Sobolev space frame on weak solutions
for Cauchy problem. That means, this gives the C'°° regularity of weak solution for the spatially
homogeneous Boltzmann operator without angular cutoff. The local solutions having the Gevrey
regularity have been constructed in [@] for initial data having the same Gevrey regularity, and a
genearal Gevrey regularity results have given in [@] for spatially homogeneous and linear Boltzmann
equation of Cauchy problem for any initial data. In the other word, there is the smoothness effet
similary to heat equation.

However, there is no general theory for the spatially inhomogeneous problems. It is now a kinetic
equation in which the diffusion part is nonlinear operator of velocity variable. In [l], by using the
uncertainty principle and microlocal analysis, they obtain a C* regularity results for linear spatially
inhomogeneous Boltzmann equation without angular cutoff.

In this paper, we will study the Gevrey regularity of weak solution for the the following Fokker-
Planck operator in R?"+!

(1.1) L=0+v-0, —a(t,x,v) Dy,

where A\, is Laplace operator of velocity variables v.

The motivation of study for this class of operator is , as in [E], attempt to study inhomogenous
Boltzmann equations without angular cutoff and non linear Vlasov-Fokker-Planck equation (see [[L1],
).

Before stating the result, we recall the definition of Gevrey class function. Let U be an open subset
of RY and f be a real function defined in U. We say f € G*(U)(s > 1) if f € C>°(U) and for any
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2 THE GEVREY HYPOELLIPTICITY FOR FOKKER-PLANCK EQUATIONS

compact subset K of U, there exists a constant C' = Ck, depending only on K, such that for all
multi-indices & € NV and for all z € K

(1.2) 109 f(2)] < CR (Jaft)®.

Denote by U the closure of U in RY. we say f € G*(U) if f € G*(W) for some open neighborhood
W of U. The estimate (l.2) for x € K is valid if and only if the following one is valid ( cf.Chen
hua-Rodino[H] or Rodinol[[Lg]):

10° £l L2y < CLEF (Jaf)?lel,

In this paper, we use the above estimate in L2.

We say an operator P is G* hypoelliptic in U if u € D', Pu € G*(U) implies u € G*(U). Likewise,
we say an operator P is C* hypoelliptic in U if u € D/, Pu € C*°(U) implies u € C*(U).

The operator £ satisfies the Hormander’ condition. By virtue of the results of Hérmander [5], we
know that £ is C'°° hypoelliptic. In the aspect of Gevrey class, Derridj-Zuily [ﬂ] proved that L is
G*-hypoelliptic for s > 6 in a general form of Hérmander’s operators.

In this paper, we improve firstly the results of [ﬁ] for Fokker-Planck operators as the following
theorems.

Theorem 1.1. For any s > 3, if the coefficient a is in G*(R*"*1) and a(t,z,v) > co > 0, then the
operator L given in (IE) is G° hypoelliptic in R?"+1,

Of course, Theorem is also true for the following general operators,

n

i = 875 + A(U) : 81 - Z ajk(taxav)agjvk

jk=1

in an open domain U of R?"!, where A is a non singular n X n constant matrix, (a;x(t,z,v)) is
positive defined on U and belongs to G*(U).

Remark Our results is a local and interior regularity results, that means if there exists a weak solution
in D', then this solution is in Gevrey class in interior of domain. So that if the weak solution is a
solution of the Cauchy problem, we don’t need the regularity of initial data.

Secondly, we consider the quasi-linear equation

(1.3) Ou+v - Vau—alyu = F(t,z,v,u, Vyu)

where F' is nonlinear function of real variable (¢, z, v, w, p).

Theorem 1.2. Let u be a weak solution of equation ([.3) such that u,V,u € L3S (R**+1), then
u € G5(R*" 1)

for any s > 3, provided the coefficients a is in G*(R*" 1), a(t,z,v) > ¢y > 0 and nonlinear function
F(t,z,v,w,p) is in G5(R2"+2+n),

Remark : If the nonlinear term F' is independent of p or in the form of
Vo (F(t, z,v,u)),

we can suppose that the weak solution u € L2 (R?"1).

