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Abstract. In this paper, we study the Gevrey regularity of weak solution for a class of linear and
quasilinear Fokker-Planck equations.

1. Introduction

Recently, a lot of progress has been made on the study for the spatially homogeneous Boltzmann
equation without angular cutoff, cf. [2, 3, 8, 22] and references therein, which shows that the singularity
of collision cross-section yields some gain of regularity in the Sobolev space frame on weak solutions
for Cauchy problem. That means, this gives the C∞ regularity of weak solution for the spatially
homogeneous Boltzmann operator without angular cutoff. The local solutions having the Gevrey
regularity have been constructed in [21] for initial data having the same Gevrey regularity, and a
genearal Gevrey regularity results have given in [17] for spatially homogeneous and linear Boltzmann
equation of Cauchy problem for any initial data. In the other word, there is the smoothness effet
similary to heat equation.

However, there is no general theory for the spatially inhomogeneous problems. It is now a kinetic
equation in which the diffusion part is nonlinear operator of velocity variable. In [1], by using the
uncertainty principle and microlocal analysis, they obtain a C∞ regularity results for linear spatially
inhomogeneous Boltzmann equation without angular cutoff.

In this paper, we will study the Gevrey regularity of weak solution for the the following Fokker-
Planck operator in R

2n+1

L = ∂t + v · ∂x − a(t, x, v)△v,(1.1)

where △v is Laplace operator of velocity variables v.
The motivation of study for this class of operator is , as in [15], attempt to study inhomogenous

Boltzmann equations without angular cutoff and non linear Vlasov-Fokker-Planck equation (see [11,
12]).

Before stating the result, we recall the definition of Gevrey class function. Let U be an open subset
of R

N and f be a real function defined in U . We say f ∈ Gs(U)(s ≥ 1) if f ∈ C∞(U) and for any
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2 THE GEVREY HYPOELLIPTICITY FOR FOKKER-PLANCK EQUATIONS

compact subset K of U , there exists a constant C = CK , depending only on K, such that for all
multi-indices α ∈ N

N and for all x ∈ K

|∂αf(x)| ≤ C
|α|+1
K (|α|!)s.(1.2)

Denote by Ū the closure of U in R
N . we say f ∈ Gs(Ū) if f ∈ Gs(W ) for some open neighborhood

W of Ū . The estimate (1.2) for x ∈ K is valid if and only if the following one is valid ( cf.Chen
hua-Rodino[5] or Rodino[18]):

‖∂αf‖L2(K) ≤ C
|α|+1
K (|α|)s|α|.

In this paper, we use the above estimate in L2.
We say an operator P is Gs hypoelliptic in U if u ∈ D′, Pu ∈ Gs(U) implies u ∈ Gs(U). Likewise,

we say an operator P is C∞ hypoelliptic in U if u ∈ D′, Pu ∈ C∞(U) implies u ∈ C∞(U).
The operator L satisfies the Hörmander’ condition. By virtue of the results of Hörmander [5], we

know that L is C∞ hypoelliptic. In the aspect of Gevrey class, Derridj-Zuily [7] proved that L is
Gs-hypoelliptic for s > 6 in a general form of Hörmander’s operators.

In this paper, we improve firstly the results of [7] for Fokker-Planck operators as the following
theorems.

Theorem 1.1. For any s ≥ 3, if the coefficient a is in Gs(R2n+1) and a(t, x, v) ≥ c0 > 0, then the
operator L given in (1.1) is Gs hypoelliptic in R

2n+1,

Of course, Theorem 1.1 is also true for the following general operators,

L̃ = ∂t +A(v) · ∂x −

n
∑

j,k=1

ajk(t, x, v)∂
2
vjvk

in an open domain U of R
2n+1, where A is a non singular n × n constant matrix,

(

ajk(t, x, v)
)

is
positive defined on U and belongs to Gs(U).

Remark Our results is a local and interior regularity results, that means if there exists a weak solution
in D′, then this solution is in Gevrey class in interior of domain. So that if the weak solution is a
solution of the Cauchy problem, we don’t need the regularity of initial data.

Secondly, we consider the quasi-linear equation

(1.3) ∂tu+ v · ∇xu− a△vu = F (t, x, v, u,∇vu)

where F is nonlinear function of real variable (t, x, v, w, p).

Theorem 1.2. Let u be a weak solution of equation (1.3) such that u,∇vu ∈ L∞
loc(R

2n+1), then

u ∈ Gs(R2n+1)

for any s ≥ 3, provided the coefficients a is in Gs(R2n+1), a(t, x, v) ≥ c0 > 0 and nonlinear function
F (t, x, v, w, p) is in Gs(R2n+2+n).

Remark : If the nonlinear term F is independent of p or in the form of

∇v(F (t, x, v, u)),

we can suppose that the weak solution u ∈ L∞
loc(R

2n+1).
The plan of this paper is as follows : In section 2, we obtain a sharp subelliptic estimate for the

Fokker-Planck operator L via direct computation, and then prove the Gevrey hypoellipticity of L.
In section 3, we prove the Gevrey regularity for the weak solutions of the quasi-linear Fokker-Planck
equation.
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2. Subelliptic estimate

We recall firstly some notations, ‖ · ‖κ, κ ∈ R, is the classical Sobolev norm in Hκ(R2n+1), and
(h, k) is the inner product of h, k ∈ L2(R2n+1). Moreover if f, g ∈ C∞

0 (R2n+1), from Hölder inequality
and Young inequality, for any ε > 0,

|(f, g)| ≤ ‖h‖κ‖g‖−κ ≤
ε‖h‖2

κ

2
+

‖g‖2
−κ

2ε
.(2.1)

