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Abstract

We show that the extensional collapse of the relational model of linear
logic is the model of prime-algebraic lattices, a natural extension to linear
logic of the well known Scott semantics of the lambda-calculus.

Introduction

Linear Logic arose from denotational investigations of second order intuitionistic
logic by Girard (system F [Gir86]). He observed that the qualitative domains?
used for interpreting system F can be assumed to be generated by a binary rela-
tion on a set of vertices (the web): such a structure is called a coherence space.
The category of coherence spaces, with linear maps (stable maps preserving
arbitrary existing unions) as morphisms, has remarkable symmetry properties
that led him to the sequent calculus of LL, and then to proof-nets [Gir87] and

to the Geometry of Interaction.

Scott semantics of LL. In spite of Barr’s observation [Bar79] that the cat-
egory of complete lattices and linear maps is *-autonomous, it was a common
belief in the Linear Logic community that the standard Scott semantics of the
lambda-calculus (Scott domains and continuous maps) cannot provide models
of classical linear logic. Huth showed however in [Hut94] that prime-algebraic
complete lattices and lub-preserving maps provide a model of classical LL whose
associated CCC (the Kleisli category of the “!” comonad) is a full-CCC of the
category of Scott domains and continuous maps. Huth considered however his
model as degenerate, as it identifies the @ and % connectives of LL3. A few
years later, Winskel rediscovered the same model in a semantical investigation

*This work as also been partly funded by the ANR project CHOCO:
http://choco.pps.jussieu.fr.

IQualitative domains can be seen as particular dI-domains [Ber78].

2The pure lambda-calculus, or the Turing-complete functional language PCF [Plo77], can
also be interpreted in coherence spaces.

3The interpretation of proofs in this model is non-trivial and interesting nevertheless. Asin
the case of the relational model (see below), it is possible to endow this model which additional
structures which separate ® and %%, without modifying the interpretation of proofs.



of concurrency [Win99] (see also the beginning of [Win04] for instance). As
a particular case of a more general profunctor construction, he showed indeed
that the category whose objects are preordered sets and where the morphisms
from a preorder S to a preorder T are the functions from the set Z(.S) of down-
ward closed subsets of S to the set Z(7') which preserve arbitrary unions is a
model of classical LL. This category is equivalent to Huth’s model, but we prefer
Winskel’s approach, as it insists on considering preorders (and not lattices) as
objects: preorders are similar to the webs of coherence spaces, to the sets of the
relational model, and represent the prime elements of the corresponding lattices.
Moreover, the LL constructions are easier to describe in terms of preorders than
in terms of lattices. Tt is fair to mention also that Krivine [Kri90, Kri93] used the
same construction (set Z(S) of “initial segments” of a preorder S) for describing
models of the pure lambda-calculus and mentioned that these preorders give
rise to a model of LL, with linear negation corresponding to taking the opposite
preorder.

Relational semantics. On the other hand, when one applies the Occam’s
Razor Principle to the coherence space semantics, one is led to interpreting for-
mulae as sets (the webs, without any structure) and proofs as relations between
these sets. Something tricky happens during this process: since coherence van-
ishes, one cannot restrict the set interpreting an “of course” to contain only finite
cliques as Girard did in [Gir86], the best one can do is take all finite subsets.
But then, the dereliction relation (from !X to X), which is the set of all pairs
({a},a) where a € X, is no more a natural transformation. This problem can
easily be solved by replacing finite sets with finite multisets, but the effect of this
choice is that the corresponding Kleisli category is no more well-pointed. One
defines in that way the relational semantics of linear logic, which is certainly its
simplest (and, maybe, most canonical) denotational model.

Coefficients. One way of turning the CCC associated with the relational
model into a well-pointed category is by enriching it with coefficients: instead
of taking subset of X x Y as morphisms from X to Y, take elements of CX*V,
where C'is a suitable set (or class) of coefficients; a canonical choice consists in
taking C' = Set, the class of all sets. An element of Set**Y should be con-
sidered as a matrix whose rows are indexed by the elements of Y, and columns
by the elements of X: this is basically the idea of Girard’s quantitative seman-
tics [Gir88], which is presented as a model of intuitionistic logic, but is indeed a
model of LL (Girard wrote this paper before he discovered LL), see [Has02]. It
is also an instance of the already mentioned profunctor constructions [Win99].

Finite coefficients belonging to more standard algebraic structures (rigs,
fields, etc.) can also be considered, but this requires adding some structure
to these sets for guaranteeing the convergence of the sums which appear when
multiplying the matrices, see [Ehr02, Ehr05, DE0S§]: the effect of such additional
structure is that objects are equipped with a topology for which the (generally
infinite) sums involved in multiplying matrices converge.

Extensional collapse of the relational model. The other way of making
the relational model well-pointed is by performing an extensional collapse. This
operation is easily understood in the type hierarchy associated with the cartesian
closed Kleisli category of the finite multiset comonad on the category of sets and



relations: each type A is interpreted by its relational interpretation [A] (a simple
set), together with a partial equivalence relation (PER) ~4 on P([4]). When A
is the type B = C, an element of P([A]) is a morphism from B to C, and two
such morphisms f and g are ~p_ c-equivalent if, for any x,y such that x ~ 4 vy,
one has f(z) ~p g(y). In other words, this PER is a logical relation*, and the
extensional collapse of this type hierarchy is obtained by quotienting each set
P([A]) by the PER ~4 (one considers only the elements = of P([A]) such that
x ~4 x, which are often called invariant elements).