The plan of this paper is as follows : In section , we obtain a sharp subelliptic estimate for the
Fokker-Planck operator £ via direct computation, and then prove the Gevrey hypoellipticity of L.
In section , we prove the Gevrey regularity for the weak solutions of the quasi-linear Fokker-Planck
equation.
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2. SUBELLIPTIC ESTIMATE

We recall firstly some notations, || - ||+, & € R, is the classical Sobolev norm in H*(R?*"*!) and
(h, k) is the inner product of h, k € L*(R*"*1). Moreover if f,g € C§°(R?"*1), from Holder inequality
and Young inequality, for any € > 0,

ellnllz |, llgl®x
2.1 < A, < ey BIATR
(21) s 9)] < lallgl—s < SSRE 4+ 220
We have also the interpolation inequality for Sobolev space, for any € > 0 and any r; < ry < r3,
(2.2) [hllry < ellBllrg + =27/ o= p,,

Let 2 be an open subset of R?"*1. We denote by S™ = S™(Q), m € R, the symbol space of classical
pseudo-differential operator and P = P(t,z,v, Dy, D, D,) € Op(S™) a pseudo-differential operator
of symbol p(t,z,v;7,&,n) € S™. If P € Op(S™), then P is a continuous operator from HZ(Q) to
H~™(Q). Here H5(S) is the subspace of H®(R?"*!) consisting of the distributions having their

loc

compact support in €, and H;'_ ™ () consists of the distributions h such that ¢h € H*~™(R***1)
for any ¢ € C§°(€2). The more properties can be found in the Treves’ book [P(]. Remark that if
Py € Op(S™), P, € Op(S™2), then [Py, P»] € Op(S™Hma=1),

Now we show a sharp subelliptic estimate for the operator £, our proof bases on the work of
Bouchut [[f] and Morimoto-Xu [[i7].

Proposition 2.1. Let K be a compact subset of R?*t1. Then for any r > 0, there exists a constant
Ck,r, depending only on K and r, such that for any f € C§°(K),

(2:3) 1fllr < Crr{ 1£Fll7—2/5 + [ fll0 }-

To simplify the notation, in this section we will denote by Ck the different suitable constants
depending only on K. We have firstly the following three lemmas, which establish the gain of regularity
in the velocity variable v, in the space variable x and in the time variable t, respectively.

Lemma 2.2. There exists a constant C such that for any f € C§°(K),
IV fllo < Cxc{ LS. DI+ [1£llo}-
Moreover, for any r > 0, for any e > 0,
IVofll, <elLfll, + Crellfll, -

We get a gain of regularity of order 1 for v variable. This is obtained directly by the positivity of
coeflicient a and compact support of f. For the space variable x, we have also the following subelliptic
estimate.

Lemma 2.3. There exists a constant C such that for any f € C§°(K),
1D fllo < Cx(1££ o + 1l fll0),
where D2/® = (=D )3,
This is a result of [@], and it is deduced by following two estimates
1D fllo < Cic 180 115"°100f +v - A1,

and
[Aufllo < Cr(IILfllo+[1fllo)-

For the time variable ¢, we have also a gain of regularity of order 2/3.
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Lemma 2.4. There exists a constant Cx such that for any f € C§°(K),
[10ef11-1/3 < Cre (IIL£llo + [I.f[lo)-
In fact, we have
100l -1/5 = IA20 fllo < IIA72(8e +v - 02) fllo + A0 - 0 f o,
where A = (1 + [Dy[2 + |D;|? + |D,|*)*/2. From Lemma P3|, we have
IA=%0 - 8 fllo < CrIDZ* fllo < Cr (I1£fllo + 11 llo)-
The estimation for the term [|[A~Y/3(9; +v - 8,) f|lo can be obtained by direct calculus as in [L5].

Proof of Proposition P.1. The Lemma P.3, Lemma P.d and Lemma .4 deduce immediately

(2.4) Iflleys < Cr{IILflo+ 1 fllo }-

Moreover, choose a function ¢ € C§°(R?"*!) such that ¥|x = 1, Supp ® is a neighborhood of K.
Then for any f € C§°(K) and any r > 0,

£l = N9flr < Cr{ [0A™2 Fllays + 1A%, @] flloys ).
By virtue of (R.4) and the interpolation inequality (R.2), we have
£l < CrLINLPA™* 2 f o + 1| fllr—2/5 }
< Cor{ 1LOA 2P fllo + 1 fllo } +ell £l
Taking ¢ small enough, we get
11l < CrANESr—2s5 + 1o + 1L, wA™*1 o }.

