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The Sott model of Linear Logi is theextensional ollapse of its relational modelThomas EhrhardPreuves, Programmes et Systèmes, UMR 7126CNRS and University Paris Diderot - Paris 7 ∗Marh 22, 2009AbstratWe show that the extensional ollapse of the relational model of linearlogi is the model of prime-algebrai latties, a natural extension to linearlogi of the well known Sott semantis of the lambda-alulus.IntrodutionLinear Logi arose from denotational investigations of seond order intuitionistilogi by Girard (system F [Gir86℄). He observed that the qualitative domains1used for interpreting system F an be assumed to be generated by a binary rela-tion on a set of verties (the web): suh a struture is alled a oherene spae2.The ategory of oherene spaes, with linear maps (stable maps preservingarbitrary existing unions) as morphisms, has remarkable symmetry propertiesthat led him to the sequent alulus of LL, and then to proof-nets [Gir87℄ andto the Geometry of Interation.Sott semantis of LL. In spite of Barr's observation [Bar79℄ that the at-egory of omplete latties and linear maps is ∗-autonomous, it was a ommonbelief in the Linear Logi ommunity that the standard Sott semantis of thelambda-alulus (Sott domains and ontinuous maps) annot provide modelsof lassial linear logi. Huth showed however in [Hut94℄ that prime-algebraiomplete latties and lub-preserving maps provide a model of lassial LL whoseassoiated CCC (the Kleisli ategory of the � !� omonad) is a full-CCC of theategory of Sott domains and ontinuous maps. Huth onsidered however hismodel as degenerate, as it identi�es the ⊗ and ` onnetives of LL3. A fewyears later, Winskel redisovered the same model in a semantial investigation
∗This work as also been partly funded by the ANR projet CHOCO:http://hoo.pps.jussieu.fr.1Qualitative domains an be seen as partiular dI-domains [Ber78℄.2The pure lambda-alulus, or the Turing-omplete funtional language PCF [Plo77℄, analso be interpreted in oherene spaes.3The interpretation of proofs in this model is non-trivial and interesting nevertheless. As inthe ase of the relational model (see below), it is possible to endow this model whih additionalstrutures whih separate ⊗ and `, without modifying the interpretation of proofs.1



of onurreny [Win99℄ (see also the beginning of [Win04℄ for instane). Asa partiular ase of a more general profuntor onstrution, he showed indeedthat the ategory whose objets are preordered sets and where the morphismsfrom a preorder S to a preorder T are the funtions from the set I(S) of down-ward losed subsets of S to the set I(T ) whih preserve arbitrary unions is amodel of lassial LL. This ategory is equivalent to Huth's model, but we preferWinskel's approah, as it insists on onsidering preorders (and not latties) asobjets: preorders are similar to the webs of oherene spaes, to the sets of therelational model, and represent the prime elements of the orresponding latties.Moreover, the LL onstrutions are easier to desribe in terms of preorders thanin terms of latties. It is fair to mention also that Krivine [Kri90, Kri93℄ used thesame onstrution (set I(S) of �initial segments� of a preorder S) for desribingmodels of the pure lambda-alulus and mentioned that these preorders giverise to a model of LL, with linear negation orresponding to taking the oppositepreorder.Relational semantis. On the other hand, when one applies the Oam'sRazor Priniple to the oherene spae semantis, one is led to interpreting for-mulae as sets (the webs, without any struture) and proofs as relations betweenthese sets. Something triky happens during this proess: sine oherene van-ishes, one annot restrit the set interpreting an �of ourse� to ontain only �niteliques as Girard did in [Gir86℄, the best one an do is take all �nite subsets.But then, the derelition relation (from !X to X), whih is the set of all pairs
({a}, a) where a ∈ X , is no more a natural transformation. This problem aneasily be solved by replaing �nite sets with �nite multisets, but the e�et of thishoie is that the orresponding Kleisli ategory is no more well-pointed. Onede�nes in that way the relational semantis of linear logi, whih is ertainly itssimplest (and, maybe, most anonial) denotational model.Coe�ients. One way of turning the CCC assoiated with the relationalmodel into a well-pointed ategory is by enrihing it with oe�ients: insteadof taking subset of X × Y as morphisms from X to Y , take elements of CX×Y ,where C is a suitable set (or lass) of oe�ients; a anonial hoie onsists intaking C = Set, the lass of all sets. An element of SetX×Y should be on-sidered as a matrix whose rows are indexed by the elements of Y , and olumnsby the elements of X : this is basially the idea of Girard's quantitative seman-tis [Gir88℄, whih is presented as a model of intuitionisti logi, but is indeed amodel of LL (Girard wrote this paper before he disovered LL), see [Has02℄. Itis also an instane of the already mentioned profuntor onstrutions [Win99℄.Finite oe�ients belonging to more standard algebrai strutures (rigs,�elds, et.) an also be onsidered, but this requires adding some strutureto these sets for guaranteeing the onvergene of the sums whih appear whenmultiplying the matries, see [Ehr02, Ehr05, DE08℄: the e�et of suh additionalstruture is that objets are equipped with a topology for whih the (generallyin�nite) sums involved in multiplying matries onverge.Extensional ollapse of the relational model. The other way of makingthe relational model well-pointed is by performing an extensional ollapse. Thisoperation is easily understood in the type hierarhy assoiated with the artesianlosed Kleisli ategory of the �nite multiset omonad on the ategory of sets and2



relations: eah type A is interpreted by its relational interpretation [A] (a simpleset), together with a partial equivalene relation (PER) ∼A on P([A]). When Ais the type B ⇒ C, an element of P([A]) is a morphism from B to C, and twosuh morphisms f and g are ∼B⇒C -equivalent if, for any x, y suh that x ∼A y,one has f(x) ∼B g(y). In other words, this PER is a logial relation4, and theextensional ollapse of this type hierarhy is obtained by quotienting eah set
P([A]) by the PER ∼A (one onsiders only the elements x of P([A]) suh that
x ∼A x, whih are often alled invariant elements).Content of the paper. We prove that this extensional ollapse of the rela-tional model oinides preisely with the Sott model of preorders. The �rstproblem we have to fae is to give a preise meaning to this statement. We startfrom the work of Buiarelli [Bu97℄, reasting it in a ategorial setting: givena CCC C and a well-pointed CCC E , we want to express what it means for Eto �be� (we shall say to �represent�) the extensional ollapse of C. For this, weintrodue two ategorial onstrutions.

• The homogeneous ollapse ategory e(C), whose objets are pairs (U,∼)where U is an objet of C and ∼ is a partial equivalene relation (PER) onthe points of U (that is on C(⊤, U) where ⊤ is the terminal objet of C).The morphisms are those of C whih preserve this additional struture,and it is easy to see that this ategory is a CCC. The important pointin this de�nition is that the objet of morphisms from (U,∼) to (V,∼) is
(W,∼W ) where W is the objet of morphisms from U to V in C and therelation ∼W is de�ned as a logial relation.

• The heterogeneous ollapse ategory e(C, E), whose objets are triples (U,E,)where U is an objet of C, E is an objet of E and  ⊆ C(⊤, U)×E(⊤, E)should be understood as a realizability prediate: x  ζ means intuitivelythat ζ represents the �extensional behavior� of x. The morphisms arethe pairs (f, ϕ) of morphisms whih preserve the relation , and again,it is easy to hek that this ategory is a CCC. The important point isthat, when onstruting the objet of morphisms,  is de�ned as a logialrelation.These two onstrutions are possible for any CCCs C and E . We say that Erepresents the extensional ollapse of E if
• e(C, E) ontains a �su�iently large� (in a reasonable sense, to be madepreise later) sub-CCC H whose objets (U,E,) are modest, meaningthat  is a partial surjetion from C(⊤, U) to E(⊤, E), and therefore in-dues a PER on C(⊤, U) (observe that E(⊤, E) an be onsidered as thequotient of C(⊤, U) by this PER)
• and the funtor H → e(C) whih maps (U,E,) to (U,∼), where ∼ is thePER indued by  (and maps a morphism (f, ϕ) to f), is a CCC funtor(that is, preserves the CCC struture on the nose).The nie feature of this de�nition is that it is ompatible with the standardone (based on type hierarhies) and that it an easily be extended, for instane,4Logiians would speak of a binary reduibility prediate.3



to a simple and general de�nition of what it means for a model of the purelambda-alulus to represent the extensional ollapse of another one.It would be nie of ourse to have a similar de�nition of the extensionalollapse of a ategorial model of LL, and not only of CCCs, but sine the de�-nition of suh a model is already quite ompliated, we prefer not to address thisissue. Instead, we perform the CCC onstrutions de�ned above onretely, in aompletely linear setting, obtaining both CCCs e(C) and H as Kleisli onstru-tions of suitable exponential omonads: in the present paper, C is the Kleisliategory Rel! assoiated with the LL model of sets and relations, and E is theKleisli ategory ScottL! assoiated with the LL model of preorders and linearmaps between the assoiated omplete latties.After having introdued the neessary preliminary material, we �rst build inSetion 2.2 a linear version of the ategory e(Rel!). More preisely, we de�nea model of LL denoted as PerL, whose objets are alled PER-objets: theyare sets equipped with a PER on their powersets. The Kleisli ategory PerL!is isomorphi to e(Rel!) (or, more preisely, to a full sub-CCC of e(Rel!)).Then, in Setion 3, we desribe the Sott model ScottL of LL. The objetsare preordered sets, and a morphism from S to T is a linear map (that is, a mappreserving all unions) from I(S) (the set of all downward-losed subsets of S) to
I(T ). As far as sets are onerned, the multipliative and additive onstrutionsin this model oinide with those of the model Rel (more things have to be saidabout the assoiated preorders: for instane, S⊥ is the set S equipped with theopposite of the preorder of S). As to the exponential, the natural hoie wouldbe to de�ne !S as the set of �nite subsets of S with a suitable preorder: withthat hoie, the Kleisli ategory ScottL! is a sub-CCC of the CCC of ompletelatties and Sott-ontinuous funtions. But we an obtain the same e�et byde�ning !S as the set of all �nite multisets of elements of S, and this will greatlysimplify our onstrutions, beause with this hoie, the set interpreting an LLformula in Rel oinides with the set interpreting the same formula in ScottL(remember that this set is equipped with a preorder).In Setion 4, we introdue the linear version of the �heterogeneous ategory�
H of the onstrution desribed above. An objet should be a triple (X,S,)where X is a set, S is a preordered set and  ⊆ P(X) × I(S) (whih has tobe a partial surjetion). By our hoie above for the de�nition of !S, we anassume X = S, so as a �rst simpli�ation, we an assume our objets to be pairs
(S,) where S is a preordered set and  ⊆ P(S) × I(S) has to be a partialsurjetion. A areful analysis shows that, when x  u, we must have u = ↓ x(the downward losure of x in S), so that, for de�ning the partial surjetion ,we only need to know its domain D. So an objet of our ategory will be a pair
(S,D) where D ⊆ P(S). What ondition should satisfy D? As usual, it shouldbe equal to its double dual for a suitable notion of duality: here, we say that
x, x′ ⊆ S are in duality if x′ ∩↓ x 6= ∅ ⇒ x′ ∩x 6= ∅, that is x′ annot separate xfrom its downward losure. We show that these objets (alled �preorders withprojetions�), with suitable linear morphisms, form a model of linear logi PpL,whose assoiated Kleisli ategory PpL! an be onsidered as a full sub-CCC of
e(Rel!,ScottL!), of whih all objets are modest. And we show that ScottL!represents the extensional ollapse of Rel! in the sense explained above. Weatually exhibit a funtor from PpL to PerL whih preserves the struture ofLL model and whih indues the required CCC funtor from PpL! to PerL!.4
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⊤ is the terminal objet of C that we assume to exist), we write f(x) instead of
f ◦ x beause we onsider x as a �point� (an �element�) of E.1.2 Cartesian losed ategories and models of the purelambda-alulusWe brie�y reall that a ategory C is artesian losed (is a CCC) if eah �nitefamily (Ei)i∈I of objets of C has a artesian produt &i∈I Ei (in partiular,it has a terminal objet ⊤) together with projetions πj ∈ C(&i∈I Ei, Ej) suhthat, for any family (fi)i∈I with fi ∈ C(F,Ei) there is an unique morphism
〈fi〉i∈I ∈ C(F,&i∈I Ei) suh that πj ◦ 〈fi〉i∈I = fj for eah j and if, given twoobjets E and F of C, there is a pair (E ⇒ F,Ev), alled the objet of morphismsfrom E to F , together with an evaluation morphism Ev ∈ C((E ⇒ F ) & E,F )6



suh that, for any f ∈ C(G & E,F ), there is an unique Cur(f) ∈ C(G,E ⇒ F )suh that Ev ◦ (Cur(f) & IdE) = f .Given two CCCs C and D, a funtor F : C → D will be said to be a artesianlosed funtor if it preserves the artesian losed struture on the nose. Thismeans that F(&i∈I Ei) = &i∈I F(Ei), F(πi) = πi, F(E ⇒ F ) = F(E) ⇒ F(F )and F(Ev) = Ev.A re�exive objet in a CCC C is a triple (H, app, lam) where H is an objetof C, app ∈ C(H,H ⇒ H) and lam ∈ C(H ⇒ H,H) satisfy app ◦ lam = IdH⇒H .One says moreover that (H, app, lam) is extensional5 if lam ◦ app = IdH . If
(H, app, lam) is a re�exive objet in C and if F : C → D is a CCC funtor,then (F(H),F(app),F(lam)) is a re�exive objet in D, whih is extensional if
(H, app, lam) is extensional.Let (H, app, lam) be a re�exive objet in the CCC C. Then, given anylambda-term M and any repetition-free list of variables ~x = x1, . . . , xn whihontains all the free variables of M (suh a list will be said to be adapted to
M), one de�nes [M ]H~x ∈ C(Hn, H) by indution on M ([xi]

H
~x = πi, [λxN ]H~x =

lam ◦ Cur([N ]H~x,x) and [(N)P ]H~x = Ev ◦ 〈app ◦ [N ]H~x , [P ]H~x 〉). If M and M ′are β-equivalent and ~x is adapted to M and M ′, we have [M ]H~x = [M ′]H~x . If
(H, app, lam) is extensional, we have [M ]H~x = [M ′]H~x when M and M ′ are βη-equivalent.If F : C → D is a CCC funtor then, for any lambda-term M , we have
F([M ]H~x ) = [M ]

F(H)
~x where [M ]

F(H)
~x is the interpretation of M in the re�exiveobjet (F(H),F(app),F(lam)).1.3 Intuitionisti extensional ollapseThe present analysis of the extensional ollapse of a model of the typed lambda-alulus is based on [Bu97℄.From the usual intuitionisti viewpoint, the extensional ollapse is a log-ial relation. More spei�ally, onsider the hierarhy of simple types basedon some type atoms α, β. . . , and intuitionisti impliation ⇒. Consider aartesian losed ategory C (with terminal objet ⊤, artesian produt & andfuntion spae ⇒). Given a valuation I from type atoms to objets of C, wehave an interpretation of types [A]I ∈ C. The extensional ollapse of this inter-pretation is a type-indexed family of partial equivalene relations (∼A), where

∼A⊆ C(⊤, [A]I)
2. This relation is de�ned by indution on types.

