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The S
ott model of Linear Logi
 is theextensional 
ollapse of its relational modelThomas EhrhardPreuves, Programmes et Systèmes, UMR 7126CNRS and University Paris Diderot - Paris 7 ∗Mar
h 22, 2009Abstra
tWe show that the extensional 
ollapse of the relational model of linearlogi
 is the model of prime-algebrai
 latti
es, a natural extension to linearlogi
 of the well known S
ott semanti
s of the lambda-
al
ulus.Introdu
tionLinear Logi
 arose from denotational investigations of se
ond order intuitionisti
logi
 by Girard (system F [Gir86℄). He observed that the qualitative domains1used for interpreting system F 
an be assumed to be generated by a binary rela-tion on a set of verti
es (the web): su
h a stru
ture is 
alled a 
oheren
e spa
e2.The 
ategory of 
oheren
e spa
es, with linear maps (stable maps preservingarbitrary existing unions) as morphisms, has remarkable symmetry propertiesthat led him to the sequent 
al
ulus of LL, and then to proof-nets [Gir87℄ andto the Geometry of Intera
tion.S
ott semanti
s of LL. In spite of Barr's observation [Bar79℄ that the 
at-egory of 
omplete latti
es and linear maps is ∗-autonomous, it was a 
ommonbelief in the Linear Logi
 
ommunity that the standard S
ott semanti
s of thelambda-
al
ulus (S
ott domains and 
ontinuous maps) 
annot provide modelsof 
lassi
al linear logi
. Huth showed however in [Hut94℄ that prime-algebrai

omplete latti
es and lub-preserving maps provide a model of 
lassi
al LL whoseasso
iated CCC (the Kleisli 
ategory of the � !� 
omonad) is a full-CCC of the
ategory of S
ott domains and 
ontinuous maps. Huth 
onsidered however hismodel as degenerate, as it identi�es the ⊗ and ` 
onne
tives of LL3. A fewyears later, Winskel redis
overed the same model in a semanti
al investigation
∗This work as also been partly funded by the ANR proje
t CHOCO:http://
ho
o.pps.jussieu.fr.1Qualitative domains 
an be seen as parti
ular dI-domains [Ber78℄.2The pure lambda-
al
ulus, or the Turing-
omplete fun
tional language PCF [Plo77℄, 
analso be interpreted in 
oheren
e spa
es.3The interpretation of proofs in this model is non-trivial and interesting nevertheless. As inthe 
ase of the relational model (see below), it is possible to endow this model whi
h additionalstru
tures whi
h separate ⊗ and `, without modifying the interpretation of proofs.1



of 
on
urren
y [Win99℄ (see also the beginning of [Win04℄ for instan
e). Asa parti
ular 
ase of a more general profun
tor 
onstru
tion, he showed indeedthat the 
ategory whose obje
ts are preordered sets and where the morphismsfrom a preorder S to a preorder T are the fun
tions from the set I(S) of down-ward 
losed subsets of S to the set I(T ) whi
h preserve arbitrary unions is amodel of 
lassi
al LL. This 
ategory is equivalent to Huth's model, but we preferWinskel's approa
h, as it insists on 
onsidering preorders (and not latti
es) asobje
ts: preorders are similar to the webs of 
oheren
e spa
es, to the sets of therelational model, and represent the prime elements of the 
orresponding latti
es.Moreover, the LL 
onstru
tions are easier to des
ribe in terms of preorders thanin terms of latti
es. It is fair to mention also that Krivine [Kri90, Kri93℄ used thesame 
onstru
tion (set I(S) of �initial segments� of a preorder S) for des
ribingmodels of the pure lambda-
al
ulus and mentioned that these preorders giverise to a model of LL, with linear negation 
orresponding to taking the oppositepreorder.Relational semanti
s. On the other hand, when one applies the O

am'sRazor Prin
iple to the 
oheren
e spa
e semanti
s, one is led to interpreting for-mulae as sets (the webs, without any stru
ture) and proofs as relations betweenthese sets. Something tri
ky happens during this pro
ess: sin
e 
oheren
e van-ishes, one 
annot restri
t the set interpreting an �of 
ourse� to 
ontain only �nite
liques as Girard did in [Gir86℄, the best one 
an do is take all �nite subsets.But then, the dereli
tion relation (from !X to X), whi
h is the set of all pairs
({a}, a) where a ∈ X , is no more a natural transformation. This problem 
aneasily be solved by repla
ing �nite sets with �nite multisets, but the e�e
t of this
hoi
e is that the 
orresponding Kleisli 
ategory is no more well-pointed. Onede�nes in that way the relational semanti
s of linear logi
, whi
h is 
ertainly itssimplest (and, maybe, most 
anoni
al) denotational model.Coe�
ients. One way of turning the CCC asso
iated with the relationalmodel into a well-pointed 
ategory is by enri
hing it with 
oe�
ients: insteadof taking subset of X × Y as morphisms from X to Y , take elements of CX×Y ,where C is a suitable set (or 
lass) of 
oe�
ients; a 
anoni
al 
hoi
e 
onsists intaking C = Set, the 
lass of all sets. An element of SetX×Y should be 
on-sidered as a matrix whose rows are indexed by the elements of Y , and 
olumnsby the elements of X : this is basi
ally the idea of Girard's quantitative seman-ti
s [Gir88℄, whi
h is presented as a model of intuitionisti
 logi
, but is indeed amodel of LL (Girard wrote this paper before he dis
overed LL), see [Has02℄. Itis also an instan
e of the already mentioned profun
tor 
onstru
tions [Win99℄.Finite 
oe�
ients belonging to more standard algebrai
 stru
tures (rigs,�elds, et
.) 
an also be 
onsidered, but this requires adding some stru
tureto these sets for guaranteeing the 
onvergen
e of the sums whi
h appear whenmultiplying the matri
es, see [Ehr02, Ehr05, DE08℄: the e�e
t of su
h additionalstru
ture is that obje
ts are equipped with a topology for whi
h the (generallyin�nite) sums involved in multiplying matri
es 
onverge.Extensional 
ollapse of the relational model. The other way of makingthe relational model well-pointed is by performing an extensional 
ollapse. Thisoperation is easily understood in the type hierar
hy asso
iated with the 
artesian
losed Kleisli 
ategory of the �nite multiset 
omonad on the 
ategory of sets and2



relations: ea
h type A is interpreted by its relational interpretation [A] (a simpleset), together with a partial equivalen
e relation (PER) ∼A on P([A]). When Ais the type B ⇒ C, an element of P([A]) is a morphism from B to C, and twosu
h morphisms f and g are ∼B⇒C -equivalent if, for any x, y su
h that x ∼A y,one has f(x) ∼B g(y). In other words, this PER is a logi
al relation4, and theextensional 
ollapse of this type hierar
hy is obtained by quotienting ea
h set
P([A]) by the PER ∼A (one 
onsiders only the elements x of P([A]) su
h that
x ∼A x, whi
h are often 
alled invariant elements).Content of the paper. We prove that this extensional 
ollapse of the rela-tional model 
oin
ides pre
isely with the S
ott model of preorders. The �rstproblem we have to fa
e is to give a pre
ise meaning to this statement. We startfrom the work of Bu

iarelli [Bu
97℄, re
asting it in a 
ategori
al setting: givena CCC C and a well-pointed CCC E , we want to express what it means for Eto �be� (we shall say to �represent�) the extensional 
ollapse of C. For this, weintrodu
e two 
ategori
al 
onstru
tions.

• The homogeneous 
ollapse 
ategory e(C), whose obje
ts are pairs (U,∼)where U is an obje
t of C and ∼ is a partial equivalen
e relation (PER) onthe points of U (that is on C(⊤, U) where ⊤ is the terminal obje
t of C).The morphisms are those of C whi
h preserve this additional stru
ture,and it is easy to see that this 
ategory is a CCC. The important pointin this de�nition is that the obje
t of morphisms from (U,∼) to (V,∼) is
(W,∼W ) where W is the obje
t of morphisms from U to V in C and therelation ∼W is de�ned as a logi
al relation.

• The heterogeneous 
ollapse 
ategory e(C, E), whose obje
ts are triples (U,E,
)where U is an obje
t of C, E is an obje
t of E and 
 ⊆ C(⊤, U)×E(⊤, E)should be understood as a realizability predi
ate: x 
 ζ means intuitivelythat ζ represents the �extensional behavior� of x. The morphisms arethe pairs (f, ϕ) of morphisms whi
h preserve the relation 
, and again,it is easy to 
he
k that this 
ategory is a CCC. The important point isthat, when 
onstru
ting the obje
t of morphisms, 
 is de�ned as a logi
alrelation.These two 
onstru
tions are possible for any CCCs C and E . We say that Erepresents the extensional 
ollapse of E if
• e(C, E) 
ontains a �su�
iently large� (in a reasonable sense, to be madepre
ise later) sub-CCC H whose obje
ts (U,E,
) are modest, meaningthat 
 is a partial surje
tion from C(⊤, U) to E(⊤, E), and therefore in-du
es a PER on C(⊤, U) (observe that E(⊤, E) 
an be 
onsidered as thequotient of C(⊤, U) by this PER)
• and the fun
tor H → e(C) whi
h maps (U,E,
) to (U,∼), where ∼ is thePER indu
ed by 
 (and maps a morphism (f, ϕ) to f), is a CCC fun
tor(that is, preserves the CCC stru
ture on the nose).The ni
e feature of this de�nition is that it is 
ompatible with the standardone (based on type hierar
hies) and that it 
an easily be extended, for instan
e,4Logi
ians would speak of a binary redu
ibility predi
ate.3



to a simple and general de�nition of what it means for a model of the purelambda-
al
ulus to represent the extensional 
ollapse of another one.It would be ni
e of 
ourse to have a similar de�nition of the extensional
ollapse of a 
ategori
al model of LL, and not only of CCCs, but sin
e the de�-nition of su
h a model is already quite 
ompli
ated, we prefer not to address thisissue. Instead, we perform the CCC 
onstru
tions de�ned above 
on
retely, in a
ompletely linear setting, obtaining both CCCs e(C) and H as Kleisli 
onstru
-tions of suitable exponential 
omonads: in the present paper, C is the Kleisli
ategory Rel! asso
iated with the LL model of sets and relations, and E is theKleisli 
ategory ScottL! asso
iated with the LL model of preorders and linearmaps between the asso
iated 
omplete latti
es.After having introdu
ed the ne
essary preliminary material, we �rst build inSe
tion 2.2 a linear version of the 
ategory e(Rel!). More pre
isely, we de�nea model of LL denoted as PerL, whose obje
ts are 
alled PER-obje
ts: theyare sets equipped with a PER on their powersets. The Kleisli 
ategory PerL!is isomorphi
 to e(Rel!) (or, more pre
isely, to a full sub-CCC of e(Rel!)).Then, in Se
tion 3, we des
ribe the S
ott model ScottL of LL. The obje
tsare preordered sets, and a morphism from S to T is a linear map (that is, a mappreserving all unions) from I(S) (the set of all downward-
losed subsets of S) to
I(T ). As far as sets are 
on
erned, the multipli
ative and additive 
onstru
tionsin this model 
oin
ide with those of the model Rel (more things have to be saidabout the asso
iated preorders: for instan
e, S⊥ is the set S equipped with theopposite of the preorder of S). As to the exponential, the natural 
hoi
e wouldbe to de�ne !S as the set of �nite subsets of S with a suitable preorder: withthat 
hoi
e, the Kleisli 
ategory ScottL! is a sub-CCC of the CCC of 
ompletelatti
es and S
ott-
ontinuous fun
tions. But we 
an obtain the same e�e
t byde�ning !S as the set of all �nite multisets of elements of S, and this will greatlysimplify our 
onstru
tions, be
ause with this 
hoi
e, the set interpreting an LLformula in Rel 
oin
ides with the set interpreting the same formula in ScottL(remember that this set is equipped with a preorder).In Se
tion 4, we introdu
e the linear version of the �heterogeneous 
ategory�
H of the 
onstru
tion des
ribed above. An obje
t should be a triple (X,S,
)where X is a set, S is a preordered set and 
 ⊆ P(X) × I(S) (whi
h has tobe a partial surje
tion). By our 
hoi
e above for the de�nition of !S, we 
anassume X = S, so as a �rst simpli�
ation, we 
an assume our obje
ts to be pairs
(S,
) where S is a preordered set and 
 ⊆ P(S) × I(S) has to be a partialsurje
tion. A 
areful analysis shows that, when x 
 u, we must have u = ↓ x(the downward 
losure of x in S), so that, for de�ning the partial surje
tion 
,we only need to know its domain D. So an obje
t of our 
ategory will be a pair
(S,D) where D ⊆ P(S). What 
ondition should satisfy D? As usual, it shouldbe equal to its double dual for a suitable notion of duality: here, we say that
x, x′ ⊆ S are in duality if x′ ∩↓ x 6= ∅ ⇒ x′ ∩x 6= ∅, that is x′ 
annot separate xfrom its downward 
losure. We show that these obje
ts (
alled �preorders withproje
tions�), with suitable linear morphisms, form a model of linear logi
 PpL,whose asso
iated Kleisli 
ategory PpL! 
an be 
onsidered as a full sub-CCC of
e(Rel!,ScottL!), of whi
h all obje
ts are modest. And we show that ScottL!represents the extensional 
ollapse of Rel! in the sense explained above. Wea
tually exhibit a fun
tor from PpL to PerL whi
h preserves the stru
ture ofLL model and whi
h indu
es the required CCC fun
tor from PpL! to PerL!.4



In the 
ourse of these 
onstru
tions, we also build models of the pure lambda-
al
ulus, using notions of in
lusions between the various stru
tures we 
onsider,organizing them into 
omplete partially ordered 
lasses, and using the fa
tthat the logi
al 
onstru
tions (tensor produ
t, orthogonality et
) are 
ontinuouswrt. these in
lusions. This provides a simple representation of the extensional
ollapse of the re�exive obje
t in Rel! we introdu
ed in [BEM07℄, as a re�exiveobje
t in the CCC of 
omplete latti
es and 
ontinuous maps, whi
h is probablyisomorphi
 to S
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h that p(a) = 0 foralmost all a ∈ S. We write a ∈ p for p(a) > 0, and use supp(p) for the supportof p whi
h is the set {a ∈ S | a ∈ p}. We use p + q for the pointwise sum ofmultisets, and 0 for the empty multiset.Given a 
ategory C and two morphisms f ∈ E(E,F ) and x ∈ C(⊤, E) (where
⊤ is the terminal obje
t of C that we assume to exist), we write f(x) instead of
f ◦ x be
ause we 
onsider x as a �point� (an �element�) of E.1.2 Cartesian 
losed 
ategories and models of the purelambda-
al
ulusWe brie�y re
all that a 
ategory C is 
artesian 
losed (is a CCC) if ea
h �nitefamily (Ei)i∈I of obje
ts of C has a 
artesian produ
t &i∈I Ei (in parti
ular,it has a terminal obje
t ⊤) together with proje
tions πj ∈ C(&i∈I Ei, Ej) su
hthat, for any family (fi)i∈I with fi ∈ C(F,Ei) there is an unique morphism
〈fi〉i∈I ∈ C(F,&i∈I Ei) su
h that πj ◦ 〈fi〉i∈I = fj for ea
h j and if, given twoobje
ts E and F of C, there is a pair (E ⇒ F,Ev), 
alled the obje
t of morphismsfrom E to F , together with an evaluation morphism Ev ∈ C((E ⇒ F ) & E,F )6



su
h that, for any f ∈ C(G & E,F ), there is an unique Cur(f) ∈ C(G,E ⇒ F )su
h that Ev ◦ (Cur(f) & IdE) = f .Given two CCCs C and D, a fun
tor F : C → D will be said to be a 
artesian
losed fun
tor if it preserves the 
artesian 
losed stru
ture on the nose. Thismeans that F(&i∈I Ei) = &i∈I F(Ei), F(πi) = πi, F(E ⇒ F ) = F(E) ⇒ F(F )and F(Ev) = Ev.A re�exive obje
t in a CCC C is a triple (H, app, lam) where H is an obje
tof C, app ∈ C(H,H ⇒ H) and lam ∈ C(H ⇒ H,H) satisfy app ◦ lam = IdH⇒H .One says moreover that (H, app, lam) is extensional5 if lam ◦ app = IdH . If
(H, app, lam) is a re�exive obje
t in C and if F : C → D is a CCC fun
tor,then (F(H),F(app),F(lam)) is a re�exive obje
t in D, whi
h is extensional if
(H, app, lam) is extensional.Let (H, app, lam) be a re�exive obje
t in the CCC C. Then, given anylambda-term M and any repetition-free list of variables ~x = x1, . . . , xn whi
h
ontains all the free variables of M (su
h a list will be said to be adapted to
M), one de�nes [M ]H~x ∈ C(Hn, H) by indu
tion on M ([xi]

H
~x = πi, [λxN ]H~x =

lam ◦ Cur([N ]H~x,x) and [(N)P ]H~x = Ev ◦ 〈app ◦ [N ]H~x , [P ]H~x 〉). If M and M ′are β-equivalent and ~x is adapted to M and M ′, we have [M ]H~x = [M ′]H~x . If
(H, app, lam) is extensional, we have [M ]H~x = [M ′]H~x when M and M ′ are βη-equivalent.If F : C → D is a CCC fun
tor then, for any lambda-term M , we have
F([M ]H~x ) = [M ]

F(H)
~x where [M ]

F(H)
~x is the interpretation of M in the re�exiveobje
t (F(H),F(app),F(lam)).1.3 Intuitionisti
 extensional 
ollapseThe present analysis of the extensional 
ollapse of a model of the typed lambda-
al
ulus is based on [Bu
97℄.From the usual intuitionisti
 viewpoint, the extensional 
ollapse is a log-i
al relation. More spe
i�
ally, 
onsider the hierar
hy of simple types basedon some type atoms α, β. . . , and intuitionisti
 impli
ation ⇒. Consider a
artesian 
losed 
ategory C (with terminal obje
t ⊤, 
artesian produ
t & andfun
tion spa
e ⇒). Given a valuation I from type atoms to obje
ts of C, wehave an interpretation of types [A]I ∈ C. The extensional 
ollapse of this inter-pretation is a type-indexed family of partial equivalen
e relations (∼A), where

∼A⊆ C(⊤, [A]I)
2. This relation is de�ned by indu
tion on types.