Direct verification gives
(L, AT) = (Bt v- Opy WA =Y (e, AT,
j=1

+a[Bu,, [00;, WA 23] ]+ 20[0,,, YA"T%0,, },
This along with Lemma @ yields

I, wA 2P o < Ol 1f lr—2/3+ D 100, fllr—2/3 }

j=1

< Cr{IILfllr—2/3 + 1 fllr-2/3 }-

A

These three estimates gives immediately

Il < CxA ML lr—2/3 + 1 fllo+ 1 fllr-2s3 }-
Applying interpolation inequality @) again and taking € small enough, we prove Proposition @

We consider now the commutators of the operators £ with derivation and cut-off function.

Proposition 2.5. Let K be a compact subset of R2"+1. Then for any r > 0, there exist constants
Ck,r,Ck ro such that for any f € C§°(K),

1L, DIfllr < Crarf I1Lfllir1-2/3+ 1 fllo 3,
and
IE: elfllr < Crrp{ 1£f[lr—1/3 + 11 fllo
where ¢ € Cg°(R*™ 1) and we denote by D the differential operator 9y, dy or O,,.
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Proof. By using the positivity of coefficient a, we have

||Avf||r < OK{ ||£f||r + ||f||r+1 }
And [£, D] =[0: +v - 0x, D] —[a, D]A, deduce

||[‘Ca D]f”r < OK{ ||f||r+1 + ”Avf”?“ }
The above two inequalities along with the subelliptic estimate () yield the first desired inequality
in Proposition @
To treat [|[L, ¢]f]|,, the subelliptic estimate (P-3) give
IVofllr < Cx(1££ 17173 + 1 fllo)-

Now simple verification gives

Cr{ 1fllr+> 110w, fllr }

Jj=1

Cra{ LS r=1s3+ I f1l0 }-

L, @ISl

IN

IN

This completes the proof of Proposition @

We prove now the Gevrey hypoellipticity of £ . Our starting point is the following result due to
M.Durand [{:

Proposition 2.6. Let P be a linear differential operator with smooth coefficients in R and o,< two
fized positive numbers. If for any r > 0, any compact K C R™ and any ¢ € C®(R™), there exist
constants Ck » and Ck () such that for all f € C§(K),the following conditions are fulfilled:

(H1) 11> < Cra(IPfllr—e + [1f10);
(H2) I[P, Dilfllr < Crer(I|P fllrg1—< + [ fll0),
(Hs) I[P @) fllr < Crr (@) UIP fllr—s + 11 l0):
where 5
1 .
i = ;a_yjuy = 1727"' , M.

Then for s > max(1/¢,2/0), P is G*(R™) hypoelliptic, provided the coefficients of P are in the class
of G*(R™).

Proposition shows that the operator £ satisfies the conditions (Hy) with ¢ = 2/3, Proposition
p.5 assures the conditions (Hs) and (H3) with ¢ = 1/3. Then £ is G*(R?>"*!) hypoelliptic, s > 3, and
we have proved Theorem E

3. GEVREY REGULARITY OF NONLINEAR EQUATIONS

Let u € Li (R*"*1) be a weak solution of ([[.J). Firstly, we will prove u € C*°(R?"*1). And we
need the following nonlinear composition results (see for example [R3]).

Lemma 3.1. Let F(t,z,v,w,p) € C®(R*T2t") and r > 0. If u,V,u € L (R* TN H] (R?"H),
then F (-, u(-), Vou(-)) € Hf, (R*"1), and

(3.1) [61F (- u(), Vou() |, < C{ llg2ull, + l92Voul, },

where ¢1, P2 € CS°(R2"L) and ¢ = 1 on the support of ¢1, and C is a constant depending only on
T, ¢15 ¢2-
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Remark. If the nonlinear term F' is independent of p or in the form of
V’U(F(tv z,v, U)),

Then that v € L2 (R* 1) N H] (R?"*1) yields F(~,u(~), Vvu(-)) € H (R*T1),
Lemma 3.2. Let u,V,u € Hf, (R* 1) r > 0. Then we have
(3.2) le1Voull, < Cllezul,
where 1,2 € C§°(R?" 1) and o = 1 on the support of @1, and C is a constant depending only on
T, Y1, P2.