• At eah basi type α, the relation∼α oinides with equality on C(⊤, I(α)).
• Then, given f, g ∈ C(⊤, [A⇒ B]I) = C(⊤, [A]I ⇒ [B]I) ≃ C([A]I , [B]I),one has f ∼A⇒B g if, for all x, y ∈ C(⊤, [A]I) suh that x ∼A y, one has
f(x) ∼B g(y) (where we reall that we write f(x) instead of f ◦ x whenthe soure of x is the terminal objet).By indution on types, one proves easily that ∼A is a PER on C(⊤, [A]I) foreah type A. Sine the family of PERs (∼A) is de�ned as a logial relation,it is ompatible with the syntax of the simply typed lambda-alulus, in thesense that, if M is a losed term of type A, its semantis [M ]I ∈ C(⊤, [A]I)5This notion of extensionality, whih orresponds to the η onversion rule of the lambda-alulus, should not be onfused with the notion of extensionality we are dealing with in thispaper, whih is related to the ategorial notion of well-pointedness.7



satis�es [M ]I ∼A [M ]I . This property an be extended to funtional enrihedversions of the simply typed lambda-alulus (suh as PCF) under some mildassumptions on C and I.1.3.1 Representing the ollapse as an interpretation. Let E be an-other artesian losed ategory, that we assume to be well-pointed (mean-ing that, if ϕ, ψ ∈ E(E,F ) satisfy ϕ(ζ) = ψ(ζ) for all ζ ∈ E(⊤, E), then
ϕ = ψ). Let J be a valuation of type atoms in E and, for eah type atom
α, let α ⊆ C(⊤, I(α)) × E(⊤, J(α)) be a bijetion (to be understood as ex-pressing an equality relation between the elements of the two models at groundtypes). Then we de�ne A ⊆ C(⊤, [A]I) × E(⊤, [A]J ) for all type A as a logialrelation (alled the heterogeneous relation), that is

f A⇒B ψ ⇔ (∀x, ζ x A ζ ⇒ f(x) B ϕ(ζ)) .If A is surjetive for all type A (that is ∀ζ ∈ E(⊤, [A]J )∃x ∈ C(⊤, [A]I) x A

ζ), then all the relations A are funtional (in the sense that if x A ζ and
x A ζ′, then ζ = ζ′). This is easy to hek by indution on types and is dueto the well-pointedness of E .We say that (A) is a representation of the ollapse of the interpretation Iby the interpretation of J if, for all type A, A is surjetive (and bijetive when
A = α is a basi type) and one has

∀x, y ∈ C(⊤, [A]I) x ∼A y ⇔ (∃ζ ∈ E(⊤, [A]J) x A ζ and y A ζ) .This means that, at eah type A, the relation A indues a bijetion between
E(⊤, [A]J ) and the quotient6 C(⊤, [A]I)/∼A.Assume that (A) is suh a representation. Sine it is de�ned as a logialrelation, we have [M ]I A [M ]J for eah losed lambda-term of type A, we have
[M ]I ∼A [N ]I i� [M ]J = [N ]J for all losed terms M and N of type A.1.3.2 Categorial presentation. There is another, more oneptual wayof desribing the situation above. First one de�nes the ollapse ategory e(C)of C. Its objets are pairs U = (pUq,∼U) where pUq is an objet of C and
∼U ⊆ C(⊤, pUq)2 is a PER. Given two objets U and V of e(C), the elementsof e(C)(U, V ) are the morphisms f ∈ C(pUq, pV q) suh that

∀x, x′ ∈ C(⊤, pUq) x ∼U x′ ⇒ f(x) ∼V f(x′) .If the ategory C is artesian, then so is e(C) (with artesian produts de�nedin the most obvious way). And if C is artesian losed, so is e(C). Giventwo objets U and V of C, one de�nes U ⇒ V = (pUq ⇒ pV q,∼U⇒V ) with
f ∼U⇒V f ′ i� f(x) ∼Y f ′(x′) for all x, x′ ∈ C(⊤, pUq) suh that x ∼U x′(for f, f ′ ∈ C(⊤, pU ⇒ V q) ≃ C(pUq, pV q)). The evaluation morphism Ev ∈
e(C)((U ⇒ V ) & U, V ) is the evaluation morphism of the ategory C, whih isalso a morphism in e(C). We say that an objet U of e(C) is disrete if ∼Uoinides with equality.Similarly, one de�nes the heterogeneous ategory e(C, E) of C and E . Itsobjets are triples X = (pXq, xXy,X) where pXq is an objet of C, xXy6When quotienting a set by a PER, one onsiders only the elements of the set whih areequivalent to themselves. 8



is an objet of E and X ⊆ C(⊤, pXq) × E(⊤, xXy). A morphism θ from
X to Y in that ategory is a pair (pθq, xθy) where pθq ∈ C(pXq, pY q) and
xθy ∈ E(xXy, xY y) satisfy pθq(x) Y xθy(ζ) for all (x, ζ) suh that x X ζ.Again, if both ategories C and E are artesian, so is e(C, E), and if theyare artesian losed, so is e(C, E), with X ⇒ Y de�ned as follows: pX ⇒ Y q =
pXq ⇒ pY q, xX ⇒ Y y = xXy ⇒ xY y and, given f ∈ C(⊤, pX ⇒ Y q) ≃
C(pXq, pY q) and ϕ ∈ E(⊤, xX ⇒ Y y) ≃ C(xXy, xY y), we have f X⇒Y ϕ if
f(x) Y ϕ(ζ) for all (x, ζ) suh that x X ζ.Let us say that an objetX of e(C, E) ismodest7 if the relation X is a partialsurjetion from C(⊤, pXq) to E(⊤, xXy). Let emod(C, E) be the full subategoryof e(C, E) whose objets are the modest objets. If C and E are artesian, then
emod(C, E) is a sub-artesian ategory of e(C, E). But in general, emod(C, E) isnot artesian losed. It an be notied that, if X and Y are objets of e(C, E)whih are modest (so that, again, X ⇒ Y is well de�ned but not neessarilymodest) and if X⇒Y is surjetive, then X⇒Y is funtional, and hene X ⇒ Yis modest.There is a artesian losed �seond projetion� funtor σ : e(C, E) → E(it maps an objet X to xXy and a morphism θ to xθy). There is also afuntor ε : emod(C, E) → e(C) whih maps an objet X to (pXq,∼ε(X)), where
x1 ∼ε(X) x2 if x1 X ζ and x2 X ζ for some (neessarily unique) ζ. Given
θ ∈ e(C, E)(X,Y ), we set ε(θ) = pθq. Indeed, let x1, x2 ∈ C(⊤, pXq) suh that
x1 ∼ε(X) x2 (with ζ ∈ E(⊤, xXy) suh that x1 X ζ and x2 X ζ), we have
pθq(x1) Y xθy(ζ) and pθq(x2) Y xθy(ζ), and hene pθq(x1) ∼Y pθq(x2), sothat pθq ∈ e(C)(ε(X), ε(Y )).We say that the ategory E represents the extensional ollapse of the ategory
C if there exists a sub-CCC H of e(C, E) suh that

• eah objet of H is modest;
• the funtor ε : H → e(C) is artesian losed
• and, for any8 disrete objet U of e(C), there is an objet X of H suhthat ε(X) = U (so that pXq = U and X is a bijetion).1.3.3 Connetion between the two de�nitions. The motivation of thisde�nition is that, in that situation, if I is a type valuation in C then, foreah ground type α, we an �nd an objet J(α) of E suh that K(α) =

(I(α), J(α),α) is an objet of H, for some bijetion K(α). We an extend
(K(α)) into an interpretation of types ([A]K) in the CCC H whih satis�es
[A]K = ([A]I , [A]J ,A) where A oinides with the heterogeneous logial re-lation de�ned in 1.3.1. Then our assumption that E represents the extensionalollapse of C implies that (A) is a representation of the extensional ollapse of
I by J , in the sense of 1.3.1.The bene�t of this abstration is that the onept of a CCC E representingthe extensional ollapse of a CCC C is quite �exible and independent of anytype hierarhy given a priori. For instane, it provides a natural de�nition ofthe extensional ollapse of a model of the pure lambda-alulus.7This is ompatible with the standard terminology of realizability, see e.g. [AC98℄.8We atually don't need this property for all disrete Us, but only for those whih areintended to represent the basi types of the funtional language we have in mind. For thesake of simpliity, we adopt this stronger hypothesis.9



1.3.4 Extensional ollapse of a re�exive objet. Assume indeed that
E represents the extensional ollapse of C in the sense above, with H as het-erogeneous ollapse CCC. Let (Z, app, lam) be a re�exive objet in H. Then
(ε(Z), pappq, plamq) is a re�exive objet in e(C), (pZq, pappq, plamq) is a re�ex-ive objet in C and (xZy, xappy, xlamy) is a re�exive objet in E .In that ase, we say that the re�exive objet (xZy, xappy, xlamy) is a repre-sentation of the extensional ollapse of the re�exive objet (pZq, pappq, plamq).Remark : The preise syntatial meaning of this de�nition is not ompletelylear yet. In this paper, we shall give a representation of the extensional ollapseof the relational model of the lambda-alulus introdued in [BEM07℄ (in thesense above), and these two models will learly be quite di�erent. However, bothmodels indue the same equational theory on lambda-terms (namely, the theory
H∗, aording to whih two terms M and M ′ are equivalent if, for any ontext
C, the term C[M ] is solvable i� the term C[M ′] is solvable). With the notationsabove, this means that, when restrited to the interpretations of lambda-terms,the relation ∼Z is just equality. Extending for instane the lambda-aluluswith a parallel omposition onstrution based on the mix rule of Linear Logias in [DK00, BEM08℄, the situation beomes more interesting and the theoriesindued by the two models on the language are distint.1.4 New-Seely ategories and LL-funtorsFollowing [Bie95℄, we de�ne a model L of LL as a New-Seely ategory. Thisonsists of

• a symmetri monoidal losed star-autonomous ategory (also denoted with
L) whih has all �nite produts (the unit of the tensor produt is denotedwith 1, the dualizing objet with ⊥, the terminal objet ⊤ and the arte-sian produt of X and Y is denoted with X & Y ),

• a omonad ! : L → L (the struture morphisms dLX ∈ L(!X,X) is alledderelition and pLX ∈ L(!X, !!X) is alled digging),
• and two natural isomorphisms !⊤ ≃ 1 and !(X & Y ) ≃ !X ⊗ !Ysuh that the adjuntion between L and its Kleisli ategoryL! (whih is artesianlosed by the hypotheses above) is a monoidal adjuntion.Given a funtion I (valuation) from the propositional atoms of LL to objetsof L, the interpretation [A]LI of an LL-formula A is de�ned by indution on

A, using the above mentioned strutures of L, e.g. [A⊗B]LI = [A]LI ⊗L [B]LI .Similarly, given a proof π of A, one de�nes [π]LI ∈ L(1, [A]LI ) by indution on π(expressed in the standard sequent alulus of LL [Gir87℄).Given two New-Seely ategories L and M, a funtor F : L → M willbe alled an LL-funtor if it ommutes on the nose with all the onstrutionsrequired for interpreting LL, e.g. F (X ⊗L Y ) = F (X) ⊗M F (Y ), F (dLX) = dMXet. Then one has F ([A]LI ) = [A]MF◦I and F ([π]LI ) = [π]MF◦I for all formula A andproof π of LL.Suh an LL-funtor F funtor indues a artesian losed funtor (still de-noted with F ) from L! to M!. 10



2 The ollapse partial equivalene relationWe de�ne a ategory whose objets are sets equipped with a partial equiva-lene relation (PER) on their powersets, the intuition being that two subsetsare equivalent if they have the same �extensional� behavior. These PERs arede�ned as logial relations, in the sense that, when we de�ne funtion spaes,two morphisms are equivalent i� they map equivalent sets to equivalent sets.2.1 The ategory of sets and relationsThis ategory underlies the ollapse ategory we want to de�ne. More preisely,the ollapse ategory we de�ne in Setion 2.2 is an enrihment of the ategoryof sets and relations where eah objet is endowed with a partial equivalenerelation expressing when two sets are extensionally equivalent, as in 1.3.2.2.1.1 Linear struture. The ategory of sets and relations Rel has setsas objets, and, given two sets E and F , the set of morphisms from E to Fis Rel(E,F ) = P(E × F ). Composition is de�ned in the standard relationalway: the omposition of s ∈ Rel(E,F ) and t ∈ Rel(F,G) is t · s ∈ Rel(E,G).The identity morphism is the diagonal relation Id ∈ Rel(E,E). This ategoryhas a quite simple monoidal struture: the tensor produt is E ⊗ F = E × Fand the unit of the tensor is 1 = {∗}. This tensor produt is a funtor: given
si ∈ Rel(Ei, Fi) for i = 1, 2, then s1 ⊗ s2 = {((a1, a2), (b1, b2)) | (ai, bi) ∈
si for i = 1, 2}. Equipped with this tensor produt, Rel is symmetri monoidallosed (the assoiativity, neutrality and symmetry isomorphisms are de�ned inthe usual obvious way), with an objet of linear morphisms E ⊸ F = E × Fand linear evaluation morphism ev ∈ Rel((E ⊸ F ) ⊗ E,F ) given by ev =
{(((a, b), a), b) | a ∈ E and b ∈ F}.The symmetri monoidal losed ategoryRel is a star-autonomous ategory,with dualizing objet ⊥ = 1, and the orresponding duality is trivial: E⊥ = E.So E`F = E ⊸ F = E ⊗ F = E × F in this model.Remark : Again, this ategory is a �degenerate model� of LL in the sense thatit identi�es ⊗ and `, just as ScottL (and even worse, sine it equates a formulawith its linear negation!). We showed in [BE01℄ how this model an be enrihedwith various strutures without modifying the interpretation of proofs, making
⊗ and ` non-isomorphi operations. This an be onsidered as one of the moststriking features of LL: this logial system is so robust that it survives (in thesense that proofs are not trivialized) in suh a degenerate framework.Given s ∈ Rel(E,F ) and x ⊆ E, one sets s · x = {b | ∃a ∈ x and (a, b) ∈ s}.The ategory Rel is artesian. The artesian produt of a family (Ei)i∈I ofsets is &i∈I Ei =

⋃

i∈I({i} × Ei), with projetions πj = {((j, a), a) | a ∈ Ej} ∈
Rel(&i∈I Ei, Ej). Given a family of morphisms si ∈ Rel(F,Ei), the orre-sponding morphism 〈si〉i∈I ∈ Rel(F,&i∈I Ei) is given by 〈si〉i∈I = {(b, (i, a)) |
i ∈ I and (b, a) ∈ si}. The terminal objet is ⊤ = ∅.The exponential omonad is !E = Mfin(E), with ation on morphisms de-�ned as follows: !s = {([a1, . . . , an], [b1, . . . , bn]) | (ai, bi) ∈ s for i = 1, . . . , n} ∈
Rel(!E, !F ) for s ∈ Rel(E,F ). Derelition is given by dE = {([a], a) | a ∈
S} ∈ Rel(!E,E) and digging by pE = {(m1 + · · · + mn, [m1, . . . ,mn]) | n ∈
N and m1, . . . ,mn ∈ !E} ∈ Rel(!E, !!E). Given x ⊆ E, one de�nes x! =
Mfin(x). Observe that, as usual, !s · x! = (s · x)!, dE · x! = x and pE · x! = x!!.11



The isomorphism !⊤ ≃ 1 identi�es [] and ∗, and the isomorphism !(E & F ) ≃
!E ⊗ !F maps the element [(1, a1), . . . , (1, al), (2, b1), . . . , (2, br)] of !(E & F ) to
([a1, . . . , al], [b1, . . . , br]) ∈ !E ⊗ !F (this is alled the fundamental isomorphismin the present paper).All these data de�ne a new Seely ategory, see Setion 1.4.2.1.2 The assoiated CCC. The Kleisli ategory Rel! is artesian losed.Given a set E, a point of E in Rel! is by de�nition a morphism in Rel(!⊤, E),that is, a subset of E. The terminal objet is ⊤, the artesian produt of (Ei)i∈Iis E = &i∈I Ei, with projetions πi ◦ dE (still denoted as πi). The objet ofmorphisms E ⇒ F is !E ⊸ F , with evaluation map Ev = ev ◦ (dE⇒F ⊗ Id!E),that is

Ev = {(([(m, b)],m), b) | m ∈ !E and b ∈ F} .Applying a morphism s ∈ Rel!(E,F ) = Rel(!E,F ) to a point x ⊆ E onsistsin omposing s with x (onsidered as a morphism from ⊤ to E) in Rel!; theresult is
s(x) = s · x! = {b | ∃m (m, b) ∈ s and supp(m) ⊆ x} .The ategory Rel! is not well pointed, in the sense that two distint morphisms

s1, s2 ∈ Rel!(E,F ) an satisfy ∀x ⊆ E s1(x) = s2(x); take for instane s1 =
{([a], b)} and s2 = {([a, a], b)}.The purpose of the ollapse PER is preisely to make it expliit when twosuh morphisms should be identi�ed. This depends of ourse on the PERs Eand F are equipped with: the ollapse PER is a logial relation. We shall presentthis onstrution as a new ategory.2.1.3 Inlusions. Let E and F be two sets suh that E ⊆ F . Then wedenote by ηE,F and ρE,F the relations