• At ea
h basi
 type α, the relation∼α 
oin
ides with equality on C(⊤, I(α)).
• Then, given f, g ∈ C(⊤, [A⇒ B]I) = C(⊤, [A]I ⇒ [B]I) ≃ C([A]I , [B]I),one has f ∼A⇒B g if, for all x, y ∈ C(⊤, [A]I) su
h that x ∼A y, one has
f(x) ∼B g(y) (where we re
all that we write f(x) instead of f ◦ x whenthe sour
e of x is the terminal obje
t).By indu
tion on types, one proves easily that ∼A is a PER on C(⊤, [A]I) forea
h type A. Sin
e the family of PERs (∼A) is de�ned as a logi
al relation,it is 
ompatible with the syntax of the simply typed lambda-
al
ulus, in thesense that, if M is a 
losed term of type A, its semanti
s [M ]I ∈ C(⊤, [A]I)5This notion of extensionality, whi
h 
orresponds to the η 
onversion rule of the lambda-
al
ulus, should not be 
onfused with the notion of extensionality we are dealing with in thispaper, whi
h is related to the 
ategori
al notion of well-pointedness.7



satis�es [M ]I ∼A [M ]I . This property 
an be extended to fun
tional enri
hedversions of the simply typed lambda-
al
ulus (su
h as PCF) under some mildassumptions on C and I.1.3.1 Representing the 
ollapse as an interpretation. Let E be an-other 
artesian 
losed 
ategory, that we assume to be well-pointed (mean-ing that, if ϕ, ψ ∈ E(E,F ) satisfy ϕ(ζ) = ψ(ζ) for all ζ ∈ E(⊤, E), then
ϕ = ψ). Let J be a valuation of type atoms in E and, for ea
h type atom
α, let 
α ⊆ C(⊤, I(α)) × E(⊤, J(α)) be a bije
tion (to be understood as ex-pressing an equality relation between the elements of the two models at groundtypes). Then we de�ne 
A ⊆ C(⊤, [A]I) × E(⊤, [A]J ) for all type A as a logi
alrelation (
alled the heterogeneous relation), that is

f 
A⇒B ψ ⇔ (∀x, ζ x 
A ζ ⇒ f(x) 
B ϕ(ζ)) .If 
A is surje
tive for all type A (that is ∀ζ ∈ E(⊤, [A]J )∃x ∈ C(⊤, [A]I) x 
A

ζ), then all the relations 
A are fun
tional (in the sense that if x 
A ζ and
x 
A ζ′, then ζ = ζ′). This is easy to 
he
k by indu
tion on types and is dueto the well-pointedness of E .We say that (
A) is a representation of the 
ollapse of the interpretation Iby the interpretation of J if, for all type A, 
A is surje
tive (and bije
tive when
A = α is a basi
 type) and one has

∀x, y ∈ C(⊤, [A]I) x ∼A y ⇔ (∃ζ ∈ E(⊤, [A]J) x 
A ζ and y 
A ζ) .This means that, at ea
h type A, the relation 
A indu
es a bije
tion between
E(⊤, [A]J ) and the quotient6 C(⊤, [A]I)/∼A.Assume that (
A) is su
h a representation. Sin
e it is de�ned as a logi
alrelation, we have [M ]I 
A [M ]J for ea
h 
losed lambda-term of type A, we have
[M ]I ∼A [N ]I i� [M ]J = [N ]J for all 
losed terms M and N of type A.1.3.2 Categori
al presentation. There is another, more 
on
eptual wayof des
ribing the situation above. First one de�nes the 
ollapse 
ategory e(C)of C. Its obje
ts are pairs U = (pUq,∼U) where pUq is an obje
t of C and
∼U ⊆ C(⊤, pUq)2 is a PER. Given two obje
ts U and V of e(C), the elementsof e(C)(U, V ) are the morphisms f ∈ C(pUq, pV q) su
h that

∀x, x′ ∈ C(⊤, pUq) x ∼U x′ ⇒ f(x) ∼V f(x′) .If the 
ategory C is 
artesian, then so is e(C) (with 
artesian produ
ts de�nedin the most obvious way). And if C is 
artesian 
losed, so is e(C). Giventwo obje
ts U and V of C, one de�nes U ⇒ V = (pUq ⇒ pV q,∼U⇒V ) with
f ∼U⇒V f ′ i� f(x) ∼Y f ′(x′) for all x, x′ ∈ C(⊤, pUq) su
h that x ∼U x′(for f, f ′ ∈ C(⊤, pU ⇒ V q) ≃ C(pUq, pV q)). The evaluation morphism Ev ∈
e(C)((U ⇒ V ) & U, V ) is the evaluation morphism of the 
ategory C, whi
h isalso a morphism in e(C). We say that an obje
t U of e(C) is dis
rete if ∼U
oin
ides with equality.Similarly, one de�nes the heterogeneous 
ategory e(C, E) of C and E . Itsobje
ts are triples X = (pXq, xXy,
X) where pXq is an obje
t of C, xXy6When quotienting a set by a PER, one 
onsiders only the elements of the set whi
h areequivalent to themselves. 8



is an obje
t of E and 
X ⊆ C(⊤, pXq) × E(⊤, xXy). A morphism θ from
X to Y in that 
ategory is a pair (pθq, xθy) where pθq ∈ C(pXq, pY q) and
xθy ∈ E(xXy, xY y) satisfy pθq(x) 
Y xθy(ζ) for all (x, ζ) su
h that x 
X ζ.Again, if both 
ategories C and E are 
artesian, so is e(C, E), and if theyare 
artesian 
losed, so is e(C, E), with X ⇒ Y de�ned as follows: pX ⇒ Y q =
pXq ⇒ pY q, xX ⇒ Y y = xXy ⇒ xY y and, given f ∈ C(⊤, pX ⇒ Y q) ≃
C(pXq, pY q) and ϕ ∈ E(⊤, xX ⇒ Y y) ≃ C(xXy, xY y), we have f 
X⇒Y ϕ if
f(x) 
Y ϕ(ζ) for all (x, ζ) su
h that x 
X ζ.Let us say that an obje
tX of e(C, E) ismodest7 if the relation 
X is a partialsurje
tion from C(⊤, pXq) to E(⊤, xXy). Let emod(C, E) be the full sub
ategoryof e(C, E) whose obje
ts are the modest obje
ts. If C and E are 
artesian, then
emod(C, E) is a sub-
artesian 
ategory of e(C, E). But in general, emod(C, E) isnot 
artesian 
losed. It 
an be noti
ed that, if X and Y are obje
ts of e(C, E)whi
h are modest (so that, again, X ⇒ Y is well de�ned but not ne
essarilymodest) and if 
X⇒Y is surje
tive, then 
X⇒Y is fun
tional, and hen
e X ⇒ Yis modest.There is a 
artesian 
losed �se
ond proje
tion� fun
tor σ : e(C, E) → E(it maps an obje
t X to xXy and a morphism θ to xθy). There is also afun
tor ε : emod(C, E) → e(C) whi
h maps an obje
t X to (pXq,∼ε(X)), where
x1 ∼ε(X) x2 if x1 
X ζ and x2 
X ζ for some (ne
essarily unique) ζ. Given
θ ∈ e(C, E)(X,Y ), we set ε(θ) = pθq. Indeed, let x1, x2 ∈ C(⊤, pXq) su
h that
x1 ∼ε(X) x2 (with ζ ∈ E(⊤, xXy) su
h that x1 
X ζ and x2 
X ζ), we have
pθq(x1) 
Y xθy(ζ) and pθq(x2) 
Y xθy(ζ), and hen
e pθq(x1) ∼Y pθq(x2), sothat pθq ∈ e(C)(ε(X), ε(Y )).We say that the 
ategory E represents the extensional 
ollapse of the 
ategory
C if there exists a sub-CCC H of e(C, E) su
h that

• ea
h obje
t of H is modest;
• the fun
tor ε : H → e(C) is 
artesian 
losed
• and, for any8 dis
rete obje
t U of e(C), there is an obje
t X of H su
hthat ε(X) = U (so that pXq = U and 
X is a bije
tion).1.3.3 Conne
tion between the two de�nitions. The motivation of thisde�nition is that, in that situation, if I is a type valuation in C then, forea
h ground type α, we 
an �nd an obje
t J(α) of E su
h that K(α) =

(I(α), J(α),
α) is an obje
t of H, for some bije
tion 
K(α). We 
an extend
(K(α)) into an interpretation of types ([A]K) in the CCC H whi
h satis�es
[A]K = ([A]I , [A]J ,
A) where 
A 
oin
ides with the heterogeneous logi
al re-lation de�ned in 1.3.1. Then our assumption that E represents the extensional
ollapse of C implies that (
A) is a representation of the extensional 
ollapse of
I by J , in the sense of 1.3.1.The bene�t of this abstra
tion is that the 
on
ept of a CCC E representingthe extensional 
ollapse of a CCC C is quite �exible and independent of anytype hierar
hy given a priori. For instan
e, it provides a natural de�nition ofthe extensional 
ollapse of a model of the pure lambda-
al
ulus.7This is 
ompatible with the standard terminology of realizability, see e.g. [AC98℄.8We a
tually don't need this property for all dis
rete Us, but only for those whi
h areintended to represent the basi
 types of the fun
tional language we have in mind. For thesake of simpli
ity, we adopt this stronger hypothesis.9



1.3.4 Extensional 
ollapse of a re�exive obje
t. Assume indeed that
E represents the extensional 
ollapse of C in the sense above, with H as het-erogeneous 
ollapse CCC. Let (Z, app, lam) be a re�exive obje
t in H. Then
(ε(Z), pappq, plamq) is a re�exive obje
t in e(C), (pZq, pappq, plamq) is a re�ex-ive obje
t in C and (xZy, xappy, xlamy) is a re�exive obje
t in E .In that 
ase, we say that the re�exive obje
t (xZy, xappy, xlamy) is a repre-sentation of the extensional 
ollapse of the re�exive obje
t (pZq, pappq, plamq).Remark : The pre
ise synta
ti
al meaning of this de�nition is not 
ompletely
lear yet. In this paper, we shall give a representation of the extensional 
ollapseof the relational model of the lambda-
al
ulus introdu
ed in [BEM07℄ (in thesense above), and these two models will 
learly be quite di�erent. However, bothmodels indu
e the same equational theory on lambda-terms (namely, the theory
H∗, a

ording to whi
h two terms M and M ′ are equivalent if, for any 
ontext
C, the term C[M ] is solvable i� the term C[M ′] is solvable). With the notationsabove, this means that, when restri
ted to the interpretations of lambda-terms,the relation ∼Z is just equality. Extending for instan
e the lambda-
al
uluswith a parallel 
omposition 
onstru
tion based on the mix rule of Linear Logi
as in [DK00, BEM08℄, the situation be
omes more interesting and the theoriesindu
ed by the two models on the language are distin
t.1.4 New-Seely 
ategories and LL-fun
torsFollowing [Bie95℄, we de�ne a model L of LL as a New-Seely 
ategory. This
onsists of

• a symmetri
 monoidal 
losed star-autonomous 
ategory (also denoted with
L) whi
h has all �nite produ
ts (the unit of the tensor produ
t is denotedwith 1, the dualizing obje
t with ⊥, the terminal obje
t ⊤ and the 
arte-sian produ
t of X and Y is denoted with X & Y ),

• a 
omonad ! : L → L (the stru
ture morphisms dLX ∈ L(!X,X) is 
alleddereli
tion and pLX ∈ L(!X, !!X) is 
alled digging),
• and two natural isomorphisms !⊤ ≃ 1 and !(X & Y ) ≃ !X ⊗ !Ysu
h that the adjun
tion between L and its Kleisli 
ategoryL! (whi
h is 
artesian
losed by the hypotheses above) is a monoidal adjun
tion.Given a fun
tion I (valuation) from the propositional atoms of LL to obje
tsof L, the interpretation [A]LI of an LL-formula A is de�ned by indu
tion on

A, using the above mentioned stru
tures of L, e.g. [A⊗B]LI = [A]LI ⊗L [B]LI .Similarly, given a proof π of A, one de�nes [π]LI ∈ L(1, [A]LI ) by indu
tion on π(expressed in the standard sequent 
al
ulus of LL [Gir87℄).Given two New-Seely 
ategories L and M, a fun
tor F : L → M willbe 
alled an LL-fun
tor if it 
ommutes on the nose with all the 
onstru
tionsrequired for interpreting LL, e.g. F (X ⊗L Y ) = F (X) ⊗M F (Y ), F (dLX) = dMXet
. Then one has F ([A]LI ) = [A]MF◦I and F ([π]LI ) = [π]MF◦I for all formula A andproof π of LL.Su
h an LL-fun
tor F fun
tor indu
es a 
artesian 
losed fun
tor (still de-noted with F ) from L! to M!. 10



2 The 
ollapse partial equivalen
e relationWe de�ne a 
ategory whose obje
ts are sets equipped with a partial equiva-len
e relation (PER) on their powersets, the intuition being that two subsetsare equivalent if they have the same �extensional� behavior. These PERs arede�ned as logi
al relations, in the sense that, when we de�ne fun
tion spa
es,two morphisms are equivalent i� they map equivalent sets to equivalent sets.2.1 The 
ategory of sets and relationsThis 
ategory underlies the 
ollapse 
ategory we want to de�ne. More pre
isely,the 
ollapse 
ategory we de�ne in Se
tion 2.2 is an enri
hment of the 
ategoryof sets and relations where ea
h obje
t is endowed with a partial equivalen
erelation expressing when two sets are extensionally equivalent, as in 1.3.2.2.1.1 Linear stru
ture. The 
ategory of sets and relations Rel has setsas obje
ts, and, given two sets E and F , the set of morphisms from E to Fis Rel(E,F ) = P(E × F ). Composition is de�ned in the standard relationalway: the 
omposition of s ∈ Rel(E,F ) and t ∈ Rel(F,G) is t · s ∈ Rel(E,G).The identity morphism is the diagonal relation Id ∈ Rel(E,E). This 
ategoryhas a quite simple monoidal stru
ture: the tensor produ
t is E ⊗ F = E × Fand the unit of the tensor is 1 = {∗}. This tensor produ
t is a fun
tor: given
si ∈ Rel(Ei, Fi) for i = 1, 2, then s1 ⊗ s2 = {((a1, a2), (b1, b2)) | (ai, bi) ∈
si for i = 1, 2}. Equipped with this tensor produ
t, Rel is symmetri
 monoidal
losed (the asso
iativity, neutrality and symmetry isomorphisms are de�ned inthe usual obvious way), with an obje
t of linear morphisms E ⊸ F = E × Fand linear evaluation morphism ev ∈ Rel((E ⊸ F ) ⊗ E,F ) given by ev =
{(((a, b), a), b) | a ∈ E and b ∈ F}.The symmetri
 monoidal 
losed 
ategoryRel is a star-autonomous 
ategory,with dualizing obje
t ⊥ = 1, and the 
orresponding duality is trivial: E⊥ = E.So E`F = E ⊸ F = E ⊗ F = E × F in this model.Remark : Again, this 
ategory is a �degenerate model� of LL in the sense thatit identi�es ⊗ and `, just as ScottL (and even worse, sin
e it equates a formulawith its linear negation!). We showed in [BE01℄ how this model 
an be enri
hedwith various stru
tures without modifying the interpretation of proofs, making
⊗ and ` non-isomorphi
 operations. This 
an be 
onsidered as one of the moststriking features of LL: this logi
al system is so robust that it survives (in thesense that proofs are not trivialized) in su
h a degenerate framework.Given s ∈ Rel(E,F ) and x ⊆ E, one sets s · x = {b | ∃a ∈ x and (a, b) ∈ s}.The 
ategory Rel is 
artesian. The 
artesian produ
t of a family (Ei)i∈I ofsets is &i∈I Ei =

⋃

i∈I({i} × Ei), with proje
tions πj = {((j, a), a) | a ∈ Ej} ∈
Rel(&i∈I Ei, Ej). Given a family of morphisms si ∈ Rel(F,Ei), the 
orre-sponding morphism 〈si〉i∈I ∈ Rel(F,&i∈I Ei) is given by 〈si〉i∈I = {(b, (i, a)) |
i ∈ I and (b, a) ∈ si}. The terminal obje
t is ⊤ = ∅.The exponential 
omonad is !E = Mfin(E), with a
tion on morphisms de-�ned as follows: !s = {([a1, . . . , an], [b1, . . . , bn]) | (ai, bi) ∈ s for i = 1, . . . , n} ∈
Rel(!E, !F ) for s ∈ Rel(E,F ). Dereli
tion is given by dE = {([a], a) | a ∈
S} ∈ Rel(!E,E) and digging by pE = {(m1 + · · · + mn, [m1, . . . ,mn]) | n ∈
N and m1, . . . ,mn ∈ !E} ∈ Rel(!E, !!E). Given x ⊆ E, one de�nes x! =
Mfin(x). Observe that, as usual, !s · x! = (s · x)!, dE · x! = x and pE · x! = x!!.11



The isomorphism !⊤ ≃ 1 identi�es [] and ∗, and the isomorphism !(E & F ) ≃
!E ⊗ !F maps the element [(1, a1), . . . , (1, al), (2, b1), . . . , (2, br)] of !(E & F ) to
([a1, . . . , al], [b1, . . . , br]) ∈ !E ⊗ !F (this is 
alled the fundamental isomorphismin the present paper).All these data de�ne a new Seely 
ategory, see Se
tion 1.4.2.1.2 The asso
iated CCC. The Kleisli 
ategory Rel! is 
artesian 
losed.Given a set E, a point of E in Rel! is by de�nition a morphism in Rel(!⊤, E),that is, a subset of E. The terminal obje
t is ⊤, the 
artesian produ
t of (Ei)i∈Iis E = &i∈I Ei, with proje
tions πi ◦ dE (still denoted as πi). The obje
t ofmorphisms E ⇒ F is !E ⊸ F , with evaluation map Ev = ev ◦ (dE⇒F ⊗ Id!E),that is