In fact, we have

le1Voull, < Vo, er]ull, + [Voprull, -

Clearly, the first term on the right is bounded by C'||¢aul|,. For the second term , combining the
second inequality in Lemma R.2 and (B.1), we get the desired estimate (B.d) at once. This completes
the proof of Lemma E

Now we are ready to prove

Proposition 3.3. Let u be a weak solution of ({[.3) such that u,V,u € L3S (R®*"*1). Then u is in
> (R2n+1).

In fact, from the subelliptic estimate (R.3) and the fact Lu(-) = F (-, u(-), V,u(-)), it then follows
(3-3) [rulliszss < CLIE (- ul), Vou()) |l + llv2ullo },

where 17,12 € C§°(R?"*1) and 42 = 1 on the support of ¥;. Combining (B.1), (B-g) and (B.3), we
have u € H2 (R?"*+1) by standard iteration. This completes the proof of Proposition B.3.

lo
Now starting from the smooth solution, we prove the Gevrey regularity. It suffices to show the

regularity in the open unit ball
Q= {(t,x,v) € R*T % 4 |22 + |[v]* < 1},
Set
Q, ={(t,z,v) €Q: (£ +z]* + |v|2)1/2 <1-p}, 0<p<l.

Let U be an open subset of R?"T1. Denote by H"(U) the space consisting of the functions which
are defined in U and can be extended to H"(R?*"*!). Define

lull ey = inf {1l g ey : 3 € HE(R2L), = ).
We denote ||ull,v = |lul g+, and
[D7ullr = > [ID%ull,.
|B8]=3

In order to treat the nonlinear term F on the right hand of )7 we need the following two
lemmas. The first one (see [@] for example) concerns weak solution in some algebra, and the second
is an analogue of Lemma 1 in [L(]. In the sequel C; > 1 will be used to denote suitable constants
depending only on n or the function F.

Lemma 3.4. Let r > (2n+1)/2 and uy,uz € H"(R*" 1), Then ujus € H"(R?" 1), moreover
(3-4) lurus|lr < Cllur|l;lluzlr,

where C is a constant depending only on n,r.
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Lemma 3.5. Let M; be a sequence of positive numbers and for some By > 0, the M; satisfy the
monotonicity conditions

jl
i(G —)!
Suppose F(t,z,v,u,p) satisfy

(35) MM] 1<B0Mj7 (1215277]7.]:1725)

(36) H ( tz'UDl DmF) ( (.)7V”u(.))Hr+n+1 Q < Cj+l+mMj*2Mm+l72a ]am+l > 25

where r s a real number satisfying r+n+1 > (2n+1)/2. Then there exist two constants Ca, Cs such
that for any Ho, Hy satisfying Ho, Hy > 1 and Hy > CoHy, if u(t, z,v) satisfy the following conditions

(3.7) ||Dju||r+n+1,ﬂ,3 <Hy, 0<5<1,

(38) ”DjuHrJrnJrl,Qﬁ < HOHfizMj72, 2 < 1< N,
(3.9) | DDl 4ns1,0, < HoH] >M;_o, 2<j<N.
Then for all o with |a| =

(310) H’QZJNDQI: ( ( ) v ’LL )] Hr+n+1 < C3HOH1N_2MN—27

where Y € C§(82p) is an arbitrary function.

Proof. Denote p = (p1,p2, -+ ,pn) = Vyu and k = (k1,ka--- , k). From Faa di Bruno’ formula,
YND*[F(-,u(-), Vyu(-))] is the linear combination of terms of the form

l

~ k
¢N8|a\+l+|k|F i 8

3.11 DYy - DPi (9, u),
( ) o aulapllﬂ, 5pn 1:[ H H ( i )

t,x,v

i=1 ji=1
where |a| 4+ 1+ |k| < |a| and

Z%+ZZ&—0&

=1 Jji
and if v; or 3}, equals to 0, we just mean DYu or D%y doesn’t appear in () Choose a function
Ve C§°(9;) such that ¥ =1 on Supp ¢n. Note that n+1+r > (2n + 1)/2, and hence applying
Lemma 3.4, we have
(3.12)

glal+i+lkl @
wNaulap kn HJ 1D’YJ’LL H’L 1 Hjlfl Dﬁ]l(a U)

a
atzu

r+n+1

¢N8‘&‘+l+‘k‘F 1 7Y ) n ks ~ 85,
og.,.,0ulopyt - opi" = ¥Dv - Tliey TTji—1 %00 D%iu

r+n+1

IN

C||en (@1 F))| IT)— H%ZD”u

n ki 7 -
bt x [liza 1= HWwDﬁhu

r+n+1 r+n+1

Co H(ald\+l+|k|F)HT+n+l7Q : Hé‘:l ||Dwu||r+n+1,szﬁ < [T Hle HawDBji“HHnH,Q,; :