Content of the paper. We prove that this extensional collapse of the rela-
tional model coincides precisely with the Scott model of preorders. The first
problem we have to face is to give a precise meaning to this statement. We start
from the work of Bucciarelli [Buc97], recasting it in a categorical setting: given
a CCC C and a well-pointed CCC &£, we want to express what it means for £
to “be” (we shall say to “represent”’) the extensional collapse of C. For this, we
introduce two categorical constructions.

e The homogeneous collapse category e(C), whose objects are pairs (U, ~)
where U is an object of C and ~ is a partial equivalence relation (PER) on
the points of U (that is on C(T,U) where T is the terminal object of C).
The morphisms are those of C which preserve this additional structure,
and it is easy to see that this category is a CCC. The important point
in this definition is that the object of morphisms from (U, ~) to (V, ~) is
(W, ~w) where W is the object of morphisms from U to V in C and the
relation ~yy is defined as a logical relation.

e The heterogeneous collapse category e(C, £), whose objects are triples (U, E, II)
where U is an object of C, E is an object of £ and |- CC(T,U) x E(T, E)
should be understood as a realizability predicate: x IF { means intuitively
that ¢ represents the “extensional behavior” of x. The morphisms are
the pairs (f, ) of morphisms which preserve the relation I, and again,
it is easy to check that this category is a CCC. The important point is
that, when constructing the object of morphisms, I is defined as a logical
relation.

These two constructions are possible for any CCCs C and €. We say that &
represents the extensional collapse of £ if

e ¢(C,€) contains a “sufficiently large” (in a reasonable sense, to be made
precise later) sub-CCC H whose objects (U, E,IF) are modest, meaning
that IF is a partial surjection from C(T,U) to (T, E), and therefore in-
duces a PER on C(T,U) (observe that £(T, E) can be considered as the
quotient of C(T,U) by this PER)

e and the functor H — e(C) which maps (U, E,IF) to (U, ~), where ~ is the
PER induced by IF (and maps a morphism (f, ) to f), is a CCC functor
(that is, preserves the CCC structure on the nose).

The nice feature of this definition is that it is compatible with the standard
one (based on type hierarchies) and that it can easily be extended, for instance,

4Logicians would speak of a binary reducibility predicate.



to a simple and general definition of what it means for a model of the pure
lambda-calculus to represent the extensional collapse of another one.

It would be nice of course to have a similar definition of the extensional
collapse of a categorical model of LL, and not only of CCCs, but since the defi-
nition of such a model is already quite complicated, we prefer not to address this
issue. Instead, we perform the CCC constructions defined above concretely, in a
completely linear setting, obtaining both CCCs e(C) and H as Kleisli construc-
tions of suitable exponential comonads: in the present paper, C is the Kleisli
category Rel; associated with the LL model of sets and relations, and £ is the
Kleisli category ScottL; associated with the LL model of preorders and linear
maps between the associated complete lattices.

After having introduced the necessary preliminary material, we first build in
Section 2.2 a linear version of the category e(Rel;). More precisely, we define
a model of LL denoted as PerL, whose objects are called PER-objects: they
are sets equipped with a PER on their powersets. The Kleisli category PerL,
is isomorphic to e(Rel,) (or, more precisely, to a full sub-CCC of e(Rel,)).

Then, in Section 3, we describe the Scott model ScottL of LL. The objects
are preordered sets, and a morphism from S to T is a linear map (that is, a map
preserving all unions) from Z(S) (the set of all downward-closed subsets of S) to
Z(T). As far as sets are concerned, the multiplicative and additive constructions
in this model coincide with those of the model Rel (more things have to be said
about the associated preorders: for instance, St is the set S equipped with the
opposite of the preorder of S). As to the exponential, the natural choice would
be to define !S as the set of finite subsets of S with a suitable preorder: with
that choice, the Kleisli category ScottL; is a sub-CCC of the CCC of complete
lattices and Scott-continuous functions. But we can obtain the same effect by
defining !S' as the set of all finite multisets of elements of S, and this will greatly
simplify our constructions, because with this choice, the set interpreting an LL
formula in Rel coincides with the set interpreting the same formula in ScottL
(remember that this set is equipped with a preorder).

In Section 4, we introduce the linear version of the “heterogeneous category”
H of the construction described above. An object should be a triple (X, .5,IF)
where X is a set, S is a preordered set and IF C P(X) x Z(S) (which has to
be a partial surjection). By our choice above for the definition of 1S, we can
assume X = S, so as a first simplification, we can assume our objects to be pairs
(S,IF) where S is a preordered set and I C P(S) x Z(S) has to be a partial
surjection. A careful analysis shows that, when x I u, we must have u = |
(the downward closure of x in S), so that, for defining the partial surjection I,
we only need to know its domain D. So an object of our category will be a pair
(S, D) where D C P(S). What condition should satisfy D? As usual, it should
be equal to its double dual for a suitable notion of duality: here, we say that
z,7' C S arein duality if 2’ N | o # 0 = 2’ Na # 0, that is 2’ cannot separate x
from its downward closure. We show that these objects (called “preorders with
projections”), with suitable linear morphisms, form a model of linear logic PpL,
whose associated Kleisli category PpL, can be considered as a full sub-CCC of
e(Rel,, ScottL,), of which all objects are modest. And we show that ScottL,
represents the extensional collapse of Rel, in the sense explained above. We
actually exhibit a functor from PpL to PerL which preserves the structure of
LL model and which induces the required CCC functor from PpL, to PerL;.