Ev = {(([(m, b)],m), b) | m ∈ !E and b ∈ F} .Applying a morphism s ∈ Rel!(E,F ) = Rel(!E,F ) to a point x ⊆ E 
onsistsin 
omposing s with x (
onsidered as a morphism from ⊤ to E) in Rel!; theresult is
s(x) = s · x! = {b | ∃m (m, b) ∈ s and supp(m) ⊆ x} .The 
ategory Rel! is not well pointed, in the sense that two distin
t morphisms

s1, s2 ∈ Rel!(E,F ) 
an satisfy ∀x ⊆ E s1(x) = s2(x); take for instan
e s1 =
{([a], b)} and s2 = {([a, a], b)}.The purpose of the 
ollapse PER is pre
isely to make it expli
it when twosu
h morphisms should be identi�ed. This depends of 
ourse on the PERs Eand F are equipped with: the 
ollapse PER is a logi
al relation. We shall presentthis 
onstru
tion as a new 
ategory.2.1.3 In
lusions. Let E and F be two sets su
h that E ⊆ F . Then wedenote by ηE,F and ρE,F the relations

ηE,F = (E × F ) ∩ IdE and ρE,F = (F × E) ∩ IdE .Observe that ρE,F ◦ ηE,F = IdE .We denote by RelC the 
lass of all sets, ordered by in
lusion. This is apartially ordered 
lass, whi
h is 
omplete in the sense that any family (Eγ)γ∈Γof elements of RelC admits a least upper bound. We shall 
onsider a
tually onlydire
ted families (that is, where Γ is a dire
ted poset, and γ ≤ δ ⇒ Eγ ⊆ Eδ).2.2 The 
ollapse 
ategoryWe equip now the obje
ts of Rel with a partial equivalen
e relation whosepurpose is to identify morphisms whi
h yield equivalent values when applied toequivalent arguments.2.2.1 Pre-PERs, PER obje
ts and morphisms of PER obje
ts. Let
E be a set. Given a binary relation B on P(E), we de�ne another binary relation
B⊥ on P(E), 
alled the dual of B, as follows:

x′ B⊥ y′ if ∀x, y ∈ P(E) x B y ⇒ (x ∩ x′ 6= ∅ ⇔ y ∩ y′ 6= ∅) .As usual, one has B ⊆ C ⇒ C⊥ ⊆ B⊥ and B ⊆ B⊥⊥ (as subsets of P(E)2).We say that the relation B is a pre-PER if it is symmetri
 and satis�es x B12



y ⇒ x B x. Clearly, any PER is a pre-PER and if B is a pre-PER, then B⊥ isa PER.A PER-obje
t is a pair U = (|U |,∼U ), where |U | is a set and ∼U is a binaryrelation on P(|U |) whi
h is a pre-PER su
h that ∼⊥⊥
U = ∼U . This simply meansthat, given x, y ⊆ |U |, one has x ∼U y as soon as x ∩ x′ 6= ∅ ⇔ y ∩ y′ 6= ∅, forall x′, y′ ⊆ |U | su
h that x′ ∼⊥

U y′. By this 
ondition, ∼U is automati
ally aPER (indeed, ∼U is pre-PER, hen
e ∼⊥
U is a PER, and therefore ∼U=∼⊥⊥

U isa PER).Let PerL be the 
ategory whose obje
ts are the PER-obje
ts, and where amorphism from U to V is a relation t ⊆ |U | × |V | su
h, for all x, y ∈ P(|X |), if
x ∼X y then t · x ∼Y t · y.Remark : Let U be a PER-obje
t and A ⊆ P(|U |) su
h that ∀x1, x2 ∈ A x1 ∼U

x2. Then ∀x ∈ A x ∼C

⋃

A. Indeed, let x′1, x′2 ⊆ |U | be su
h that x′1 ∼U⊥ x′2.If x ∩ x′1 6= ∅, then x ∩ x′2 6= ∅ be
ause x ∼U x, and hen
e ⋃

A ∩ x′2 6= ∅.Conversely, if ⋃

A ∩ x′2 6= ∅, there is some y ∈ A su
h that y ∩ x′2 6= ∅ and we
on
lude sin
e x ∼U y. So ea
h equivalen
e 
lass of ∼U has a maximal element,whi
h is the union of all the elements of the 
lass. These parti
ular elements xof P(|U |) are 
hara
terized by the two following properties:
• x ∼U x

• and ∀y ∈ P(|U |) y ∼U x⇒ y ⊆ x.Lemma 1 Let U be a PER-obje
t and let (xi)i∈I and (yi)i∈I be families ofelements of P(|U |) be su
h that xi ∼U yi for ea
h i ∈ I. Then ⋃

i∈I xi ∼U
⋃

i∈I yi.The proof is straightforward. In parti
ular ∅ ∼U ∅, for any PER-obje
t U .2.2.2 Orthogonality and strong isomorphisms. We de�ne the PER-obje
t U⊥ by |U⊥ | = |U | and ∼U⊥ = ∼⊥
U , so that U⊥⊥ = U .Lemma 2 Given two PER-obje
ts U and V , any bije
tion θ : |U | → |V | su
hthat, for all x, y ∈ P(|X |), one has x ∼U y i� θ(x) ∼V θ(y) is an isomorphismfrom U to V . Su
h a bije
tion will be 
alled a strong isomorphism from U to

V .Straightforward veri�
ation. Of 
ourse, θ−1 is a strong isomorphism from V to
U . Observe that any strong isomorphism θ from U to V is also a strong isomor-phism from U⊥ to V ⊥ . Indeed, let x′1, x′2 ⊆ |U |. Assume �rst that x′1 ∼U⊥ x′2and let us show that θ(x′1) ∼V ⊥ θ(x′2). So let y1, y2 ⊆ |V | be su
h that
y1 ∼V y2. We have θ(x′1) ∩ y1 6= ∅ ⇔ x′1 ∩ θ−1(y1) 6= ∅ and we 
on
ludesin
e θ−1 is a strong isomorphism from V to U . The 
onverse impli
ation
θ(x′1) ∼V ⊥ θ(x′2) ⇒ x′1 ∼U⊥ x′2 is proven similarly.2.2.3 Monoidal stru
ture. We de�ne U⊗V as follows. We take |U ⊗ V | =
|U | × |V |, and ∼U⊗V = E⊥⊥ where

E = {(x1 × y1, x2 × y2) | x1 ∼U x2 and y1 ∼U y2} ⊆ P(|U ⊗ V |)2 .13



Sin
e this relation E is a pre-PER (but not a PER a priori, sin
e one 
annotre
over x and y from x × y when one of these two sets is empty), the relation
∼U⊗V is a PER, and U ⊗ V so de�ned is a PER-obje
t. We de�ne U ⊸ V =
(U ⊗ V ⊥)⊥ .Lemma 3 One has |U ⊸ V | = |U | × |V |. If t1, t2 ∈ P(|U ⊸ V |), one has
t1 ∼U⊸V t2 i� for all x1, x2 ⊆ |U | su
h that x1 ∼U x2, one has t1 ·x1 ∼Y t2 ·x2.Moreover, one has t1 ∼U⊸V t2 ⇔ tt1 ∼V ⊥

⊸U⊥
tt2.Proof. This is due to the fa
t that, for any t ⊆ |U ⊸ V |, x ⊆ |U | and y′ ⊆ |V |,one has t ∩ (x × y′) 6= ∅ ⇔ (t · x) ∩ y′ 6= ∅ 2So the morphisms from U to V are exa
tly the t ∈ P(|U ⊸ V |) su
h that

t ∼U⊸V t, and if t ∈ PerL(U, V ) then tt ∈ PerL(V ⊥ , U⊥).Lemma 4 The obvious bije
tion λ from |U ⊗ V ⊸ W | to |U ⊸ (V ⊸ W )| de-�nes a strong isomorphism between the PER-obje
ts U ⊗ V ⊸ W and U ⊸

(V ⊸ W ). In parti
ular, for s1, s2 ∈ P(|U ⊗ V ⊸ W |), one has s1 ∼U⊗V ⊸W

s2 i� for any x1, x2 ∈ P(|U |) and y1, y2 ∈ P(|V |) su
h that x1 ∼U x2 and
y1 ∼U y2, one has s1 · (x1 × y1) ∼W s2 · (x2 × y2).Proof. Let t1, t2 ⊆ P(U ⊗ V ⊸ W ). Assume �rst that t1 ∼U⊗V ⊸W t2, wewant to prove that λ(t1) ∼U⊸(V ⊸W ) λ(t2). But this is 
lear sin
e, if x1, x2 ⊆
|U | and y1, y2 ⊆ |V | satisfy x1 ∼U x2 and y1 ∼V y2, then we have x1×y2 ∼U⊗V

x2 × y2, and therefore (λ(t1) · x1) · y1 = t1 · (x1 × y1) ∼W t2 · (x2 × y2) =
(λ(t2) · x2) · y2. Assume 
onversely that λ(t1) ∼U⊸(V ⊸W ) λ(t2), we prove that
t1 ∼U⊗V ⊸W t2. For this, we pro
eed as above, showing that tt1 ∼W⊥

⊸(U⊗V )⊥
tt2 and applying Lemma 3. 2Lemma 5 The obvious bije
tion α : |(U ⊗ V ) ⊗W | → |U ⊗ (V ⊗W )| is anisomorphism of PER-obje
ts from (U ⊗ V ) ⊗W to U ⊗ (V ⊗W ).Proof. By 2.2.2, it su�
es to prove that α is an isomorphism from ((U ⊗ V )⊗
W )⊥ to (U ⊗ (V ⊗W ))⊥ , and this results from Lemma 4. 2Given s ∈ PerL(U1, U2) and t ∈ PerL(V1, V2), one de�nes s⊗t ⊆ |U1 ⊗ V1|×
|U2 ⊗ V2| as in 4.2.2. Then one shows using Lemma 4 that s ⊗ t ∈ PerL(U1 ⊗
V1, U2⊗V2), and one 
he
ks that the 
ategoryPerL equipped with this ⊗ binaryfun
tor, together with the asso
iativity isomorphism of Lemma 5 (as well as thesymmetry isomorphism et
.) is a symmetri
 monoidal 
ategory, whi
h is 
losed(with U ⊸ V as obje
t of linear morphisms from U to V ) by Lemma 4. Thelinear evaluation morphism is ev, as de�ned in Se
tion 2.1.

PerL is star-autonomous, with ⊥ = ({∗},=) as dualizing obje
t.2.2.4 Additive stru
ture. Given a family (Ui)i∈I of PER-obje
ts, one de-�nes U = &i∈I Ui by setting |U | =
∏

i∈I({i}× |Ui|), and by saying that, for any
x = (xi)i∈I , y = (yi)i∈I ∈ P(|U |) (identifying this latter set with a produ
t),one has x ∼U y if one has xi ∼Ui

yi for all i ∈ I. Using the fa
t that ∅ ∼V ∅in any PER-obje
t V , one shows that ∼⊥
U = ∼

&i∈I U
⊥
i

and it follows that Uis a PER-obje
t. It is routine to 
he
k that &i∈I Ui so de�ned is the 
artesian14



produ
t of the Uis in the 
ategory PerL, and that this 
artesian produ
t is alsoa 
oprodu
t. In parti
ular, if U is a PER-obje
t and I is a set, we denote with
U I the produ
t &i∈I Ui where Ui = U for ea
h U .In parti
ular, PerL has a terminal obje
t ⊤, given by |⊤| = ∅ and ∅ ∼⊤ ∅.Observe that this is the only PER-obje
t with an empty web.2.2.5 Exponentials. Given a PER-obje
t U , we de�ne !U by |!U | = Mfin(|U |),and ∼!U = E⊥⊥ where

E = {(x!
1, x

!
2) | x1, x2 ∈ P(|U |) x1 ∼U x2}where we re
all that x! = Mfin(x). Sin
e E is a pre-PER (and a
tually a PER,be
ause x 
an be re
overed from x! using dereli
tion: x = {a | [a] ∈ x!}), therelation ∼!U is a PER. We re
all that, if s ⊆ |!U ⊸ V | and x ⊆ |U |, then wedenote with s(x) the subset s · x! of |Y |, see Se
tion 2.1.Lemma 6 Let U and V be PER-obje
ts and let s1, s2 ⊆ |!U ⊸ V |. One has

s1 ∼!U⊸V s2 i�
∀x1, x2 ⊆ |U | x1 ∼U x2 ⇒ s1(x1) ∼V s2(x2) .Proof. The⇒ dire
tion is trivial. For the 
onverse, one assumes that the stated
ondition holds, and one 
he
ks that ts1 ∼V ⊥

⊸(!U)⊥
ts2, and for this purpose,it su�
es to apply Lemma 3. 2Given s ∈ PerL(U, V ), one de�nes !s ⊆ |!U | × |!V | as in the standardrelational model by setting

!s = {([a1, . . . , an], [b1, . . . , bn]) | n ∈ N, (ai, bi) ∈ s for i = 1, . . . , n} .Then, sin
e !s · x! = (s · x)!, we have !s1 ∼!U⊸!V !s2 as soon as s1 ∼U⊸V s2 (byLemma 6); in parti
ular, if s ∈ PerL(U, V ), one has !s ∈ PerL(!U, !V ) and sothe operation s 7→ !s is an endofun
tor on PerL.One de�nes dU ⊆ |!U | × |U | as dU = {([a], a) | a ∈ |U |}, and sin
e dU · x! =
x for all x ⊆ |U |, we get easily dU ∈ PerL(!U,U). Similarly, one de�nes
pU ⊆ |!U | × |!!U | as pU = {(m1 + · · · +mk, [m1, . . . ,mk]) | m1, . . . ,mk ∈ |!U |}.Sin
e pU · x! = x!!, we get pU ∈ PerL(!U, !!U). The naturality in U of thesemorphisms is 
lear (it holds in the relational model), and !_ equipped withthese two natural transformations is a 
omonad. Moreover, the fundamentalisomorphism also holds in this setting.2.2.6 Fundamental isomorphism and 
artesian 
loseness. Let U and
V be PER-obje
ts. Let θ : |!(U & V )| → |!U ⊗ !V | be the usual bije
tion de�nedby

θ([(1, a1), . . . , (1, al), (2, b1), . . . , (2, br)]) = ([a1, . . . , al], [b1, . . . , br])Using Lemma 6, one shows easily that θ ∈ PerL(!(U & V ), !U ⊗ !V ) (as a rela-tion). For showing that θ−1 ∈ PerL(!U ⊗ !V , !(U & V )), one applies Lemma 4and then Lemma 6, twi
e. This shows that θ is a strong isomorphism of PER-obje
ts. 15



So the 
ategory of PER-obje
ts (together with the monoidal and exponentialstru
ture explained above) is a new-Seely 
ategory, in the sense of [Bie95℄.The asso
iated Kleisli 
ategoryPerL! is 
artesian 
losed. The obje
t of mor-phisms from U to V is U ⇒ V = !U ⊸ V and we have seen that the asso
iatedPER ∼U⇒V is su
h that, given two elements s1 and s2 of PerL!(U, V ), one has
s1 ∼U⇒V s2 i� s1(x1) ∼V s2(x2) for all x1, x2 ⊆ |U | su
h that x1 ∼U x2. Theevaluation morphism is Ev, as de�ned in 2.1.2.2.3 The partially ordered 
lass of PER-obje
tsLet U and V be PER obje
ts. We say that U is a subobje
t of V and write U ⊑
V if |U | ⊆ |V |, and moreover η|U|,|V | ∈ PerL(U, V ) and ρ|U|,|V | ∈ PerL(V, U).This means that the two following 
onditions are satis�ed

∀x1, x2 ⊆ |U | x1 ∼U x2 ⇒ x1 ∼V x2and
∀y1, y2 ⊆ |V | y1 ∼V y2 ⇒ y1 ∩ |U | ∼U y2 ∩ |U | .Observe that ⊑ a partial order relation and let PerC be the partially ordered
lass of PER-obje
ts ordered by ⊑.One of the main features of this de�nition is that linear negation is 
ovariantwith respe
t to the subobje
t partial order.Lemma 7 If U ⊑ V then U⊥ ⊑ V ⊥ .Proof. We have |U⊥ | = |U | ⊆ |V | = |V ⊥ |. Moreover tη|U|,|V | = ρ|U|,|V | and

tρ|U|,|V | = η|U|,|V |. The result follows. 22.3.1 Completeness.Lemma 8 Let Γ be a dire
ted set and let (Uγ)γ∈Γ be a dire
ted family of PERs(meaning that γ ≤ δ ⇒ Uγ ⊑ Uδ). We de�ne U =
⊔

γ∈ΓUγ by |U | =
⋃

γ∈Γ |Uγ |and, for x1, x2 ⊆ |U |, x1 ∼U x2 i� x1 ∩ |Uγ | ∼Uγ
x2 ∩ |Uγ | for all γ ∈ Γ. Then