In virtue of (B.7)-(B.9) and (B.19), the situation is entirely similar to [[(]. The only difference is that
we replace the Holder norm |ul; by || D?ul|y1n41,0, and || Dy D ‘uHHnH 9, . Then the same argument

as the proof of Lemma 1 in [[L(]] yields (B.1(]). This completes the proof of Lemma B.jg.

IN
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Proposition 3.6. Let s > 3. Suppose u € C®(Q) is a solution of (.9), and a(t,z,v) € G*(R?*"+1),
F(t,z,v,w,p) € G*(R*"*2t") and a > co > 0. Then there erits a constant A such that for any
r€10,1] and any N € N, N > 3,

(E)r,n [ D%ul[rtnt1,0, + [[DeDullr—1/31n11,09,
Alel=1 s
< W((M =3)!)"(N/p)*", VYl]a|=N,¥Y0<p<l
pS «

From (E), n , we have immediately
Proposition 3.7. Under the same assumption as Proposition , we have u € G*(Q).

In fact, for any compact sunset K of €, we have K C €,, for some pg, 0 < pg < 1. For any
a, |a| > 3, letting » = 0 in (F), n, we have

- - Jor] =1 s || 41 s
ID*ull 2y < 1D%ullnt1.0,, < simars (ol =3)1)" < (555) 7 (lall)*.

00 = pos(laT—3) 20°

This completes the proof of Proposition @

Proof of Proposition @ We use induction on N. Assuming (E), y—1 holds for any r with
0 <r <1, and we will show (E), y still holds for any r € [0, 1]. For any «,|a| = N, and for any
p, 0 < p <1, choose a function ¢, v € C§° (2 w-1),) such that ¢, y =1 in €,. it is easy to see

N

sup |DYp, x| < C,(p/N)"N < C(N/p), V4.
And we will proceed to prove the truth of (E), y by the following lemmas.

Lemma 3.8. For r =0, we have

C7A\a|—2

W((Ial —3))%, Vo<p<l.

[D%ullnt1,0, + | DeD%l| —1/34n41,0, <
Proof . Write || = |3 + 1, then || = N — 1. Denote £2p by p. In the sequel we will use the

following fact frequently
1 1 1 N s C
sk < ~sk sk X ( ) * < séllc’
p p p N-1 p

Note that ¢, y = 1 in £, and hence

k=1,2,---,N—3.

ID%ullnsr0, < lopnDllnt1 < 9o n D ullivnrs + [1(Dpp,n) D ullnsa
< C{ 1D ullisnsr.0, + (N/0) | D ullnsr0, }-

Since (E), n—1 holds by assumption for any r with 0 <r <1, we have immediately

ID%ull1ns1.0, + (N/p)ID ullnsr .0,

AlBl-1 . AlBl-1 .
< m((w =3)1) (N/p)" + (N/p) =3y (181 =3)!)
2Alel—2 s s
< W((M - 3)!) (N/(N - 3))
CA|a\72 s
< W((Ial—?ﬂ!) -
Thus
A\a|72 s
(3.13) | D% 41,0, < %((m —3)°.
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The same arguments as above shows that

DDl stnsns, < SR (ol - )
This along with (B.13) yields the conclusion.
Lemma 3.9. For any 0 <r <1/3, we have
Css Alal—=2

I D%ullrtnt1.0, + | DeDullr—1/31nt1,0, < ((Jaf = 3)!)S(N/P)Tsa VO<p<l

o(al—3)

Proof . We firstly prove the conclusion is true for r = 1/3, i.e., to show

e} « 5 lol—2 s s
[ D%ull1/34n+1,0, + [DeDullnt1,0, < &((M =3)1)(N/p) /B Vo<p<l

p = pe(aT—)

And we will proceed in the following four steps.