We have also the interpolation inequality for Sobolev space, for any ε > 0 and any r1 < r2 < r3,

‖h‖r2 ≤ ε‖h‖r3 + ε−(r2−r1)/(r3−r2)‖h‖r1 .(2.2)

Let Ω be an open subset of R
2n+1. We denote by Sm = Sm(Ω),m ∈ R, the symbol space of classical

pseudo-differential operator and P = P (t, x, v,Dt, Dx, Dv) ∈ Op(Sm) a pseudo-differential operator
of symbol p(t, x, v; τ, ξ, η) ∈ Sm. If P ∈ Op(Sm), then P is a continuous operator from Hκ

c (Ω) to
Hκ−m
loc (Ω). Here Hκ

c (Ω) is the subspace of Hκ(R2n+1) consisting of the distributions having their

compact support in Ω, and Hκ−m
loc (Ω) consists of the distributions h such that φh ∈ Hκ−m(R2n+1)

for any φ ∈ C∞
0 (Ω). The more properties can be found in the Treves’ book [20]. Remark that if

P1 ∈ Op(Sm1), P2 ∈ Op(Sm2), then [P1, P2] ∈ Op(Sm1+m2−1).

Now we show a sharp subelliptic estimate for the operator L, our proof bases on the work of
Bouchut [4] and Morimoto-Xu [15].

Proposition 2.1. Let K be a compact subset of R
2n+1. Then for any r ≥ 0, there exists a constant

CK,r, depending only on K and r, such that for any f ∈ C∞
0 (K),

‖f‖r ≤ CK,r{ ‖Lf‖r−2/3 + ‖f‖0 }.(2.3)

To simplify the notation, in this section we will denote by CK the different suitable constants
depending only onK. We have firstly the following three lemmas, which establish the gain of regularity
in the velocity variable v, in the space variable x and in the time variable t, respectively.

Lemma 2.2. There exists a constant CK such that for any f ∈ C∞
0 (K),

‖∇vf‖0 ≤ CK
{

|(Lf, f)| + ‖f‖0

}

.

Moreover, for any r ≥ 0, for any ε > 0,

‖∇vf‖r ≤ ε ‖Lf‖r + CK,ε ‖f‖r .

We get a gain of regularity of order 1 for v variable. This is obtained directly by the positivity of
coefficient a and compact support of f . For the space variable x, we have also the following subelliptic
estimate.

Lemma 2.3. There exists a constant CK such that for any f ∈ C∞
0 (K),

‖D2/3
x f‖0 ≤ CK(‖Lf‖0 + ‖f‖0),

where D
2/3
x = (−△x)

1/3.

This is a result of [4], and it is deduced by following two estimates

‖D2/3
x f‖0 ≤ CK ‖△vf‖

1/3
0 ‖∂tf + v · ∂xf‖

2/3
0 ,

and

‖△vf‖0 ≤ CK( ‖Lf‖0 + ‖f‖0 ).

For the time variable t, we have also a gain of regularity of order 2/3.
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Lemma 2.4. There exists a constant CK such that for any f ∈ C∞
0 (K),

‖∂tf‖−1/3 ≤ CK(‖Lf‖0 + ‖f‖0).

In fact, we have

‖∂tf‖−1/3 = ‖Λ−1/3∂tf‖0 ≤ ‖Λ−1/3(∂t + v · ∂x)f‖0 + ‖Λ−1/3v · ∂xf‖0,

where Λ = (1 + |Dt|
2 + |Dx|

2 + |Dv|
2)1/2. From Lemma 2.3, we have

‖Λ−1/3v · ∂xf‖0 ≤ CK‖D2/3
x f‖0 ≤ CK(‖Lf‖0 + ‖f‖0).

The estimation for the term ‖Λ−1/3(∂t + v · ∂x)f‖0 can be obtained by direct calculus as in [15].

Proof of Proposition 2.1. The Lemma 2.2, Lemma 2.3 and Lemma 2.4 deduce immediately

(2.4) ‖f‖2/3 ≤ CK{ ‖Lf‖0 + ‖f‖0 }.

Moreover, choose a function ψ ∈ C∞
0 (R2n+1) such that ψ|K ≡ 1, Supp ψ is a neighborhood of K.

Then for any f ∈ C∞
0 (K) and any r ≥ 0,

‖f‖r = ‖ψf‖r ≤ CK{ ‖ψΛr−2/3f‖2/3 + ‖[Λr−2/3, ψ]f‖2/3 }.

By virtue of (2.4) and the interpolation inequality (2.2), we have

‖f‖r ≤ CK{ ‖LψΛr−2/3f‖0 + ‖f‖r−2/3 }

≤ Cε,K{ ‖LψΛr−2/3f‖0 + ‖f‖0 } + ε‖f‖r.

Taking ε small enough, we get

‖f‖r ≤ CK{ ‖Lf‖r−2/3 + ‖f‖0 + ‖[L, ψΛr−2/3]f‖0 }.

Direct verification gives

[L, ψΛr−2/3] = [∂t + v · ∂x, ψΛr−2/3] −

n
∑

j=1

{ ‖[a, ψΛr−2/3]∂2
vj

+a[∂vj , [∂vj , ψΛr−2/3] ] + 2a[∂vj , ψΛr−2/3]∂vj },

This along with Lemma 2.2 yields

‖[L, ψΛr−2/3]f‖0 ≤ CK{ ‖f‖r−2/3 +
n

∑

j=1

‖∂vjf‖r−2/3 }

≤ CK{ ‖Lf‖r−2/3 + ‖f‖r−2/3 }.

These three estimates gives immediately

‖f‖r ≤ CK{ ‖Lf‖r−2/3 + ‖f‖0 + ‖f‖r−2/3 }.