U is a PER-obje
t. Moreover U⊥ =
⊔

γ∈ΓU
⊥
γ .Proof. Let U ′ =

⊔

γ∈ΓU
⊥
γ , it will be enough to show that U = U ′⊥ . Let

x1, x2 ⊆ |U |. Assume �rst that x1 ∼U x2 and let us show that x1 ∼U ′⊥ x2. Solet x′1, x′2 ⊆ |U | be su
h that x′1 ∼U ′ x′2 and assume that x1 ∩ x′1 6= ∅. Let γ ∈ Γbe su
h that x1∩x′1∩|Uγ | 6= ∅. By de�nition of U and U ′, we have x1∩|Uγ | ∼Uγ

x2 ∩ |Uγ | and x′1 ∩ |Uγ | ∼U
⊥
γ
x′2 ∩ |Uγ |, and therefore x2 ∩ x′2 ∩ |Uγ | 6= ∅, andhen
e x2 ∩ x′2 6= ∅ as required. Assume next that x1 ∼U ′⊥ x2 and let us showthat x1 ∼U x2. So let γ ∈ Γ and let us prove that x1 ∩ |Uγ | ∼Uγ

x2 ∩ |Uγ |. Solet x′1, x′2 ⊆ |Uγ | be su
h that x′1 ∼
U

⊥
γ
x′2 and assume that (x1 ∩ |Uγ |) ∩ x′1 6= ∅,that is x1 ∩ x

′
1 6= ∅.We show that x′1 ∼U ′ x′2. Let δ ∈ Γ and let us show that x′1 ∩ |Uδ| ∼U

⊥
δ

x′2 ∩ |Uδ|. So let ε ∈ Γ be su
h that γ, δ ≤ ε. Let y1, y2 ⊆ |Uδ| be su
h that
y1 ∼Uδ

y2 and x′1∩|Uδ|∩y1 6= ∅. Sin
e Uδ ⊑ Uε and U⊥
δ ⊑ U⊥

ε (by Lemma 7), wehave x′1 ∼
U

⊥
ε
x′2 and y1 ∼Uε

y2. Therefore x′2 ∩ y2 6= ∅, that is x′2 ∩ |Uδ| ∩ y2 6= ∅(sin
e y2 ⊆ |Uδ|) as required. 16



Sin
e x1 ∼U ′⊥ x2 and x′1 ∼U ′ x′2, we have x2∩x′2 6= ∅, that is (x2∩|Uγ |)∩x′2 6=
∅ (sin
e x′2 ⊆ |Uγ |) as required. 2Lemma 9 If (Uγ)γ∈Γ is a dire
ted family of PER-obje
ts, then ⊔

γ∈ΓUγ is itslub in PerC.Proof. For showing that Uδ ⊑
⊔

γ∈ΓUγ , one must show that, if x1 ∼Uδ
x2,then x1∩|Uγ | ∼Uγ

x2∩|Uγ | for any given γ ∈ Γ; one pi
ks some ε ∈ Γ su
h that
γ, δ ≤ ε and one pro
eeds as in the proof of Lemma 8. Let V be a PER-obje
tan assume that Uγ ⊑ V for all γ ∈ Γ, we must show that U =

⊔

γ∈ΓUγ ⊑ V .Let �rst x1, x2 ⊆ |U | and assume that x1 ∼U x2, and let us prove that x1 ∼V x2.So let y′1, y′2 ⊆ |V | be su
h that y′1 ∼V ⊥ y′2, and assume that x1 ∩ y′1 6= ∅. Let
γ ∈ Γ be su
h that x1 ∩ y′1 ∩ |Uγ | 6= ∅. Sin
e U⊥

γ ⊑ V ⊥ by Lemma 7, we have
y′1∩|Uγ | ∼U

⊥
γ
y′2∩|Uγ | and hen
e x2∩y′2∩|Uγ | 6= ∅ and so x2∩y′2 6= ∅. Let now

y1, y2 ⊆ |V | be su
h that y1 ∼V y2 and let us show that y1∩|U | ∼U y2∩|U |, thatis y1∩ |Uγ | ∼U y2 ∩ |Uγ | for all γ ∈ Γ, whi
h holds sin
e Uγ ⊑ V by assumption.
22.3.2 Variable PER-obje
ts and �xpoints thereof. A fun
tor (that is,a �monotone� 
lass fun
tion) Φ : PerC

n → PerC whi
h 
ommutes with the lubsof dire
ted families (of n-tuples) of PER-obje
ts will be said to be 
ontinuous, orto be a variable PER-obje
t. Let Ψ : PerC → PerC be a variable PER-obje
t.Then Ψ has a least �xpoint fix(Ψ) =
⊔

k∈N
Ψk(⊤) where ⊤ is the empty PER-obje
t (see 2.2.4). Of 
ourse, given a PER-obje
t Φ : PerCn+1 → PerC, theoperation PerC

n → PerC whi
h maps (U1, . . . , Un) to fix(Φ(U1, . . . , Un,_))is a variable PER-obje
t. We have already seen that the map U → U⊥ is avariable PER-obje
ts.Lemma 10 The operations (U, V ) 7→ U⊗V , U 7→ U I and U 7→ !U are variablePER-obje
ts.Proof. We observe �rst that ⊗ is monotone, in the sense that if U ⊑ U ′ and
V ⊑ V ′, then U ⊗ V ⊑ U ′ ⊗ V ′. This results from the fa
t that |U ⊗ V | ⊆
|U ′ ⊗ V ′| and from the obvious equations η|U⊗V |,|U ′⊗V ′| = η|U|,|U ′| ⊗ η|V |,|V ′|and ρ|U⊗V |,|U ′⊗V ′| = ρ|U|,|U ′| ⊗ ρ|V |,|V ′|. We 
he
k similarly that !_ and (_)Iare monotone.We show that (U, V ) 7→ (U ⊸ V ) is a variable PER-obje
t. It is monotoneby the 
onsiderations above. Let (Uγ)γ∈Γ and (Vγ)γ∈Γ be dire
ted families ofPER-obje
ts. We show that U ⊸ V =

⊔

γ∈Γ(Uγ ⊸ Vγ) where U =
⊔

γ∈ΓUγand V =
⊔

γ∈Γ Vγ . Let t1, t2 ⊆ |U ⊸ V |. Assume �rst that t1 ∼U⊸V t2;one has t1 ∩ |Uγ ⊸ Vγ | ∼Uγ⊸Vγ
t2 ∩ |Uγ ⊸ Vγ | be
ause, if x1 ∼Uγ

x2, one has
(ti ∩ |Uγ ⊸ Vγ |)·xi = (ti·xi)∩|Vγ |. Conversely, assume that t1 ∼F

γ∈Γ
(Uγ⊸Vγ ) t2and let us show that t1 ∼U⊸V t2. So let x1, x2 ⊆ |U | be su
h that x1 ∼U x2,and let us show that t1 ·x1 ∼V t2 · x2. We have ti · xi =

⋃

γ∈Γ (ti ∩ |Uγ ⊸ Vγ |) ·
(xi ∩ |Uγ |) and (t1 ∩ |Uγ ⊸ Vγ |) · (x1 ∩ |Uγ |) ∼Vγ

(t2 ∩ |Uγ ⊸ Vγ |) · (x2 ∩ |Uγ |)for ea
h γ ∈ Γ. We 
on
lude applying Lemma 1 and using the fa
t that x1 ∩
|Uγ | ∼Uγ

x2 ∩ |Uγ | for all γ ∈ Γ. Sin
e U ⊗ V = (U ⊸ V ⊥)⊥ , this shows that
(U, V ) 7→ U ⊗ V is a variable PER-obje
t.17



One proves easily that U 7→ U I is a variable PER-obje
t.To 
on
lude, let us prove that Φ : U 7→ (!U)⊥ is a variable PER-obje
t.It is a monotone operation be
ause !_ is monotone as we have seen. So let
(Uγ)γ∈Γ be a dire
ted family of PER-obje
ts and let us show that Φ(U) =
⊔

γ∈Γ Φ(Uγ), where U =
⊔

γ∈ΓUγ . Let A′
1, A

′
2 ⊆ Mfin(|!U |). Assume �rst that

A′
1 ∼Φ(U) A

′
2 and let γ ∈ Γ, we prove that A′

1 ∩ |Φ(Uγ)| ∼Φ(Uγ) A
′
2 ∩ |Φ(Uγ)|.So let x1, x2 ⊆ |Uγ | with x1 ∼Uγ

x2 and assume that A′
1 ∩ |Φ(Uγ)| ∩ x!

1 6= ∅.We have x1 ∼U x2 and hen
e A′
2 ∩ x!

2 6= ∅, that is A′
2 ∩ |Φ(Uγ)| ∩ x!

2 6= ∅.Conversely, assume that A′
1 ∼F

γ∈Γ
Φ(Uγ ) A

′
2 and let us prove that A′

1 ∼Φ(U)

A′
2. So let x1, x2 ⊆ |U | with x1 ∼U x2 and assume that A′

1 ∩ x!
1 6= ∅; let

m be an element of that interse
tion. Sin
e Γ is dire
ted and m is a �nitemultiset, one 
an �nd γ ∈ Γ su
h that m ∈ |Φ(Uγ)|. By assumption, we have
A′

1∩|Φ(Uγ)| ∼Φ(Uγ) A
′
2∩|Φ(Uγ)| and x1∩|Uγ | ∼Uγ

x2∩|Uγ |. We 
on
lude usingthe fa
t that (x1 ∩ |Uγ |)! = x!
1 ∩ |Φ(Uγ)|: we have A′

1 ∩ x
!
1 ∩ |Φ(Uγ)| 6= ∅, thatis (A′

1 ∩ |Φ(Uγ)|) ∩ (x1 ∩ |Uγ |)! 6= ∅ and hen
e (A′
2 ∩ |Φ(Uγ)|) ∩ (x2 ∩ |Uγ |)! 6= ∅whi
h implies A′

2 ∩ x
!
2 6= ∅. 22.3.3 An extensional re�exive PER-obje
t. Consider the mapping ofPER-obje
t Φe de�ned by Φe(U) = (!(UN))⊥ . By Lemmas 7 and 10, Φe is avariable PER-obje
t, and has therefore a least �xpoint, namely the PER-obje
t

De =
⊔

k∈N
Φk

e (⊤). One has De ⇒ De = (!De)
⊥`De = (!De)

⊥`Φe(De) =

(!De)
⊥`(!(DN

e ))⊥ ≃ (!(De & DN
e ))⊥ by the fundamental isomorphism of 2.2.6.We 
on
lude sin
e De & DN

e ≃ DN
e (by the strong isomorphism whi
h maps

(1, a) to (0, a) and (2, (i, a)) to (i+ 1, a)). Therefore De is an extensional modelof the pure lambda-
al
ulus in the Kleisli 
ategory PerL!.The underlying set |De| is the relational model of the pure lambda-
al
ulusdes
ribed in [BEM07℄. We denote it as Dr. It is the least �xpoint (in thepartially ordered 
lass of sets) of the monotone and 
ontinuous operation E 7→
Mfin(N × E).3 A linear S
ott semanti
sGiven a preordered set (S,≤), we denote with Sop the opposite preorder. Given
x ⊆ S, we denote with ↓S x (or simply ↓ x if the ambient preorder is 
lear fromthe 
ontext) the set {a ∈ S | ∃b ∈ x a ≤ b}. And we set ↑S x = ↓Sop x. We alsode�ne

I(S) = {x ⊆ S | ↓
S

x = x}whi
h, ordered by in
lusion, is a prime-algebrai
 latti
e.3.1 Star-autonomous stru
tureLet S and T be preorders. A fun
tion f : I(S) → I(T ) is linear if it 
ommuteswith arbitrary lubs. In other words, for any family (xi)i∈I of elements of I(S),we must have f (
⋃

i∈I xi

)

=
⋃

i∈I f(xi). This implies in parti
ular that f ismonotone, and that f(∅) = ∅ (of 
ourse, we do not ne
essarily have f(S) = T ).We denote with ScottL the 
orresponding 
ategory.We equip the hom-set ScottL(S, T )with the ordinary pointwise order: f ≤ gif ∀x ∈ I(X) f(x) ⊆ g(x). 18



Given su
h a linear map f ∈ ScottL(S, T ), we de�ne its linear tra
e as
trS(f) = {(a, b) ∈ S × T | b ∈ f(↓

S

{a})} .This is similar to the usual de�nition of the tra
e of a stable linear map (see [Gir87,AC98℄).Then it is easily 
he
ked that trS(f) ∈ I(Sop × T ). Conversely, given any
t ∈ I(Sop × T ), we de�ne a fun
tion

funS(t) : I(S) → P(T )

x 7→ t · xand it is easy to 
he
k that fun
S(t) takes its values in I(T ) and is linear from

I(S) to I(T ).Proposition 11 The maps trS and funS de�ne an order isomorphism betweenthe posets ScottL(S, T ) and I(Sop × T ). Moreover, these isomorphisms 
om-mute with 
omposition (of maps and relations respe
tively).Therefore, we set S ⊸ T = Sop × T . Thanks to the lemma above, we
an 
onsider the morphisms of the 
ategory ScottL as linear fun
tions or asrelations. For instan
e, as a fun
tion, the identity map S → S is of 
ourse theidentity fun
tion I(S) → I(S), but as a relation, it is IdS = {(a, b) ∈ S × S |
b ≤ a}. In this paper, we prefer the relational viewpoint on morphisms.The following observation is trivial but useful.Lemma 12 Let t ⊆ S × T and let x ∈ I(S). One has ↓T (t · x) = (↓S⊸T t) · x.3.1.1 Isomorphisms. An isomorphism (in the usual 
ategori
al sense) from
S to T is a relation t ∈ I(S ⊸ T ) su
h that funS(t) : I(S) → I(T ) is an orderisomorphism. As a relation, an isomorphism from S to T has no reason tobe a bije
tion, not even a fun
tion. For instan
e, if S = {0} and T = N(with the largest preorder, in whi
h n ≤ m for all n,m ∈ N), then the relation
{(0, n) | n ∈ N} is an isomorphism from S to T (it is a
tually the only non-emptymorphism from S to T ).We shall 
all strong isomorphism from S to T any fun
tion ϕ : S → T whi
his an isomorphism of preorders (that is, ϕ is bije
tive and a ≤S b i� ϕ(a) ≤T

ϕ(b)). Su
h a ϕ is not an isomorphism (in the 
ategori
al sense above) in general,but ↓S⊸T ϕ is. And we shall say that S and T are strongly isomorphi
 if thereis a strong isomorphism from S to T .3.1.2 Monoidal stru
ture. The tensor produ
t of preorders is given by
S ⊗ T = S × T . It is easily seen to be fun
torial. Indeed, let s ∈ I(S1 ⊸ S2)and t ∈ I(T1 ⊸ T2). Then, we set
s⊗t = {((a1, b1), (a2, b2)) ∈ (S1 ⊗ T1) ⊸ (S2 ⊗ T2) | (a1, a2) ∈ s and (b1, b2) ∈ t} .One 
an 
he
k that s ⊗ t ∈ I((S1 ⊗ T1) ⊸ (S2 ⊗ T2)) and that (s′ ⊗ t′) ◦
(s⊗ t) = (s′ ◦ s) ⊗ (t′ ◦ t).The neutral element of the tensor produ
t is 1 = {⋆} (a
tually, any non-empty preorder su
h that a ≤ b for all a, b is isomorphi
 to 1, and therefore is19



neutral for ⊗). The so de�ned symmetri
 monoidal 
ategory ScottL is monoidal
losed, with linear evaluation morphism evS ∈ ScottL((S ⊸ T ) ⊗ S, T ) givenby
evS = {(((a, b), a′), b′) | b′ ≤|T | b and a ≤|S| a

′} .We use the same obje
t 1 as dualizing obje
t, but when used in that way,we denote it with ⊥.It is 
lear that S ⊸ ⊥ = Sop (up to the identi�
ation of a ∈ S with
(a, ⋆) ∈ S ⊸ ⊥), and that the 
anoni
al map S → (S ⊸ ⊥) ⊸ ⊥ 
oin
ideswith the identity, so the monoidal 
ategory of preorders and linear maps is astar-autonomous 
ategory in the sense of [Bar79℄.3.2 Produ
ts and 
oprodu
tsLet (Si)i∈I be a 
olle
tion of preorders, the 
artesian produ
t of this family isdenoted with &i∈I Si and is the disjoint union ⋃

i∈I({i} × Si), endowed withthe disjoint union of the preorder relations. One has I(&i∈I) =
∏

i∈I I(Si) upto a trivial and 
anoni
al isomorphism. The i-th proje
tion πS
i : &i∈I Si → Siis given by

πS

i = {((i, a), b) | a, b ∈ Si b ≤ a} .And given morphisms ti : T → Si, the unique morphism t = 〈ti〉i∈I : T →

&i∈I Si 
hara
terized by ∀i πS
i ◦ t = ti is given by

t =
⋃

i∈I

{(b, (i, a)) | (b, a) ∈ ti)} .The sum ⊕i∈I Si = (&i∈I Si
op)op is the operation dual to this produ
t, and
oin
ides with it as easily 
he
ked.If S is a preorder and I is a set, we use SI for the produ
t &i∈I Si where

Si = S for ea
h I. We use ⊤ for the produ
t of the empty family of preorders:it is the terminal obje
t, and, as a preorder, it is empty (so I(⊤) = {∅}). It isobviously isomorphi
 to its dual, denoted with 0.3.3 ExponentialsGiven a preorder S, we de�ne the preorder !S, whose elements are the �nitemultisets of elements of S, with the following preorder relation: given p, q ∈ !S,one has p ≤!S q if ∀a ∈ supp(p)∃b ∈ supp(q) a ≤S b. Of 
ourse we 
ould havetaken !S = Pfin(S), with a similarly de�ned preorder, and the asso
iated latti
esof initial segments would have been trivially isomorphi
. We 
hoose multisetsbe
ause our goal is to 
ompare this preorder model with the relational model,where the exponentials are de�ned with �nite multisets. This 
hoi
e makes thestudy of the 
ollapse mu
h simpler.Given x ⊆ S, we set x! = Mfin(x).Lemma 13 Let x ⊆ S. We have (↓|X| x)
! = ↓|!S| (x

!).We'll use this remark quite often, ta
itly. It implies that, if x ∈ I(S), then
x! ∈ I(!S). Given t : S → T , we set