ηE,F = (E × F ) ∩ IdE and ρE,F = (F × E) ∩ IdE .Observe that ρE,F ◦ ηE,F = IdE .We denote by RelC the lass of all sets, ordered by inlusion. This is apartially ordered lass, whih is omplete in the sense that any family (Eγ)γ∈Γof elements of RelC admits a least upper bound. We shall onsider atually onlydireted families (that is, where Γ is a direted poset, and γ ≤ δ ⇒ Eγ ⊆ Eδ).2.2 The ollapse ategoryWe equip now the objets of Rel with a partial equivalene relation whosepurpose is to identify morphisms whih yield equivalent values when applied toequivalent arguments.2.2.1 Pre-PERs, PER objets and morphisms of PER objets. Let
E be a set. Given a binary relation B on P(E), we de�ne another binary relation
B⊥ on P(E), alled the dual of B, as follows:

x′ B⊥ y′ if ∀x, y ∈ P(E) x B y ⇒ (x ∩ x′ 6= ∅ ⇔ y ∩ y′ 6= ∅) .As usual, one has B ⊆ C ⇒ C⊥ ⊆ B⊥ and B ⊆ B⊥⊥ (as subsets of P(E)2).We say that the relation B is a pre-PER if it is symmetri and satis�es x B12



y ⇒ x B x. Clearly, any PER is a pre-PER and if B is a pre-PER, then B⊥ isa PER.A PER-objet is a pair U = (|U |,∼U ), where |U | is a set and ∼U is a binaryrelation on P(|U |) whih is a pre-PER suh that ∼⊥⊥
U = ∼U . This simply meansthat, given x, y ⊆ |U |, one has x ∼U y as soon as x ∩ x′ 6= ∅ ⇔ y ∩ y′ 6= ∅, forall x′, y′ ⊆ |U | suh that x′ ∼⊥

U y′. By this ondition, ∼U is automatially aPER (indeed, ∼U is pre-PER, hene ∼⊥
U is a PER, and therefore ∼U=∼⊥⊥

U isa PER).Let PerL be the ategory whose objets are the PER-objets, and where amorphism from U to V is a relation t ⊆ |U | × |V | suh, for all x, y ∈ P(|X |), if
x ∼X y then t · x ∼Y t · y.Remark : Let U be a PER-objet and A ⊆ P(|U |) suh that ∀x1, x2 ∈ A x1 ∼U

x2. Then ∀x ∈ A x ∼C

⋃

A. Indeed, let x′1, x′2 ⊆ |U | be suh that x′1 ∼U⊥ x′2.If x ∩ x′1 6= ∅, then x ∩ x′2 6= ∅ beause x ∼U x, and hene ⋃

A ∩ x′2 6= ∅.Conversely, if ⋃

A ∩ x′2 6= ∅, there is some y ∈ A suh that y ∩ x′2 6= ∅ and weonlude sine x ∼U y. So eah equivalene lass of ∼U has a maximal element,whih is the union of all the elements of the lass. These partiular elements xof P(|U |) are haraterized by the two following properties:
• x ∼U x

• and ∀y ∈ P(|U |) y ∼U x⇒ y ⊆ x.Lemma 1 Let U be a PER-objet and let (xi)i∈I and (yi)i∈I be families ofelements of P(|U |) be suh that xi ∼U yi for eah i ∈ I. Then ⋃

i∈I xi ∼U
⋃

i∈I yi.The proof is straightforward. In partiular ∅ ∼U ∅, for any PER-objet U .2.2.2 Orthogonality and strong isomorphisms. We de�ne the PER-objet U⊥ by |U⊥ | = |U | and ∼U⊥ = ∼⊥
U , so that U⊥⊥ = U .Lemma 2 Given two PER-objets U and V , any bijetion θ : |U | → |V | suhthat, for all x, y ∈ P(|X |), one has x ∼U y i� θ(x) ∼V θ(y) is an isomorphismfrom U to V . Suh a bijetion will be alled a strong isomorphism from U to

V .Straightforward veri�ation. Of ourse, θ−1 is a strong isomorphism from V to
U . Observe that any strong isomorphism θ from U to V is also a strong isomor-phism from U⊥ to V ⊥ . Indeed, let x′1, x′2 ⊆ |U |. Assume �rst that x′1 ∼U⊥ x′2and let us show that θ(x′1) ∼V ⊥ θ(x′2). So let y1, y2 ⊆ |V | be suh that
y1 ∼V y2. We have θ(x′1) ∩ y1 6= ∅ ⇔ x′1 ∩ θ−1(y1) 6= ∅ and we onludesine θ−1 is a strong isomorphism from V to U . The onverse impliation
θ(x′1) ∼V ⊥ θ(x′2) ⇒ x′1 ∼U⊥ x′2 is proven similarly.2.2.3 Monoidal struture. We de�ne U⊗V as follows. We take |U ⊗ V | =
|U | × |V |, and ∼U⊗V = E⊥⊥ where

E = {(x1 × y1, x2 × y2) | x1 ∼U x2 and y1 ∼U y2} ⊆ P(|U ⊗ V |)2 .13



Sine this relation E is a pre-PER (but not a PER a priori, sine one annotreover x and y from x × y when one of these two sets is empty), the relation
∼U⊗V is a PER, and U ⊗ V so de�ned is a PER-objet. We de�ne U ⊸ V =
(U ⊗ V ⊥)⊥ .Lemma 3 One has |U ⊸ V | = |U | × |V |. If t1, t2 ∈ P(|U ⊸ V |), one has
t1 ∼U⊸V t2 i� for all x1, x2 ⊆ |U | suh that x1 ∼U x2, one has t1 ·x1 ∼Y t2 ·x2.Moreover, one has t1 ∼U⊸V t2 ⇔ tt1 ∼V ⊥

⊸U⊥
tt2.Proof. This is due to the fat that, for any t ⊆ |U ⊸ V |, x ⊆ |U | and y′ ⊆ |V |,one has t ∩ (x × y′) 6= ∅ ⇔ (t · x) ∩ y′ 6= ∅ 2So the morphisms from U to V are exatly the t ∈ P(|U ⊸ V |) suh that

t ∼U⊸V t, and if t ∈ PerL(U, V ) then tt ∈ PerL(V ⊥ , U⊥).Lemma 4 The obvious bijetion λ from |U ⊗ V ⊸ W | to |U ⊸ (V ⊸ W )| de-�nes a strong isomorphism between the PER-objets U ⊗ V ⊸ W and U ⊸

(V ⊸ W ). In partiular, for s1, s2 ∈ P(|U ⊗ V ⊸ W |), one has s1 ∼U⊗V ⊸W

s2 i� for any x1, x2 ∈ P(|U |) and y1, y2 ∈ P(|V |) suh that x1 ∼U x2 and
y1 ∼U y2, one has s1 · (x1 × y1) ∼W s2 · (x2 × y2).Proof. Let t1, t2 ⊆ P(U ⊗ V ⊸ W ). Assume �rst that t1 ∼U⊗V ⊸W t2, wewant to prove that λ(t1) ∼U⊸(V ⊸W ) λ(t2). But this is lear sine, if x1, x2 ⊆
|U | and y1, y2 ⊆ |V | satisfy x1 ∼U x2 and y1 ∼V y2, then we have x1×y2 ∼U⊗V

x2 × y2, and therefore (λ(t1) · x1) · y1 = t1 · (x1 × y1) ∼W t2 · (x2 × y2) =
(λ(t2) · x2) · y2. Assume onversely that λ(t1) ∼U⊸(V ⊸W ) λ(t2), we prove that
t1 ∼U⊗V ⊸W t2. For this, we proeed as above, showing that tt1 ∼W⊥

⊸(U⊗V )⊥
tt2 and applying Lemma 3. 2Lemma 5 The obvious bijetion α : |(U ⊗ V ) ⊗W | → |U ⊗ (V ⊗W )| is anisomorphism of PER-objets from (U ⊗ V ) ⊗W to U ⊗ (V ⊗W ).Proof. By 2.2.2, it su�es to prove that α is an isomorphism from ((U ⊗ V )⊗
W )⊥ to (U ⊗ (V ⊗W ))⊥ , and this results from Lemma 4. 2Given s ∈ PerL(U1, U2) and t ∈ PerL(V1, V2), one de�nes s⊗t ⊆ |U1 ⊗ V1|×
|U2 ⊗ V2| as in 4.2.2. Then one shows using Lemma 4 that s ⊗ t ∈ PerL(U1 ⊗
V1, U2⊗V2), and one heks that the ategoryPerL equipped with this ⊗ binaryfuntor, together with the assoiativity isomorphism of Lemma 5 (as well as thesymmetry isomorphism et.) is a symmetri monoidal ategory, whih is losed(with U ⊸ V as objet of linear morphisms from U to V ) by Lemma 4. Thelinear evaluation morphism is ev, as de�ned in Setion 2.1.

PerL is star-autonomous, with ⊥ = ({∗},=) as dualizing objet.2.2.4 Additive struture. Given a family (Ui)i∈I of PER-objets, one de-�nes U = &i∈I Ui by setting |U | =
∏

i∈I({i}× |Ui|), and by saying that, for any
x = (xi)i∈I , y = (yi)i∈I ∈ P(|U |) (identifying this latter set with a produt),one has x ∼U y if one has xi ∼Ui

yi for all i ∈ I. Using the fat that ∅ ∼V ∅in any PER-objet V , one shows that ∼⊥
U = ∼

&i∈I U
⊥
i

and it follows that Uis a PER-objet. It is routine to hek that &i∈I Ui so de�ned is the artesian14



produt of the Uis in the ategory PerL, and that this artesian produt is alsoa oprodut. In partiular, if U is a PER-objet and I is a set, we denote with
U I the produt &i∈I Ui where Ui = U for eah U .In partiular, PerL has a terminal objet ⊤, given by |⊤| = ∅ and ∅ ∼⊤ ∅.Observe that this is the only PER-objet with an empty web.2.2.5 Exponentials. Given a PER-objet U , we de�ne !U by |!U | = Mfin(|U |),and ∼!U = E⊥⊥ where

E = {(x!
1, x

!
2) | x1, x2 ∈ P(|U |) x1 ∼U x2}where we reall that x! = Mfin(x). Sine E is a pre-PER (and atually a PER,beause x an be reovered from x! using derelition: x = {a | [a] ∈ x!}), therelation ∼!U is a PER. We reall that, if s ⊆ |!U ⊸ V | and x ⊆ |U |, then wedenote with s(x) the subset s · x! of |Y |, see Setion 2.1.Lemma 6 Let U and V be PER-objets and let s1, s2 ⊆ |!U ⊸ V |. One has

s1 ∼!U⊸V s2 i�
∀x1, x2 ⊆ |U | x1 ∼U x2 ⇒ s1(x1) ∼V s2(x2) .Proof. The⇒ diretion is trivial. For the onverse, one assumes that the statedondition holds, and one heks that ts1 ∼V ⊥

⊸(!U)⊥
ts2, and for this purpose,it su�es to apply Lemma 3. 2Given s ∈ PerL(U, V ), one de�nes !s ⊆ |!U | × |!V | as in the standardrelational model by setting

!s = {([a1, . . . , an], [b1, . . . , bn]) | n ∈ N, (ai, bi) ∈ s for i = 1, . . . , n} .Then, sine !s · x! = (s · x)!, we have !s1 ∼!U⊸!V !s2 as soon as s1 ∼U⊸V s2 (byLemma 6); in partiular, if s ∈ PerL(U, V ), one has !s ∈ PerL(!U, !V ) and sothe operation s 7→ !s is an endofuntor on PerL.One de�nes dU ⊆ |!U | × |U | as dU = {([a], a) | a ∈ |U |}, and sine dU · x! =
x for all x ⊆ |U |, we get easily dU ∈ PerL(!U,U). Similarly, one de�nes
pU ⊆ |!U | × |!!U | as pU = {(m1 + · · · +mk, [m1, . . . ,mk]) | m1, . . . ,mk ∈ |!U |}.Sine pU · x! = x!!, we get pU ∈ PerL(!U, !!U). The naturality in U of thesemorphisms is lear (it holds in the relational model), and !_ equipped withthese two natural transformations is a omonad. Moreover, the fundamentalisomorphism also holds in this setting.2.2.6 Fundamental isomorphism and artesian loseness. Let U and
V be PER-objets. Let θ : |!(U & V )| → |!U ⊗ !V | be the usual bijetion de�nedby

θ([(1, a1), . . . , (1, al), (2, b1), . . . , (2, br)]) = ([a1, . . . , al], [b1, . . . , br])Using Lemma 6, one shows easily that θ ∈ PerL(!(U & V ), !U ⊗ !V ) (as a rela-tion). For showing that θ−1 ∈ PerL(!U ⊗ !V , !(U & V )), one applies Lemma 4and then Lemma 6, twie. This shows that θ is a strong isomorphism of PER-objets. 15



So the ategory of PER-objets (together with the monoidal and exponentialstruture explained above) is a new-Seely ategory, in the sense of [Bie95℄.The assoiated Kleisli ategoryPerL! is artesian losed. The objet of mor-phisms from U to V is U ⇒ V = !U ⊸ V and we have seen that the assoiatedPER ∼U⇒V is suh that, given two elements s1 and s2 of PerL!(U, V ), one has
s1 ∼U⇒V s2 i� s1(x1) ∼V s2(x2) for all x1, x2 ⊆ |U | suh that x1 ∼U x2. Theevaluation morphism is Ev, as de�ned in 2.1.2.2.3 The partially ordered lass of PER-objetsLet U and V be PER objets. We say that U is a subobjet of V and write U ⊑
V if |U | ⊆ |V |, and moreover η|U|,|V | ∈ PerL(U, V ) and ρ|U|,|V | ∈ PerL(V, U).This means that the two following onditions are satis�ed

∀x1, x2 ⊆ |U | x1 ∼U x2 ⇒ x1 ∼V x2and
∀y1, y2 ⊆ |V | y1 ∼V y2 ⇒ y1 ∩ |U | ∼U y2 ∩ |U | .Observe that ⊑ a partial order relation and let PerC be the partially orderedlass of PER-objets ordered by ⊑.One of the main features of this de�nition is that linear negation is ovariantwith respet to the subobjet partial order.Lemma 7 If U ⊑ V then U⊥ ⊑ V ⊥ .Proof. We have |U⊥ | = |U | ⊆ |V | = |V ⊥ |. Moreover tη|U|,|V | = ρ|U|,|V | and

tρ|U|,|V | = η|U|,|V |. The result follows. 22.3.1 Completeness.Lemma 8 Let Γ be a direted set and let (Uγ)γ∈Γ be a direted family of PERs(meaning that γ ≤ δ ⇒ Uγ ⊑ Uδ). We de�ne U =
⊔

γ∈ΓUγ by |U | =
⋃

γ∈Γ |Uγ |and, for x1, x2 ⊆ |U |, x1 ∼U x2 i� x1 ∩ |Uγ | ∼Uγ
x2 ∩ |Uγ | for all γ ∈ Γ. Then

U is a PER-objet. Moreover U⊥ =
⊔

γ∈ΓU
⊥
γ .Proof. Let U ′ =

⊔

γ∈ΓU
⊥
γ , it will be enough to show that U = U ′⊥ . Let

x1, x2 ⊆ |U |. Assume �rst that x1 ∼U x2 and let us show that x1 ∼U ′⊥ x2. Solet x′1, x′2 ⊆ |U | be suh that x′1 ∼U ′ x′2 and assume that x1 ∩ x′1 6= ∅. Let γ ∈ Γbe suh that x1∩x′1∩|Uγ | 6= ∅. By de�nition of U and U ′, we have x1∩|Uγ | ∼Uγ

x2 ∩ |Uγ | and x′1 ∩ |Uγ | ∼U
⊥
γ
x′2 ∩ |Uγ |, and therefore x2 ∩ x′2 ∩ |Uγ | 6= ∅, andhene x2 ∩ x′2 6= ∅ as required. Assume next that x1 ∼U ′⊥ x2 and let us showthat x1 ∼U x2. So let γ ∈ Γ and let us prove that x1 ∩ |Uγ | ∼Uγ

x2 ∩ |Uγ |. Solet x′1, x′2 ⊆ |Uγ | be suh that x′1 ∼
U

⊥
γ
x′2 and assume that (x1 ∩ |Uγ |) ∩ x′1 6= ∅,that is x1 ∩ x

′
1 6= ∅.We show that x′1 ∼U ′ x′2. Let δ ∈ Γ and let us show that x′1 ∩ |Uδ| ∼U

⊥
δ

x′2 ∩ |Uδ|. So let ε ∈ Γ be suh that γ, δ ≤ ε. Let y1, y2 ⊆ |Uδ| be suh that
y1 ∼Uδ

y2 and x′1∩|Uδ|∩y1 6= ∅. Sine Uδ ⊑ Uε and U⊥
δ ⊑ U⊥

ε (by Lemma 7), wehave x′1 ∼
U

⊥
ε
x′2 and y1 ∼Uε

y2. Therefore x′2 ∩ y2 6= ∅, that is x′2 ∩ |Uδ| ∩ y2 6= ∅(sine y2 ⊆ |Uδ|) as required. 16



Sine x1 ∼U ′⊥ x2 and x′1 ∼U ′ x′2, we have x2∩x′2 6= ∅, that is (x2∩|Uγ |)∩x′2 6=
∅ (sine x′2 ⊆ |Uγ |) as required. 2Lemma 9 If (Uγ)γ∈Γ is a direted family of PER-objets, then ⊔