In the course of these constructions, we also build models of the pure lambda-
calculus, using notions of inclusions between the various structures we consider,
organizing them into complete partially ordered classes, and using the fact
that the logical constructions (tensor product, orthogonality etc) are continuous
wrt. these inclusions. This provides a simple representation of the extensional
collapse of the reflexive object in Rel; we introduced in [BEMO07], as a reflexive
object in the CCC of complete lattices and continuous maps, which is probably
isomorphic to Scott’s standard D,.
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1 Preliminaries

1.1 Notations

A finite multiset p of elements of S is a map p : S — N such that p(a) = 0 for
almost all a € S. We write a € p for p(a) > 0, and use supp(p) for the support
of p which is the set {a € S | a € p}. We use p + ¢ for the pointwise sum of
multisets, and 0 for the empty multiset.

Given a category C and two morphisms f € E(E, F') and z € C(T, E) (where
T is the terminal object of C that we assume to exist), we write f(z) instead of
f o x because we consider x as a “point” (an “element”) of E.

1.2 Cartesian closed categories and models of the pure
lambda-calculus

We briefly recall that a category C is cartesian closed (is a CCC) if each finite
family (F;);cr of objects of C has a cartesian product &;c5 E; (in particular,
it has a terminal object T) together with projections m; € C(&;er Ei, E;) such
that, for any family (f;)ic; with f; € C(F, E;) there is an unique morphism
(fi)ier € C(F, &ier E;) such that 7; o (fi)ier = f; for each j and if, given two
objects F and F of C, there is a pair (E = F, Ev), called the object of morphisms
from E to F, together with an evaluation morphism Ev € C((E = F) & E, F)



such that, for any f € C(G & E, F), there is an unique Cur(f) € C(G,E = F)
such that Ev o (Cur(f) & Idg) = f.

Given two CCCs C and D, a functor F : C — D will be said to be a cartesian
closed functor if it preserves the cartesian closed structure on the nose. This
means that -7:(&1'61 El) = &ier f(Ei), .7:(71'1') = T, f(E = F) = .7:(E) = .7:(F)
and F(Ev) = Ev.

A reflexive object in a CCC C is a triple (H,app,lam) where H is an object
of C,app € C(H,H = H) and lam € C(H = H, H) satisfy app o lam = ldy— 5.
One says moreover that (H,app,lam) is eztensional® if lam o app = Idy. If
(H,app,lam) is a reflexive object in C and if F : C — D is a CCC functor,
then (F(H), F(app), F(lam)) is a reflexive object in D, which is extensional if
(H, app, lam) is extensional.

Let (H,app,lam) be a reflexive object in the CCC C. Then, given any
lambda-term M and any repetition-free list of variables ¥ = x1,...,x, which
contains all the free variables of M (such a list will be said to be adapted to
M), one defines (MY € C(H™, H) by induction on M ([z;]] = m;, Ma N =
lam o Cur([N]gm) and [(N) P]H = Ev o (app o [N]Z,[P|)). If M and M’
are (-equivalent and 7 is adapted to M and M’, we have (MY = M. 1f
(H,app,lam) is extensional, we have [M]¥ = [M']! when M and M’ are (n-
equivalent.

If #:C — Dis a CCC functor then, for any lambda-term M, we have

F(IME) = [M]f(H) where [M]f(H) is the interpretation of M in the reflexive

T

object (F(H), F(app), F(lam)).

1.3 Intuitionistic extensional collapse

The present analysis of the extensional collapse of a model of the typed lambda-
calculus is based on [Buc97].

From the usual intuitionistic viewpoint, the extensional collapse is a log-
ical relation. More specifically, consider the hierarchy of simple types based
on some type atoms «, (..., and intuitionistic implication =. Consider a
cartesian closed category C (with terminal object T, cartesian product & and
function space =). Given a valuation I from type atoms to objects of C, we
have an interpretation of types [A]; € C. The extensional collapse of this inter-
pretation is a type-indexed family of partial equivalence relations (~,), where
~aC C(T,[A]r)?. This relation is defined by induction on types.

e At each basic type «, the relation ~,, coincides with equality on C(T, I(«)).

e Then, given f,g € C(T,[A = Blr) = C(T,[A]; = [Bl1) = C([Al1, [Bl1),
one has [ ~aop g if, for all z,y € C(T,[A]r) such that x ~4 y, one has
f(@) ~p g(y) (where we recall that we write f(z) instead of f o x when
the source of x is the terminal object).

By induction on types, one proves easily that ~4 is a PER on C(T,[4];) for
each type A. Since the family of PERs (~4) is defined as a logical relation,
it is compatible with the syntax of the simply typed lambda-calculus, in the
sense that, if M is a closed term of type A, its semantics [M]; € C(T,[A]r)

5This notion of extensionality, which corresponds to the 7 conversion rule of the lambda-
calculus, should not be confused with the notion of extensionality we are dealing with in this
paper, which is related to the categorical notion of well-pointedness.



satisfies [M]; ~4 [M];. This property can be extended to functional enriched
versions of the simply typed lambda-calculus (such as PCF) under some mild
assumptions on C and I.

1.3.1 Representing the collapse as an interpretation. Let £ be an-
other cartesian closed category, that we assume to be well-pointed (mean-
ing that, if p,v € E(F,F) satisfy ¢o(¢) = ¥(¢) for all { € &E(T,FE), then
@ = ). Let J be a valuation of type atoms in £ and, for each type atom
a, let Ik, € C(T,I(a)) x E(T,J()) be a bijection (to be understood as ex-
pressing an equality relation between the elements of the two models at ground
types). Then we define IF4 C C(T, [A]7) x E(T,[A],) for all type A as a logical
relation (called the heterogeneous relation), that is

flrasp v e Vo, zlFa (= f(x) kg ¢(C)).