Step 1. Claim

o o] =2 s s
(3.14) 1L, pon DTl —131n11 < St ((lal = 3)!)7(N/p)*/3.
In fact, write £ = Xog — a/\, with Xg = 0; + v - 0. Then direct verification deduces

1L, epnDull—1/31n41 < [[[Xo, wpNnDull_1/31n41 + [[a[Dv, 0o N D ull—1/34n41
+lwp,nla, D¥Avull1/34n41
— (D) + (I1) + (IT]),

Denote [Xo, D] by D*. Then |ap| < |a| and
(1) < X0, ¢pN]D ullntr + llop, v D*ullnia
< Gs{ (N/p)|D*ullns1,0, + 1 D*ullnt1,0, }-

Note that s > 3. Using Lemma @, we have

(3.15) () < Cs(N/p+1) S (ol = 3))° < S (o] = 3)!) (N/p)*/*.

5o (lal=3) =S pslal=m

Next we will estimate (IT). It is easy to see that

8.16) [[Au, 0o N]DUll—1/34n11 < 2[[[Doy 0p,N]DoDul|_1/35m11
3.16

+[[Dy, [Dv; #p,N] ]Dau||—1/3+n+1-
We firstly treat the first term on the right hand. Using Lemma @ again, we have
I[Dw, Sﬁp,N]DvDau||—1/3+n+1 < (N/P)”DvDauH—1/3+n+1,Q,3

C7A‘a|_2 s
— 3)!
ey (ol =3)Y)

((Jal = 3)1)"(N/p)*/2.

CloA|a\—2
= " ps(al=3)



10 THE GEVREY HYPOELLIPTICITY FOR FOKKER-PLANCK EQUATIONS

Next we treat [|[D,, [Dy, ¢pn]|D| -1/31n41, and we compute

[[Dv, [Dv, ®p,N] ]Da“||—1/3+n+1

< (D*¢p,n)DPulla/z4ns1 + (D305 n)Dull _1/34m41
< Cua{ /I ulaysnsra, + (/oI Dl }
[8]—1
< Cul /)y (191 = 3))° (/)
3 AlBlI-1 s
HO ) (191 =30 )
|| —2
< Cud (VIO 2y (lal = 3))
|| —2
N (ON/) = (el = 3))° )
|| —2
e ((la] =3))° (/)

This along with (B.16) and (B.17) shows at once

OlgA\a|—2

((Jal = 3)1)"(N/p)*/2.

It remains to treat (I1I), and using Leibniz’ formula,

(11) < Z (3)HS"p,N(Dva)AvDai’yqu/ngnH
0<|v[<]e]

IN

Z ( ° )HD’YCL”nH,Q : |‘<Pp,NAvDa7'yuH—1/3+n+1'
0<|v[<]e]

Since a € G*(R?"*1), then
-2
ID7allnsr0 < O (01 =3))" bl 23,
and
[D7alln+1,0 < Cua, |y =1, 2.
Moreover, note |a| — || + 1 < N, and hence applying Lemma B.§, we have for any v, |v| < |a| — 2,
lop N DD Tul| _1/34n1 < ||DvDa7’YHU||—1/3+n+1,Q,3
O, Alal =l +1-2 .
((af = v =2)1)

= T lal-h-D)

Oy Alal—171+1-2
po(al—T11-2)

((Jad = 7l =2)1)".
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Consequently, we compute

Z ( ¢ )HDWUJHnH,Q : ||80p,NAvDa7’Yu||—1/3+n+1

2<I<lal -2
a 5 Oys Alol—lnl+1-2 .
< > y )OI (] —2)1) W((M — vl =2))
2</y| <ol -2
C A\a|72 C -1 s—1 s—1
< S X G (= 2)" (el I -2
p 2<lI<lal -2
Crp Al s Cia\ -1, (o] = (o] = 2)
< I —3) el
= psllal=3) ((lal =3)1) Z ) (=) | (la] — 3)s—1
2<||<]al-2
ChAlol—2 s . C .
< e (el =3 @/ 30 (T
P 2<]|<lal-2

Taking A large enough such that > (%)M_l <1, then we get
2<]yI<le] -2
016A|a\—2
ps(lal=3)

Z ( " )[D7alln 1,0 ||90p,NAvDa_Vu||—1/3+n+1 S ((Jal = 3))°(N/p)*2.

2<]y[<] | -2
For |y| =1, |a| — 1 or ||, we can compute directly

Cl7A|a\—2

( : IDYallntr,0 - llopn Do Dl gy, < W((M —3)1)°(N/p)*/*.