γ∈ΓUγ is itslub in PerC.Proof. For showing that Uδ ⊑
⊔

γ∈ΓUγ , one must show that, if x1 ∼Uδ
x2,then x1∩|Uγ | ∼Uγ

x2∩|Uγ | for any given γ ∈ Γ; one piks some ε ∈ Γ suh that
γ, δ ≤ ε and one proeeds as in the proof of Lemma 8. Let V be a PER-objetan assume that Uγ ⊑ V for all γ ∈ Γ, we must show that U =

⊔

γ∈ΓUγ ⊑ V .Let �rst x1, x2 ⊆ |U | and assume that x1 ∼U x2, and let us prove that x1 ∼V x2.So let y′1, y′2 ⊆ |V | be suh that y′1 ∼V ⊥ y′2, and assume that x1 ∩ y′1 6= ∅. Let
γ ∈ Γ be suh that x1 ∩ y′1 ∩ |Uγ | 6= ∅. Sine U⊥

γ ⊑ V ⊥ by Lemma 7, we have
y′1∩|Uγ | ∼U

⊥
γ
y′2∩|Uγ | and hene x2∩y′2∩|Uγ | 6= ∅ and so x2∩y′2 6= ∅. Let now

y1, y2 ⊆ |V | be suh that y1 ∼V y2 and let us show that y1∩|U | ∼U y2∩|U |, thatis y1∩ |Uγ | ∼U y2 ∩ |Uγ | for all γ ∈ Γ, whih holds sine Uγ ⊑ V by assumption.
22.3.2 Variable PER-objets and �xpoints thereof. A funtor (that is,a �monotone� lass funtion) Φ : PerC

n → PerC whih ommutes with the lubsof direted families (of n-tuples) of PER-objets will be said to be ontinuous, orto be a variable PER-objet. Let Ψ : PerC → PerC be a variable PER-objet.Then Ψ has a least �xpoint fix(Ψ) =
⊔

k∈N
Ψk(⊤) where ⊤ is the empty PER-objet (see 2.2.4). Of ourse, given a PER-objet Φ : PerCn+1 → PerC, theoperation PerC

n → PerC whih maps (U1, . . . , Un) to fix(Φ(U1, . . . , Un,_))is a variable PER-objet. We have already seen that the map U → U⊥ is avariable PER-objets.Lemma 10 The operations (U, V ) 7→ U⊗V , U 7→ U I and U 7→ !U are variablePER-objets.Proof. We observe �rst that ⊗ is monotone, in the sense that if U ⊑ U ′ and
V ⊑ V ′, then U ⊗ V ⊑ U ′ ⊗ V ′. This results from the fat that |U ⊗ V | ⊆
|U ′ ⊗ V ′| and from the obvious equations η|U⊗V |,|U ′⊗V ′| = η|U|,|U ′| ⊗ η|V |,|V ′|and ρ|U⊗V |,|U ′⊗V ′| = ρ|U|,|U ′| ⊗ ρ|V |,|V ′|. We hek similarly that !_ and (_)Iare monotone.We show that (U, V ) 7→ (U ⊸ V ) is a variable PER-objet. It is monotoneby the onsiderations above. Let (Uγ)γ∈Γ and (Vγ)γ∈Γ be direted families ofPER-objets. We show that U ⊸ V =

⊔

γ∈Γ(Uγ ⊸ Vγ) where U =
⊔

γ∈ΓUγand V =
⊔

γ∈Γ Vγ . Let t1, t2 ⊆ |U ⊸ V |. Assume �rst that t1 ∼U⊸V t2;one has t1 ∩ |Uγ ⊸ Vγ | ∼Uγ⊸Vγ
t2 ∩ |Uγ ⊸ Vγ | beause, if x1 ∼Uγ

x2, one has
(ti ∩ |Uγ ⊸ Vγ |)·xi = (ti·xi)∩|Vγ |. Conversely, assume that t1 ∼F

γ∈Γ
(Uγ⊸Vγ ) t2and let us show that t1 ∼U⊸V t2. So let x1, x2 ⊆ |U | be suh that x1 ∼U x2,and let us show that t1 ·x1 ∼V t2 · x2. We have ti · xi =

⋃

γ∈Γ (ti ∩ |Uγ ⊸ Vγ |) ·
(xi ∩ |Uγ |) and (t1 ∩ |Uγ ⊸ Vγ |) · (x1 ∩ |Uγ |) ∼Vγ

(t2 ∩ |Uγ ⊸ Vγ |) · (x2 ∩ |Uγ |)for eah γ ∈ Γ. We onlude applying Lemma 1 and using the fat that x1 ∩
|Uγ | ∼Uγ

x2 ∩ |Uγ | for all γ ∈ Γ. Sine U ⊗ V = (U ⊸ V ⊥)⊥ , this shows that
(U, V ) 7→ U ⊗ V is a variable PER-objet.17



One proves easily that U 7→ U I is a variable PER-objet.To onlude, let us prove that Φ : U 7→ (!U)⊥ is a variable PER-objet.It is a monotone operation beause !_ is monotone as we have seen. So let
(Uγ)γ∈Γ be a direted family of PER-objets and let us show that Φ(U) =
⊔

γ∈Γ Φ(Uγ), where U =
⊔

γ∈ΓUγ . Let A′
1, A

′
2 ⊆ Mfin(|!U |). Assume �rst that

A′
1 ∼Φ(U) A

′
2 and let γ ∈ Γ, we prove that A′

1 ∩ |Φ(Uγ)| ∼Φ(Uγ) A
′
2 ∩ |Φ(Uγ)|.So let x1, x2 ⊆ |Uγ | with x1 ∼Uγ

x2 and assume that A′
1 ∩ |Φ(Uγ)| ∩ x!

1 6= ∅.We have x1 ∼U x2 and hene A′
2 ∩ x!

2 6= ∅, that is A′
2 ∩ |Φ(Uγ)| ∩ x!

2 6= ∅.Conversely, assume that A′
1 ∼F

γ∈Γ
Φ(Uγ ) A

′
2 and let us prove that A′

1 ∼Φ(U)

A′
2. So let x1, x2 ⊆ |U | with x1 ∼U x2 and assume that A′

1 ∩ x!
1 6= ∅; let

m be an element of that intersetion. Sine Γ is direted and m is a �nitemultiset, one an �nd γ ∈ Γ suh that m ∈ |Φ(Uγ)|. By assumption, we have
A′

1∩|Φ(Uγ)| ∼Φ(Uγ) A
′
2∩|Φ(Uγ)| and x1∩|Uγ | ∼Uγ

x2∩|Uγ |. We onlude usingthe fat that (x1 ∩ |Uγ |)! = x!
1 ∩ |Φ(Uγ)|: we have A′

1 ∩ x
!
1 ∩ |Φ(Uγ)| 6= ∅, thatis (A′

1 ∩ |Φ(Uγ)|) ∩ (x1 ∩ |Uγ |)! 6= ∅ and hene (A′
2 ∩ |Φ(Uγ)|) ∩ (x2 ∩ |Uγ |)! 6= ∅whih implies A′

2 ∩ x
!
2 6= ∅. 22.3.3 An extensional re�exive PER-objet. Consider the mapping ofPER-objet Φe de�ned by Φe(U) = (!(UN))⊥ . By Lemmas 7 and 10, Φe is avariable PER-objet, and has therefore a least �xpoint, namely the PER-objet

De =
⊔

k∈N
Φk

e (⊤). One has De ⇒ De = (!De)
⊥`De = (!De)

⊥`Φe(De) =

(!De)
⊥`(!(DN

e ))⊥ ≃ (!(De & DN
e ))⊥ by the fundamental isomorphism of 2.2.6.We onlude sine De & DN

e ≃ DN
e (by the strong isomorphism whih maps

(1, a) to (0, a) and (2, (i, a)) to (i+ 1, a)). Therefore De is an extensional modelof the pure lambda-alulus in the Kleisli ategory PerL!.The underlying set |De| is the relational model of the pure lambda-alulusdesribed in [BEM07℄. We denote it as Dr. It is the least �xpoint (in thepartially ordered lass of sets) of the monotone and ontinuous operation E 7→
Mfin(N × E).3 A linear Sott semantisGiven a preordered set (S,≤), we denote with Sop the opposite preorder. Given
x ⊆ S, we denote with ↓S x (or simply ↓ x if the ambient preorder is lear fromthe ontext) the set {a ∈ S | ∃b ∈ x a ≤ b}. And we set ↑S x = ↓Sop x. We alsode�ne

I(S) = {x ⊆ S | ↓
S

x = x}whih, ordered by inlusion, is a prime-algebrai lattie.3.1 Star-autonomous strutureLet S and T be preorders. A funtion f : I(S) → I(T ) is linear if it ommuteswith arbitrary lubs. In other words, for any family (xi)i∈I of elements of I(S),we must have f (
⋃

i∈I xi

)

=
⋃

i∈I f(xi). This implies in partiular that f ismonotone, and that f(∅) = ∅ (of ourse, we do not neessarily have f(S) = T ).We denote with ScottL the orresponding ategory.We equip the hom-set ScottL(S, T )with the ordinary pointwise order: f ≤ gif ∀x ∈ I(X) f(x) ⊆ g(x). 18



Given suh a linear map f ∈ ScottL(S, T ), we de�ne its linear trae as
trS(f) = {(a, b) ∈ S × T | b ∈ f(↓

S

{a})} .This is similar to the usual de�nition of the trae of a stable linear map (see [Gir87,AC98℄).Then it is easily heked that trS(f) ∈ I(Sop × T ). Conversely, given any
t ∈ I(Sop × T ), we de�ne a funtion

funS(t) : I(S) → P(T )

x 7→ t · xand it is easy to hek that fun
S(t) takes its values in I(T ) and is linear from

I(S) to I(T ).Proposition 11 The maps trS and funS de�ne an order isomorphism betweenthe posets ScottL(S, T ) and I(Sop × T ). Moreover, these isomorphisms om-mute with omposition (of maps and relations respetively).Therefore, we set S ⊸ T = Sop × T . Thanks to the lemma above, wean onsider the morphisms of the ategory ScottL as linear funtions or asrelations. For instane, as a funtion, the identity map S → S is of ourse theidentity funtion I(S) → I(S), but as a relation, it is IdS = {(a, b) ∈ S × S |
b ≤ a}. In this paper, we prefer the relational viewpoint on morphisms.The following observation is trivial but useful.Lemma 12 Let t ⊆ S × T and let x ∈ I(S). One has ↓T (t · x) = (↓S⊸T t) · x.3.1.1 Isomorphisms. An isomorphism (in the usual ategorial sense) from
S to T is a relation t ∈ I(S ⊸ T ) suh that funS(t) : I(S) → I(T ) is an orderisomorphism. As a relation, an isomorphism from S to T has no reason tobe a bijetion, not even a funtion. For instane, if S = {0} and T = N(with the largest preorder, in whih n ≤ m for all n,m ∈ N), then the relation
{(0, n) | n ∈ N} is an isomorphism from S to T (it is atually the only non-emptymorphism from S to T ).We shall all strong isomorphism from S to T any funtion ϕ : S → T whihis an isomorphism of preorders (that is, ϕ is bijetive and a ≤S b i� ϕ(a) ≤T

ϕ(b)). Suh a ϕ is not an isomorphism (in the ategorial sense above) in general,but ↓S⊸T ϕ is. And we shall say that S and T are strongly isomorphi if thereis a strong isomorphism from S to T .3.1.2 Monoidal struture. The tensor produt of preorders is given by
S ⊗ T = S × T . It is easily seen to be funtorial. Indeed, let s ∈ I(S1 ⊸ S2)and t ∈ I(T1 ⊸ T2). Then, we set
s⊗t = {((a1, b1), (a2, b2)) ∈ (S1 ⊗ T1) ⊸ (S2 ⊗ T2) | (a1, a2) ∈ s and (b1, b2) ∈ t} .One an hek that s ⊗ t ∈ I((S1 ⊗ T1) ⊸ (S2 ⊗ T2)) and that (s′ ⊗ t′) ◦
(s⊗ t) = (s′ ◦ s) ⊗ (t′ ◦ t).The neutral element of the tensor produt is 1 = {⋆} (atually, any non-empty preorder suh that a ≤ b for all a, b is isomorphi to 1, and therefore is19



neutral for ⊗). The so de�ned symmetri monoidal ategory ScottL is monoidallosed, with linear evaluation morphism evS ∈ ScottL((S ⊸ T ) ⊗ S, T ) givenby
evS = {(((a, b), a′), b′) | b′ ≤|T | b and a ≤|S| a

′} .We use the same objet 1 as dualizing objet, but when used in that way,we denote it with ⊥.It is lear that S ⊸ ⊥ = Sop (up to the identi�ation of a ∈ S with
(a, ⋆) ∈ S ⊸ ⊥), and that the anonial map S → (S ⊸ ⊥) ⊸ ⊥ oinideswith the identity, so the monoidal ategory of preorders and linear maps is astar-autonomous ategory in the sense of [Bar79℄.3.2 Produts and oprodutsLet (Si)i∈I be a olletion of preorders, the artesian produt of this family isdenoted with &i∈I Si and is the disjoint union ⋃

i∈I({i} × Si), endowed withthe disjoint union of the preorder relations. One has I(&i∈I) =
∏

i∈I I(Si) upto a trivial and anonial isomorphism. The i-th projetion πS
i : &i∈I Si → Siis given by

πS

i = {((i, a), b) | a, b ∈ Si b ≤ a} .And given morphisms ti : T → Si, the unique morphism t = 〈ti〉i∈I : T →

&i∈I Si haraterized by ∀i πS
i ◦ t = ti is given by

t =
⋃

i∈I

{(b, (i, a)) | (b, a) ∈ ti)} .The sum ⊕i∈I Si = (&i∈I Si
op)op is the operation dual to this produt, andoinides with it as easily heked.If S is a preorder and I is a set, we use SI for the produt &i∈I Si where

Si = S for eah I. We use ⊤ for the produt of the empty family of preorders:it is the terminal objet, and, as a preorder, it is empty (so I(⊤) = {∅}). It isobviously isomorphi to its dual, denoted with 0.3.3 ExponentialsGiven a preorder S, we de�ne the preorder !S, whose elements are the �nitemultisets of elements of S, with the following preorder relation: given p, q ∈ !S,one has p ≤!S q if ∀a ∈ supp(p)∃b ∈ supp(q) a ≤S b. Of ourse we ould havetaken !S = Pfin(S), with a similarly de�ned preorder, and the assoiated lattiesof initial segments would have been trivially isomorphi. We hoose multisetsbeause our goal is to ompare this preorder model with the relational model,where the exponentials are de�ned with �nite multisets. This hoie makes thestudy of the ollapse muh simpler.Given x ⊆ S, we set x! = Mfin(x).Lemma 13 Let x ⊆ S. We have (↓|X| x)
! = ↓|!S| (x

!).We'll use this remark quite often, taitly. It implies that, if x ∈ I(S), then
x! ∈ I(!S). Given t : S → T , we set

!t = {(p, q) ∈ !S × !T | ∀b ∈ q∃a ∈ p (a, b) ∈ t} .20



Then one shows easily that !t : !S → !T , and that this operation on morphismsis funtorial. Moreover, it is quite useful to observe that
∀x ∈ I(S) !t · x! = (t · x)! .And this property atually haraterizes the morphism !t.3.3.1 Comonad struture of the exponential. As it is usual in modelsof linear logi, this funtor !_ has a struture of omonad, whih is given by thenatural morphism

dS

S = {(p, b) ∈ !S × S | ∃a ∈ p b ≤ a} : !S → Susually alled derelition and
pS

S = {(p, [p1, . . . , pn]) ∈ !S × !!S | p1 + · · · + pn ≤!S p} : !S → !!Susually alled digging. Observe that dS

S · x! = x and that pS
S · x! = (x!)!, andthat these equations haraterize the morphisms dS

S and pS
S . With these obser-vations, it is trivial to hek that these morphisms are natural (as announed)and provide the funtor !_ with a omonad struture.3.3.2 Weakening and ontration. Given two preorders S1 and S2, thereis a anonial and natural strong isomorphism between the preorders !(S1 & S2)and !S1 ⊗ !S2, whih is atually the preorder isomorphism