Applying interpolation inequality (2.2) again and taking ε small enough, we prove Proposition 2.1.

We consider now the commutators of the operators L with derivation and cut-off function.

Proposition 2.5. Let K be a compact subset of R
2n+1. Then for any r ≥ 0, there exist constants

CK,r, CK,r,ϕ such that for any f ∈ C∞
0 (K),

‖[L, D]f‖r ≤ CK,r{ ‖Lf‖r+1−2/3 + ‖f‖0 },

and
‖[L, ϕ]f‖r ≤ CK,r,ϕ{ ‖Lf‖r−1/3 + ‖f‖0 },

where ϕ ∈ C∞
b (R2n+1) and we denote by D the differential operator ∂t, ∂x or ∂v.



THE GEVREY HYPOELLIPTICITY FOR FOKKER-PLANCK EQUATIONS 5

Proof. By using the positivity of coefficient a, we have

‖△vf‖r ≤ CK{ ‖Lf‖r + ‖f‖r+1 }.

And [L, D] = [∂t + v · ∂x, D] − [a, D]△v deduce

‖[L, D]f‖r ≤ CK{ ‖f‖r+1 + ‖△vf‖r }.

The above two inequalities along with the subelliptic estimate (2.3) yield the first desired inequality
in Proposition 2.5.

To treat ‖[L, ϕ]f‖r, the subelliptic estimate (2.3) give

‖∇vf‖r ≤ CK(‖Lf‖r−1/3 + ‖f‖0).

Now simple verification gives

‖[L, ϕ]f‖r ≤ CK
{

‖f‖r +
n

∑

j=1

‖∂vjf‖r
}

≤ CK,r
{

‖Lf‖r−1/3 + ‖f‖0

}

.

This completes the proof of Proposition 2.5.

We prove now the Gevrey hypoellipticity of L . Our starting point is the following result due to
M.Durand [9]:

Proposition 2.6. Let P be a linear differential operator with smooth coefficients in R
m
y and ̺, ς two

fixed positive numbers. If for any r ≥ 0, any compact K ⊆ R
m and any ϕ ∈ C∞(Rm), there exist

constants CK,r and CK,r(ϕ) such that for all f ∈ C∞
0 (K),the following conditions are fulfilled:

(H1) ‖f‖r ≤ CK,r(‖Pf‖r−̺ + ‖f‖0),

(H2) ‖[P, Dj ]f‖r ≤ CK,r(‖Pf‖r+1−ς + ‖f‖0),

(H3) ‖[P, ϕ]f‖r ≤ CK,r(ϕ)(‖Pf‖r−ς + ‖f‖0),

where

Dj =
1

i

∂

∂yj
, j = 1, 2, · · · ,m.

Then for s ≥ max(1/ς, 2/̺), P is Gs(Rm) hypoelliptic, provided the coefficients of P are in the class
of Gs(Rm).

Proposition 2.1 shows that the operator L satisfies the conditions (H1) with ̺ = 2/3, Proposition
2.5 assures the conditions (H2) and (H3) with ς = 1/3. Then L is Gs(R2n+1) hypoelliptic, s ≥ 3, and
we have proved Theorem 1.1.

3. Gevrey regularity of nonlinear equations

Let u ∈ L∞
loc(R

2n+1) be a weak solution of (1.3). Firstly, we will prove u ∈ C∞(R2n+1). And we
need the following nonlinear composition results (see for example [23]).

Lemma 3.1. Let F (t, x, v, w, p) ∈ C∞(R2n+2+n) and r ≥ 0. If u,∇vu ∈ L∞
loc(R

2n+1) ∩Hr
loc(R

2n+1),
then F

(

·, u(·),∇vu(·)
)

∈ Hr
loc(R

2n+1), and

(3.1)
∥

∥φ1F
(

·, u(·),∇vu(·)
)∥

∥

r
≤ C̄ { ‖φ2u‖r + ‖φ2∇vu‖r } ,

where φ1, φ2 ∈ C∞
0 (R2n+1) and φ2 = 1 on the support of φ1, and C̄ is a constant depending only on

r, φ1, φ2.
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Remark. If the nonlinear term F is independent of p or in the form of

∇v(F (t, x, v, u)),

Then that u ∈ L∞
loc(R

2n+1) ∩Hr
loc(R

2n+1) yields F
(

·, u(·),∇vu(·)
)

∈ Hr
loc(R

2n+1).

Lemma 3.2. Let u,∇vu ∈ Hr
loc(R

2n+1), r ≥ 0. Then we have

(3.2) ‖ϕ1∇vu‖r ≤ C ‖ϕ2u‖r ,

where ϕ1, ϕ2 ∈ C∞
0 (R2n+1) and ϕ2 = 1 on the support of ϕ1, and C is a constant depending only on

r, ϕ1, ϕ2.

In fact, we have

‖ϕ1∇vu‖r ≤ ‖[∇v, ϕ1]u‖r + ‖∇vϕ1u‖r .

Clearly, the first term on the right is bounded by C ‖ϕ2u‖r. For the second term , combining the
second inequality in Lemma 2.2 and (3.1), we get the desired estimate (3.2) at once. This completes
the proof of Lemma 3.2.

Now we are ready to prove

Proposition 3.3. Let u be a weak solution of (1.3) such that u,∇vu ∈ L∞
loc(R

2n+1). Then u is in
C∞(R2n+1).