If IF 4 is surjective for all type A (that isV¢ € E(T,[A];) 3z € C(T,[A]1) z Fa
(), then all the relations IF4 are functional (in the sense that if x -4 ¢ and
2 k4 ¢’; then ¢ = ¢’). This is easy to check by induction on types and is due
to the well-pointedness of £.

We say that (IF4) is a representation of the collapse of the interpretation I
by the interpretation of J if, for all type A, I 4 is surjective (and bijective when
A = « is a basic type) and one has

Vo,y € C(T,[Alr) z~aye (3C€E(T,[Aly) zlFaCand ylba ().

This means that, at each type A, the relation I-4 induces a bijection between
E(T,[A];) and the quotient® C(T,[A];)/~a.

Assume that (IF,4) is such a representation. Since it is defined as a logical
relation, we have [M]; IF4 [M], for each closed lambda-term of type A, we have
[M]; ~a [N]; iff [M]; = [N], for all closed terms M and N of type A.

1.3.2 Categorical presentation. There is another, more conceptual way
of describing the situation above. First one defines the collapse category e(C)
of C. Tts objects are pairs U = ("U™,~y) where "U™ is an object of C and
~py CC(T,"U™)? is a PER. Given two objects U and V of e(C), the elements
of ¢(C)(U, V) are the morphisms f € C("U™,"V7) such that

Va, o' € C(T,"U") x~y o’ = fz) ~v f(a)).

If the category C is cartesian, then so is e(C) (with cartesian products defined
in the most obvious way). And if C is cartesian closed, so is e(C). Given
two objects U and V of C, one defines U = V = (U = "V, ~y_y) with
fo~vsy [P f(z) ~y f(2)) for all z,2” € C(T,"U™) such that x ~y 2’
(for f,f € C(T,"U=V") ~ C("U,"VT)). The evaluation morphism Ev €
e(C)((U =V) & U,V) is the evaluation morphism of the category C, which is
also a morphism in e(C). We say that an object U of e(C) is discrete if ~y
coincides with equality.

Similarly, one defines the heterogeneous category e(C,€) of C and €. Tts
objects are triples X = ("X, X, lFx) where "X is an object of C, L X,

6When quotienting a set by a PER, one considers only the elements of the set which are
equivalent to themselves.



is an object of & and IFx C C(T,"X7) x &(T,.X4). A morphism 6 from
X to Y in that category is a pair (707, .601) where "7 € C("X7,"Y™") and
L0s € E(LX 1, LY ) satisfy T07(x) IFy L0(C) for all (z,¢) such that x IFx C.

Again, if both categories C and £ are cartesian, so is e(C, &), and if they
are cartesian closed, so is e(C, &), with X = Y defined as follows: "X = Y7 =
"X7= Y,  X=Y.,=.X,= Yiand, given f € C(T,"X=>Y") ~
CCXTY " and p € E(T,.X = Y1) ~ C(LX1,.Y), we have f IFx—y ¢ if
f(@) Iy (¢) for all (z,¢) such that = IFx .

Let us say that an object X of e(C, £) is modest” if the relation IFx is a partial
surjection from C(T,"X7) to E(T,LX1). Let emod(C, E) be the full subcategory
of e(C, &) whose objects are the modest objects. If C and £ are cartesian, then
emod(C, €) is a sub-cartesian category of e(C,&). But in general, emod(C,E) is
not cartesian closed. It can be noticed that, if X and Y are objects of e(C, &)
which are modest (so that, again, X = Y is well defined but not necessarily
modest) and if |-y y is surjective, then IFx_y is functional, and hence X = Y
is modest.

There is a cartesian closed “second projection” functor o : e(C,€) — &
(it maps an object X to X and a morphism 6 to L6.). There is also a
functor ¢ : emod(C,E) — €(C) which maps an object X to ("X, ~.(x)), where
T ~exy o2 if 21 IFx ¢ and 3 IFx ¢ for some (necessarily unique) ¢. Given
0 €elC,E)X,Y), weset £(0) =07, Indeed, let z1,22 € C(T,” X7 such that
T ~exy 2 (With ¢ € €(T,.X 1) such that z; IFx ¢ and 2 IFx (), we have
07 (z1) Fy LO2(C) and "07(z2) IFy LO5(C), and hence "07(x1) ~y "0 (x2), so
that 707 € e(C)(e(X),e(Y)).

We say that the category £ represents the extensional collapse of the category
C if there exists a sub-CCC H of ¢(C, ) such that

e each object of H is modest;
e the functor ¢ : H — ¢(C) is cartesian closed

e and, for any® discrete object U of e(C), there is an object X of H such
that e(X) = U (so that "X 7= U and IFx is a bijection).

1.3.3 Connection between the two definitions. The motivation of this
definition is that, in that situation, if I is a type valuation in C then, for
each ground type a, we can find an object J(«) of £ such that K(«a) =
(I(a), J(@),lFy) is an object of H, for some bijection IFg (o). We can extend
(K(«)) into an interpretation of types ([A]x) in the CCC H which satisfies
[Alx = ([A]1,[A]s,IFa) where |4 coincides with the heterogeneous logical re-
lation defined in 1.3.1. Then our assumption that £ represents the extensional
collapse of C implies that (I-4) is a representation of the extensional collapse of
I by J, in the sense of 1.3.1.

The benefit of this abstraction is that the concept of a CCC & representing
the extensional collapse of a CCC C is quite flexible and independent of any
type hierarchy given a priori. For instance, it provides a natural definition of
the extensional collapse of a model of the pure lambda-calculus.

"This is compatible with the standard terminology of realizability, see e.g. [AC98].

8We actually don’t need this property for all discrete Us, but only for those which are
intended to represent the basic types of the functional language we have in mind. For the
sake of simplicity, we adopt this stronger hypothesis.