[(1, a1), . . . , (1, an), (2, b1), . . . , (2, bm)] 7→ ([a1, . . . , an], [b1, . . . , bm]) .Similarly, there is a trivial isomorphism between !⊤ and 1 (both are the one-point preorder). Using these isomorphisms, and applying the !_ funtor to thediagonal map δS : S → S & S (whih, as easily heked, is the set {(a, (1, b)) |
b ≤ a} ∪ {(a, (2, b)) | b ≤ a}) and to the unique map S → ⊤ (the empty map),we get the ontration and weakening maps:

contrSS = {(p, (q1, q2)) | q1 + q2 ≤!S p)} : !S → !S ⊗ !S

weak
S

S = {(p, ⋆) | p ∈ !S} : !S → 1 .With all these strutures, ScottL is a new-Seely ategory in the sense of [Bie95℄,see Setion 1.4): this is the model disovered independently by Huth [Hut94℄and Winskel [Win99℄.3.4 The Kleisli ategoryWe denote with ScottL! the assoiated Kleisli ategory; remember that a mor-phism from S to T in this ategory is a linear morphism t : !S → T :
ScottL!(S, T ) = ScottL(!S, T ) .Given suh a morphism t : !S → T , we an de�ne a map

Fun
S(t) : I(S) → I(T )

x 7→ t · x!21



In other words, FunS(t)(x) = {b ∈ T | ∃p ∈ !S supp(p) ⊆ x and (p, b) ∈ t}Observe that the funtion S → !S whih maps x to x! is never linear (sineit maps ∅ to {[]}; it is atually the �most non-linear� map from S to S. . . ), butis Sott ontinuous. Therefore, the map FunS(t) is Sott-ontinuous as well.Conversely, observe that I(S) is a Sott domain, whose ompat elementsare the �nitely generated elements of I(S), that is, the elements x0 of I(S)suh that x0 = ↓S u for some �nite u ⊆ S. Given a Sott-ontinuous funtion
f : I(S) → I(T ), one de�nes the set

TrS(f) = {(p, b) ∈ Mfin(S) × T | b ∈ f(↓
S

(supp(p)))} .that we all the trae of f . This is similar to the de�nition of the trae of astable funtion (see [Gir86, AC98℄), with the essential di�erene that there isno minimality requirement on p (suh a requirement would not make sense ingeneral beause usually our preorders are not well-founded).Lemma 14 Let S and T be preorders. The maps TrS and FunS de�ne an orderisomorphism between I(!S ⊸ T ) and the set of Sott-ontinuous funtions from
I(S) to I(T ), endowed with the pointwise order.Proof. Let f, g : I(S) → I(T ) be Sott-ontinuous funtions suh that f ≤ gfor the pointwise order. Let (p, b) ∈ Tr

S(f). Then b ∈ f(↓S (supp(p))) ⊆
g(↓S (supp(p))), so (p, b) ∈ TrS(g) and hene the map TrS is monotone. Let
s, t ∈ I(!S ⊸ T ) be suh that s ⊆ t, let x ∈ I(S) and let b ∈ FunS(s)(x). Thismeans that there exists p ∈ !S suh that (p, b) ∈ s and supp(p) ⊆ x. Then
(p, b) ∈ t and hene we also have b ∈ FunS(t)(x), and this shows that the map
FunS is monotone as well.Let f : I(S) → I(T ) be ontinuous, f ′ = FunS(TrS(f)) and let x ∈ I(S).Let b ∈ f(x). Sine f is ontinuous, there is a �nite subset u of x suh that
b ∈ f(↓S (u)). Let p ∈ !S be suh that supp(p) = u. Then we have (p, b) ∈
TrS(f) and hene b ∈ f ′(x). Conversely, if b ∈ f ′(x), let p ∈ !S be suh that
(p, b) ∈ TrS(f) and supp(p) ⊆ x, then b ∈ f(↓S ( supp(p))) ⊆ f(x) and we haveshown that f ′(x) = f(x) for all x ∈ I(S), so Fun

S ◦ Tr
S is the identity map.Conversely, let t ∈ I(!S ⊸ T ) and let t′ = TrS(FunS(t)). Let (p, b) ∈ t,then b ∈ Fun(t)(↓S ( supp(p))), and hene (p, b) ∈ t′. Let (p, b) ∈ t′, then

b ∈ FunS(t)(↓S ( supp(p))) and hene there exists q ∈ !S suh that (q, b) ∈ tand supp(q) ⊆ ↓S ( supp(p)), that is, q ≤!S p. Sine (p, b) ≤!S⊸T (q, b) ∈ t and
t ∈ I(!S ⊸ T ), we have (p, b) ∈ t, and this shows that TrS ◦ FunS is the identitymap. 23.4.1 The Kleisli ategory of preorders. This isomorphism is ompati-ble with omposition, as easily heked, so that we an onsider ScottL! as a fullsubategory of the ategory of Sott domains and ontinuous funtions. More-over, it is easily heked that the artesian produts and funtion spae onstru-tions in both ategories oinide: the artesian produt in ScottL! of S and T is
S & T , and we have seen that I(S & T ) ≃ I(S)×I(T ) (with the produt order)and their funtion spae is S ⇒ T = !S ⊸ T , and we have seen that I(!S ⊸ T )is isomorphi (as a poset) to the spae of ontinuous maps from I(S) to I(T ),endowed with the pointwise order, whih is preisely the funtion spae of I(S)22



and I(T ) in the ategory of Sott domains and ontinuous funtions. Theevaluation map EvS ∈ ScottL!((S ⇒ T ) & S, T ) ≃ ScottL(!(S ⇒ T ) ⊗ !S, T )satis�es
EvS = {((r, p), b) | ∃(p′, b′) ∈ r b ≤T b′ and p′ ≤!S p}as easily heked using that fat that EvS =So ScottL! is a full sub-CCC of the CCC of Sott domains and ontinuousfuntions.3.5 The partially ordered lass of preordersWe say that the preorder S is a substruture of the preorder T , and we write

S ⊑ T if, for any a1, a2 ∈ S, one has a1 ≤S a2 ⇔ a1 ≤T a2. We denotewith ScottC the orresponding partially ordered lass. It is easy to hek that
ScottC is omplete (any direted family (Sγ)γ∈Γ has a lub ⊔

γ∈Γ Sγ), and thatall the onstrutions we have introdued on preorders are variables preorders,that is, ontinuous lass funtions ScottC
n → ScottC. Any variable preorder

Φ : ScottC → ScottC admits a least �xpoint. In partiular, the operation
Φs : ScottC → ScottC de�ned by Φs(S) = (!(SN))⊥ is a variable preorder andtherefore admits a least �xpoint Ds, whih is an extensional model of the purelambda-alulus (same omputation as in 2.3.3).4 The ategory of preorders with projetions4.1 A duality on preordersNow omes the most important de�nition of the paper. Let S be a preorder.Given x, x′ ⊆ S, we shall say that x and x′ are in duality (with respet to S)and write x ⊥S x

′ if
x ∩ x′ = ∅ ⇒ (↓

S

x) ∩ x′ = ∅ .Of ourse, the onverse impliation always holds so that, when it holds, theimpliation above is atually an equivalene. The intuition is lear: x and x′are in duality if x′ annot separate x from its downward losure.This duality relation is symmetri in the following sense: sine learly (↓S x)∩
x′ = ∅ ⇔ x ∩ (↑S x

′) = ∅ ⇔ (↓S x) ∩ (↑S x
′) = ∅, we have

∀x, x′ ⊆ S x ⊥S x
′ ⇔ x′ ⊥Sop x .If D ⊆ P(S), we set

D⊥S = {x′ ⊆ S | ∀x ∈ D x ⊥S x
′}With this de�nition, we haveD ⊆ D⊥S⊥Sop . Indeed, let x ∈ D and let x′ ∈ D⊥S .We have x ⊥S x′, that is x′ ⊥Sop x, and sine this holds for all x′ ∈ D⊥S , wehave x ∈ D⊥S⊥Sop . Moreover, if D,E ⊆ P(S), we have D ⊆ E ⇒ E⊥S ⊆ D⊥S .Therefore, one always has D⊥S⊥Sop⊥S = D⊥S .Let D ⊆ P(S) be suh that D = D⊥S⊥Sop (equivalently, D = E⊥Sop forsome E ⊆ P(S)). Then I(S) ⊆ D ⊆ P(S). And one heks easily that

P(S)⊥S = I(Sop) and I(S)⊥S = P(Sop). Let (xi)i∈I be a family of elementsof D. Then ⋃

i∈I xi ∈ D. Indeed, sine D = D⊥S⊥Sop , it su�es to show23



that (
⋃

i∈I xi

)

⊥S x′ for all x′ ∈ D⊥S . So let x′ ∈ D⊥S , and let us assumethat (
⋃

i∈I xi

)

∩ x′ = ∅. Then, for any i ∈ I, we have xi ∩ x
′ = ∅ and hene

↓S xi∩x′ = ∅ (sine xi ∈ D(X)) and therefore (
⋃

i∈I ↓S xi

)

∩x′ = ∅. We onludebeause learly (
⋃

i∈I ↓S xi

)

= ↓S

(
⋃

i∈I xi

). So D, endowed with inlusion, isa omplete lattie, whose least element is ∅, and largest element is S.A preorder with projetion (a PP for short; the reason for this terminologywill appear later) is a pair X = (|X |,D(X)) where |X | is a preorder and D(X) ⊆

P(|X |) satis�es D(X) = D(X)
⊥|X|⊥|X|op . We de�ne then

X⊥ = (|X |op,D(X)⊥|X|) .By de�nition, we have X⊥⊥ = X . Remember that I(|X |) ⊆ D(X) ⊆ P(|X |).Given two PPs X and Y , we de�ne X ⊗ Y by setting |X ⊗ Y | = |X | × |Y |,endowed with the produt order. Then D(X ⊗ Y ) is given by
D(X ⊗ Y ) = {x× y | x ∈ D(X) and y ∈ D(Y )}⊥|X|×|Y |⊥|X|op×|Y |opWe de�ne aordingly X ⊸ Y = (X ⊗ Y ⊥|Y |)⊥|X|×|Y |op , so that |X ⊸ Y | =

|X |op × |Y | and, for t ⊆ |X ⊸ Y |, one has t ∈ D(X ⊸ Y ) i�, for all x ∈ D(X)and for all y′ ∈ D(Y ⊥), one has
t ∩ (x× y′) = ∅ ⇒ t ∩ ( ↓

|X|

x× ↑
|Y |

y′) = ∅ .Given t ⊆ |X |× |Y |, remember that the transpose of t is tt = {(b, a) | (a, b) ∈
t} ⊆ |Y | × |X |. One heks easily that t ∈ D(X ⊸ Y ) i� tt ∈ D(Y ⊥

⊸ X⊥).Fortunately, there is an easy funtional haraterization of the elements of
D(X ⊸ Y ).Proposition 15 Let X and Y be PPs. Let t ⊆ |X |× |Y |. One has t ∈ D(X ⊸

Y ) i� the two following onditions are satis�ed.
• For all x ∈ D(X), one has t · x ∈ D(Y )

• and, for all x ∈ D(X), one has ↓|Y | (t · x) = ↓|X⊸Y | t · ↓|X| x .The seond ondition is equivalent to ∀x ∈ D(X) ↓|X⊸Y | t · ↓|X| x ⊆ ↓|Y | (t · x),whih in turn is equivalent to ∀x ∈ D(X) ↓|Y | (t · ↓|X| x) ⊆ ↓|Y | (t · x), that is to
∀x ∈ D(X) t · ↓|X| x ⊆ ↓|Y | (t · x).Proof. The equivalenes at the end of the statement result from Lemma 12.Assume �rst that t ∈ D(X ⊸ Y ). Let x ∈ D(X). We show �rst that t · x ∈
D(Y ) = D(Y ⊥)⊥|Y |op , so let y′ ∈ D(Y ⊥) and let us assume that (t · x) ∩ y′ = ∅.This is equivalent to t ∩ (x × y′) = ∅, and sine t ∈ D(X ⊸ Y ), we have
t ∩ ↑X⊸Y (x× y′) = ∅, that is t ∩ (↓|X| x × ↑|Y | y

′) = ∅. But this implies
t ∩ (x × ↑|Y | y

′) = ∅, that is, (t · x) ∩ ↑|Y | y
′ = ∅. Sine this holds for all

y′ ∈ D(Y ⊥), we have shown that t · x ∈ D(Y ).We must show now that ↓|X⊸Y | t · ↓|X| x ⊆ ↓|Y | (t · x). So let b ∈ ↓|X⊸Y | t ·

↓|X| x, we have ↑|Y | b ∈ D(Y ⊥) and ↓|X⊸Y | t ∩ (↓|X| x × ↑|Y | b) 6= ∅, that is
↓X⊸Y t ∩ ↑X⊸Y (x× {b}) 6= ∅. Sine t ∈ D(X ⊸ Y ), this shows that t ∩ (x ×
↑|Y | b) 6= ∅, that is (t · x) ∩ ↑|Y | b 6= ∅, that is b ∈ ↓|Y | (t · x) as required.24



Assume onversely that the two onditions of the statement are satis�ed, andlet us show that t ∈ D(X ⊸ Y ). So let x ∈ D(X) and y′ ∈ D(Y ⊥), and assumethat t ∩ ↑X⊸Y (x× y′) 6= ∅. Equivalently, we have t ∩ (↓|X| x × ↑|Y | y
′) 6= ∅,that is (t · ↓|X| x) ∩ ↑|Y | y

′ 6= ∅. By our seond assumption, we have therefore
↓|Y | (t · x) ∩ ↑|Y | y

′ 6= ∅, and hene t ∩ (x × y′) 6= ∅ sine t · x ∈ D(Y ) and
y′ ∈ D(Y ⊥). 24.2 The linear ategoryLet PpL be the ategory whose objets are the PPs, and with PpL(X,Y ) =
D(X ⊸ Y ), omposition de�ned as the usual relational omposition.4.2.1 Identity and omposition. Indeed, by Proposition 15, the identityrelation Id ⊆ |X | × |X | belongs to D(X ⊸ X).As to omposition, let s ∈ D(X ⊸ Y ) and t ∈ D(Y ⊸ Z), then weshow that the relational omposition u = t · s of these morphisms belongsto D(Y ⊸ Z), using Proposition 15. So let x ∈ D(X). First, we have
u · x = t · (s · x) ∈ D(Z) sine s · x ∈ D(Y ). Next ↓|Z| (u · x) = ↓|Z| (t · (s · x)) =
(↓Y ⊸Z t) · ↓Y (s · x) (by Proposition 15 and the fat that s · x ∈ D(Y )). Henewe have ↓|Z| (u · x) = ((↓Y ⊸Z t) ◦ (↓X⊸Y s)) · ↓|X| x. To onlude, it su�es tohek that ↓X⊸Z u = (↓Y ⊸Z t) ◦ (↓X⊸Y s). The �⊆� inlusion is straightfor-ward, we hek the onverse. Let (a, c) ∈ (↓Y ⊸Z t) ◦ (↓X⊸Y s). Let b ∈ |Y |be suh that (b, c) ∈ ↓Y ⊸Z t and (a, b) ∈ ↓X⊸Y s. Let (a′, b′) ∈ s be suhthat a′ ≤|X| a and b′ ≥|Y | b, and let (b′′, c′) ∈ t be suh that b′′ ≤|Y | b and
a′ ≥|Z| a. We have b′′ ≤ b′ and hene (e.g.) (b′, c) ≤|Y ⊸Z| (b′′, c′) ∈ t and
(a, b′) ≤|X⊸Y | (a′, b′) ∈ s and we onlude.4.2.2 Tensor produt.Lemma 16 Let X1, X2 and Y be PPs. Let t ⊆ |X1 ⊗X2 ⊸ Y |. One has
t ∈ PpL(X1 ⊗X2, Y ) i�, for all x1 ∈ D(X1) and x2 ∈ D(X2), one has

• t · (x1 ⊗ x2) ∈ D(Y )

• and ↓|Y | (t · (x1 ⊗ x2)) = (↓|X1⊗X2⊸Y | t) · (↓|X1| x1 ⊗ ↓|X2| x2).The seond ondition is equivalent to t·(↓|X1| x1 ⊗ ↓|X2| x2) ⊆ ↓|Y | (t · (x1 ⊗ x2)).Proof. The onditions are neessary by Proposition 15. We prove that they aresu�ient, so assume that they hold. We prove that tt ∈ D(Y ⊥
⊸ (X1 ⊗X2)

⊥),using Proposition 15, so let y′ ∈ D(Y ⊥).We show �rst that tt·y′ ∈ D((X1⊗X2)
⊥). So let x1 ∈ D(X1) and x2 ∈ D(X2)and assume that (tt·y′)∩(x1⊗x2) = ∅, hene (t·(x1 ⊗ x2))∩y′ = ∅. But we have

t · (x1 ⊗ x2) ∈ D(Y ), and hene (t · (x1 ⊗ x2)) ∩ ↑|Y | y
′ = ∅, and hene, by ourseond hypothesis, (↓|X1⊗X2⊸Y | t) · (↓|X1| x1 ⊗ ↓|X2| x2)∩ ↑|Y | y