In fact, from the subelliptic estimate (2.3) and the fact Lu(·) = F (·, u(·),∇vu(·)), it then follows

‖ψ1u‖r+2/3 ≤ C̄{ ‖ψ2F
(

·, u(·),∇vu(·)
)

‖r + ‖ψ2u‖0 },(3.3)

where ψ1, ψ2 ∈ C∞
0 (R2n+1) and ψ2 = 1 on the support of ψ1. Combining (3.1), (3.2) and (3.3), we

have u ∈ H∞
loc(R

2n+1) by standard iteration. This completes the proof of Proposition 3.3.
Now starting from the smooth solution, we prove the Gevrey regularity. It suffices to show the

regularity in the open unit ball

Ω = {(t, x, v) ∈ R
2n+1 : t2 + |x|2 + |v|2 < 1}.

Set

Ωρ =
{

(t, x, v) ∈ Ω :
(

t2 + |x|2 + |v|2
)1/2

< 1 − ρ
}

, 0 < ρ < 1.

Let U be an open subset of R
2n+1. Denote by Hr(U) the space consisting of the functions which

are defined in U and can be extended to Hr(R2n+1). Define

‖u‖Hr(U) = inf
{

‖ũ‖Hs(Rn+1) : ũ ∈ Hs(R2n+1), ũ|U = u
}

.

We denote ‖u‖r,U = ‖u‖Hr(U), and

‖Dju‖r =
∑

|β|=j

‖Dβu‖r.

In order to treat the nonlinear term F on the right hand of (1.3), we need the following two
lemmas. The first one (see [23] for example) concerns weak solution in some algebra, and the second
is an analogue of Lemma 1 in [10]. In the sequel Cj > 1 will be used to denote suitable constants
depending only on n or the function F .

Lemma 3.4. Let r > (2n+ 1)/2 and u1, u2 ∈ Hr(R2n+1), Then u1u2 ∈ Hr(R2n+1), moreover

‖u1u2‖r ≤ C̃‖u1‖r‖u2‖r,(3.4)

where C̃ is a constant depending only on n, r.
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Lemma 3.5. Let Mj be a sequence of positive numbers and for some B0 > 0, the Mj satisfy the
monotonicity conditions

(3.5)
j!

i!(j − i)!
MiMj−i ≤ B0Mj, (i = 1, 2, · · · , j; j = 1, 2, · · · ).

Suppose F (t, x, v, u, p) satisfy

(3.6)
∥

∥

(

Dj
t,x,vD

l
uD

m
p F

)

(

·, u(·),∇vu(·)
)
∥

∥

r+n+1,Ω
≤ Cj+l+m1 Mj−2Mm+l−2, j,m+ l ≥ 2,

where r is a real number satisfying r+n+1 > (2n+1)/2. Then there exist two constants C2, C3 such
that for any H0, H1 satisfying H0, H1 ≥ 1 and H1 ≥ C2H0, if u(t, x, v) satisfy the following conditions

(3.7) ‖Dju‖r+n+1,Ωρ̃ ≤ H0, 0 ≤ j ≤ 1,

(3.8) ‖Dju‖r+n+1,Ωρ̃ ≤ H0H
j−2
1 Mj−2, 2 ≤ j ≤ N,

(3.9) ‖DvD
ju‖r+n+1,Ωρ̃ ≤ H0H

j−2
1 Mj−2, 2 ≤ j ≤ N.

Then for all α with |α| = N ,
∥

∥ψND
α
[

F
(

·, u(·),∇vu(·)
)]∥

∥

r+n+1
≤ C3H0H

N−2
1 MN−2,(3.10)

where ψN ∈ C∞
0 (Ωρ̃) is an arbitrary function.

Proof. Denote p = (p1, p2, · · · , pn) = ∇vu and k = (k1, k2 · · · , kn). From Faa di Bruno’ formula,
ψND

α[F (·, u(·),∇vu(·))] is the linear combination of terms of the form

(3.11)
ψN∂

|α̃|+l+|k|F

∂α̃t,x,v∂u
l∂pk11 · · ·∂pkn

n

l
∏

j=1

Dγju ·

n
∏

i=1

ki
∏

ji=1

Dβji (∂viu),

where |α̃| + l + |k| ≤ |α| and
l

∑

j=1

γi +
n

∑

i=1

ki
∑

ji

βji = α− α̃,

and if γi or βji equals to 0, we just mean Dγiu or Dβjiu doesn’t appear in (3.11). Choose a function

ψ̃ ∈ C∞
0 (Ωρ̃) such that ψ̃ = 1 on Supp ψN . Note that n + 1 + r > (2n + 1)/2, and hence applying

Lemma 3.4, we have
(3.12)

∥

∥

∥

∥

ψN∂
|α̃|+l+|k|F

∂α̃
t,x,v∂u

l∂p
k1
1 ···∂pkn

n

∏l
j=1D

γju ·
∏n
i=1

∏ki

ji=1D
βji (∂viu)

∥

∥

∥

∥

r+n+1

=

∥

∥

∥

∥

ψN∂
|α̃|+l+|k|F

∂α̃
t,x,v∂u

l∂p
k1
1 ···∂pkn

n

∏l
j=1 ψ̃D

γju ·
∏n
i=1

∏ki

ji=1 ψ̃∂viD
βjiu

∥

∥

∥

∥

r+n+1

≤ C̃
∥

∥ψN (∂|α̃|+l+|k|F )
∥

∥

r+n+1
·
∏l
j=1

∥

∥

∥
ψ̃Dγju

∥

∥

∥

r+n+1
×

∏n
i=1

∏ki

ji=1

∥

∥

∥
ψ̃∂viD

βjiu
∥

∥

∥

r+n+1

≤ C0

∥

∥(∂|α̃|+l+|k|F )
∥

∥

r+n+1,Ω
·
∏l
j=1 ‖D

γju‖r+n+1,Ωρ̃
×

∏n
i=1

∏ki

ji=1

∥

∥∂viD
βjiu

∥

∥

r+n+1,Ωρ̃
.