1.3.4 Extensional collapse of a reflexive object. Assume indeed that
& represents the extensional collapse of C in the sense above, with H as het-
erogeneous collapse CCC. Let (Z,app,lam) be a reflexive object in H. Then
(e(Z),"app™,"lam™) is a reflexive object in e(C), ("Z7,Tapp™,"lam™) is a reflex-
ive object in C and (LZJ, Lappg,Llamy) is a reflexive object in £.

In that case, we say that the reflexive object (LZ 4, Lappy,Llamy) is a repre-
sentation of the extensional collapse of the reflexive object ("Z7,Tapp™,"lam™).

Remark: The precise syntactical meaning of this definition is not completely
clear yet. In this paper, we shall give a representation of the extensional collapse
of the relational model of the lambda-calculus introduced in [BEMO7] (in the
sense above), and these two models will clearly be quite different. However, both
models induce the same equational theory on lambda-terms (namely, the theory
‘H*, according to which two terms M and M’ are equivalent if, for any context
C, the term C[M] is solvable iff the term C[M’] is solvable). With the notations
above, this means that, when restricted to the interpretations of lambda-terms,
the relation ~y is just equality. Extending for instance the lambda-calculus
with a parallel composition construction based on the miz rule of Linear Logic
as in [DK00, BEMOS], the situation becomes more interesting and the theories
induced by the two models on the language are distinct.

1.4 New-Seely categories and LL-functors

Following [Bie95], we define a model £ of LL as a New-Seely category. This
consists of

e a symmetric monoidal closed star-autonomous category (also denoted with
L) which has all finite products (the unit of the tensor product is denoted
with 1, the dualizing object with L, the terminal object T and the carte-
sian product of X and Y is denoted with X & Y),

e a comonad ! : £ — £ (the structure morphisms d5 € £(!X, X) is called
dereliction and p% € L(1X,!1X) is called digging),

e and two natural isomorphisms !T ~ 1 and (X & V) ~ X @Y

such that the adjunction between £ and its Kleisli category £; (which is cartesian
closed by the hypotheses above) is a monoidal adjunction.

Given a function I (valuation) from the propositional atoms of LL to objects
of L, the interpretation [A]% of an LL-formula A is defined by induction on
A, using the above mentioned structures of £, e.g. [A ® B]¥ = [A]f &@F [B]%.
Similarly, given a proof 7 of A, one defines [7]¢ € L(1,[A]%) by induction on 7
(expressed in the standard sequent calculus of LL [Gir87]).

Given two New-Seely categories £ and M, a functor F : £L — M will
be called an LL-functor if it commutes on the nose with all the constructions
required for interpreting LL, e.g. F(X ®,Y) = F(X) @ F(Y), F(d%) = d}!
etc. Then one has F([A]5) = [A]%; and F([r]%) = [x]%¢, for all formula A and
proof 7 of LL.

Such an LL-functor F' functor induces a cartesian closed functor (still de-
noted with F') from £, to M,.

10



2 The collapse partial equivalence relation

We define a category whose objects are sets equipped with a partial equiva-
lence relation (PER) on their powersets, the intuition being that two subsets
are equivalent if they have the same “extensional” behavior. These PERs are
defined as logical relations, in the sense that, when we define function spaces,
two morphisms are equivalent iff they map equivalent sets to equivalent sets.

2.1 The category of sets and relations

This category underlies the collapse category we want to define. More precisely,
the collapse category we define in Section 2.2 is an enrichment, of the category
of sets and relations where each object is endowed with a partial equivalence
relation expressing when two sets are extensionally equivalent, as in 1.3.2.

2.1.1 Linear structure. The category of sets and relations Rel has sets
as objects, and, given two sets F and F', the set of morphisms from E to F
is Rel(E,F) = P(E x F). Composition is defined in the standard relational
way: the composition of s € Rel(E, F) and t € Rel(F,G) is t - s € Rel(E, G).
The identity morphism is the diagonal relation Id € Rel(E, E). This category
has a quite simple monoidal structure: the tensor product is E® F = E X F
and the unit of the tensor is 1 = {x}. This tensor product is a functor: given
S; € Rel(E“E) for 1 = 1,2, then s ® sg = {((al,GQ),(bl,bQ)) | (ai,bi) S
s; for i = 1,2}. Equipped with this tensor product, Rel is symmetric monoidal
closed (the associativity, neutrality and symmetry isomorphisms are defined in
the usual obvious way), with an object of linear morphisms £ — F = E x F
and linear evaluation morphism ev € Rel((E — F') ® E, F) given by ev =
{(((a,b),a),b) |a € E and b € F}.

The symmetric monoidal closed category Rel is a star-autonomous category,

with dualizing object L. = 1, and the corresponding duality is trivial: E+ = F.
So EF =F —o F=FE®F = F x F in this model.
Remark: Again, this category is a “degenerate model” of LL in the sense that
it identifies ® and 2%, just as ScottL (and even worse, since it equates a formula
with its linear negation!). We showed in [BEO1] how this model can be enriched
with various structures without modifying the interpretation of proofs, making
® and % non-isomorphic operations. This can be considered as one of the most
striking features of LL: this logical system is so robust that it survives (in the
sense that proofs are not trivialized) in such a degenerate framework.

Given s € Rel(E, F) and « C F, one sets s-x = {b| Ja € = and (a,b) € s}.

The category Rel is cartesian. The cartesian product of a family (E;);c; of
sets is &ier B = U;c;({i} x E;), with projections 7; = {((j,a),a) | a € E;} €
Rel(&ecr Ei, E;). Given a family of morphisms s; € Rel(F, E;), the corre-
sponding morphism (s;);c; € Rel(F, &ier F;) is given by (s;)icr = {(b, (i,a)) |
i €I and (b,a) € s;}. The terminal object is T = ().