!t = {(p, q) ∈ !S × !T | ∀b ∈ q∃a ∈ p (a, b) ∈ t} .20



Then one shows easily that !t : !S → !T , and that this operation on morphismsis fun
torial. Moreover, it is quite useful to observe that
∀x ∈ I(S) !t · x! = (t · x)! .And this property a
tually 
hara
terizes the morphism !t.3.3.1 Comonad stru
ture of the exponential. As it is usual in modelsof linear logi
, this fun
tor !_ has a stru
ture of 
omonad, whi
h is given by thenatural morphism

dS

S = {(p, b) ∈ !S × S | ∃a ∈ p b ≤ a} : !S → Susually 
alled dereli
tion and
pS

S = {(p, [p1, . . . , pn]) ∈ !S × !!S | p1 + · · · + pn ≤!S p} : !S → !!Susually 
alled digging. Observe that dS

S · x! = x and that pS
S · x! = (x!)!, andthat these equations 
hara
terize the morphisms dS

S and pS
S . With these obser-vations, it is trivial to 
he
k that these morphisms are natural (as announ
ed)and provide the fun
tor !_ with a 
omonad stru
ture.3.3.2 Weakening and 
ontra
tion. Given two preorders S1 and S2, thereis a 
anoni
al and natural strong isomorphism between the preorders !(S1 & S2)and !S1 ⊗ !S2, whi
h is a
tually the preorder isomorphism

[(1, a1), . . . , (1, an), (2, b1), . . . , (2, bm)] 7→ ([a1, . . . , an], [b1, . . . , bm]) .Similarly, there is a trivial isomorphism between !⊤ and 1 (both are the one-point preorder). Using these isomorphisms, and applying the !_ fun
tor to thediagonal map δS : S → S & S (whi
h, as easily 
he
ked, is the set {(a, (1, b)) |
b ≤ a} ∪ {(a, (2, b)) | b ≤ a}) and to the unique map S → ⊤ (the empty map),we get the 
ontra
tion and weakening maps:

contrSS = {(p, (q1, q2)) | q1 + q2 ≤!S p)} : !S → !S ⊗ !S

weak
S

S = {(p, ⋆) | p ∈ !S} : !S → 1 .With all these stru
tures, ScottL is a new-Seely 
ategory in the sense of [Bie95℄,see Se
tion 1.4): this is the model dis
overed independently by Huth [Hut94℄and Winskel [Win99℄.3.4 The Kleisli 
ategoryWe denote with ScottL! the asso
iated Kleisli 
ategory; remember that a mor-phism from S to T in this 
ategory is a linear morphism t : !S → T :
ScottL!(S, T ) = ScottL(!S, T ) .Given su
h a morphism t : !S → T , we 
an de�ne a map

Fun
S(t) : I(S) → I(T )

x 7→ t · x!21



In other words, FunS(t)(x) = {b ∈ T | ∃p ∈ !S supp(p) ⊆ x and (p, b) ∈ t}Observe that the fun
tion S → !S whi
h maps x to x! is never linear (sin
eit maps ∅ to {[]}; it is a
tually the �most non-linear� map from S to S. . . ), butis S
ott 
ontinuous. Therefore, the map FunS(t) is S
ott-
ontinuous as well.Conversely, observe that I(S) is a S
ott domain, whose 
ompa
t elementsare the �nitely generated elements of I(S), that is, the elements x0 of I(S)su
h that x0 = ↓S u for some �nite u ⊆ S. Given a S
ott-
ontinuous fun
tion
f : I(S) → I(T ), one de�nes the set

TrS(f) = {(p, b) ∈ Mfin(S) × T | b ∈ f(↓
S

(supp(p)))} .that we 
all the tra
e of f . This is similar to the de�nition of the tra
e of astable fun
tion (see [Gir86, AC98℄), with the essential di�eren
e that there isno minimality requirement on p (su
h a requirement would not make sense ingeneral be
ause usually our preorders are not well-founded).Lemma 14 Let S and T be preorders. The maps TrS and FunS de�ne an orderisomorphism between I(!S ⊸ T ) and the set of S
ott-
ontinuous fun
tions from
I(S) to I(T ), endowed with the pointwise order.Proof. Let f, g : I(S) → I(T ) be S
ott-
ontinuous fun
tions su
h that f ≤ gfor the pointwise order. Let (p, b) ∈ Tr

S(f). Then b ∈ f(↓S (supp(p))) ⊆
g(↓S (supp(p))), so (p, b) ∈ TrS(g) and hen
e the map TrS is monotone. Let
s, t ∈ I(!S ⊸ T ) be su
h that s ⊆ t, let x ∈ I(S) and let b ∈ FunS(s)(x). Thismeans that there exists p ∈ !S su
h that (p, b) ∈ s and supp(p) ⊆ x. Then
(p, b) ∈ t and hen
e we also have b ∈ FunS(t)(x), and this shows that the map
FunS is monotone as well.Let f : I(S) → I(T ) be 
ontinuous, f ′ = FunS(TrS(f)) and let x ∈ I(S).Let b ∈ f(x). Sin
e f is 
ontinuous, there is a �nite subset u of x su
h that
b ∈ f(↓S (u)). Let p ∈ !S be su
h that supp(p) = u. Then we have (p, b) ∈
TrS(f) and hen
e b ∈ f ′(x). Conversely, if b ∈ f ′(x), let p ∈ !S be su
h that
(p, b) ∈ TrS(f) and supp(p) ⊆ x, then b ∈ f(↓S ( supp(p))) ⊆ f(x) and we haveshown that f ′(x) = f(x) for all x ∈ I(S), so Fun

S ◦ Tr
S is the identity map.Conversely, let t ∈ I(!S ⊸ T ) and let t′ = TrS(FunS(t)). Let (p, b) ∈ t,then b ∈ Fun(t)(↓S ( supp(p))), and hen
e (p, b) ∈ t′. Let (p, b) ∈ t′, then

b ∈ FunS(t)(↓S ( supp(p))) and hen
e there exists q ∈ !S su
h that (q, b) ∈ tand supp(q) ⊆ ↓S ( supp(p)), that is, q ≤!S p. Sin
e (p, b) ≤!S⊸T (q, b) ∈ t and
t ∈ I(!S ⊸ T ), we have (p, b) ∈ t, and this shows that TrS ◦ FunS is the identitymap. 23.4.1 The Kleisli 
ategory of preorders. This isomorphism is 
ompati-ble with 
omposition, as easily 
he
ked, so that we 
an 
onsider ScottL! as a fullsub
ategory of the 
ategory of S
ott domains and 
ontinuous fun
tions. More-over, it is easily 
he
ked that the 
artesian produ
ts and fun
tion spa
e 
onstru
-tions in both 
ategories 
oin
ide: the 
artesian produ
t in ScottL! of S and T is
S & T , and we have seen that I(S & T ) ≃ I(S)×I(T ) (with the produ
t order)and their fun
tion spa
e is S ⇒ T = !S ⊸ T , and we have seen that I(!S ⊸ T )is isomorphi
 (as a poset) to the spa
e of 
ontinuous maps from I(S) to I(T ),endowed with the pointwise order, whi
h is pre
isely the fun
tion spa
e of I(S)22



and I(T ) in the 
ategory of S
ott domains and 
ontinuous fun
tions. Theevaluation map EvS ∈ ScottL!((S ⇒ T ) & S, T ) ≃ ScottL(!(S ⇒ T ) ⊗ !S, T )satis�es
EvS = {((r, p), b) | ∃(p′, b′) ∈ r b ≤T b′ and p′ ≤!S p}as easily 
he
ked using that fa
t that EvS =So ScottL! is a full sub-CCC of the CCC of S
ott domains and 
ontinuousfun
tions.3.5 The partially ordered 
lass of preordersWe say that the preorder S is a substru
ture of the preorder T , and we write

S ⊑ T if, for any a1, a2 ∈ S, one has a1 ≤S a2 ⇔ a1 ≤T a2. We denotewith ScottC the 
orresponding partially ordered 
lass. It is easy to 
he
k that
ScottC is 
omplete (any dire
ted family (Sγ)γ∈Γ has a lub ⊔

γ∈Γ Sγ), and thatall the 
onstru
tions we have introdu
ed on preorders are variables preorders,that is, 
ontinuous 
lass fun
tions ScottC
n → ScottC. Any variable preorder

Φ : ScottC → ScottC admits a least �xpoint. In parti
ular, the operation
Φs : ScottC → ScottC de�ned by Φs(S) = (!(SN))⊥ is a variable preorder andtherefore admits a least �xpoint Ds, whi
h is an extensional model of the purelambda-
al
ulus (same 
omputation as in 2.3.3).4 The 
ategory of preorders with proje
tions4.1 A duality on preordersNow 
omes the most important de�nition of the paper. Let S be a preorder.Given x, x′ ⊆ S, we shall say that x and x′ are in duality (with respe
t to S)and write x ⊥S x

′ if
x ∩ x′ = ∅ ⇒ (↓

S

x) ∩ x′ = ∅ .Of 
ourse, the 
onverse impli
ation always holds so that, when it holds, theimpli
ation above is a
tually an equivalen
e. The intuition is 
lear: x and x′are in duality if x′ 
annot separate x from its downward 
losure.This duality relation is symmetri
 in the following sense: sin
e 
learly (↓S x)∩
x′ = ∅ ⇔ x ∩ (↑S x

′) = ∅ ⇔ (↓S x) ∩ (↑S x
′) = ∅, we have

∀x, x′ ⊆ S x ⊥S x
′ ⇔ x′ ⊥Sop x .If D ⊆ P(S), we set

D⊥S = {x′ ⊆ S | ∀x ∈ D x ⊥S x
′}With this de�nition, we haveD ⊆ D⊥S⊥Sop . Indeed, let x ∈ D and let x′ ∈ D⊥S .We have x ⊥S x′, that is x′ ⊥Sop x, and sin
e this holds for all x′ ∈ D⊥S , wehave x ∈ D⊥S⊥Sop . Moreover, if D,E ⊆ P(S), we have D ⊆ E ⇒ E⊥S ⊆ D⊥S .Therefore, one always has D⊥S⊥Sop⊥S = D⊥S .Let D ⊆ P(S) be su
h that D = D⊥S⊥Sop (equivalently, D = E⊥Sop forsome E ⊆ P(S)). Then I(S) ⊆ D ⊆ P(S). And one 
he
ks easily that

P(S)⊥S = I(Sop) and I(S)⊥S = P(Sop). Let (xi)i∈I be a family of elementsof D. Then ⋃

i∈I xi ∈ D. Indeed, sin
e D = D⊥S⊥Sop , it su�
es to show23



that (
⋃

i∈I xi

)

⊥S x′ for all x′ ∈ D⊥S . So let x′ ∈ D⊥S , and let us assumethat (
⋃

i∈I xi

)

∩ x′ = ∅. Then, for any i ∈ I, we have xi ∩ x
′ = ∅ and hen
e

↓S xi∩x′ = ∅ (sin
e xi ∈ D(X)) and therefore (
⋃

i∈I ↓S xi

)

∩x′ = ∅. We 
on
ludebe
ause 
learly (
⋃

i∈I ↓S xi

)

= ↓S

(
⋃

i∈I xi

). So D, endowed with in
lusion, isa 
omplete latti
e, whose least element is ∅, and largest element is S.A preorder with proje
tion (a PP for short; the reason for this terminologywill appear later) is a pair X = (|X |,D(X)) where |X | is a preorder and D(X) ⊆

P(|X |) satis�es D(X) = D(X)
⊥|X|⊥|X|op . We de�ne then

X⊥ = (|X |op,D(X)⊥|X|) .By de�nition, we have X⊥⊥ = X . Remember that I(|X |) ⊆ D(X) ⊆ P(|X |).Given two PPs X and Y , we de�ne X ⊗ Y by setting |X ⊗ Y | = |X | × |Y |,endowed with the produ
t order. Then D(X ⊗ Y ) is given by
D(X ⊗ Y ) = {x× y | x ∈ D(X) and y ∈ D(Y )}⊥|X|×|Y |⊥|X|op×|Y |opWe de�ne a

ordingly X ⊸ Y = (X ⊗ Y ⊥|Y |)⊥|X|×|Y |op , so that |X ⊸ Y | =

|X |op × |Y | and, for t ⊆ |X ⊸ Y |, one has t ∈ D(X ⊸ Y ) i�, for all x ∈ D(X)and for all y′ ∈ D(Y ⊥), one has
t ∩ (x× y′) = ∅ ⇒ t ∩ ( ↓

|X|

x× ↑
|Y |

y′) = ∅ .Given t ⊆ |X |× |Y |, remember that the transpose of t is tt = {(b, a) | (a, b) ∈
t} ⊆ |Y | × |X |. One 
he
ks easily that t ∈ D(X ⊸ Y ) i� tt ∈ D(Y ⊥

⊸ X⊥).Fortunately, there is an easy fun
tional 
hara
terization of the elements of
D(X ⊸ Y ).Proposition 15 Let X and Y be PPs. Let t ⊆ |X |× |Y |. One has t ∈ D(X ⊸

Y ) i� the two following 
onditions are satis�ed.
• For all x ∈ D(X), one has t · x ∈ D(Y )

• and, for all x ∈ D(X), one has ↓|Y | (t · x) = ↓|X⊸Y | t · ↓|X| x .The se
ond 
ondition is equivalent to ∀x ∈ D(X) ↓|X⊸Y | t · ↓|X| x ⊆ ↓|Y | (t · x),whi
h in turn is equivalent to ∀x ∈ D(X) ↓|Y | (t · ↓|X| x) ⊆ ↓|Y | (t · x), that is to
∀x ∈ D(X) t · ↓|X| x ⊆ ↓|Y | (t · x).Proof. The equivalen
es at the end of the statement result from Lemma 12.Assume �rst that t ∈ D(X ⊸ Y ). Let x ∈ D(X). We show �rst that t · x ∈
D(Y ) = D(Y ⊥)⊥|Y |op , so let y′ ∈ D(Y ⊥) and let us assume that (t · x) ∩ y′ = ∅.This is equivalent to t ∩ (x × y′) = ∅, and sin
e t ∈ D(X ⊸ Y ), we have
t ∩ ↑X⊸Y (x× y′) = ∅, that is t ∩ (↓|X| x × ↑|Y | y

′) = ∅. But this implies
t ∩ (x × ↑|Y | y

′) = ∅, that is, (t · x) ∩ ↑|Y | y
′ = ∅. Sin
e this holds for all

y′ ∈ D(Y ⊥), we have shown that t · x ∈ D(Y ).We must show now that ↓|X⊸Y | t · ↓|X| x ⊆ ↓|Y | (t · x). So let b ∈ ↓|X⊸Y | t ·

↓|X| x, we have ↑|Y | b ∈ D(Y ⊥) and ↓|X⊸Y | t ∩ (↓|X| x × ↑|Y | b) 6= ∅, that is
↓X⊸Y t ∩ ↑X⊸Y (x× {b}) 6= ∅. Sin
e t ∈ D(X ⊸ Y ), this shows that t ∩ (x ×
↑|Y | b) 6= ∅, that is (t · x) ∩ ↑|Y | b 6= ∅, that is b ∈ ↓|Y | (t · x) as required.24



Assume 
onversely that the two 
onditions of the statement are satis�ed, andlet us show that t ∈ D(X ⊸ Y ). So let x ∈ D(X) and y′ ∈ D(Y ⊥), and assumethat t ∩ ↑X⊸Y (x× y′) 6= ∅. Equivalently, we have t ∩ (↓|X| x × ↑|Y | y
′) 6= ∅,that is (t · ↓|X| x) ∩ ↑|Y | y

′ 6= ∅. By our se
ond assumption, we have therefore
↓|Y | (t · x) ∩ ↑|Y | y

′ 6= ∅, and hen
e t ∩ (x × y′) 6= ∅ sin
e t · x ∈ D(Y ) and
y′ ∈ D(Y ⊥). 24.2 The linear 
ategoryLet PpL be the 
ategory whose obje
ts are the PPs, and with PpL(X,Y ) =
D(X ⊸ Y ), 
omposition de�ned as the usual relational 
omposition.4.2.1 Identity and 
omposition. Indeed, by Proposition 15, the identityrelation Id ⊆ |X | × |X | belongs to D(X ⊸ X).As to 
omposition, let s ∈ D(X ⊸ Y ) and t ∈ D(Y ⊸ Z), then weshow that the relational 
omposition u = t · s of these morphisms belongsto D(Y ⊸ Z), using Proposition 15. So let x ∈ D(X). First, we have
u · x = t · (s · x) ∈ D(Z) sin
e s · x ∈ D(Y ). Next ↓|Z| (u · x) = ↓|Z| (t · (s · x)) =
(↓Y ⊸Z t) · ↓Y (s · x) (by Proposition 15 and the fa
t that s · x ∈ D(Y )). Hen
ewe have ↓|Z| (u · x) = ((↓Y ⊸Z t) ◦ (↓X⊸Y s)) · ↓|X| x. To 
on
lude, it su�
es to
he
k that ↓X⊸Z u = (↓Y ⊸Z t) ◦ (↓X⊸Y s). The �⊆� in
lusion is straightfor-ward, we 
he
k the 
onverse. Let (a, c) ∈ (↓Y ⊸Z t) ◦ (↓X⊸Y s). Let b ∈ |Y |be su
h that (b, c) ∈ ↓Y ⊸Z t and (a, b) ∈ ↓X⊸Y s. Let (a′, b′) ∈ s be su
hthat a′ ≤|X| a and b′ ≥|Y | b, and let (b′′, c′) ∈ t be su
h that b′′ ≤|Y | b and
a′ ≥|Z| a. We have b′′ ≤ b′ and hen
e (e.g.) (b′, c) ≤|Y ⊸Z| (b′′, c′) ∈ t and
(a, b′) ≤|X⊸Y | (a′, b′) ∈ s and we 
on
lude.4.2.2 Tensor produ
t.Lemma 16 Let X1, X2 and Y be PPs. Let t ⊆ |X1 ⊗X2 ⊸ Y |. One has
t ∈ PpL(X1 ⊗X2, Y ) i�, for all x1 ∈ D(X1) and x2 ∈ D(X2), one has

• t · (x1 ⊗ x2) ∈ D(Y )