Combination of the above two inequalities give that

|| —2
%((lal = 3))"(V/p)*”.

This along with (B.15) and (B.1§) yields the conclusion (B.14).

(ITT) <

Step 2. Claim
la|—2 s
(3.19) o8 DYIF (- u(), Voul))ll-1/34n+1 < %(UM = 3))7(N/p)*/>.

Firstly, we will prove F and u satisfy the conditions (B.7)-([B.9) for some M;. By Lemma B.§, we
have

Cr A2

(3.20) ID7ul-1sinri0p < 1D Ul < 255 (G =3))" 8 <N,
. Cr A2 s _

(3.21) 1Du D ull-rjzentrn, < =y (G=3)Y)° 3<j<N,

and

(3:22) [D7ul|—1/34n41,0, <C7, 0<j <2

Since F € G*(R*"*+1 x R), then
(3.23) (D, w0 DR F) (- ul), Vou()) -1 /3enr10 < Cog (k= 3))7 (1 =3))", km+1>3.
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Define M;, Hy, Hy by setting

(G-1°

Ho=0Cr, Hi=A, My=C7 M;= 50D

;o g2 L

We can choose A large enough such that H; = A > CyHy. Then (B.20)-(B-23) can be rewritten

(3.24) ID7ull -1 /31110, < Ho, 0<j<1,

(3.25) D7l 13 4nt10, < HoH{ ?M; 5, 2<j<|a|=N,
(3.26) IDuDIul| -1 /54mi1.0, < HoH{ *Mj_2, 2<j<la|=N,
(3.27) 1(Df 4,00, Dy )l -1 /31n11.0 < Cho ' My—2Mypyi—2,  kym+1>2.

For each j, note that s > 3 and hence

T MMy = (- 1)) T (G =) ey

NG—1)! i(j—1i)

< GH(G -2 peun
(3.28)

i . . sfl~7S .
< g -DUG =) el
< M

Thus M, satisfy the monotonicity condition (B.3). In virtue of (B.24)-(B.29), using Lemma B.3, we
have

oo, NDE(Cu( ) -1/34n41 < CSH0H1‘Q|72M|Q\72
CgC7A|a‘_2 s
< ———((Ja = 3)!
ps(lal=3) ( )
021A|a\—2 s s
— o (el =3))"(N/p) .
p
This completes the proof of conclusion (3.19).
Step 3. Claim
« 023A|a\—2 s s
(3.29) 20N D"l -1 jsnss < i ((la] = 3))° (/)
In fact,
1£pp N Dl 1/s4ns1 < Coa{ [I[£; o n D Null—1/34mt1 + 0o, N D Lull —1/31n41 }

= Co{lllL, ©pnDull-1/34n41
+ HS"P»NDQ[F(V“(')’Vvu('))]HA/ernH }

This along with (B.14)), (8.19) in step 1 and step 2 yields immediately the conclusion (B.29).
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Step 4. Claim
a a lal—2 s s
(3.30) oo, N D¥ull1/31n 11 + [l9p, N DuD%ull1/3-1/34n41 < %(UM = 3))°(N/p)*/3.
In fact, applying the subelliptic estimate (@), we obtain
||S"p,NDa“||1/3+n+1 < Cogf ||£<Pp,NDa“||fl/3+n+1 + ||90p,NDa“||n+1 }-
Combining Lemma @ and ) in Step 3, we have

C25A|a\—2

W(O‘ﬂ - 3)!)5(]\7//))8/3'

Now it remains to treat ||, Dy Dull1/3-1/34n+1, and

(3.31) o, NDull1/34ny1 <

[op. 8 DuvDull1/3-1/34n+1 < |1Dvpp, N D*Ullns1 + [[Do; @p N]D ullnt1.
Firstly, we treat the first term on the right. By direct calculation, it follows that
||Dv90p,NDau||i+1
= Re(&pp,NDo‘u, a_1A2"+290p1NDO‘u) — Re(X()(pp,NDo‘u, a_1A2"+2g05,k5Dau)

— mn (0% 1 (o7 - n (o7
= Re(ﬁ(pp,NDo‘u, a " 1A? +290p-,ND u) — §(<pp,ND u, [a"TAZT2, Xolgp,nD u)
1 - «
—5(%,NDO‘U7 A"+ a0~ Xop, nDu)