In virtue of (3.7)-(3.9) and (3.12), the situation is entirely similar to [10]. The only difference is that
we replace the Hölder norm |u|j by ‖Dju‖r+n+1,Ωρ̃ and

∥

∥DvD
ju

∥

∥

r+n+1,Ωρ̃
. Then the same argument

as the proof of Lemma 1 in [10] yields (3.10). This completes the proof of Lemma 3.5.
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Proposition 3.6. Let s ≥ 3. Suppose u ∈ C∞(Ω̄) is a solution of (1.3), and a(t, x, v) ∈ Gs(R2n+1),
F (t, x, v, w, p) ∈ Gs(R2n+2+n) and a ≥ c0 > 0. Then there exits a constant A such that for any
r ∈ [0, 1] and any N ∈ N, N ≥ 3,

(E)r,N ‖Dαu‖r+n+1,Ωρ + ‖DvD
αu‖r−1/3+n+1,Ωρ

≤
A|α|−1

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)sr, ∀ |α| = N, ∀ 0 < ρ < 1.

From (E)r,N , we have immediately

Proposition 3.7. Under the same assumption as Proposition 3.6, we have u ∈ Gs(Ω).

In fact, for any compact sunset K of Ω, we have K ⊂ Ωρ0 for some ρ0, 0 < ρ0 < 1. For any
α, |α| ≥ 3, letting r = 0 in (E)r,N , we have

‖Dαu‖L2(K) ≤ ‖Dαu‖n+1,Ωρ0
≤ A|α|−1

ρ0s(|α|−3)

(

(|α| − 3)!
)s

≤
(

A
ρ0s

)|α|+1
(|α|!)s.

This completes the proof of Proposition 3.7.

Proof of Proposition 3.6. We use induction on N . Assuming (E)r,N−1 holds for any r with
0 ≤ r ≤ 1, and we will show (E)r,N still holds for any r ∈ [0, 1]. For any α, |α| = N, and for any
ρ, 0 < ρ < 1, choose a function ϕρ,N ∈ C∞

0 (Ω (N−1)ρ
N

) such that ϕρ,N = 1 in Ωρ. it is easy to see

sup |Dγϕρ,N | ≤ Cγ(ρ/N)−|γ| ≤ Cγ(N/ρ)
|γ|, ∀ γ.

And we will proceed to prove the truth of (E)r,N by the following lemmas.

Lemma 3.8. For r = 0, we have

‖Dαu‖n+1,Ωρ + ‖DvD
αu‖−1/3+n+1,Ωρ

≤
C7A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s
, ∀ 0 < ρ < 1.

Proof . Write |α| = |β| + 1, then |β| = N − 1. Denote N−1
N ρ by ρ̃. In the sequel we will use the

following fact frequently

1

ρsk
≤

1

ρ̃sk
=

1

ρsk
×

( N

N − 1

)sk
≤
C4

ρsk
, k = 1, 2, · · · , N − 3.

Note that ϕρ,N = 1 in Ωρ and hence

‖Dαu‖n+1,Ωρ ≤ ‖ϕρ,ND
αu‖n+1 ≤ ‖ϕρ,ND

βu‖1+n+1 + ‖(Dϕρ,N )Dβu‖n+1

≤ C5{ ‖Dβu‖1+n+1,Ωρ̃ + (N/ρ)‖Dβu‖n+1,Ωρ̃ }.

Since (E)r,N−1 holds by assumption for any r with 0 ≤ r ≤ 1 , we have immediately

‖Dβu‖1+n+1,Ωρ̃ + (N/ρ)‖Dβu‖n+1,Ωρ̃

≤
A|β|−1

ρ̃s(|β|−3)

(

(|β| − 3)!
)s

(N/ρ̃)s + (N/ρ)
A|β|−1

ρ̃s(|β|−3)

(

(|β| − 3)!
)s

≤
2A|α|−2

ρ̃s(|α|−3)

(

(|α| − 3)!
)s(

N/(N − 3)
)s

≤
C6A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s
.

Thus

‖Dαu‖n+1,Ωρ ≤
C5C6A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s
.(3.13)
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The same arguments as above shows that

‖DvD
αu‖−1/3+n+1,Ωρ

≤
C5C6A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s
.

This along with (3.13) yields the conclusion.

Lemma 3.9. For any 0 ≤ r ≤ 1/3, we have

‖Dαu‖r+n+1,Ωρ + ‖DvD
αu‖r−1/3+n+1,Ωρ

≤
C35A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)rs, ∀ 0 < ρ < 1.

Proof . We firstly prove the conclusion is true for r = 1/3, i.e., to show

‖Dαu‖1/3+n+1,Ωρ
+ ‖DvD

αu‖n+1,Ωρ ≤ C35A
|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)s/3, ∀ 0 < ρ < 1.

And we will proceed in the following four steps.

Step 1. Claim

(3.14) ‖[L, ϕρ,ND
α]u‖−1/3+n+1 ≤ C19A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)s/3.

In fact, write L = X0 − a△v with X0 = ∂t + v · ∂x. Then direct verification deduces

‖[L, ϕρ,ND
α]u‖−1/3+n+1 ≤ ‖[X0, ϕρ,ND

α]u‖−1/3+n+1 + ‖a[△v, ϕρ,ND
α]u‖−1/3+n+1

+‖ϕρ,N [a, Dα]△vu‖−1/3+n+1

=: (I) + (II) + (III).

Denote [X0, D
α] by Dα0 . Then |α0| ≤ |α| and

(I) ≤ ‖[X0, ϕρ,N ]Dαu‖n+1 + ‖ϕρ,ND
α0u‖n+1

≤ C8

{

(N/ρ)‖Dαu‖n+1,Ωρ̃ + ‖Dα0u‖n+1,Ωρ̃

}

.