• and ↓|Y | (t · (x1 ⊗ x2)) = (↓|X1⊗X2⊸Y | t) · (↓|X1| x1 ⊗ ↓|X2| x2).The se
ond 
ondition is equivalent to t·(↓|X1| x1 ⊗ ↓|X2| x2) ⊆ ↓|Y | (t · (x1 ⊗ x2)).Proof. The 
onditions are ne
essary by Proposition 15. We prove that they aresu�
ient, so assume that they hold. We prove that tt ∈ D(Y ⊥
⊸ (X1 ⊗X2)

⊥),using Proposition 15, so let y′ ∈ D(Y ⊥).We show �rst that tt·y′ ∈ D((X1⊗X2)
⊥). So let x1 ∈ D(X1) and x2 ∈ D(X2)and assume that (tt·y′)∩(x1⊗x2) = ∅, hen
e (t·(x1 ⊗ x2))∩y′ = ∅. But we have

t · (x1 ⊗ x2) ∈ D(Y ), and hen
e (t · (x1 ⊗ x2)) ∩ ↑|Y | y
′ = ∅, and hen
e, by ourse
ond hypothesis, (↓|X1⊗X2⊸Y | t) · (↓|X1| x1 ⊗ ↓|X2| x2)∩ ↑|Y | y

′ = ∅. Therefore
t(↓|X1⊗X2⊸Y | t) · ↑|Y | y

′ ∩ (↓|X1| x1 ⊗ ↓|X2| x2) = ∅, whi
h 
learly implies that
tt · y′ ∩ (↓|X1| x1 ⊗ ↓|X2| x2) = ∅, and this shows that tt · y′ ∈ D((X1 ⊗X2)

⊥).Next, we must show that ↑|X1⊗X2| (
tt · y′) = ↓|Y ⊥

⊸(X1⊗X2)⊥ |
tt · (↑Y y

′), andthe only non-trivial in
lusion is �⊇�, so let (a1, a2) ∈ ↓|Y ⊥
⊸(X1⊗X2)⊥ |

tt · (↑Y y
′).This means that ↓X1⊗X2

{(a1, a2)} ∩ ↓|Y ⊥
⊸(X1⊗X2)⊥ |

tt · (↑Y y
′) 6= ∅, that is25



↓|(X1⊗X2)⊸Y | t · ↓X1⊗X2
{(a1, a2)} ∩ ↑|Y | y

′ 6= ∅, that is, by our se
ond assump-tion, we have ↓Y (t · {(a1, a2)}) ∩ ↑Y y
′ 6= ∅. 2Let ti ∈ PpL(Xi, Yi) for i = 1, 2. Let t1 ⊗ t2 ⊆ |(X1 ⊗X2) ⊸ (Y1 ⊗ Y2)| bede�ned as usual as t1 ⊗ t2 = {((a1, a2), (b1, b2)) | (ai, bi) ∈ ti for i = 1, 2}. Thenwe show that t1⊗t2 ∈ PpL(X1⊗X2, Y1⊗Y2) using Lemma 16. So let xi ∈ D(Xi)for i = 1, 2. We have (t1 ⊗ t2) · (x1 ⊗ x2) = (t1 · x1) ⊗ (t2 · x2) ∈ D(Y1 ⊗ Y2)sin
e we have ti · xi ∈ D(Yi) for i = 1, 2. Moreover, we have

t1 ⊗ t2 · ( ↓
|X1|

x1 ⊗ ↓
|X2|

x2) = (t1 · ( ↓
|X1|

x1)) ⊗ (t2 · ( ↓
|X2|

x2))

⊆ ↓
|Y1|

(t1 · x1) ⊗ ↓
|Y2|

(t2 · x2)

= ↓
|Y1⊗Y2|

((t1 ⊗ t2) · (x1 ⊗ x2))applying Proposition 15 to t1 and t2.4.2.3 Strong isomorphisms. Let X and Y be PPs. A strong isomorphismfrom X to Y is a preorder isomorphism θ : |X | → |Y | su
h that, for any x ⊆ |X |,one has x ∈ D(X) i� θ(x) ∈ D(Y ). A strong isomorphism from X to Y is anisomorphism (in the 
ategori
al sense), as easily seen using Lemma 16.4.2.4 Asso
iativity and symmetry isomorphisms. The obvious bije
-tion α : |(X1 ⊗X2) ⊗X3| → |X1 ⊗ (X2 ⊗X3)|. Then α is a preorder iso-morphism whi
h is also a PP strong isomorphism. Similarly, the bije
tion
σ : |X1 ⊗X2| → |X2 ⊗X1| is a strong isomorphism. This shows that the
ategory PpL, equipped with the above de�ned tensor produ
t, is a monoidal
ategory (of 
ourse, the unit of this tensor produ
t is the PP 1 = ({∗}, {∅, {∗}}).4.2.5 Linear fun
tion spa
e and monoidal 
loseness. We have alreadyde�ned X ⊸ Y = (X ⊗ Y ⊥)⊥ . We show that this obje
t is the linear fun
tionspa
e from X to Y .Lemma 17 The obvious bije
tion λ : |(Z ⊗X) ⊸ Y | → |X ⊸ (Y ⊸ Z)| is astrong isomorphisms from (Z ⊗X) ⊸ Y to X ⊸ (Y ⊸ Z).Proof. We already know that λ is a preorder isomorphism.Let t ∈ D((Z ⊗X) ⊸ Y ) and let us prove that t′ = λ(t) ∈ D(Z ⊸

(X ⊸ Y )), using Lemma 15. So let z ∈ D(Z), we show �rst that t′ ·z ∈ D(X ⊸

Y ). Let x ∈ D(X), we have (t′ · z)·x = t ·(z ⊗ x) ∈ D(Y ). Next, we have (t′ · z)·
↓|X| x = t ·(z ⊗ ↓|X| x) ⊆ t ·(↓|Z| z ⊗ ↓|X| x) ⊆ ↓|Y | (t · (z ⊗ x)) = ↓|Y | ((t

′ · z) · x)by Lemma 15 applied to t, and hen
e, by the same lemma applied to t′ · z, wehave t′ · z ∈ D(X ⊸ Y ). We must show now that t′ · ↓|Z| z ⊆ ↓|X⊸Y | (t
′ · z),so let (a, b) ∈ t′ · ↓|Z| z. We have b ∈ (t′ · ↓|Z| z) · ↓|X| a = t · (↓|Z| z ⊗ ↓|X| a) ⊆

↓Y (t · (z ⊗ ↓|X| a)) so we 
an �nd b′ ∈ |Y | with b′ ≥ b, c ∈ z and a′ ≤ a su
hthat ((c, a′), b′) ∈ t, that is (c, (a′, b′)) ∈ t′. Hen
e (a′, b′) ∈ t′ · z, and therefore
(a, b) ∈ ↓|X⊸Y | (t

′ · z) as required. 2Sin
e we have taken PpL(X,Y ) = D(X ⊸ Y ) it results easily from thatlemma that the monoidal 
ategory PpL is monoidal 
losed, with X ⊸ Y asfun
tion spa
e. 26



The 
ategoryPpL is 
learly star-autonomous (with ⊥ = 1⊥ = 1 as dualizingobje
t), sin
e X ⊸ ⊥ = (X ⊗ 1)⊥ and this latter PP is isomorphi
 to X⊥ bythe strong PP isomorphism whi
h maps a ∈ |X | to (a, ∗) (one should 
he
k thatthe indu
ed isomorphism X → (X ⊸ ⊥) ⊸ ⊥, whi
h maps a to ((a, ∗), ∗) isthe 
anoni
al morphism between these two spa
es as explained in [Bar79℄, butthis is quite easy).4.2.6 The �par� 
onne
tive. The 
o-tensor produ
t, or par, is de�ned as
X`Y = (X⊥⊗Y ⊥)⊥ = X⊥

⊸ Y and has the same asso
iativity and symmetryproperties as the tensor produ
t. Also, there is a mix morphism mix : X⊗Y →
X`Y , whi
h is the diagonal set mix = {((a, b), (a, b)) | a ∈ |X | and b ∈ |Y |}.As it is well known, the fa
t that this relation is a morphism results fromthe fa
t that 1 = 1⊥ = ⊥. A natural question is whether this morphism isan isomorphism, as in both 
ategories ScottL and RelL (these 
ategories are
ompa
t 
losed), and we shall provide a 
ounter-example showing that this isnot the 
ase in general.4.2.7 The morphism mix is not an isomorphism in general. Let Xbe the PP de�ned by |X | = N (the natural numbers, with the usual order)and D(X) = P(N), and let Y = X⊥ . We 
he
k �rst that the �su

essor�relation s = {(n, n + 1) | n ∈ N} belongs to D(Y`X) = D(X ⊸ X). Let
x ∈ D(X) = P(N). Obviously s · x ∈ D(X), and, if b ∈ s · ↓X x, then we have
b > 0 and b− 1 ∈ ↓X x. Let c ∈ x su
h that c ≥ b− 1. We have c+ 1 ∈ s · x andhen
e b ∈ ↓X (s · x).On the other hand, we have Id ∈ D(Y ⊸ Y ) = D((Y ⊗X)⊥) and, sin
e |Y |is N with the opposite order, we have s∩ ↓|Y ⊸Y | Id 6= ∅ (indeed s ⊆ ↓|Y ⊸Y | Id).But s ∩ Id = ∅, therefore s = mix−1 · s /∈ D(Y ⊗X), whi
h shows that mix−1 /∈
PpL(Y`X,Y ⊗X).This strongly suggests that PpL is not 
ompa
t 
losed.4.3 The additivesGiven a family (Xi)i∈I of PPs, we de�ne their 
artesian produ
t X =&i∈I Xiby setting |X | =

⋃

i∈I{i} × |Xi| and saying that a set x ⊆ |X | belongs to D(X)if, for all i ∈ I, one has πi ·x ∈ D(Xi) (where πi ⊆ |X ⊸ Xi| is πi = {((i, a), a) |
a ∈ |Xi|}, so that πi · x = {a ∈ |Xi| | (i, a) ∈ x}; we shall use the notation xifor πi · x in the sequel).One must 
he
k that D(X) = D(X)

⊥|X|⊥|X|op . For this it will su�
e to showthat, for all x′ ⊆ |X |, one has x′ ∈ D(X)⊥|X| i� x′i ∈ D(Xi)
⊥|Xi| for all i ∈ I; thiswill show that X de�ned above is a PP, with X⊥ =&i∈I X
⊥
i . Assume �rst that

x′i ∈ D(Xi)
⊥|Xi| for all i ∈ I and assume that ↓|X| x∩x

′ 6= ∅ for some x ∈ D(X).There exists i ∈ I su
h that ↓|Xi| xi ∩ x′i 6= ∅, and therefore xi ∩ x′i 6= ∅, andhen
e x∩x′ 6= ∅. Conversely, assume that x′ ∈ D(X)⊥|X| and let i ∈ I, we mustshow that x′i ∈ D(Xi)
⊥|Xi| . So let y ∈ D(Xi) and assume that ↓|Xi| y ∩ x

′
i 6= ∅.Let x = {i} × y ⊆ |X |, we have x ∈ D(X) (remember the de�nition of D(X)and the fa
t that ∅ ∈ D(Y ) for any PP Y ) and ↓|X| x ∩ x′ 6= ∅. Therefore wehave x ∩ x′ 6= ∅, that is y ∩ x′i 6= ∅.It is straightforward to 
he
k that &i∈I Xi is the 
artesian produ
t of the

Xis, with the relations πi as proje
tions.27



4.4 The exponentialsLet X be a PP. We de�ne !X by setting |!X| = !|X |; remember that this meansthat |!X| is the set of all �nite multisets of elements of |X |, with the preorderde�ned as follows: p ≤ q i� ∀a ∈ p ∃b ∈ q a ≤|X| b. Given x ⊆ |X |, we set
x! = Mfin(x), and remember that we have the following property:

↓
|!X|

(x!) = ( ↓
|X|

x)! . (1)We set
D(!X) = {x! | x ∈ D(X)}

⊥|!X|⊥|!X|op

.Lemma 18 Let X and Y be PPs and let t ⊆ |!X ⊸ Y |. We have t ∈ D(!X ⊸

Y ) i�, for all x ∈ D(X),
• t · x! ∈ D(Y )

• and ↓|Y | (t · x
!) = (↓|!X⊸Y | t) · (↓|X| x)

!and the se
ond 
ondition is equivalent to t · (↓|X| x)
! ⊆ ↓|Y | (t · x

!).The proof is similar to that of Lemma 16.Let t ∈ PpL(X,Y ), we de�ne !t ⊆ |!X ⊸ !Y | by
!t = {([a1, . . . , an], [b1, . . . , bn]) | (ai, bi) ∈ t for all i = 1, . . . , n} .Using Lemma 18, we prove that !t ∈ PpL(!X, !Y ). So let x ∈ D(X). Wehave !t · x! = (t · x)! ∈ D(!Y ) sin
e t · x ∈ D(Y ). Next we have !t · (↓|X| x)

! =

(t · ↓|X| x)
! ⊆ (↓|Y | (t · x))

! by Proposition 15 applied to t, and we 
on
ludebe
ause (↓|Y | (t · x))
! = ↓|!Y | (t · x)

! = ↓|!Y | (!t · x
!), using Equation (1).We 
he
k that the usual 
omonad stru
ture of the exponential in the rela-tional model gives rise to a 
omonad stru
ture for the !_ fun
tor we have justde�ned.We de�ne �rst dX as dX = d|X| = {([a], a) | a ∈ |X |} ⊆ |!X ⊸ X |. Given

x ∈ D(X), we have dX · x! = x and dX · (↓|X| x)
! = ↓|X| x = ↓|X| (dX · x!) andso dX ∈ PpL(!X,X) by Lemma 18. Similarly, we de�ne pX as pX = p|X| =

{(m1 + · · · + mn, [m1, . . . ,mn]) | m1, . . . ,mn ∈ |!X |} ⊆ |!X ⊸ !!X| and weshow that pX ∈ D(!X ⊸ !!X), using Lemma 18 again. So let x ∈ D(X), wehave pX · x! = x!! ∈ D(!!X), sin
e x! ∈ D(!X). Next we have pX · (↓|X| x)
! =

(↓|X| x)
!!

= ↓|!!X| (x
!!) = ↓|!!X| (pX · x!) and this 
ompletes the proof that pX isa morphism.4.4.1 Fundamental isomorphism. We show that the PPs !(X & Y ) and

!X⊗ !Y are isomorphi
, by the bije
tion θ : |!(X & Y )| → |!X ⊗ !Y | whi
h mapsthe multiset [(1, a1), . . . , (1, al), (2, b1), . . . , (2, br)] (with ai ∈ |X | and bj ∈ |Y |)to ([a1, . . . , al], [b1, . . . , br]).We show that θ is a morphism from !(X & Y ) to !X ⊗ !Y . So let x ∈ D(X)and y ∈ D(Y ). We have θ · 〈x, y〉! = x! ⊗ y! ∈ D(!X ⊗ !Y ) whi
h shows byLemma 18 that θ is a morphism, sin
e it is a preorder isomorphism (so that these
ond 
ondition of the lemma is trivially satis�ed). Conversely, let ρ = θ−1and let ρ′ ⊆ |!X | × |(!Y ⊸ !(X & Y ))| be given by
ρ′ = {(p, (q,m)) | m = θ(p, q)} .28



By monoidal 
loseness, it su�
es to prove that ρ′ is a morphism from !X to
!Y ⊸ !(X & Y ), and for this, we apply twi
e Lemma 18 as follows. First,let x ∈ D(X), we must show that ρ′ · x! ∈ D(!Y ⊸ !(X & Y )). For this,let y ∈ D(Y ), we have (ρ′ · x!) · y! = 〈x, y〉! ∈ D(!(X & Y )). Next, we have
(ρ′ · x!) · (↓|Y | y)

! = 〈x, ↓|Y | y〉
! on the one hand and ↓|!(X&Y )| ((ρ

′ · x!) · y!) =

↓|!(X&Y )| 〈x, y〉
! = (↓|X&Y | 〈x, y〉)

! on the other hand, from whi
h it 
learlyresults that (ρ′ · x!) · (↓|Y | y)
! ⊆ ↓|!(X&Y )| ((ρ

′ · x!) · y!) and therefore ρ′ · x! ∈
D(!Y ⊸ !(X & Y )) by Lemma 18. To 
on
lude, we must show that ρ′ ·
(↓|X| x)

! ⊆ ↓|!Y ⊸!(X&Y )| (ρ
′ · x!), so let q ∈ |!Y | and m ∈ |!(X & Y )| and as-sume that (q,m) ∈ ρ′ · (↓|X| x)

!. There exists p ∈ |!X | su
h p ∈ (↓|X| x)
! and

m = θ(p, q). Sin
e p ∈ (↓|X| x)
!, we 
an �nd p′ ∈ x! su
h that p ≤|!X| p

′. Let
m′ = θ(p′, q), we have (q,m′) ∈ ρ′ · x! and hen
e (q,m) ∈ ↓|!Y ⊸!(X&Y )| (ρ

′ · x!)sin
e m ≤|(X&Y )!| m
′.Observe that there is also an obvious isomorphism from !⊤ to 1 (the �0-aryversion� of the isomorphism above).4.4.2 Stru
tural maps. Using these fundamental isomorphisms, it is easyto de�ne the weakening and 
ontra
tion maps, whi
h endow !X with a 
oalgebrastru
ture: it su�
es to apply the fun
tor !_ to the �terminal map� in PpL(X,⊤)and to the diagonal map in PpL(X,X & X) and then to 
ompose the resultingmap with the suitable fundamental isomorphism. In that way, we get weakX ∈