The exponential comonad is |E = Mg, (F), with action on morphisms de-
fined as follows: !s = {([a1,...,ax],[b1,-..,bn]) | (a;,b;) € sfori=1,...,n} €
Rel(!E,\F) for s € Rel(E, F). Dereliction is given by dg = {([a],a) | a €
St € Rel(!E, E) and digging by pg = {(m1 + -+ + mn, [m1,....,my]) | n €
N and my,...,m, € !E} € Rel(!E,'E). Given 2 C E, one defines 2' =
M (). Observe that, as usual, Is-2' = (s-2)', dg - o' =z and pg - 2' = 2"
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The isomorphism !'T ~ 1 identifies [| and *, and the isomorphism |(E & F') ~
!E ® |F maps the element [(1,a1),...,(1,a),(2,b1),...,(2,b,)] of (E & F) to
([a1, .- ai], [b1,...,by]) € \E @ !F (this is called the fundamental isomorphism
in the present paper).

All these data define a new Seely category, see Section 1.4.

2.1.2 The associated CCC. The Kleisli category Rel, is cartesian closed.
Given a set F, a point of E in Rel, is by definition a morphism in Rel(!T, E),
that is, a subset of E. The terminal object is T, the cartesian product of (E;);cs
is E = &;es F;, with projections m; o dg (still denoted as m;). The object of
morphisms F = F is |F — F, with evaluation map Ev =ev o (dp_r ® ldig),
that is

Ev={(([(m,b)],m),b) |m €!E and b€ F}.

Applying a morphism s € Rel|(E, F) = Rel(!E, F) to a point  C E consists
in composing s with x (considered as a morphism from T to F) in Rely; the
result is

s(x) =s-2' = {b|Im (m,b) € s and supp(m) C z}.
The category Rel, is not well pointed, in the sense that two distinct morphisms

s1,82 € Rel|(E, F) can satisfy Vo C E s1(x) = s2(z); take for instance s; =
{(a],b)} and sz = {([a, a],b)}.

The purpose of the collapse PER is precisely to make it explicit when two
such morphisms should be identified. This depends of course on the PERs F
and F' are equipped with: the collapse PER is a logical relation. We shall present
this construction as a new category.

2.1.3 Inclusions. Let E and F be two sets such that £ C F. Then we
denote by g r and pg, r the relations

77E7F:(E><F)ﬂ|dE and pE7F:(F><E)ﬂ|dE.

Observe that pg r o np,r = ldg.

We denote by RelC the class of all sets, ordered by inclusion. This is a
partially ordered class, which is complete in the sense that any family (E. ) er
of elements of RelC admits a least upper bound. We shall consider actually only
directed families (that is, where I is a directed poset, and v < ¢ = E, C Ej).

2.2 The collapse category

We equip now the objects of Rel with a partial equivalence relation whose
purpose is to identify morphisms which yield equivalent values when applied to
equivalent arguments.

2.2.1 Pre-PERs, PER objects and morphisms of PER objects. Let
E be a set. Given a binary relation B on P(F), we define another binary relation
Bt on P(E), called the dual of B, as follows:

' Bty if Ve,yePE)zBy= (znaz' A0 yny #0).

As usual, one has B C C = C+ C B+ and B C B+ (as subsets of P(E)?).
We say that the relation B is a pre-PER if it is symmetric and satisfies x B
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y = x B x. Clearly, any PER is a pre-PER and if B is a pre-PER, then B* is
a PER.

A PER-object is a pair U = (|U|, ~y), where |U] is a set and ~y is a binary
relation on P(|U|) which is a pre-PER such that ~3+ = ~;. This simply means
that, given x,y C |UJ, one has x ~y y as soon as z N’ # 0 < yNy # 0, for
all ’,y" C |U| such that 2 Nﬁ y'. By this condition, ~y is automatically a
PER (indeed, ~y is pre-PER, hence Nﬁ is a PER, and therefore NU:N#- is
a PER).

Let PerL be the category whose objects are the PER-objects, and where a

morphism from U to V' is a relation ¢ C |U| x |V such, for all z,y € P(|X]), if
r~xythen t-x ~y t-y.
Remark: Let U be a PER-object and A C P(|U]) such that Va1, 20 € A 21 ~p
x9. Then Vo € Az ~¢ |JA. Indeed, let 27,25 C |U| be such that 2} ~po 2h.
If x Ny # 0, then z Nz # @ because z ~y =, and hence |JA N ) # 0.
Conversely, if | J AN 24 # 0, there is some y € A such that y N b # 0 and we
conclude since x ~g y. So each equivalence class of ~;; has a maximal element,
which is the union of all the elements of the class. These particular elements x
of P(|U]) are characterized by the two following properties:

e T~y

e and Vy e P(|U|) y~vz=yCu.

Lemma 1 Let U be a PER-object and let (x;)ic;r and (y;)icr be families of
elements of P(|U|) be such that x; ~y y; for each i € I. Then \J;c;xi ~u

Uie] Yi.

The proof is straightforward. In particular ) ~y @, for any PER-object U.

2.2.2 Orthogonality and strong isomorphisms. We define the PER-
object U+ by |[UL| = |U| and ~y1 = ~f;, so that U+ = U.

Lemma 2 Given two PER-objects U and V', any bijection 6 : |U| — |V| such
that, for all x,y € P(|X]), one has x ~y y iff 6(x) ~v 0(y) is an isomorphism
from U to V. Such a bijection will be called a strong isomorphism from U to
V.