Note that s ≥ 3. Using Lemma 3.8, we have

(3.15) (I) ≤ C8

(

N/ρ+ 1
)

C7A
|α|−2

ρ̃s(|α|−3)

(

(|α| − 3)!
)s

≤ C9A
|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)s/3.

Next we will estimate (II). It is easy to see that

(3.16)
‖[△v, ϕρ,N ]Dαu‖−1/3+n+1 ≤ 2‖[Dv, ϕρ,N ]DvD

αu‖−1/3+n+1

+‖[Dv, [Dv, ϕρ,N ] ]Dαu‖−1/3+n+1.

We firstly treat the first term on the right hand. Using Lemma 3.8 again, we have

‖[Dv, ϕρ,N ]DvD
αu‖−1/3+n+1 ≤ (N/ρ)‖DvD

αu‖−1/3+n+1,Ωρ̃

≤ (N/ρ)
C7A

|α|−2

ρ̃s(|α|−3)

(

(|α| − 3)!
)s

≤
C10A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)s/3.

(3.17)
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Next we treat ‖[Dv, [Dv, ϕρ,N ] ]Dαu‖−1/3+n+1, and we compute

‖[Dv, [Dv, ϕρ,N ] ]Dαu‖−1/3+n+1

≤ ‖(D2ϕρ,N )Dβu‖2/3+n+1 + ‖(D3ϕρ,N )Dβu‖−1/3+n+1

≤ C11

{

(N/ρ)2‖Dβu‖2/3+n+1,Ωρ̃
+ (N/ρ)3‖Dβu‖n+1,Ωρ̃

}

≤ C11

{

(N/ρ)2
A|β|−1

ρ̃s(|β|−3)

(

(|β| − 3)!
)s

(N/ρ̃)2s/3

+(N/ρ)3
A|β|−1

ρ̃s(|β|−3)

(

(|β| − 3)!
)s }

≤ C11

{

(N/ρ)2(N/ρ̃)−s/3
A|α|−2

ρ̃s(|α|−3)

(

(|α| − 3)!
)s

+(N/ρ)3(N/ρ̃)−s
A|α|−2

ρ̃s(|α|−3)

(

(|α| − 3)!
)s }

≤
C12A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)s/3.

This along with (3.16) and (3.17) shows at once

(II) ≤
C13A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)s/3.(3.18)

It remains to treat (III), and using Leibniz’ formula,

(III) ≤
∑

0<|γ|≤|α|

( α
γ

)∥

∥ϕρ,N (Dγa)△vD
α−γu

∥

∥

−1/3+n+1

≤
∑

0<|γ|≤|α|

( α
γ

)∥

∥Dγa‖n+1,Ω · ‖ϕρ,N△vD
α−γu

∥

∥

−1/3+n+1
.

Since a ∈ Gs(R2n+1), then

‖Dγa‖n+1,Ω ≤ C
|γ|−2
14

(

(|γ| − 3)!
)s
, |γ| ≥ 3,

and

‖Dγa‖n+1,Ω ≤ C14, |γ| = 1, 2.

Moreover, note |α| − |γ| + 1 ≤ N, and hence applying Lemma 3.8, we have for any γ, |γ| ≤ |α| − 2,

‖ϕρ,N△vD
α−γu‖−1/3+n+1 ≤ ‖DvD

α−γ+1u‖−1/3+n+1,Ωρ̃

≤
C7A

|α|−|γ|+1−2

ρ̃s(|α|−|γ|−2)

(

(|α| − |γ| − 2)!
)s

≤
C15A

|α|−|γ|+1−2

ρs(|α|−|γ|−2)

(

(|α| − |γ| − 2)!
)s
.
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Consequently, we compute

∑

2≤|γ|≤|α|−2

( α
γ

)∥

∥Dγa‖n+1,Ω · ‖ϕρ,N△vD
α−γu

∥

∥

−1/3+n+1

≤
∑

2≤|γ|≤|α|−2

( α
γ

)

C
|γ|−2
14

(

(|γ| − 2)!
)sC15A

|α|−|γ|+1−2

ρs(|α|−|γ|−2)

(

(|α| − |γ| − 2)!
)s

≤
C15A

|α|−2

ρs(|α|−3)

∑

2≤|γ|≤|α|−2

(C14

A

)|γ|−1
|α|!

(

(|γ| − 2)!
)s−1(

(|α| − |γ| − 2)!
)s−1

≤
C15A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s ∑

2≤|γ|≤|α|−2

(C14

A

)|γ|−1
|α|

(|α| − 1)(|α| − 2)

(|α| − 3)s−1

≤
C16A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)s/3
∑

2≤|γ|≤|α|−2

(C14

A

)|γ|−1
.

Taking A large enough such that
∑

2≤|γ|≤|α|−2

(

C14

A

)|γ|−1
≤ 1, then we get

∑

2≤|γ|≤|α|−2

( α
γ

)∥

∥Dγa‖n+1,Ω · ‖ϕρ,N△vD
α−γu

∥

∥

−1/3+n+1
≤
C16A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)s/3.

For |γ| = 1, |α| − 1 or |α|, we can compute directly

( α
γ

)∥

∥Dγa‖n+1,Ω · ‖ϕρ,N△vD
α−γu

∥

∥

−1/3+n+1
≤
C17A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)s/3.

Combination of the above two inequalities give that

(III) ≤
C18A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)s/3.

This along with (3.15) and (3.18) yields the conclusion (3.14).

Step 2. Claim

(3.19) ‖ϕρ,ND
α[F

(

·, u(·),∇vu(·)
)

]‖−1/3+n+1 ≤ C21A
|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)s/3.