′ = ∅. Therefore
t(↓|X1⊗X2⊸Y | t) · ↑|Y | y

′ ∩ (↓|X1| x1 ⊗ ↓|X2| x2) = ∅, whih learly implies that
tt · y′ ∩ (↓|X1| x1 ⊗ ↓|X2| x2) = ∅, and this shows that tt · y′ ∈ D((X1 ⊗X2)

⊥).Next, we must show that ↑|X1⊗X2| (
tt · y′) = ↓|Y ⊥

⊸(X1⊗X2)⊥ |
tt · (↑Y y

′), andthe only non-trivial inlusion is �⊇�, so let (a1, a2) ∈ ↓|Y ⊥
⊸(X1⊗X2)⊥ |

tt · (↑Y y
′).This means that ↓X1⊗X2

{(a1, a2)} ∩ ↓|Y ⊥
⊸(X1⊗X2)⊥ |

tt · (↑Y y
′) 6= ∅, that is25



↓|(X1⊗X2)⊸Y | t · ↓X1⊗X2
{(a1, a2)} ∩ ↑|Y | y

′ 6= ∅, that is, by our seond assump-tion, we have ↓Y (t · {(a1, a2)}) ∩ ↑Y y
′ 6= ∅. 2Let ti ∈ PpL(Xi, Yi) for i = 1, 2. Let t1 ⊗ t2 ⊆ |(X1 ⊗X2) ⊸ (Y1 ⊗ Y2)| bede�ned as usual as t1 ⊗ t2 = {((a1, a2), (b1, b2)) | (ai, bi) ∈ ti for i = 1, 2}. Thenwe show that t1⊗t2 ∈ PpL(X1⊗X2, Y1⊗Y2) using Lemma 16. So let xi ∈ D(Xi)for i = 1, 2. We have (t1 ⊗ t2) · (x1 ⊗ x2) = (t1 · x1) ⊗ (t2 · x2) ∈ D(Y1 ⊗ Y2)sine we have ti · xi ∈ D(Yi) for i = 1, 2. Moreover, we have

t1 ⊗ t2 · ( ↓
|X1|

x1 ⊗ ↓
|X2|

x2) = (t1 · ( ↓
|X1|

x1)) ⊗ (t2 · ( ↓
|X2|

x2))

⊆ ↓
|Y1|

(t1 · x1) ⊗ ↓
|Y2|

(t2 · x2)

= ↓
|Y1⊗Y2|

((t1 ⊗ t2) · (x1 ⊗ x2))applying Proposition 15 to t1 and t2.4.2.3 Strong isomorphisms. Let X and Y be PPs. A strong isomorphismfrom X to Y is a preorder isomorphism θ : |X | → |Y | suh that, for any x ⊆ |X |,one has x ∈ D(X) i� θ(x) ∈ D(Y ). A strong isomorphism from X to Y is anisomorphism (in the ategorial sense), as easily seen using Lemma 16.4.2.4 Assoiativity and symmetry isomorphisms. The obvious bije-tion α : |(X1 ⊗X2) ⊗X3| → |X1 ⊗ (X2 ⊗X3)|. Then α is a preorder iso-morphism whih is also a PP strong isomorphism. Similarly, the bijetion
σ : |X1 ⊗X2| → |X2 ⊗X1| is a strong isomorphism. This shows that theategory PpL, equipped with the above de�ned tensor produt, is a monoidalategory (of ourse, the unit of this tensor produt is the PP 1 = ({∗}, {∅, {∗}}).4.2.5 Linear funtion spae and monoidal loseness. We have alreadyde�ned X ⊸ Y = (X ⊗ Y ⊥)⊥ . We show that this objet is the linear funtionspae from X to Y .Lemma 17 The obvious bijetion λ : |(Z ⊗X) ⊸ Y | → |X ⊸ (Y ⊸ Z)| is astrong isomorphisms from (Z ⊗X) ⊸ Y to X ⊸ (Y ⊸ Z).Proof. We already know that λ is a preorder isomorphism.Let t ∈ D((Z ⊗X) ⊸ Y ) and let us prove that t′ = λ(t) ∈ D(Z ⊸

(X ⊸ Y )), using Lemma 15. So let z ∈ D(Z), we show �rst that t′ ·z ∈ D(X ⊸

Y ). Let x ∈ D(X), we have (t′ · z)·x = t ·(z ⊗ x) ∈ D(Y ). Next, we have (t′ · z)·
↓|X| x = t ·(z ⊗ ↓|X| x) ⊆ t ·(↓|Z| z ⊗ ↓|X| x) ⊆ ↓|Y | (t · (z ⊗ x)) = ↓|Y | ((t

′ · z) · x)by Lemma 15 applied to t, and hene, by the same lemma applied to t′ · z, wehave t′ · z ∈ D(X ⊸ Y ). We must show now that t′ · ↓|Z| z ⊆ ↓|X⊸Y | (t
′ · z),so let (a, b) ∈ t′ · ↓|Z| z. We have b ∈ (t′ · ↓|Z| z) · ↓|X| a = t · (↓|Z| z ⊗ ↓|X| a) ⊆

↓Y (t · (z ⊗ ↓|X| a)) so we an �nd b′ ∈ |Y | with b′ ≥ b, c ∈ z and a′ ≤ a suhthat ((c, a′), b′) ∈ t, that is (c, (a′, b′)) ∈ t′. Hene (a′, b′) ∈ t′ · z, and therefore
(a, b) ∈ ↓|X⊸Y | (t

′ · z) as required. 2Sine we have taken PpL(X,Y ) = D(X ⊸ Y ) it results easily from thatlemma that the monoidal ategory PpL is monoidal losed, with X ⊸ Y asfuntion spae. 26



The ategoryPpL is learly star-autonomous (with ⊥ = 1⊥ = 1 as dualizingobjet), sine X ⊸ ⊥ = (X ⊗ 1)⊥ and this latter PP is isomorphi to X⊥ bythe strong PP isomorphism whih maps a ∈ |X | to (a, ∗) (one should hek thatthe indued isomorphism X → (X ⊸ ⊥) ⊸ ⊥, whih maps a to ((a, ∗), ∗) isthe anonial morphism between these two spaes as explained in [Bar79℄, butthis is quite easy).4.2.6 The �par� onnetive. The o-tensor produt, or par, is de�ned as
X`Y = (X⊥⊗Y ⊥)⊥ = X⊥

⊸ Y and has the same assoiativity and symmetryproperties as the tensor produt. Also, there is a mix morphism mix : X⊗Y →
X`Y , whih is the diagonal set mix = {((a, b), (a, b)) | a ∈ |X | and b ∈ |Y |}.As it is well known, the fat that this relation is a morphism results fromthe fat that 1 = 1⊥ = ⊥. A natural question is whether this morphism isan isomorphism, as in both ategories ScottL and RelL (these ategories areompat losed), and we shall provide a ounter-example showing that this isnot the ase in general.4.2.7 The morphism mix is not an isomorphism in general. Let Xbe the PP de�ned by |X | = N (the natural numbers, with the usual order)and D(X) = P(N), and let Y = X⊥ . We hek �rst that the �suessor�relation s = {(n, n + 1) | n ∈ N} belongs to D(Y`X) = D(X ⊸ X). Let
x ∈ D(X) = P(N). Obviously s · x ∈ D(X), and, if b ∈ s · ↓X x, then we have
b > 0 and b− 1 ∈ ↓X x. Let c ∈ x suh that c ≥ b− 1. We have c+ 1 ∈ s · x andhene b ∈ ↓X (s · x).On the other hand, we have Id ∈ D(Y ⊸ Y ) = D((Y ⊗X)⊥) and, sine |Y |is N with the opposite order, we have s∩ ↓|Y ⊸Y | Id 6= ∅ (indeed s ⊆ ↓|Y ⊸Y | Id).But s ∩ Id = ∅, therefore s = mix−1 · s /∈ D(Y ⊗X), whih shows that mix−1 /∈
PpL(Y`X,Y ⊗X).This strongly suggests that PpL is not ompat losed.4.3 The additivesGiven a family (Xi)i∈I of PPs, we de�ne their artesian produt X =&i∈I Xiby setting |X | =

⋃

i∈I{i} × |Xi| and saying that a set x ⊆ |X | belongs to D(X)if, for all i ∈ I, one has πi ·x ∈ D(Xi) (where πi ⊆ |X ⊸ Xi| is πi = {((i, a), a) |
a ∈ |Xi|}, so that πi · x = {a ∈ |Xi| | (i, a) ∈ x}; we shall use the notation xifor πi · x in the sequel).One must hek that D(X) = D(X)

⊥|X|⊥|X|op . For this it will su�e to showthat, for all x′ ⊆ |X |, one has x′ ∈ D(X)⊥|X| i� x′i ∈ D(Xi)
⊥|Xi| for all i ∈ I; thiswill show that X de�ned above is a PP, with X⊥ =&i∈I X
⊥
i . Assume �rst that

x′i ∈ D(Xi)
⊥|Xi| for all i ∈ I and assume that ↓|X| x∩x

′ 6= ∅ for some x ∈ D(X).There exists i ∈ I suh that ↓|Xi| xi ∩ x′i 6= ∅, and therefore xi ∩ x′i 6= ∅, andhene x∩x′ 6= ∅. Conversely, assume that x′ ∈ D(X)⊥|X| and let i ∈ I, we mustshow that x′i ∈ D(Xi)
⊥|Xi| . So let y ∈ D(Xi) and assume that ↓|Xi| y ∩ x

′
i 6= ∅.Let x = {i} × y ⊆ |X |, we have x ∈ D(X) (remember the de�nition of D(X)and the fat that ∅ ∈ D(Y ) for any PP Y ) and ↓|X| x ∩ x′ 6= ∅. Therefore wehave x ∩ x′ 6= ∅, that is y ∩ x′i 6= ∅.It is straightforward to hek that &i∈I Xi is the artesian produt of the

Xis, with the relations πi as projetions.27



4.4 The exponentialsLet X be a PP. We de�ne !X by setting |!X| = !|X |; remember that this meansthat |!X| is the set of all �nite multisets of elements of |X |, with the preorderde�ned as follows: p ≤ q i� ∀a ∈ p ∃b ∈ q a ≤|X| b. Given x ⊆ |X |, we set
x! = Mfin(x), and remember that we have the following property:

↓
|!X|

(x!) = ( ↓
|X|

x)! . (1)We set
D(!X) = {x! | x ∈ D(X)}

⊥|!X|⊥|!X|op

.Lemma 18 Let X and Y be PPs and let t ⊆ |!X ⊸ Y |. We have t ∈ D(!X ⊸

Y ) i�, for all x ∈ D(X),
• t · x! ∈ D(Y )

• and ↓|Y | (t · x
!) = (↓|!X⊸Y | t) · (↓|X| x)

!and the seond ondition is equivalent to t · (↓|X| x)
! ⊆ ↓|Y | (t · x

!).The proof is similar to that of Lemma 16.Let t ∈ PpL(X,Y ), we de�ne !t ⊆ |!X ⊸ !Y | by
!t = {([a1, . . . , an], [b1, . . . , bn]) | (ai, bi) ∈ t for all i = 1, . . . , n} .Using Lemma 18, we prove that !t ∈ PpL(!X, !Y ). So let x ∈ D(X). Wehave !t · x! = (t · x)! ∈ D(!Y ) sine t · x ∈ D(Y ). Next we have !t · (↓|X| x)

! =

(t · ↓|X| x)
! ⊆ (↓|Y | (t · x))

! by Proposition 15 applied to t, and we onludebeause (↓|Y | (t · x))
! = ↓|!Y | (t · x)

! = ↓|!Y | (!t · x
!), using Equation (1).We hek that the usual omonad struture of the exponential in the rela-tional model gives rise to a omonad struture for the !_ funtor we have justde�ned.We de�ne �rst dX as dX = d|X| = {([a], a) | a ∈ |X |} ⊆ |!X ⊸ X |. Given

x ∈ D(X), we have dX · x! = x and dX · (↓|X| x)
! = ↓|X| x = ↓|X| (dX · x!) andso dX ∈ PpL(!X,X) by Lemma 18. Similarly, we de�ne pX as pX = p|X| =

{(m1 + · · · + mn, [m1, . . . ,mn]) | m1, . . . ,mn ∈ |!X |} ⊆ |!X ⊸ !!X| and weshow that pX ∈ D(!X ⊸ !!X), using Lemma 18 again. So let x ∈ D(X), wehave pX · x! = x!! ∈ D(!!X), sine x! ∈ D(!X). Next we have pX · (↓|X| x)
! =

(↓|X| x)
!!

= ↓|!!X| (x
!!) = ↓|!!X| (pX · x!) and this ompletes the proof that pX isa morphism.4.4.1 Fundamental isomorphism. We show that the PPs !(X & Y ) and

!X⊗ !Y are isomorphi, by the bijetion θ : |!(X & Y )| → |!X ⊗ !Y | whih mapsthe multiset [(1, a1), . . . , (1, al), (2, b1), . . . , (2, br)] (with ai ∈ |X | and bj ∈ |Y |)to ([a1, . . . , al], [b1, . . . , br]).We show that θ is a morphism from !(X & Y ) to !X ⊗ !Y . So let x ∈ D(X)and y ∈ D(Y ). We have θ · 〈x, y〉! = x! ⊗ y! ∈ D(!X ⊗ !Y ) whih shows byLemma 18 that θ is a morphism, sine it is a preorder isomorphism (so that theseond ondition of the lemma is trivially satis�ed). Conversely, let ρ = θ−1and let ρ′ ⊆ |!X | × |(!Y ⊸ !(X & Y ))| be given by
ρ′ = {(p, (q,m)) | m = θ(p, q)} .28



By monoidal loseness, it su�es to prove that ρ′ is a morphism from !X to
!Y ⊸ !(X & Y ), and for this, we apply twie Lemma 18 as follows. First,let x ∈ D(X), we must show that ρ′ · x! ∈ D(!Y ⊸ !(X & Y )). For this,let y ∈ D(Y ), we have (ρ′ · x!) · y! = 〈x, y〉! ∈ D(!(X & Y )). Next, we have
(ρ′ · x!) · (↓|Y | y)

! = 〈x, ↓|Y | y〉
! on the one hand and ↓|!(X&Y )| ((ρ

′ · x!) · y!) =

↓|!(X&Y )| 〈x, y〉
! = (↓|X&Y | 〈x, y〉)

! on the other hand, from whih it learlyresults that (ρ′ · x!) · (↓|Y | y)
! ⊆ ↓|!(X&Y )| ((ρ

′ · x!) · y!) and therefore ρ′ · x! ∈
D(!Y ⊸ !(X & Y )) by Lemma 18. To onlude, we must show that ρ′ ·
(↓|X| x)

! ⊆ ↓|!Y ⊸!(X&Y )| (ρ
′ · x!), so let q ∈ |!Y | and m ∈ |!(X & Y )| and as-sume that (q,m) ∈ ρ′ · (↓|X| x)

!. There exists p ∈ |!X | suh p ∈ (↓|X| x)
! and

m = θ(p, q). Sine p ∈ (↓|X| x)
!, we an �nd p′ ∈ x! suh that p ≤|!X| p

′. Let
m′ = θ(p′, q), we have (q,m′) ∈ ρ′ · x! and hene (q,m) ∈ ↓|!Y ⊸!(X&Y )| (ρ

′ · x!)sine m ≤|(X&Y )!| m
′.Observe that there is also an obvious isomorphism from !⊤ to 1 (the �0-aryversion� of the isomorphism above).4.4.2 Strutural maps. Using these fundamental isomorphisms, it is easyto de�ne the weakening and ontration maps, whih endow !X with a oalgebrastruture: it su�es to apply the funtor !_ to the �terminal map� in PpL(X,⊤)and to the diagonal map in PpL(X,X & X) and then to ompose the resultingmap with the suitable fundamental isomorphism. In that way, we get weakX ∈

PpL(!X, 1), given by weakX = {([], ∗)} and contrX ∈ PpL(!X ⊗ !X, !X) givenby contrX = {(p, q, p+ q) | p, q ∈ |!X |}, whih satisfy all the diagrams required(see [Bie95℄).4.4.3 Cartesian loseness. Equipped with this struture (the omonad
(!_, d, p), the fundamental isomorphisms), the artesian star-autonomous at-egory PpL is a model of linear logi in the sense of Setion 1.4. It gives risetherefore to a artesian losed ategory, whih is the Kleisli ategory PpL! ofthat omonad. The artesian produt of (Xi)i∈I in PpL! is X = &i∈I Xi withprojetions πi ◦ dX (simply denoted as πi). The objet of morphisms from X to
Y is X ⇒ Y = !X ⊸ Y with evaluation morphism Ev (de�ned in Setion 2.1).4.5 The partially ordered lass of PPsLet X and Y be two PPs. We say that X is a subobjet of Y and we write
X ⊑ Y if |X | ⊑ |Y | (in the sense of Setion 3.5) and if η|X|,|Y | ∈ PpL(X,Y )and ρ|X|,|Y | ∈ PpL(Y,X). This means that the two following onditions musthold:

∀x ⊆ |X | x ∈ D(X) ⇒ x ∈ D(Y )

∀y ⊆ |Y | y ∈ D(Y ) ⇒ (y ∩ |X | ∈ D(X) and ( ↓
|Y |

y) ∩ |X | ⊆ ↓
|X|

(y ∩ |X |)) .Observe that, in the seond ondition, the onverse inlusion always holds be-ause |X | ⊑ |Y |.It is lear that ⊑ is an order relation on the lass of PPs; let us denote with
PpC the orresponding partially ordered lass.As usual, the �rst thing to observe is that linear negation is ovariant withrespet to this notion. 29



Lemma 19 If X ⊑ Y then X⊥ ⊑ Y ⊥ .Proof. Same proof as for Lemma 7. 24.5.1 Completeness.Lemma 20 Let (Xγ)γ∈Γ a direted family of PPs. Let X =
⊔

γ∈ΓXγ be de�nedas follows: |X | =
⊔

γ∈Γ |Xγ | (in the partially ordered lass ScottC) and D(X) =
{x ⊆ |X | | ∀γ ∈ Γ x ∩ |Xγ | ∈ D(Xγ)}. Then X is a PP.Proof. Observe �rst that, if x ∈ D(Xγ), then x ∈ D(X). Indeed, let δ ∈ Γ, wemust hek that x ∩ |Xδ| ∈ D(Xδ). So let ε ∈ Γ be suh that γ, δ ≤ ε. Sine
Xγ ⊑ Xε, we have x ∈ D(Xε), and sine Xδ ⊑ Xε, we have x ∩ |Xδ| ∈ D(Xδ).For proving the lemma, we build X ′ =

⊔

γ∈ΓX
⊥
γ (this makes sense sine thefamily (X⊥

γ )γ∈Γ is direted by Lemma 19), and we show that X = X ′⊥ . Sineobviously |X | = |X ′⊥ | (as preorders), it remains to show that D(X) = D(X ′)⊥ .First, let x ∈ D(X) and let us show that x ∈ D(X ′)⊥ . So let x′ ∈ D(X ′) andassume that ↓|X| x∩x
′ 6= ∅. Let a ∈ x and let a′ ∈ x′ be suh that a′ ≤|X| a. Let

γ ∈ Γ be suh that a, a′ ∈ |Xγ | (so that a′ ≤|Xγ | a). We have x∩ |Xγ | ∈ D(Xγ),
x′ ∩ |Xγ | ∈ D(X⊥

γ ) and a′ ∈ ↓|Xγ | (x ∩ |Xγ |)∩ (x′ ∩ |Xγ |), and hene x∩ x′ 6= ∅.Conversely, let x ∈ D(X ′)⊥ , and let us show that x ∈ D(X). So let γ ∈ Γand let us show that x ∩ |Xγ | ∈ D(Xγ). Let x′ ∈ D(X⊥
γ ) and assume that

↓|Xγ | x∩x
′ 6= ∅. By our initial observation, we have x′ ∈ D(X ′). Sine ↓|Xγ | x∩

x′ 6= ∅, we have ↓|X| x ∩ x′ 6= ∅ and hene x ∩ x′ 6= ∅. 2Lemma 21 ⊔

γ∈ΓXγ is the least upper bound of the family (Xγ)γ∈Γ in thepartially ordered lass PpC.Proof. Let δ ∈ Γ, we hek that Xδ ⊑
⊔

γ∈ΓXγ = X . We have already seenthat, if x ∈ D(Xδ), then x ∈ D(X). So let x ∈ D(X). By de�nition, we have
x ∩ |Xδ| ∈ D(Xδ). We have to hek that ↓|X| x ∩ |Xδ| ⊆ ↓|Xδ|

(x ∩ |Xδ|), solet a′ ∈ ↓|X| x ∩ |Xδ| and let a ∈ x suh that a′ ≤|X| a. We an �nd ε ≥ δsuh that a, a′ ∈ |Xε|. Then a′ ∈ ↓|Xε| x ∩ |Xδ| and sine Xδ ⊑ Xε, we have
↓|Xε| x ∩ |Xδ| ⊆ ↓|Xδ|

(x ∩ |Xδ|) and hene a′ ∈ ↓|Xδ|
(x ∩ |Xδ|) as required.Let Y be a PP suh that Xγ ⊑ Y for eah γ ∈ Γ and let us show that X =

⊔

γ∈ΓXγ ⊑ Y . We already know that ⊔

γ∈Γ |Xγ | ⊑ |Y |. First, let x ∈ D(X) andlet us show that x ∈ D(Y ). So let y′ ∈ D(Y ⊥) and assume that ↓|X| x ∩ y′ 6= ∅.Let a′ ∈ ↓|X| x ∩ y′ and let a ∈ x be suh that a′ ≤|X| a. Let δ ∈ Γ be suhthat a, a′ ∈ |Xδ|, so that a′ ≤|Xδ| a. We have a′ ∈ ↓|Xδ| (x ∩ |Xδ|) ∩ (y′ ∩ |Xδ|),
x ∩ |Xδ| ∈ D(Xδ) (by de�nition of X) and y′ ∩ |Xδ| ∈ D(X⊥

δ ) (sine Xδ ⊑ Y ,and by Lemma 19). Hene x ∩ y′ 6= ∅, and this shows that x ∈ D(X).Next, let y ∈ D(Y ). We must show �rst that y ∩ |X | ∈ D(X), but thisresults immediately from the de�nition of X and from the fat that Xδ ⊑ Yfor eah δ ∈ Γ. Last, we must show that ↓|Y | y ∩ |X | ⊆ ↓|X| (y ∩ |X |). Let
a′ ∈ ↓|Y | y ∩ |X |. Let δ ∈ Γ be suh that a′ ∈ |Xδ|. Sine Xδ ⊑ Y , we have
↓|Y | y ∩ |Xδ| ⊆ ↓|Xδ| (y ∩ |Xδ|) and we onlude beause a′ ∈ ↓|Y | y ∩ |Xδ| and,obviously, ↓|Xδ| (y ∩ |Xδ|) ⊆ ↓|X| (y ∩ |X |). 230



4.5.2 Variable PPs and least �xpoints thereof. A variable PP is afuntor Φ : PpCn → PpC whih ommutes with the lubs of direted familiesof PPs (as usual we say then that Φ is ontinuous).Lemma 22 The operations (X,Y ) 7→ X ⊗ Y , X → XI and X 7→ !X arevariable PPs.Proof. We observe �rst that these operations are monotone, as in the proof ofLemma 10.So the operation (X,Y ) 7→ (X ⊸ Y ) is monotone, we prove that it isontinuous. Let (Xγ)γ∈Γ and (Yγ)γ∈Γ be direted families of PPs, and let X and
Y be their lubs. Then (Xγ ⊸ Yγ)γ∈Γ is a direted family of PPs (we have justseen that _ ⊸ _ is monotonous wrt. ⊑), let Z be its lub. We must show that
Z = X ⊸ Y . We already know that |Z| = |X ⊸ Y | and that Z ⊑ X ⊸ Y , so itwill be enough to show that D(X ⊸ Y ) ⊆ D(Z). So let t ∈ D(X ⊸ Y ) and let
γ ∈ Γ, we must prove that tγ = t ∩ |Xγ ⊸ Yγ | ∈ D(Xγ ⊸ Yγ). Let x ∈ D(Xγ),we have x ∈ D(X) and tγ · x = (t · x) ∩ |Yγ | ∈ D(Yγ). Moreover, tγ · ↓|Xγ | x =
(t · ↓|Xγ | x) ∩ |Yγ | ⊆ (t · ↓|X| x) ∩ |Yγ | ⊆ ↓|Y | (t · x) ∩ |Yγ | sine t ∈ D(X ⊸ Y ).Therefore, sine Yγ ⊑ Y , we have tγ ·↓|Xγ | x ⊆ ↓|Yγ | ((t · x) ∩ |Yγ |) = ↓|Yγ | (tγ · x)(remember that x ∈ D(Xγ)) and this onludes the proof that tγ ∈ D(Xγ ⊸ Yγ),and therefore also the proof that _ ⊸ _ is a variable PP.The operation Φ : X 7→ (!X)⊥ is monotone, and we onlude by provingthat it is ontinuous. Let (Xγ)γ∈Γ be a direted family, let X be its lub, andlet Y be the lub of the direted family (Φ(Xγ))γ∈Γ. We have Y ⊑ Φ(X) and
|Y | = |Φ(X)|, so it will be su�ient to prove that D(Φ(X)) ⊆ D(Y ). Let
A′ ∈ D(Φ(X)) and let γ ∈ Γ, we must prove that A′∩|Φ(Xγ)| ∈ D(Φ(Xγ)). Let
x ∈ D(Xγ) and assume that A′∩↓|!Xγ | (x

!) 6= ∅. Then we have A′∩↓|!X| (x
!) 6= ∅and hene A′ ∩ x! 6= ∅, sine x ∈ D(X), that is (A′ ∩ |Φ(Xγ)|) ∩ x! 6= ∅. 2Of ourse, any variable PP Φ : PpC → PpC admits a least �xpoint, namely

⊔

k∈N
Φk(⊤) (remember that ⊤ = (∅, {∅}), so that ⊤ is the least element of PpCfor the preorder ⊑).4.5.3 An extensional re�exive PP. The operation Φh : PpC → PpCde�ned by Φh(X) = (!(XN))⊥ is a variable PP and has therefore a least �xpointthat we denote with Dh. One heks easily (as in 2.3.3) that Dh is an extensionalre�exive objet in the CCC PpL!.4.6 PPs are heterogeneous logial relationsWe know that Rel! and ScottL! are CCCs and that ScottL! is well-pointed,so we an apply to these ategories the onstrutions of 1.3.2. We shall seethat, up to anonial isomorphisms, PpL! is a sub-artesian losed ategory of

emod(Rel!,ScottL!).If E is a set onsidered as an objet of Rel!, a point of E (that is an elementof Rel!(⊤, E)) is just a subset of E. And if S is a preordered set onsidered asan objet of ScottL!, a point of S is an element of I(S).4.6.1 Heterogeneous relation assoiated with a PP. Given a PP X , wean de�ne an objet h(X) of the ategory e(Rel!,ScottL!) by setting ph(X)q =31



|X | (onsidered as a simple set), xh(X)y = |X | (onsidered as a preordered set)and
x h(X) u if x ∈ D(X) and u = ↓

|X|

x .Given a morphism t ∈ PpL!(X,Y ), we de�ne a pair of morphisms h(t) =
(ph(t)q, xh(t)y) with ph(t)q = t ∈ Rel!(ph(X)q, ph(Y )q) and xh(t)y = ↓|!X⊸Y | t,whih belongs to ScottL!(xh(X)y, xh(Y )y).Theorem 23 The operation h de�ned above is a full and faithful artesianlosed funtor from PpL! to e(Rel!,ScottL!).Proof. Observe �rst that h(t) ∈ e(Rel!,ScottL!)(h(X), h(Y )) (with the nota-tions above). Indeed, due to the de�nition of h(X) and of h(Y ), this amountsto heking that, for any x ∈ D(X), one has t · x! ∈ D(Y ) and ↓|Y | (t · x

!) =

↓|!X⊸Y | t · (↓|X| x)
!. This holds by Lemma 18.Let us hek the funtoriality of h, so let s ∈ PpL!(X,Y ) and t ∈ PpL!(Y, Z).One has �rst ph(t ◦ s)q = t ◦ s = ph(t)q ◦ ph(s)q. Next, we have xh(t ◦ s)y =

↓|!X⊸Z| (t ◦ s). Let x ∈ D(X). We have, applying again Lemma 18,
xh(t ◦ s)y · ( ↓

|X|

x)! = ↓
|!X⊸Z|

(t ◦ s) · ( ↓
|X|

x)!

= ↓
|Z|

((t ◦ s) · x!)

= ↓
|Z|

(t · ((s · x!)!))

= ↓
|!Y ⊸Z|

t · ( ↓
|Y |

(s · x!))!

= ↓
|!Y ⊸Z|

t · ( ↓
|!X⊸Y |

s · ( ↓
|X|

x)!)!

= ( ↓
|!Y ⊸Z|

t ◦ ↓
|!X⊸Y |

s) · ( ↓
|X|

x)!and hene xh(t ◦ s)y = xh(t)y ◦ xh(s)y beause the ategory ScottL! is well-pointed, and beause any element of I(|X |) an be written ↓|X| x for some
x ∈ D(X) (remember that I(|X |) ⊆ D(X)). One proves similarly that identitiesare preserved.Fullness of h results again from Lemma 18 (used in the onverse diretion).It remains to prove that this funtor is artesian losed.Let (Xi)i∈I be a �nite family of PPs and let X = &i∈I Xi, so that ph(X)q =

&i∈Iph(Xi)q and xh(X)y = &i∈Ixh(Xi)y. Moreover, ph(πi)q = πi and xh(πi)y =
↓|!Xi⊸Xi| πi = πS

i . Last, given x = 〈xi〉i∈I ∈ P(|X |) and u = 〈ui〉i∈I ∈ I(|X |),we have x h(X) u i� x ∈ D(X) and ↓|X| x = u. The �rst of these two on-ditions is equivalent to ∀i ∈ I xi ∈ D(Xi) and the seond one is equivalent to
∀i ∈ I ↓|Xi| xi = ui and therefore x h(X) u ⇔ ∀i ∈ I xi Xi

ui and this showsthat h ommutes with artesian produts.It remains to show that h ommutes with the funtion spae onstrution,so let X and Y be PPs and let Z = (X ⇒ Y ) = (!X ⊸ Y ). We learly have
ph(Z)q = ph(X)q ⇒ ph(Y )q and xh(Z)y = xh(X)y ⇒ xh(Y )y. Next we have
ph(Ev)q = Ev and xh(Ev)y = ↓|Z| Ev = EvS (see 3.4.1). Finally, let t ∈ P(|Z|)and let w ∈ I(|Z|). Assume �rst that t h(Z) w, that is t ∈ D(Z) and ↓|Z| t = w.32



We must prove that t h(X)⇒h(Y ) w. So let x ∈ P(|X |) and u ∈ I(|X |) be suhthat x X u, that is x ∈ D(X) and ↓|X| x = u. By de�nition of t(x) and
w(u) (see Setion 1.1), we have t(x) = t · x! and w(u) = w · u! = (↓|Z| t) ·

(↓|X| x)
! = ↓|Y | (t(x)) by Lemma 18. By the same lemma, we have t(x) ∈ D(Y ),and hene t(x) h(Y ) w(u) as required. Conversely, assume that t h(X)⇒h(Y )

w; we must prove that t h(Z) w. We apply again Lemma 18, so let x ∈

D(X). We have x X ↓|X| x and hene t(x) ∈ D(Y ) (that is t · x! ∈ D(Y )) and
↓|Y | (t · x

!) = w · (↓|X| x)
! (by de�nition of h(X)⇒h(Y )). We prove that ↓|Z| t =

w. Let (m, b) ∈ |Z|. We have ↓|Y | (t · (↓|X| supp(m))!) = w · (↓|X| supp(m))!.Assume �rst that (m, b) ∈ ↓|Z| t and let (m′, b′) ∈ t be suh that (m, b) ≤|Z|

(m′, b′). Then m′ ∈ (↓|X| supp(m))! and hene b ∈ ↓|Y | (t · (↓|X| supp(m))!). Solet m′′ ∈ (↓|X| supp(m))! be suh that (m′′, b) ∈ w. Sine w ∈ I(|Z|), we have
(m, b) ∈ w. Conversely, assume that (m, b) ∈ w. Sine m ∈ (↓|X| supp(m))!,we have b ∈ ↓|Y | (t · (↓|X| supp(m))!) so we an �nd (m′, b′) ∈ t suh that m′ ∈

(↓|X| supp(m))! and b ≤ b′, that is (m, b) ≤|Z| (m′, b′), whih show that (m, b) ∈

↓|Z| t. Therefore, x being an element of D(X), we have ↓|Y | (t · x
!) = ↓|Z| t ·

(↓|X| x)
! and so t ∈ D(Z) by Lemma 18. This onludes the proof that t Z w,and therefore we have h(Z) = h(X) ⇒ h(Y ). Therefore h is a CCC funtor.