Straightforward verification. Of course, 6~ is a strong isomorphism from V to
U.

Observe that any strong isomorphism 6 from U to V is also a strong isomor-
phism from U+ to V1. Indeed, let 2,25 C |U|. Assume first that 2} ~y. o)
and let us show that 0(z}) ~y 1 0(ah). So let y1,y2 C |V]| be such that
y1 ~v y2. We have 0(z}))Ny1 # 0 < 21 N0~ (y1) # 0 and we conclude
since #~! is a strong isomorphism from V to U. The converse implication
0(z}) ~yo 0(ah) = o} ~yo xf is proven similarly.

2.2.3 Monoidal structure. We define U®V as follows. We take [U @ V| =
|U| x |V|, and ~ygy = E++ where

E={(z1 x y1,72 X y2) | ¥1 ~uy 22 and y; ~y y2} C P(JU @ V|)2.
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Since this relation E is a pre-PER (but not a PER a priori, since one cannot
recover z and y from x X y when one of these two sets is empty), the relation
~yev is a PER, and U ® V so defined is a PER-object. We define U — V =
(U VHE.

Lemma 3 One has [U — V| = |U| x |V|. If t1,ta € P(JU — V), one has
t1 ~y—ov to iff for all x1, o C |U| such that x1 ~y x2, one has t1-x1 ~y to-xs.
Moreover, one has t; ~y_ov ta & %1 ~yi_opL to.

Proof. This is due to the fact that, for any t C |U — V|, 2 C |U| and ¢’ C |V,
onehastN(z xy)#0& (t-z)Ny #0 O

So the morphisms from U to V are exactly the t € P(|U — V|) such that
t ~y_y t, and if t € PerL(U, V) then % € PerL(VL, U1).

Lemma 4 The obvious bijection X from U @ V. — W] to |[U — (V — W)| de-
fines a strong isomorphism between the PER-objects U @V — W and U —o
(V — W). In particular, for si,s2 € P(|U®V — W]|), one has s1 ~ygv—w
so iff for any x1,22 € P(|U|) and y1,y2 € P(|V]) such that x1 ~y x2 and
Y1 ~U Y2, one has s1 - (21 X Y1) ~w S2 - (T2 X y2).

P?"OOf. Let t1,t5 C ’P(U® V — W) Assume first that ¢; ~UQV—W b2, We
want to prove that A(t1) ~y_o(v—w) A(t2). But this is clear since, if z1, 20 C
|U| and y1,y2 C |V| satisfy 21 ~y @2 and y1 ~y yo, then we have x1 X yo ~ygyv
T2 X Yo, and therefore (/\(tl) '501) Y1 = t - (1‘1 X yl) ~w tg - (1‘2 X yQ) =
(A(t2) - x2) - yo. Assume conversely that A(t1) ~y—o(v—w) A(t2), we prove that
t1 ~ugv—_ow t2. For this, we proceed as above, showing that %; MWL U@V L
%5 and applying Lemma, 3. O

Lemma 5 The obvious bijection o : (U@ V)@ W| — |[U® (V@ W)| is an
isomorphism of PER-objects from (U@ V)@ W to U @ (V@ W).

Proof. By 2.2.2, it suffices to prove that « is an isomorphism from (U @ V) ®
W)t to (U® (V @ W))*, and this results from Lemma, 4. O

Given s € PerL(Uy,Us) and t € PerL(V4, V3), one defines s®t C |U; @ V4| x
|Uz ® V| as in 4.2.2. Then one shows using Lemma 4 that s ® t € PerL(U; ®
V1, Us®Vs), and one checks that the category PerL equipped with this ® binary
functor, together with the associativity isomorphism of Lemma 5 (as well as the
symmetry isomorphism etc.) is a symmetric monoidal category, which is closed
(with U — V as object of linear morphisms from U to V) by Lemma 4. The
linear evaluation morphism is ev, as defined in Section 2.1.

PerL is star-autonomous, with L = ({x}, =) as dualizing object.

2.2.4 Additive structure. Given a family (U;);e; of PER-objects, one de-
fines U = &ies U; by setting |U| = [, ({7} x |Ui]), and by saying that, for any
x = (zi)ier,y = (Wi)ier € P(JU|) (identifying this latter set with a product),
one has z ~y y if one has x; ~y, y; for all ¢ € I. Using the fact that 0 ~y 0
in any PER-object V, one shows that ~7; = Nier UL and it follows that U
is a PER~object. It is routine to check that &;c5 U; so defined is the cartesian
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product of the U;s in the category PerL, and that this cartesian product is also
a coproduct. In particular, if U is a PER-object and I is a set, we denote with
UT the product &;er U; where U; = U for each U.

In particular, PerL has a terminal object T, given by |T| = 0 and () ~ 0.
Observe that this is the only PER-object with an empty web.

2.2.5 Exponentials. Given a PER-object U, we define U by [\U| = Mg, (|U]),
and ~y = E++ where

E = {(2},3) | 21,22 € P(|U|) 21 ~u 22}

where we recall that 2! = Mg, (z). Since E is a pre-PER (and actually a PER,
because = can be recovered from z' using dereliction: = = {a | [a] € #'}), the
relation ~y is a PER. We recall that, if s C |IlU — V| and = C |U|, then we
denote with s(z) the subset s - ' of |Y], see Section 2.1.

Lemma 6 Let U and V be PER-objects and let s1,s2 C |!U — V|. One has
51 ~Mu—v S2 iff

Vo, 20 C Ul x1 ~y @2 = s1(21) ~v s2(x2).