PpL(!X, 1), given by weakX = {([], ∗)} and contrX ∈ PpL(!X ⊗ !X, !X) givenby contrX = {(p, q, p+ q) | p, q ∈ |!X |}, whi
h satisfy all the diagrams required(see [Bie95℄).4.4.3 Cartesian 
loseness. Equipped with this stru
ture (the 
omonad
(!_, d, p), the fundamental isomorphisms), the 
artesian star-autonomous 
at-egory PpL is a model of linear logi
 in the sense of Se
tion 1.4. It gives risetherefore to a 
artesian 
losed 
ategory, whi
h is the Kleisli 
ategory PpL! ofthat 
omonad. The 
artesian produ
t of (Xi)i∈I in PpL! is X = &i∈I Xi withproje
tions πi ◦ dX (simply denoted as πi). The obje
t of morphisms from X to
Y is X ⇒ Y = !X ⊸ Y with evaluation morphism Ev (de�ned in Se
tion 2.1).4.5 The partially ordered 
lass of PPsLet X and Y be two PPs. We say that X is a subobje
t of Y and we write
X ⊑ Y if |X | ⊑ |Y | (in the sense of Se
tion 3.5) and if η|X|,|Y | ∈ PpL(X,Y )and ρ|X|,|Y | ∈ PpL(Y,X). This means that the two following 
onditions musthold:

∀x ⊆ |X | x ∈ D(X) ⇒ x ∈ D(Y )

∀y ⊆ |Y | y ∈ D(Y ) ⇒ (y ∩ |X | ∈ D(X) and ( ↓
|Y |

y) ∩ |X | ⊆ ↓
|X|

(y ∩ |X |)) .Observe that, in the se
ond 
ondition, the 
onverse in
lusion always holds be-
ause |X | ⊑ |Y |.It is 
lear that ⊑ is an order relation on the 
lass of PPs; let us denote with
PpC the 
orresponding partially ordered 
lass.As usual, the �rst thing to observe is that linear negation is 
ovariant withrespe
t to this notion. 29



Lemma 19 If X ⊑ Y then X⊥ ⊑ Y ⊥ .Proof. Same proof as for Lemma 7. 24.5.1 Completeness.Lemma 20 Let (Xγ)γ∈Γ a dire
ted family of PPs. Let X =
⊔

γ∈ΓXγ be de�nedas follows: |X | =
⊔

γ∈Γ |Xγ | (in the partially ordered 
lass ScottC) and D(X) =
{x ⊆ |X | | ∀γ ∈ Γ x ∩ |Xγ | ∈ D(Xγ)}. Then X is a PP.Proof. Observe �rst that, if x ∈ D(Xγ), then x ∈ D(X). Indeed, let δ ∈ Γ, wemust 
he
k that x ∩ |Xδ| ∈ D(Xδ). So let ε ∈ Γ be su
h that γ, δ ≤ ε. Sin
e
Xγ ⊑ Xε, we have x ∈ D(Xε), and sin
e Xδ ⊑ Xε, we have x ∩ |Xδ| ∈ D(Xδ).For proving the lemma, we build X ′ =

⊔

γ∈ΓX
⊥
γ (this makes sense sin
e thefamily (X⊥

γ )γ∈Γ is dire
ted by Lemma 19), and we show that X = X ′⊥ . Sin
eobviously |X | = |X ′⊥ | (as preorders), it remains to show that D(X) = D(X ′)⊥ .First, let x ∈ D(X) and let us show that x ∈ D(X ′)⊥ . So let x′ ∈ D(X ′) andassume that ↓|X| x∩x
′ 6= ∅. Let a ∈ x and let a′ ∈ x′ be su
h that a′ ≤|X| a. Let

γ ∈ Γ be su
h that a, a′ ∈ |Xγ | (so that a′ ≤|Xγ | a). We have x∩ |Xγ | ∈ D(Xγ),
x′ ∩ |Xγ | ∈ D(X⊥

γ ) and a′ ∈ ↓|Xγ | (x ∩ |Xγ |)∩ (x′ ∩ |Xγ |), and hen
e x∩ x′ 6= ∅.Conversely, let x ∈ D(X ′)⊥ , and let us show that x ∈ D(X). So let γ ∈ Γand let us show that x ∩ |Xγ | ∈ D(Xγ). Let x′ ∈ D(X⊥
γ ) and assume that

↓|Xγ | x∩x
′ 6= ∅. By our initial observation, we have x′ ∈ D(X ′). Sin
e ↓|Xγ | x∩

x′ 6= ∅, we have ↓|X| x ∩ x′ 6= ∅ and hen
e x ∩ x′ 6= ∅. 2Lemma 21 ⊔

γ∈ΓXγ is the least upper bound of the family (Xγ)γ∈Γ in thepartially ordered 
lass PpC.Proof. Let δ ∈ Γ, we 
he
k that Xδ ⊑
⊔

γ∈ΓXγ = X . We have already seenthat, if x ∈ D(Xδ), then x ∈ D(X). So let x ∈ D(X). By de�nition, we have
x ∩ |Xδ| ∈ D(Xδ). We have to 
he
k that ↓|X| x ∩ |Xδ| ⊆ ↓|Xδ|

(x ∩ |Xδ|), solet a′ ∈ ↓|X| x ∩ |Xδ| and let a ∈ x su
h that a′ ≤|X| a. We 
an �nd ε ≥ δsu
h that a, a′ ∈ |Xε|. Then a′ ∈ ↓|Xε| x ∩ |Xδ| and sin
e Xδ ⊑ Xε, we have
↓|Xε| x ∩ |Xδ| ⊆ ↓|Xδ|

(x ∩ |Xδ|) and hen
e a′ ∈ ↓|Xδ|
(x ∩ |Xδ|) as required.Let Y be a PP su
h that Xγ ⊑ Y for ea
h γ ∈ Γ and let us show that X =

⊔

γ∈ΓXγ ⊑ Y . We already know that ⊔

γ∈Γ |Xγ | ⊑ |Y |. First, let x ∈ D(X) andlet us show that x ∈ D(Y ). So let y′ ∈ D(Y ⊥) and assume that ↓|X| x ∩ y′ 6= ∅.Let a′ ∈ ↓|X| x ∩ y′ and let a ∈ x be su
h that a′ ≤|X| a. Let δ ∈ Γ be su
hthat a, a′ ∈ |Xδ|, so that a′ ≤|Xδ| a. We have a′ ∈ ↓|Xδ| (x ∩ |Xδ|) ∩ (y′ ∩ |Xδ|),
x ∩ |Xδ| ∈ D(Xδ) (by de�nition of X) and y′ ∩ |Xδ| ∈ D(X⊥

δ ) (sin
e Xδ ⊑ Y ,and by Lemma 19). Hen
e x ∩ y′ 6= ∅, and this shows that x ∈ D(X).Next, let y ∈ D(Y ). We must show �rst that y ∩ |X | ∈ D(X), but thisresults immediately from the de�nition of X and from the fa
t that Xδ ⊑ Yfor ea
h δ ∈ Γ. Last, we must show that ↓|Y | y ∩ |X | ⊆ ↓|X| (y ∩ |X |). Let
a′ ∈ ↓|Y | y ∩ |X |. Let δ ∈ Γ be su
h that a′ ∈ |Xδ|. Sin
e Xδ ⊑ Y , we have
↓|Y | y ∩ |Xδ| ⊆ ↓|Xδ| (y ∩ |Xδ|) and we 
on
lude be
ause a′ ∈ ↓|Y | y ∩ |Xδ| and,obviously, ↓|Xδ| (y ∩ |Xδ|) ⊆ ↓|X| (y ∩ |X |). 230



4.5.2 Variable PPs and least �xpoints thereof. A variable PP is afun
tor Φ : PpCn → PpC whi
h 
ommutes with the lubs of dire
ted familiesof PPs (as usual we say then that Φ is 
ontinuous).Lemma 22 The operations (X,Y ) 7→ X ⊗ Y , X → XI and X 7→ !X arevariable PPs.Proof. We observe �rst that these operations are monotone, as in the proof ofLemma 10.So the operation (X,Y ) 7→ (X ⊸ Y ) is monotone, we prove that it is
ontinuous. Let (Xγ)γ∈Γ and (Yγ)γ∈Γ be dire
ted families of PPs, and let X and
Y be their lubs. Then (Xγ ⊸ Yγ)γ∈Γ is a dire
ted family of PPs (we have justseen that _ ⊸ _ is monotonous wrt. ⊑), let Z be its lub. We must show that
Z = X ⊸ Y . We already know that |Z| = |X ⊸ Y | and that Z ⊑ X ⊸ Y , so itwill be enough to show that D(X ⊸ Y ) ⊆ D(Z). So let t ∈ D(X ⊸ Y ) and let
γ ∈ Γ, we must prove that tγ = t ∩ |Xγ ⊸ Yγ | ∈ D(Xγ ⊸ Yγ). Let x ∈ D(Xγ),we have x ∈ D(X) and tγ · x = (t · x) ∩ |Yγ | ∈ D(Yγ). Moreover, tγ · ↓|Xγ | x =
(t · ↓|Xγ | x) ∩ |Yγ | ⊆ (t · ↓|X| x) ∩ |Yγ | ⊆ ↓|Y | (t · x) ∩ |Yγ | sin
e t ∈ D(X ⊸ Y ).Therefore, sin
e Yγ ⊑ Y , we have tγ ·↓|Xγ | x ⊆ ↓|Yγ | ((t · x) ∩ |Yγ |) = ↓|Yγ | (tγ · x)(remember that x ∈ D(Xγ)) and this 
on
ludes the proof that tγ ∈ D(Xγ ⊸ Yγ),and therefore also the proof that _ ⊸ _ is a variable PP.The operation Φ : X 7→ (!X)⊥ is monotone, and we 
on
lude by provingthat it is 
ontinuous. Let (Xγ)γ∈Γ be a dire
ted family, let X be its lub, andlet Y be the lub of the dire
ted family (Φ(Xγ))γ∈Γ. We have Y ⊑ Φ(X) and
|Y | = |Φ(X)|, so it will be su�
ient to prove that D(Φ(X)) ⊆ D(Y ). Let
A′ ∈ D(Φ(X)) and let γ ∈ Γ, we must prove that A′∩|Φ(Xγ)| ∈ D(Φ(Xγ)). Let
x ∈ D(Xγ) and assume that A′∩↓|!Xγ | (x

!) 6= ∅. Then we have A′∩↓|!X| (x
!) 6= ∅and hen
e A′ ∩ x! 6= ∅, sin
e x ∈ D(X), that is (A′ ∩ |Φ(Xγ)|) ∩ x! 6= ∅. 2Of 
ourse, any variable PP Φ : PpC → PpC admits a least �xpoint, namely

⊔

k∈N
Φk(⊤) (remember that ⊤ = (∅, {∅}), so that ⊤ is the least element of PpCfor the preorder ⊑).4.5.3 An extensional re�exive PP. The operation Φh : PpC → PpCde�ned by Φh(X) = (!(XN))⊥ is a variable PP and has therefore a least �xpointthat we denote with Dh. One 
he
ks easily (as in 2.3.3) that Dh is an extensionalre�exive obje
t in the CCC PpL!.4.6 PPs are heterogeneous logi
al relationsWe know that Rel! and ScottL! are CCCs and that ScottL! is well-pointed,so we 
an apply to these 
ategories the 
onstru
tions of 1.3.2. We shall seethat, up to 
anoni
al isomorphisms, PpL! is a sub-
artesian 
losed 
ategory of

emod(Rel!,ScottL!).If E is a set 
onsidered as an obje
t of Rel!, a point of E (that is an elementof Rel!(⊤, E)) is just a subset of E. And if S is a preordered set 
onsidered asan obje
t of ScottL!, a point of S is an element of I(S).4.6.1 Heterogeneous relation asso
iated with a PP. Given a PP X , we
an de�ne an obje
t h(X) of the 
ategory e(Rel!,ScottL!) by setting ph(X)q =31



|X | (
onsidered as a simple set), xh(X)y = |X | (
onsidered as a preordered set)and
x 
h(X) u if x ∈ D(X) and u = ↓

|X|

x .Given a morphism t ∈ PpL!(X,Y ), we de�ne a pair of morphisms h(t) =
(ph(t)q, xh(t)y) with ph(t)q = t ∈ Rel!(ph(X)q, ph(Y )q) and xh(t)y = ↓|!X⊸Y | t,whi
h belongs to ScottL!(xh(X)y, xh(Y )y).Theorem 23 The operation h de�ned above is a full and faithful 
artesian
losed fun
tor from PpL! to e(Rel!,ScottL!).Proof. Observe �rst that h(t) ∈ e(Rel!,ScottL!)(h(X), h(Y )) (with the nota-tions above). Indeed, due to the de�nition of 
h(X) and of 
h(Y ), this amountsto 
he
king that, for any x ∈ D(X), one has t · x! ∈ D(Y ) and ↓|Y | (t · x

!) =

↓|!X⊸Y | t · (↓|X| x)
!. This holds by Lemma 18.Let us 
he
k the fun
toriality of h, so let s ∈ PpL!(X,Y ) and t ∈ PpL!(Y, Z).One has �rst ph(t ◦ s)q = t ◦ s = ph(t)q ◦ ph(s)q. Next, we have xh(t ◦ s)y =

↓|!X⊸Z| (t ◦ s). Let x ∈ D(X). We have, applying again Lemma 18,
xh(t ◦ s)y · ( ↓

|X|

x)! = ↓
|!X⊸Z|

(t ◦ s) · ( ↓
|X|

x)!

= ↓
|Z|

((t ◦ s) · x!)

= ↓
|Z|

(t · ((s · x!)!))

= ↓
|!Y ⊸Z|

t · ( ↓
|Y |

(s · x!))!

= ↓
|!Y ⊸Z|

t · ( ↓
|!X⊸Y |

s · ( ↓
|X|

x)!)!

= ( ↓
|!Y ⊸Z|

t ◦ ↓
|!X⊸Y |

s) · ( ↓
|X|

x)!and hen
e xh(t ◦ s)y = xh(t)y ◦ xh(s)y be
ause the 
ategory ScottL! is well-pointed, and be
ause any element of I(|X |) 
an be written ↓|X| x for some
x ∈ D(X) (remember that I(|X |) ⊆ D(X)). One proves similarly that identitiesare preserved.Fullness of h results again from Lemma 18 (used in the 
onverse dire
tion).It remains to prove that this fun
tor is 
artesian 
losed.Let (Xi)i∈I be a �nite family of PPs and let X = &i∈I Xi, so that ph(X)q =

&i∈Iph(Xi)q and xh(X)y = &i∈Ixh(Xi)y. Moreover, ph(πi)q = πi and xh(πi)y =
↓|!Xi⊸Xi| πi = πS

i . Last, given x = 〈xi〉i∈I ∈ P(|X |) and u = 〈ui〉i∈I ∈ I(|X |),we have x 
h(X) u i� x ∈ D(X) and ↓|X| x = u. The �rst of these two 
on-ditions is equivalent to ∀i ∈ I xi ∈ D(Xi) and the se
ond one is equivalent to
∀i ∈ I ↓|Xi| xi = ui and therefore x 
h(X) u ⇔ ∀i ∈ I xi 
Xi

ui and this showsthat h 
ommutes with 
artesian produ
ts.It remains to show that h 
ommutes with the fun
tion spa
e 
onstru
tion,so let X and Y be PPs and let Z = (X ⇒ Y ) = (!X ⊸ Y ). We 
learly have
ph(Z)q = ph(X)q ⇒ ph(Y )q and xh(Z)y = xh(X)y ⇒ xh(Y )y. Next we have
ph(Ev)q = Ev and xh(Ev)y = ↓|Z| Ev = EvS (see 3.4.1). Finally, let t ∈ P(|Z|)and let w ∈ I(|Z|). Assume �rst that t 
h(Z) w, that is t ∈ D(Z) and ↓|Z| t = w.32



We must prove that t 
h(X)⇒h(Y ) w. So let x ∈ P(|X |) and u ∈ I(|X |) be su
hthat x 
X u, that is x ∈ D(X) and ↓|X| x = u. By de�nition of t(x) and
w(u) (see Se
tion 1.1), we have t(x) = t · x! and w(u) = w · u! = (↓|Z| t) ·

(↓|X| x)
! = ↓|Y | (t(x)) by Lemma 18. By the same lemma, we have t(x) ∈ D(Y ),and hen
e t(x) 
h(Y ) w(u) as required. Conversely, assume that t 
h(X)⇒h(Y )

w; we must prove that t 
h(Z) w. We apply again Lemma 18, so let x ∈

D(X). We have x 
X ↓|X| x and hen
e t(x) ∈ D(Y ) (that is t · x! ∈ D(Y )) and
↓|Y | (t · x

!) = w · (↓|X| x)
! (by de�nition of 
h(X)⇒h(Y )). We prove that ↓|Z| t =

w. Let (m, b) ∈ |Z|. We have ↓|Y | (t · (↓|X| supp(m))!) = w · (↓|X| supp(m))!.Assume �rst that (m, b) ∈ ↓|Z| t and let (m′, b′) ∈ t be su
h that (m, b) ≤|Z|

(m′, b′). Then m′ ∈ (↓|X| supp(m))! and hen
e b ∈ ↓|Y | (t · (↓|X| supp(m))!). Solet m′′ ∈ (↓|X| supp(m))! be su
h that (m′′, b) ∈ w. Sin
e w ∈ I(|Z|), we have
(m, b) ∈ w. Conversely, assume that (m, b) ∈ w. Sin
e m ∈ (↓|X| supp(m))!,we have b ∈ ↓|Y | (t · (↓|X| supp(m))!) so we 
an �nd (m′, b′) ∈ t su
h that m′ ∈

(↓|X| supp(m))! and b ≤ b′, that is (m, b) ≤|Z| (m′, b′), whi
h show that (m, b) ∈

↓|Z| t. Therefore, x being an element of D(X), we have ↓|Y | (t · x
!) = ↓|Z| t ·

(↓|X| x)
! and so t ∈ D(Z) by Lemma 18. This 
on
ludes the proof that t 
Z w,and therefore we have h(Z) = h(X) ⇒ h(Y ). Therefore h is a CCC fun
tor.