2So we an onsider PpL! as a sub-CCC of e(Rel!,ScottL!).4.7 A funtor from PPs to PER-objetsGiven a PP X , we obviously de�ne a PER (denoted with BX for the time being)on P(|X |) by saying that x BX y if x, y ∈ D(X) and ↓X x = ↓X y. Observe that
x BX ↓X x for any x ∈ D(X).Lemma 24 For any PP X, one has B⊥

X = BX⊥ and therefore B⊥⊥
X = BX .Proof. Let x′, y′ ⊆ |X |. Assume �rst that x′ B⊥

X y′ and let us show that
x′ BX⊥ y′. We prove �rst that x′ ∈ D(X)⊥ , so let x ∈ D(X), and assumethat x′ ∩ ↓|X| x 6= ∅, we must show that x′ ∩ x 6= ∅. This results from thefat that x BX ↓|X| x. Similarly we get y′ ∈ D(X)⊥ . We must show now that
↑|X| x

′ = ↑|X| y
′, so let a ∈ ↑|X| x

′. This means that ↓|X| a ∩ x′ 6= ∅. Sine
↓|X| a BX ↓|X| a, we get ↓|X| a ∩ y

′ 6= ∅, that is a ∈ ↑|X| y
′.Conversely, assume that x′ BX⊥ y′ and let us show that x′ B⊥

X y′. So let
x, y ⊆ |X | be suh that x BX y, and assume that x∩x′ 6= ∅; we must show that
y ∩ y′ 6= ∅. We have a fortiori ↓|X| x ∩ ↑|X| x

′ 6= ∅, that is ↓|X| y ∩ ↑|X| y
′ 6= ∅.But then, sine y ∈ D(X) and y′ ∈ D(X)⊥ , we get y ∩ y′ 6= ∅. 2We an rephrase this result as follows.Lemma 25 For any PP X, ε(X) = (|X |, BX) is a PER-objet and we have

ε(X⊥) = ε(X)⊥ .The relation BX an therefore also be denoted with ∼ε(X).33



Lemma 26 Let X and Y be PPs and let s1, s2 ∈ P(|X ⊸ Y |). One has
s1 ∼ε(X⊸Y ) s2 i� for all x1, x2 ∈ P(|X |), if x1 ∼ε(X) x2 then s1 ·x1 ∼ε(Y ) s2 ·x2.This means that ε(X ⊸ Y ) = ε(X) ⊸ ε(Y ).Proof. Assume �rst that s1 ∼ε(X⊸Y ) s2. Let x1, x2 ⊆ |X | be suh that
x1 ∼ε(X) x2, we want to show that s1 ·x1 ∼ε(Y ) s2 ·x2. Let y′1, y′2 ⊆ |Y | be suhthat y′1 ∼ε(Y ⊥ ) y

′
2. One has (s1 ·x1)∩y′1 6= ∅ i� s1∩(x1×y′1) 6= ∅ and, sine x1 ∈

D(X) and y′1 ∈ D(Y )⊥ , this latter ondition holds i� s1∩↓|X⊗Y ⊥ | (x1 × y′1) 6= ∅,whih in turn is equivalent to ↓|X⊸Y | s1 ∩ ↓|X⊗Y ⊥ | (x1 × y′1) 6= ∅ sine s1 ∈
D(X ⊸ Y ). Sine ↓|X⊸Y | s1 = ↓|X⊸Y | s2 (beause s1 ∼ε(X⊸Y ) s2) and
↓|X⊗Y ⊥ | (x1 × y′1) = ↓|X⊗Y ⊥ | (x2 × y′2) (beause x1 ∼ε(X) x2 and y′1 ∼ε(Y ⊥ ) y

′
2),we onlude that (s1 · x1) ∩ y′1 6= ∅ ⇔ (s1 · x2) ∩ y′2 6= ∅, and this shows that

s1 · x1 ∼ε(Y ) s2 · x2 by Lemma 24.Conversely, assume that s1 · x1 ∼ε(Y ) s2 · x2 whenever x1 ∼ε(X) x2, andlet us show that s1 ∼ε(X⊸Y ) s2. Observe that our assumption implies that
s1 · x1 ∼ε(Y ) s1 · x2 (indeed, x2 ∼ε(X) x2, hene s1 · x2 ∼ε(Y ) s2 · x2 and we anapply transitivity of the relation ∼ε(Y )). We show �rst that s1 ∈ D(X ⊸ Y ).So let x ∈ D(X). We have x ∼ε(X) x and hene s1 ·x ∼ε(Y ) s2 ·x, whih implies
s1 · x ∈ D(X). Let b ∈ s1 · ↓|X| x, we show that b ∈ ↓|Y | (s1 · x). We have
x ∼ε(X) ↓|X| x and hene s1 · x ∼ε(Y ) s1 · ↓|X| x whih implies ↓|Y | (s1 · x) =
↓|Y | (s1 · ↓|X| x) and we onlude sine b ∈ ↓|Y | (s1 · ↓|X| x). By Proposition 15,we have s1 ∈ D(X ⊸ Y ), and of ourse the same holds for s2 by symmetry. Itremains to show that ↓|X⊸Y | s1 = ↓|X⊸Y | s2.Let (a, b) ∈ ↓|X⊸Y | s1. This means that ↓|X⊗Y ⊥ | (a, b) ∩ s1 6= ∅, that is
(s1 · ↓|X| a) ∩ ↑|Y | b 6= ∅. But ↓X a ∼ε(X) ↓X a and hene s1 · ↓|X| a ∼ε(Y )

s2 · ↓|X| a and sine ↑|Y | b ∼
⊥
ε(Y ) ↑|Y | b, we have (s2 · ↓|X| a) ∩ ↑|Y | b 6= ∅, that is

(a, b) ∈ ↓|X⊸Y | s2. 2In partiular, for any PPsX and Y , one hasPpL(X,Y ) = PerL(ε(X), ε(Y ))and so the operation ε is a full and faithful funtor, whih is the identity onmorphisms. Indeed, omposition of morphisms is de�ned in the same way inboth ategories, as the standard omposition of relations.Lemma 27 Let X and Y be PPs. We have ε(X ⊗ Y ) = ε(X) ⊗ ε(Y ), that is,the funtor ε is strit monoidal.Proof. Apply the fat that X ⊗ Y = (X ⊸ Y ⊥)⊥ , Lemma 25 and Lemma 26.
2Lemma 28 The funtor ε ommutes with all artesian produts.Lemma 29 Let X be a PP, one has ε(!X) = !ε(X).Proof. By Lemma 25, it su�es to show that ε(!X)⊥ = (!ε(X))⊥ . Let A′

1, A
′
2 ⊆

|!X|.On the one hand, A′
1 ∼ε(!X)⊥ A′

2 means that A′
1 ∼⊥

ε(!X) A
′
2, that is

∀A1, A2 ⊆ |!X| A1 ∼ε(!X) A2 ⇒ (A1 ∩A
′
1 6= ∅ ⇔ A2 ∩A

′
2 6= ∅) ,34



and remember that A1 ∼ε(!X) A2 means that A1, A2 ∈ D(!X) and ↓|!X|A1 =
↓|!X|A2. By Lemma 25, A′

1 ∼ε(!X)⊥ A′
2 is also equivalent to A′

1 ∼ε((!X)⊥ ) A
′
2,that is

A′
1, A

′
2 ∈ D(!X)⊥ and ↑

|!X|

A′
1 = ↑

|!X|

A′
2 . (2)On the other hand, A′

1 ∼(!ε(X))⊥ A′
2 means that A′

1 ∼⊥
!ε(X) A

′
2, that is

∀x1, x2 ⊆ |X | x1 ∼ε(X) x2 ⇒ (x!
1 ∩A

′
1 6= ∅ ⇔ x!

2 ∩A
′
2 6= ∅)and remember that x1 ∼ε(X) x2 means that x1, x2 ∈ D(X) and ↓|X| x1 = ↓|X| x2.Hene x1 ∼ε(X) x2 implies x!

1, x
!
2 ∈ D(!X) and ↓|!X| x

!
1 = (↓|X| x1)

! =

(↓|X| x2)
! = ↓|!X| x

!
2, that is x!

1 ∼ε(!X) x
!
2 and hene A′

1 ∼⊥
ε(!X) A

′
2 ⇒ A′

1 ∼⊥
!ε(X)

A′
2.Let us prove the onverse impliation, so assume that A′

1 ∼⊥
!ε(X) A

′
2 andlet us prove that property (2) holds. We prove �rst that A′

1 ∈ D(!X)⊥ . Solet x ∈ D(X) and assume that A′
1 ∩ x! = ∅. Sine x ∼ε(X) ↓|X| x, we have

x! ∼!ε(X) (↓|X| x)
! = ↓|!X| (x

!), and hene A′
1 ∩ ↓|!X| (x

!) = ∅ sine we have
A′

1 ∼⊥
!ε(X) A

′
1. It remains to show that ↑|!X|A

′
1 = ↑|!X|A

′
2, we only prove the�⊆� inlusion. So let m ∈ |!X | and assume that m ∈ ↑|!X|A
′
1. This means that

A′
1 ∩ ↓|!X|m 6= ∅, and sine ↓|!X|m ∼!ε(X) ↓|!X|m, we have m ∈ ↑|!X|A

′
2. 2Theorem 30 The funtor ε is an LL-funtor.Proof. This results from Lemmas 26, 27, 28 and 29, from the fat that ε atstrivially on morphisms and from the fat that the operations on morphisms arede�ned in the same way in both ategories. 2It follows that ε is a artesian losed funtor from PpL! to PerL!.4.7.1 Continuity of ε. Let X and Y be PPs suh that X ⊑ Y . Sine

η|X|,|Y | ∈ PpL(X,Y ) and sine ε ats trivially on morphisms, we have η|X|,|Y | ∈
PerL(ε(X), ε(Y )). Similarly, we have ρ|X|,|Y | ∈ PerL(ε(Y ), ε(X)). Therefore
ε(X) ⊑ ε(Y ), that is ε is a monotone lass funtion from PpC to PerC.Theorem 31 The monotone lass funtion ε : PpC → PerC is ontinuous.Proof. Let (Xγ)γ∈Γ be a direted family of PPs and let X =

⊔

γ∈ΓXγ ∈ PpC.We already know that |X | =
⋃

γ∈Γ |Xγ | and so we have to prove that, given
x, y ⊆ |X |, the two following onditions are equivalent:1. x, y ∈ D(X) and ↓|X| x = ↓|X| y2. for all γ ∈ Γ, x∩|Xγ |, y∩|Xγ | ∈ D(Xγ) and ↓|Xγ | (x ∩ |Xγ |) = ↓|Xγ | (y ∩ |Xγ |).That (1) implies (2) results from the monotoniity of ε (for eah γ ∈ Γ, we have
Xγ ⊑ X and hene ε(Xγ) ⊑ ε(X)), so let us prove the onverse and assume that(2) holds. That x, y ∈ D(X) results diretly from the de�nition of X (see 4.5.1).We onlude by heking that ↓|X| x ⊆ ↓|X| y. For this, it is su�ient to have
x ⊆ ↓|X| y, so let a ∈ x. Let γ ∈ Γ be suh that a ∈ x ∩ |Xγ |. By assumption,
a ∈ ↓|Xγ | (y ∩ |Xγ |), so let b ∈ y ∩ |Xγ | be suh that a ≤|Xγ | b. Sine |X | is the35



lub of the |Xγ |s in the partially ordered lass ScottC, we have a ≤|X| b andthis onludes the proof. 24.7.2 Image of the re�exive objet of PpL!. Remember from 4.5.3 thatwe have de�ned a re�exive objetDh inPpL! as the least �xpoint of a ontinuouslass funtion Φh : PpC → PpC, in other words Dh =
⊔

n∈N
Φn

h
(⊤). Byontinuity of ε, we have ε(Dh) =

⊔

n∈N
ε(Φn

h
(⊤)) =

⊔

n∈N
Φn

e (⊤) = De (see 2.3.3)sine ε is an LL-funtor from PpL to PerL4.8 A funtor from PPs to preordersWe de�ne a funtor σ from PpL to ScottL. Given a PP X , we set σ(X) = |X |,whih is a preorder. Given two PPs X and Y and t ∈ PpL(X,Y ) = D(X ⊸ Y ),we set
σ(t) = ↓

|X⊸Y |

t ∈ I(|X ⊸ Y |) ≃ ScottL(|X |, |Y |) .In other words, the linear map σ(t) : I(|X |) → I(|Y |) is given by σ(t)(x) =
↓|Y | (t · x) (see Lemma 12).Lemma 32 The operation σ on morphisms is a funtor, that is σ(IdX) = IdS

Xand, given s ∈ PpL(X,Y ) and t ∈ PpL(Y, Z), one has σ(t · s) = σ(t) · σ(s).Proof. See 4.2.1, where the proof is given. 2Theorem 33 The funtor σ is an LL-funtor.Proof. This is a routine veri�ation.As an example, let X and Y be PPs. We have σ(!X) = |!X| = !|X | = !σ(X).Let t ∈ PpL(X,Y ), we prove that σ(!t) = !σ(t). Let (p, q) ∈ |!X| × |!Y |. If
(p, q) ∈ σ(!t), we an �nd (p′, q′) ∈ !t suh that p′ ≤|!X| p and q ≤|!Y | q

′; weshow that (p, q) ∈ !σ(t) = !(↓|X⊸Y | t). Let b ∈ q, let b′ ∈ q′ suh that b ≤|Y | b
′.Let a′ ∈ p′ be suh that (a′, b′) ∈ t (sine (p′, q′) ∈ !t). Let a ∈ p be suh that

a′ ≤|X| a (sine p′ ≤|!X| p). We have (a′, b′) ∈ t and (a, b) ≤|X⊸Y | (a′, b′),hene (a, b) ∈ σ(t) and this shows that (p, q) ∈ !σ(t). Assume onversely that
(p, q) ∈ !σ(t) and let us show that (p, q) ∈ σ(!t). For eah b ∈ q, let us hoose
l(b) ∈ p suh that (l(b), b) ∈ σ(t) = ↓|X⊸Y | t. Let (ul(b), ur(b)) ∈ t be suhthat ul(b) ≤|X| l(b) and b ≤|Y | ur(b). We pik p′ ∈ !|X | and q′ ∈ !|Y | suhthat supp(p′) = {ul(b) | b ∈ supp(q)} and supp(q′) = {ur(b) | b ∈ supp(q)}. Wehave p′ ≤!|X| p (if a′ ∈ p′, we an hoose b ∈ q suh that a′ = ul(b), and hene
a′ ≤|X| l(b) ∈ p), q ≤!|Y | q

′ (if b ∈ q, we have b ≤|Y | ur(b) ∈ q′) and (p′, q′) ∈ !t(let b′ ∈ q′; we an hoose b ∈ q suh that b′ = ur(b), we have ul(b) ∈ p′ and
(ul(b), ur(b)) ∈ t). This shows that (p, q) ∈ σ(!t).Last, let us hek that σ(pX) = pS

σ(X). Let (p, P ) ∈ !|X | × !!|X |, so that
P an be written P = [p1, . . . , pn] with p1, . . . , pn ∈ |!X |. Assume �rst that
(p, P ) ∈ σ(pX) = ↓|!X⊸!!X| pX and let us show that (p, P ) ∈ pS

σ(X), that is
p1 + · · · + pn ≤!|X| p. So let a ∈ p1 + · · · + pn, and let i ∈ {1, . . . , n} besuh that a ∈ pi. Let (p′, P ′) ∈ pX be suh that p′ ≤!|X| p and P ≤!!|X|

P ′, so that P ′ = [p′1, . . . , p
′
k] with p′ = p′1 + · · · + p′k. Let j ∈ {1, . . . , k}36



be suh that pi ≤!|X| p
′
j . Let a′ ∈ p′j be suh that a ≤|X| a

′ (rememberthat a ∈ pi). Then we have a′ ∈ p′ and hene we an �nd a′′ ∈ p suh that
a′ ≤|X| a

′′. This shows that p1 + · · · + pn ≤!|X| p as required. Conversely,assume that (p, P ) ∈ pS

σ(X) (that is p1 + · · · + pn ≤!|X| p) and let us show that
(p, P ) ∈ σ(pX). We have (p1 + · · · + pn, P ) ∈ pX by de�nition of pX and wehave (p, P ) ≤|!X⊸!!X| (p1 + · · · + pn, P ) sine p1 + · · · + pn ≤!|X| p. Therefore
(p, P ) ∈ σ(pX) as announed. 2It follows that σ is a artesian losed funtor from PpL! to ScottL!.It is straightforward from the de�nition of PpC that σ is a ontinuous lassfuntion from PpC to ScottC. Sine σ is also an LL-funtor from PpL to
ScottL, it follows that σ(Dh) = Ds (as in 4.7.2). Aording to the de�nitionsof Setion 1.3.2, we an summarize the situation as follows (at least as far asCCCs are onerned).Theorem 34 The CCC ScottL! represents the extensional ollapse of the CCC
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