< 026{ ||£@p,NDa“||31/3+n+1 + ||‘Pp,NDa“||%/3+n+1 }
This along with (B.29) and (B.31]) shows at once

CQ7A|a\—2
po(al—3)

((Jal = 3)1)"(N/p)*/2.

||D'u</7p,NDau||r—l/3+n+l S

Moreover Lemma @ yields

I[Dv, epn]D%ullny1 < Cos(N/p)|Dulln1.0,
C2SC7A|O“_2 s s
< W((M - 3)!) (N/p) /?
C29A|a\—2 s .
< W((M - 3)!) (N/p) /3
From the above two inequalities, we have
CBOA|a\—2

10,8 Do D1 /34m41 < ((Jal = 3)1)" (/)2

ps(lal=3)
This completes the proof of Step 4.

It’s clear for any p, 0 < p < 1,

| D%ull1/34n+1,0, + [DeDull1/3-1/34n+1,0, < |€p.NDul|1/31n+1 + 00,8 Do Dull1/3-1/34n+1-

Thus from Step 4, it follows that the conclusion in Lemma @ is true for r = 1/3.
Moreover for any 0 < r < 1/3, using the interpolation inequality (P-3), we have

I1D%ullrinire, < llepnDullrini

IN

ellop.y D ullr s snir +e P70 gy N Dl

03114‘0472 )03214'0“72

Car A2 ) 8 (N )73 e/ (/3 G2 AT
e e (ol =3)) (N/p)*" +e 30al3)

((Jal =3)1)",
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Taking € = (N/p)*("=1/3) | then

1Dl i1, < %ﬁ;(w ~3))° (/o)™
Similarly,
DDl s, < A (ol = 91 (/)
This completes the proof of Lemma @
Inductively, we have the following
Lemma 3.10. For any r with 1/3 <r <2/3,
Cig Alel=2

(3.32)  [[ID%ullr4nt1,0, + [DoD%ullr—1/31n11,0, < ((Jal =3)) (N/p)", VO<p<L.

s(lal—3)
p
Moreover, the above inequality still holds for any r with 2/3 <r < 1.

Proof. Repeating the proof of Lemma B.9, we have the truth of (8.39) for 1/3 < r < 2/3. The case
2/3 <r < 1is a little different. The conclusion in Step 1 in the above proof still holds for » = 1, and
corresponding to Step 2, we have to make some modification to prove

o o] =2 s s
HSDPJVD [F('vu(')vvvu('))]||1/3+n+1 < %(('CA - 3)') (N/p) :
From the truth of (B.33) for 1/3 < < 2/3, it follows
. Cyr AT 2 . S, . s .
1Dl s < gy (G =3 G/ 3N,

037Aj_2

| DvD?ullyy31ms1,0, < 1DvD?ull2/3-1/34n4+1,0, < 5G—3) ((G=31)°(/p)*/3, 3<j<N,

and
[Dull/34ns1,0, < C37,  0<35<2,

Hence we need define a new sequence M. ; by setting

- - -0y, ~\25/3 .
My = Csy, Mj—%((]*'?)/f’) /7 Jj=>1
For each j, note that s > 3 and hence direct computation deduces that for 0 < i < j,
i —r i . s—1 . . s—1
MM = = (E-1D)T (G -i- 1)

X(Z+2)2S/3(] _i+2)25/3ﬁ—s(j—2)ﬁ—4s/3
: : s=1.. s/3=1(; 8/3—1~—s(j—1) 5—25/3 5s—2s
< AGN(G =207 (G + 223N 1)U g B pe e
i(q 2s/3-1 . s—=1._g(i_ . \2s/3
< HEEL L (G-DNG - D) AU (( +2)/5)

< CsoM;.

In the last inequality we used the fact s —1 > 2s/3. Thus M satisfy the monotonicity condition (B.5).
Now the left is entirely similar to the proof of Lemma B.d. And thus (B.33) holds for » = 1 and hence
for 2/3 < < 1 by interpolation inequality (R.4). This completes the proof of Lemma B.10]



No
we

(1]

[16]

[17]
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Recall C7, C35 and Cs5 are the constants appearing in Lemma @, Lemma @ and Lemma, .
w taking A large enough such that A > max{C7, Cs5,Css}, and then by the above three Lemmas
have the truth of (E), y for any r € [0, 1]. This complete the proof of Proposition B.§.
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