Firstly, we will prove F and u satisfy the conditions (3.7)-(3.9) for some Mj. By Lemma 3.8, we
have

(3.20) ‖Dju‖−1/3+n+1,Ωρ̃
≤ ‖Dju‖n+1,Ωρ̃ ≤

C7A
j−2

ρ̃s(j−3)

(

(j − 3)!
)s
, 3 ≤ j ≤ N,

(3.21) ‖DvD
ju‖−1/3+n+1,Ωρ̃

≤
C7A

j−2

ρ̃s(j−3)

(

(j − 3)!
)s
, 3 ≤ j ≤ N,

and

(3.22) ‖Dju‖−1/3+n+1,Ωρ̃
≤ C7, 0 ≤ j ≤ 2.

Since F ∈ Gs(R2n+1 × R), then

(3.23) ‖(Dk
t,x,v∂

l
uD

m
p F )

(

·, u(·),∇vu(·)
)

‖−1/3+n+1,Ω ≤ Ck+l20

(

(k − 3)!
)s(

(l − 3)!
)s
, k,m+ l ≥ 3.
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Define Mj , H0, H1 by setting

H0 = C7, H1 = A, M0 = C7, Mj =

(

(j − 1)!
)s

ρ̃s(j−1)
, j ≥ 1.

We can choose A large enough such that H1 = A ≥ C2H0. Then (3.20)-(3.23) can be rewritten

‖Dju‖−1/3+n+1,Ωρ̃
≤ H0, 0 ≤ j ≤ 1,(3.24)

‖Dju‖−1/3+n+1,Ωρ̃
≤ H0H

j−2
1 Mj−2, 2 ≤ j ≤ |α| = N,(3.25)

‖DvD
ju‖−1/3+n+1,Ωρ̃

≤ H0H
j−2
1 Mj−2, 2 ≤ j ≤ |α| = N,(3.26)

‖(Dk
t,x,v∂

l
uD

m
p F )‖−1/3+n+1,Ω ≤ Ck+l20 Mk−2Mm+l−2, k,m+ l ≥ 2.(3.27)

For each j, note that s ≥ 3 and hence

(3.28)

j!
i!(j−i)!MiMj−i = j!

i(j−i)

(

(i− 1)!
)s−1(

(j − i− 1)!
)s−1

ρ̃−s(i−1)ρ̃−s(j−i−1)

≤ (j!)
(

(j − 2)!
)s−1

ρ̃−s(j−1)

≤ j
(j−1)s−1 (j − 1)!

(

(j − 1)!
)s−1

ρ̃−s(j−1)

≤ Mj .

Thus Mj satisfy the monotonicity condition (3.5). In virtue of (3.24)-(3.28), using Lemma 3.5, we
have

‖ϕρ,ND
α[F (·, u(·))]‖−1/3+n+1 ≤ C3H0H

|α|−2
1 M|α|−2

≤
C3C7A

|α|−2

ρ̃s(|α|−3)

(

(|α| − 3)!
)s

≤
C21A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)s/3.

This completes the proof of conclusion (3.19).

Step 3. Claim

‖Lϕρ,ND
αu‖−1/3+n+1 ≤

C23A
|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)s/3.(3.29)

In fact,

‖Lϕρ,ND
αu‖−1/3+n+1 ≤ C22{ ‖[L, ϕρ,ND

α]u‖−1/3+n+1 + ‖ϕρ,ND
αLu‖−1/3+n+1 }

= C22

{

‖[L, ϕρ,ND
α]u‖−1/3+n+1

+
∥

∥ϕρ,ND
α[F

(

·, u(·),∇vu(·)
)

]
∥

∥

−1/3+n+1

}

.

This along with (3.14), (3.19) in step 1 and step 2 yields immediately the conclusion (3.29).
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Step 4. Claim

(3.30) ‖ϕρ,ND
αu‖1/3+n+1 + ‖ϕρ,NDvD

αu‖1/3−1/3+n+1 ≤ C31A
|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)s/3.

In fact, applying the subelliptic estimate (2.3), we obtain

‖ϕρ,ND
αu‖1/3+n+1 ≤ C24{ ‖Lϕρ,ND

αu‖−1/3+n+1 + ‖ϕρ,ND
αu‖n+1 }.

Combining Lemma 3.8 and (3.29) in Step 3, we have

‖ϕρ,ND
αu‖1/3+n+1 ≤

C25A
|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)s/3.(3.31)

Now it remains to treat ‖ϕρ,NDvD
αu‖1/3−1/3+n+1, and

‖ϕρ,NDvD
αu‖1/3−1/3+n+1 ≤ ‖Dvϕρ,ND

αu‖n+1 + ‖[Dv, ϕρ,N ]Dαu‖n+1.

Firstly, we treat the first term on the right. By direct calculation, it follows that

‖Dvϕρ,ND
αu‖2

n+1

= Re
(

Lϕρ,ND
αu, a−1Λ2n+2ϕρ,ND

αu
)

− Re
(

X0ϕρ,ND
αu, a−1Λ2n+2ϕε,kεD

αu
)

= Re
(

Lϕρ,ND
αu, a−1Λ2n+2ϕρ,ND

αu
)

−
1

2

(

ϕρ,ND
αu, [a−1Λ2n+2, X0]ϕρ,ND

αu
)

−
1

2

(

ϕρ,ND
αu, [Λ2n+2, a−1]X0ϕρ,ND

αu
)

≤ C26

{

‖Lϕρ,ND
αu‖2

−1/3+n+1 + ‖ϕρ,ND
αu‖2

1/3+n+1

}

.

This along with (3.29) and (3.31) shows at once

‖Dvϕρ,ND
αu‖r−1/3+n+1 ≤

C27A
|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)s/3.