2So we 
an 
onsider PpL! as a sub-CCC of e(Rel!,ScottL!).4.7 A fun
tor from PPs to PER-obje
tsGiven a PP X , we obviously de�ne a PER (denoted with BX for the time being)on P(|X |) by saying that x BX y if x, y ∈ D(X) and ↓X x = ↓X y. Observe that
x BX ↓X x for any x ∈ D(X).Lemma 24 For any PP X, one has B⊥

X = BX⊥ and therefore B⊥⊥
X = BX .Proof. Let x′, y′ ⊆ |X |. Assume �rst that x′ B⊥

X y′ and let us show that
x′ BX⊥ y′. We prove �rst that x′ ∈ D(X)⊥ , so let x ∈ D(X), and assumethat x′ ∩ ↓|X| x 6= ∅, we must show that x′ ∩ x 6= ∅. This results from thefa
t that x BX ↓|X| x. Similarly we get y′ ∈ D(X)⊥ . We must show now that
↑|X| x

′ = ↑|X| y
′, so let a ∈ ↑|X| x

′. This means that ↓|X| a ∩ x′ 6= ∅. Sin
e
↓|X| a BX ↓|X| a, we get ↓|X| a ∩ y

′ 6= ∅, that is a ∈ ↑|X| y
′.Conversely, assume that x′ BX⊥ y′ and let us show that x′ B⊥

X y′. So let
x, y ⊆ |X | be su
h that x BX y, and assume that x∩x′ 6= ∅; we must show that
y ∩ y′ 6= ∅. We have a fortiori ↓|X| x ∩ ↑|X| x

′ 6= ∅, that is ↓|X| y ∩ ↑|X| y
′ 6= ∅.But then, sin
e y ∈ D(X) and y′ ∈ D(X)⊥ , we get y ∩ y′ 6= ∅. 2We 
an rephrase this result as follows.Lemma 25 For any PP X, ε(X) = (|X |, BX) is a PER-obje
t and we have

ε(X⊥) = ε(X)⊥ .The relation BX 
an therefore also be denoted with ∼ε(X).33



Lemma 26 Let X and Y be PPs and let s1, s2 ∈ P(|X ⊸ Y |). One has
s1 ∼ε(X⊸Y ) s2 i� for all x1, x2 ∈ P(|X |), if x1 ∼ε(X) x2 then s1 ·x1 ∼ε(Y ) s2 ·x2.This means that ε(X ⊸ Y ) = ε(X) ⊸ ε(Y ).Proof. Assume �rst that s1 ∼ε(X⊸Y ) s2. Let x1, x2 ⊆ |X | be su
h that
x1 ∼ε(X) x2, we want to show that s1 ·x1 ∼ε(Y ) s2 ·x2. Let y′1, y′2 ⊆ |Y | be su
hthat y′1 ∼ε(Y ⊥ ) y

′
2. One has (s1 ·x1)∩y′1 6= ∅ i� s1∩(x1×y′1) 6= ∅ and, sin
e x1 ∈

D(X) and y′1 ∈ D(Y )⊥ , this latter 
ondition holds i� s1∩↓|X⊗Y ⊥ | (x1 × y′1) 6= ∅,whi
h in turn is equivalent to ↓|X⊸Y | s1 ∩ ↓|X⊗Y ⊥ | (x1 × y′1) 6= ∅ sin
e s1 ∈
D(X ⊸ Y ). Sin
e ↓|X⊸Y | s1 = ↓|X⊸Y | s2 (be
ause s1 ∼ε(X⊸Y ) s2) and
↓|X⊗Y ⊥ | (x1 × y′1) = ↓|X⊗Y ⊥ | (x2 × y′2) (be
ause x1 ∼ε(X) x2 and y′1 ∼ε(Y ⊥ ) y

′
2),we 
on
lude that (s1 · x1) ∩ y′1 6= ∅ ⇔ (s1 · x2) ∩ y′2 6= ∅, and this shows that

s1 · x1 ∼ε(Y ) s2 · x2 by Lemma 24.Conversely, assume that s1 · x1 ∼ε(Y ) s2 · x2 whenever x1 ∼ε(X) x2, andlet us show that s1 ∼ε(X⊸Y ) s2. Observe that our assumption implies that
s1 · x1 ∼ε(Y ) s1 · x2 (indeed, x2 ∼ε(X) x2, hen
e s1 · x2 ∼ε(Y ) s2 · x2 and we 
anapply transitivity of the relation ∼ε(Y )). We show �rst that s1 ∈ D(X ⊸ Y ).So let x ∈ D(X). We have x ∼ε(X) x and hen
e s1 ·x ∼ε(Y ) s2 ·x, whi
h implies
s1 · x ∈ D(X). Let b ∈ s1 · ↓|X| x, we show that b ∈ ↓|Y | (s1 · x). We have
x ∼ε(X) ↓|X| x and hen
e s1 · x ∼ε(Y ) s1 · ↓|X| x whi
h implies ↓|Y | (s1 · x) =
↓|Y | (s1 · ↓|X| x) and we 
on
lude sin
e b ∈ ↓|Y | (s1 · ↓|X| x). By Proposition 15,we have s1 ∈ D(X ⊸ Y ), and of 
ourse the same holds for s2 by symmetry. Itremains to show that ↓|X⊸Y | s1 = ↓|X⊸Y | s2.Let (a, b) ∈ ↓|X⊸Y | s1. This means that ↓|X⊗Y ⊥ | (a, b) ∩ s1 6= ∅, that is
(s1 · ↓|X| a) ∩ ↑|Y | b 6= ∅. But ↓X a ∼ε(X) ↓X a and hen
e s1 · ↓|X| a ∼ε(Y )

s2 · ↓|X| a and sin
e ↑|Y | b ∼
⊥
ε(Y ) ↑|Y | b, we have (s2 · ↓|X| a) ∩ ↑|Y | b 6= ∅, that is

(a, b) ∈ ↓|X⊸Y | s2. 2In parti
ular, for any PPsX and Y , one hasPpL(X,Y ) = PerL(ε(X), ε(Y ))and so the operation ε is a full and faithful fun
tor, whi
h is the identity onmorphisms. Indeed, 
omposition of morphisms is de�ned in the same way inboth 
ategories, as the standard 
omposition of relations.Lemma 27 Let X and Y be PPs. We have ε(X ⊗ Y ) = ε(X) ⊗ ε(Y ), that is,the fun
tor ε is stri
t monoidal.Proof. Apply the fa
t that X ⊗ Y = (X ⊸ Y ⊥)⊥ , Lemma 25 and Lemma 26.
2Lemma 28 The fun
tor ε 
ommutes with all 
artesian produ
ts.Lemma 29 Let X be a PP, one has ε(!X) = !ε(X).Proof. By Lemma 25, it su�
es to show that ε(!X)⊥ = (!ε(X))⊥ . Let A′

1, A
′
2 ⊆

|!X|.On the one hand, A′
1 ∼ε(!X)⊥ A′

2 means that A′
1 ∼⊥

ε(!X) A
′
2, that is

∀A1, A2 ⊆ |!X| A1 ∼ε(!X) A2 ⇒ (A1 ∩A
′
1 6= ∅ ⇔ A2 ∩A

′
2 6= ∅) ,34



and remember that A1 ∼ε(!X) A2 means that A1, A2 ∈ D(!X) and ↓|!X|A1 =
↓|!X|A2. By Lemma 25, A′

1 ∼ε(!X)⊥ A′
2 is also equivalent to A′

1 ∼ε((!X)⊥ ) A
′
2,that is

A′
1, A

′
2 ∈ D(!X)⊥ and ↑

|!X|

A′
1 = ↑

|!X|

A′
2 . (2)On the other hand, A′

1 ∼(!ε(X))⊥ A′
2 means that A′

1 ∼⊥
!ε(X) A

′
2, that is

∀x1, x2 ⊆ |X | x1 ∼ε(X) x2 ⇒ (x!
1 ∩A

′
1 6= ∅ ⇔ x!

2 ∩A
′
2 6= ∅)and remember that x1 ∼ε(X) x2 means that x1, x2 ∈ D(X) and ↓|X| x1 = ↓|X| x2.Hen
e x1 ∼ε(X) x2 implies x!

1, x
!
2 ∈ D(!X) and ↓|!X| x

!
1 = (↓|X| x1)

! =

(↓|X| x2)
! = ↓|!X| x

!
2, that is x!

1 ∼ε(!X) x
!
2 and hen
e A′

1 ∼⊥
ε(!X) A

′
2 ⇒ A′

1 ∼⊥
!ε(X)

A′
2.Let us prove the 
onverse impli
ation, so assume that A′

1 ∼⊥
!ε(X) A

′
2 andlet us prove that property (2) holds. We prove �rst that A′

1 ∈ D(!X)⊥ . Solet x ∈ D(X) and assume that A′
1 ∩ x! = ∅. Sin
e x ∼ε(X) ↓|X| x, we have

x! ∼!ε(X) (↓|X| x)
! = ↓|!X| (x

!), and hen
e A′
1 ∩ ↓|!X| (x

!) = ∅ sin
e we have
A′

1 ∼⊥
!ε(X) A

′
1. It remains to show that ↑|!X|A

′
1 = ↑|!X|A

′
2, we only prove the�⊆� in
lusion. So let m ∈ |!X | and assume that m ∈ ↑|!X|A
′
1. This means that

A′
1 ∩ ↓|!X|m 6= ∅, and sin
e ↓|!X|m ∼!ε(X) ↓|!X|m, we have m ∈ ↑|!X|A

′
2. 2Theorem 30 The fun
tor ε is an LL-fun
tor.Proof. This results from Lemmas 26, 27, 28 and 29, from the fa
t that ε a
tstrivially on morphisms and from the fa
t that the operations on morphisms arede�ned in the same way in both 
ategories. 2It follows that ε is a 
artesian 
losed fun
tor from PpL! to PerL!.4.7.1 Continuity of ε. Let X and Y be PPs su
h that X ⊑ Y . Sin
e

η|X|,|Y | ∈ PpL(X,Y ) and sin
e ε a
ts trivially on morphisms, we have η|X|,|Y | ∈
PerL(ε(X), ε(Y )). Similarly, we have ρ|X|,|Y | ∈ PerL(ε(Y ), ε(X)). Therefore
ε(X) ⊑ ε(Y ), that is ε is a monotone 
lass fun
tion from PpC to PerC.Theorem 31 The monotone 
lass fun
tion ε : PpC → PerC is 
ontinuous.Proof. Let (Xγ)γ∈Γ be a dire
ted family of PPs and let X =

⊔

γ∈ΓXγ ∈ PpC.We already know that |X | =
⋃

γ∈Γ |Xγ | and so we have to prove that, given
x, y ⊆ |X |, the two following 
onditions are equivalent:1. x, y ∈ D(X) and ↓|X| x = ↓|X| y2. for all γ ∈ Γ, x∩|Xγ |, y∩|Xγ | ∈ D(Xγ) and ↓|Xγ | (x ∩ |Xγ |) = ↓|Xγ | (y ∩ |Xγ |).That (1) implies (2) results from the monotoni
ity of ε (for ea
h γ ∈ Γ, we have
Xγ ⊑ X and hen
e ε(Xγ) ⊑ ε(X)), so let us prove the 
onverse and assume that(2) holds. That x, y ∈ D(X) results dire
tly from the de�nition of X (see 4.5.1).We 
on
lude by 
he
king that ↓|X| x ⊆ ↓|X| y. For this, it is su�
ient to have
x ⊆ ↓|X| y, so let a ∈ x. Let γ ∈ Γ be su
h that a ∈ x ∩ |Xγ |. By assumption,
a ∈ ↓|Xγ | (y ∩ |Xγ |), so let b ∈ y ∩ |Xγ | be su
h that a ≤|Xγ | b. Sin
e |X | is the35



lub of the |Xγ |s in the partially ordered 
lass ScottC, we have a ≤|X| b andthis 
on
ludes the proof. 24.7.2 Image of the re�exive obje
t of PpL!. Remember from 4.5.3 thatwe have de�ned a re�exive obje
tDh inPpL! as the least �xpoint of a 
ontinuous
lass fun
tion Φh : PpC → PpC, in other words Dh =
⊔

n∈N
Φn

h
(⊤). By
ontinuity of ε, we have ε(Dh) =

⊔

n∈N
ε(Φn

h
(⊤)) =

⊔

n∈N
Φn

e (⊤) = De (see 2.3.3)sin
e ε is an LL-fun
tor from PpL to PerL4.8 A fun
tor from PPs to preordersWe de�ne a fun
tor σ from PpL to ScottL. Given a PP X , we set σ(X) = |X |,whi
h is a preorder. Given two PPs X and Y and t ∈ PpL(X,Y ) = D(X ⊸ Y ),we set
σ(t) = ↓

|X⊸Y |

t ∈ I(|X ⊸ Y |) ≃ ScottL(|X |, |Y |) .In other words, the linear map σ(t) : I(|X |) → I(|Y |) is given by σ(t)(x) =
↓|Y | (t · x) (see Lemma 12).Lemma 32 The operation σ on morphisms is a fun
tor, that is σ(IdX) = IdS

Xand, given s ∈ PpL(X,Y ) and t ∈ PpL(Y, Z), one has σ(t · s) = σ(t) · σ(s).Proof. See 4.2.1, where the proof is given. 2Theorem 33 The fun
tor σ is an LL-fun
tor.Proof. This is a routine veri�
ation.As an example, let X and Y be PPs. We have σ(!X) = |!X| = !|X | = !σ(X).Let t ∈ PpL(X,Y ), we prove that σ(!t) = !σ(t). Let (p, q) ∈ |!X| × |!Y |. If
(p, q) ∈ σ(!t), we 
an �nd (p′, q′) ∈ !t su
h that p′ ≤|!X| p and q ≤|!Y | q

′; weshow that (p, q) ∈ !σ(t) = !(↓|X⊸Y | t). Let b ∈ q, let b′ ∈ q′ su
h that b ≤|Y | b
′.Let a′ ∈ p′ be su
h that (a′, b′) ∈ t (sin
e (p′, q′) ∈ !t). Let a ∈ p be su
h that

a′ ≤|X| a (sin
e p′ ≤|!X| p). We have (a′, b′) ∈ t and (a, b) ≤|X⊸Y | (a′, b′),hen
e (a, b) ∈ σ(t) and this shows that (p, q) ∈ !σ(t). Assume 
onversely that
(p, q) ∈ !σ(t) and let us show that (p, q) ∈ σ(!t). For ea
h b ∈ q, let us 
hoose
l(b) ∈ p su
h that (l(b), b) ∈ σ(t) = ↓|X⊸Y | t. Let (ul(b), ur(b)) ∈ t be su
hthat ul(b) ≤|X| l(b) and b ≤|Y | ur(b). We pi
k p′ ∈ !|X | and q′ ∈ !|Y | su
hthat supp(p′) = {ul(b) | b ∈ supp(q)} and supp(q′) = {ur(b) | b ∈ supp(q)}. Wehave p′ ≤!|X| p (if a′ ∈ p′, we 
an 
hoose b ∈ q su
h that a′ = ul(b), and hen
e
a′ ≤|X| l(b) ∈ p), q ≤!|Y | q

′ (if b ∈ q, we have b ≤|Y | ur(b) ∈ q′) and (p′, q′) ∈ !t(let b′ ∈ q′; we 
an 
hoose b ∈ q su
h that b′ = ur(b), we have ul(b) ∈ p′ and
(ul(b), ur(b)) ∈ t). This shows that (p, q) ∈ σ(!t).Last, let us 
he
k that σ(pX) = pS

σ(X). Let (p, P ) ∈ !|X | × !!|X |, so that
P 
an be written P = [p1, . . . , pn] with p1, . . . , pn ∈ |!X |. Assume �rst that
(p, P ) ∈ σ(pX) = ↓|!X⊸!!X| pX and let us show that (p, P ) ∈ pS

σ(X), that is
p1 + · · · + pn ≤!|X| p. So let a ∈ p1 + · · · + pn, and let i ∈ {1, . . . , n} besu
h that a ∈ pi. Let (p′, P ′) ∈ pX be su
h that p′ ≤!|X| p and P ≤!!|X|

P ′, so that P ′ = [p′1, . . . , p
′
k] with p′ = p′1 + · · · + p′k. Let j ∈ {1, . . . , k}36



be su
h that pi ≤!|X| p
′
j . Let a′ ∈ p′j be su
h that a ≤|X| a

′ (rememberthat a ∈ pi). Then we have a′ ∈ p′ and hen
e we 
an �nd a′′ ∈ p su
h that
a′ ≤|X| a

′′. This shows that p1 + · · · + pn ≤!|X| p as required. Conversely,assume that (p, P ) ∈ pS

σ(X) (that is p1 + · · · + pn ≤!|X| p) and let us show that
(p, P ) ∈ σ(pX). We have (p1 + · · · + pn, P ) ∈ pX by de�nition of pX and wehave (p, P ) ≤|!X⊸!!X| (p1 + · · · + pn, P ) sin
e p1 + · · · + pn ≤!|X| p. Therefore
(p, P ) ∈ σ(pX) as announ
ed. 2It follows that σ is a 
artesian 
losed fun
tor from PpL! to ScottL!.It is straightforward from the de�nition of PpC that σ is a 
ontinuous 
lassfun
tion from PpC to ScottC. Sin
e σ is also an LL-fun
tor from PpL to
ScottL, it follows that σ(Dh) = Ds (as in 4.7.2). A

ording to the de�nitionsof Se
tion 1.3.2, we 
an summarize the situation as follows (at least as far asCCCs are 
on
erned).Theorem 34 The CCC ScottL! represents the extensional 
ollapse of the CCC
Rel! in the sense of 1.3.2. The re�exive obje
t Ds of ScottL! represents theextensional 
ollapse of the re�exive obje
t Dr of Rel! in the sense of 1.3.4.Of 
ourse, the results presented in this paper are more general than what isstated in that theorem, sin
e they 
on
ern the linear stru
tures of the models,not only their 
artesian 
losed stru
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