Moreover Lemma 3.8 yields

‖[Dv, ϕρ,N ]Dαu‖n+1 ≤ C28(N/ρ)‖D
αu‖n+1,Ωρ̃

≤
C28C7A

|α|−2

ρ̃s(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)s/3

≤
C29A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)s/3.

From the above two inequalities, we have

‖ϕρ,NDvD
αu‖1/3+n+1 ≤

C30A
|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)s/3.

This completes the proof of Step 4.

It’s clear for any ρ, 0 < ρ < 1,

‖Dαu‖1/3+n+1,Ωρ
+ ‖DvD

αu‖1/3−1/3+n+1,Ωρ
≤ ‖ϕρ,ND

αu‖1/3+n+1 + ‖ϕρ,NDvD
αu‖1/3−1/3+n+1.

Thus from Step 4, it follows that the conclusion in Lemma 3.9 is true for r = 1/3.
Moreover for any 0 < r < 1/3, using the interpolation inequality (2.2), we have

‖Dαu‖r+n+1,Ωρ ≤ ‖ϕρ,ND
αu‖r+n+1

≤ ε‖ϕρ,ND
αu‖1/3+n+1 + ε−r/(1/3−r)‖ϕρ,ND

αu‖n+1

≤ ε
C31A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)s/3 + ε−r/(1/3−r)
C32A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s
,
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Taking ε = (N/ρ)s(r−1/3), then

‖Dαu‖r+n+1,Ωρ ≤
C33A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)rs.

Similarly,

‖DvD
αu‖r−1/3+n+1,Ωρ

≤
C34A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)rs.

This completes the proof of Lemma 3.9.

Inductively, we have the following

Lemma 3.10. For any r with 1/3 ≤ r ≤ 2/3,

‖Dαu‖r+n+1,Ωρ + ‖DvD
αu‖r−1/3+n+1,Ωρ

≤
C38A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)sr, ∀ 0 < ρ < 1.(3.32)

Moreover, the above inequality still holds for any r with 2/3 ≤ r ≤ 1.

Proof. Repeating the proof of Lemma 3.9, we have the truth of (3.32) for 1/3 ≤ r ≤ 2/3. The case
2/3 ≤ r ≤ 1 is a little different. The conclusion in Step 1 in the above proof still holds for r = 1, and
corresponding to Step 2, we have to make some modification to prove

∥

∥ϕρ,NDα[F
(

·, u(·),∇vu(·)
)

]
∥

∥

1/3+n+1
≤ C36A

|α|−2

ρs(|α|−3)

(

(|α| − 3)!
)s

(N/ρ)s.

From the truth of (3.32) for 1/3 ≤ r ≤ 2/3, it follows

‖Dju‖1/3+n+1,Ωρ̃
≤
C37A

j−2

ρ̃s(j−3)

(

(j − 3)!
)s

(j/ρ̃)s/3, 3 ≤ j ≤ N,

‖DvD
ju‖1/3+n+1,Ωρ̃

≤ ‖DvD
ju‖2/3−1/3+n+1,Ωρ̃

≤
C37A

j−2

ρ̃s(j−3)

(

(j − 3)!
)s

(j/ρ̃)2s/3, 3 ≤ j ≤ N,

and

‖Dju‖1/3+n+1,Ωρ̃
≤ C37, 0 ≤ j ≤ 2,

Hence we need define a new sequence M̄j by setting

M̄0 = C37, M̄j =

(

(j − 1)!
)s

ρ̃s(j−1)

(

(j + 2)/ρ̃
)2s/3

, j ≥ 1.

For each j, note that s ≥ 3 and hence direct computation deduces that for 0 < i < j,

j!
i!(j−i)!M̄iM̄j−i = j!

i(j−i)

(

(i− 1)!
)s−1(

(j − i− 1)!
)s−1

×(i+ 2)2s/3(j − i+ 2)2s/3ρ̃−s(j−2)ρ̃−4s/3

≤ 4(j!)
(

(j − 2)!
)s−1

(j + 2)2s/3−1(j + 1)2s/3−1ρ̃−s(j−1)ρ̃−2s/3ρ̃s−2s/3

≤ 4j(j+1)2s/3−1

(j−1)s−1 (j − 1)!
(

(j − 1)!
)s−1

ρ̃−s(j−1)
(

(j + 2)/ρ̃
)2s/3

≤ C39M̄j .

In the last inequality we used the fact s−1 ≥ 2s/3. Thus M̄j satisfy the monotonicity condition (3.5).
Now the left is entirely similar to the proof of Lemma 3.9. And thus (3.32) holds for r = 1 and hence
for 2/3 ≤ r ≤ 1 by interpolation inequality (2.2). This completes the proof of Lemma 3.10.
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Recall C7, C35 and C35 are the constants appearing in Lemma 3.8, Lemma 3.9 and Lemma 3.10.
Now taking A large enough such that A ≥ max{C7, C35, C38}, and then by the above three Lemmas
we have the truth of (E)r,N for any r ∈ [0, 1]. This complete the proof of Proposition 3.6.
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[13] L.Hörmander, Hypoelliptic second order differential equations. Acta Math. 119 (1967), 147-171.
[14] J.Kohn, Lectures on degenerate elliptic problems. Psedodifferential operators with applications, C.I.M.E., Bres-

sanone 1977, 89-151(1978).
[15] Y.Morimoto, C.-J. Xu, Hypoellipticity for a class of kinetic equations. to appear at J. Math. Kyoto U.
[16] Y. Morimoto and C.-J. Xu, Logarithmic Sobolev inequality and semi-linear Dirichlet problems for infinitely degen-

erate elliptic operators, Astérisque 284 (2003), 245–264.
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