Proof. The = direction is trivial. For the converse, one assumes that the stated
condition holds, and one checks that 's; YL (1)L tsy, and for this purpose,
it suffices to apply Lemma 3. O

Given s € PerL(U,V), one defines s C |IU| x |!V] as in the standard
relational model by setting

Is={(la1,...,an),[b1,...,b]) [ n €N, (a;,b;)) € sfori=1,...,n}.

. ! !
Then, since !s- 2" = (s-x)’, we have ls; ~iy_oiy ls2 as soon as $1 ~y—oy s2 (by

Lemma 6); in particular, if s € PerL(U, V), one has !s € PerL(!U,!V) and so
the operation s — !s is an endofunctor on PerL.

One defines diy C |IU| x |U| as dy = {([a],a) | a € |U|}, and since dyy - o' =
x for all x C |U|, we get easily dy € PerL(!U,U). Similarly, one defines
py C WU| x U] as py = {(m1 + -+ + mg, [m1,....,mg]) | ma,...,my € [\U|}.
Since py - o' = 2", we get p; € PerL(!U,!\U). The naturality in U of these
morphisms is clear (it holds in the relational model), and ! equipped with
these two natural transformations is a comonad. Moreover, the fundamental
isomorphism also holds in this setting.

2.2.6 Fundamental isomorphism and cartesian closeness. Let U and
V be PER-objects. Let 0 : (U & V)| — |IU ® V| be the usual bijection defined
by

0([(1,a1),...,(1,a7),(2,b1),...,(2,b.)]) = ([a1, ..., ai], [b1, ..., b.])

Using Lemma 6, one shows easily that § € PerL(I(U & V),!U @ V) (as a rela-
tion). For showing that =1 € PerL(!IU ® !V,!|(U & V)), one applies Lemma 4
and then Lemma 6, twice. This shows that 6 is a strong isomorphism of PER-
objects.
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So the category of PER-objects (together with the monoidal and exponential
structure explained above) is a new-Seely category, in the sense of [Bie95].

The associated Kleisli category PerL, is cartesian closed. The object of mor-
phisms from U to V is U = V = U — V and we have seen that the associated
PER ~yv is such that, given two elements s; and sz of PerL (U, V'), one has
S1 MU=V S2 iff 81(351) ~y 82(352) for all T1,T2 g |U| such that T ~y I2. The
evaluation morphism is Ev, as defined in 2.1.2.

2.3 The partially ordered class of PER-objects

Let U and V' be PER objects. We say that U is a subobject of V' and write U C
Vif |U] C |V, and moreover 1, jv| € PerL(U, V) and pjy|,|v| € PerL(V,U).
This means that the two following conditions are satisfied

Vo, 20 C Ul @1 ~u T2 = 21 ~y T2

and
Yy, y2 C V| yi~vye =y N|U| ~p y2 DU

Observe that C a partial order relation and let PerC be the partially ordered
class of PER-objects ordered by L.

One of the main features of this definition is that linear negation is covariant
with respect to the subobject partial order.

Lemma 7 IfUCV then U+ C V*.

Proof. We have |U*+| = |U| C |V| = |[V*|. Moreover 'y v| = pjv),jv| and
‘oo, )v| = Muy,jv|- The result follows. o

2.3.1 Completeness.

Lemma 8 LetI' be a directed set and let (U, ) cr be a directed family of PERs
(meaning that v < 6 = Uy C Us). We define U =], . Uy by |U| = U, cr U4
and, for x1,x2 C|U|, x1 ~yu 22 zﬁxl N \|U,| o~y x2 N |U, | for all v € I'. Then
U is a PER-object. Moreover U+ = Uver frll

Proof. Let U’ = ||,cp Uy, it will be enough to show that U = U'*. Let
21,22 C |U|. Assume first that 1 ~p x2 and let us show that x; ~p/1 x2. So
let @, 2 C |U| be such that ] ~y 24 and assume that 1 N2} # 0. Let v € T’
be such that z; Nz} N|U,| # 0. By definition of U and U’, we have 21 N|U,| ~y,
x2 N |Uy| and 2y N [Uy| ~pe @5 0 [Uy], and therefore zp N ah 0 [U,] # (0, and
hence xo Nxh # B as required. Assume next that z; ~p1 @2 and let us show
that x; ~y 2. So let v € I" and let us prove that x1 N [U,| ~uy, 22 N |U,]. So
let 1, z%, C |U,| be such that 2 ~y x4 and assume that (zq N|U,|) N} # 0,
that is @1 Nz} # 0.

We show that 27 ~p 25. Let 0 € ' and let us show that zj N |Us| ~;
ah N |Us|. So let e € T be such that v, < e. Let y1,y2 C |Us| be such that
y1 ~u;s y2 and 2y N|Us|Ny1 # (. Since Us C U, and U(SL C Ut (by Lemma 7), we
have z} ~;1 x5 and y1 ~u. y2. Therefore 25 Nys # 0, that is 25 N |Us|Ny2 # 0
(since y2 C |Us|) as required.

16



Since z1 ~pr1 @ and o)~y xh, we have xoNzf # 0, that is (x2N|U, )Nz, #
0 (since x4, C |U,|) as required. O

Lemma 9 If (U, )cr is a directed family of PER-objects, then | |
lub in PerC.

yer Uy is its

Proof. For showing that Us C l—lvel“ U,, one must show that, if 21 ~y, 2,
then z,N|U,| ~u, 22N |U,| for any given v € I'; one picks some ¢ € I" such that
v,8 < ¢ and one proceeds as in the proof of Lemma 8. Let V be a PER-object
an assume that U, C V for all v € I', we must show that U = |_|7€F U, CV.
Let first 21, 22 C |U| and assume that 1 ~y z2, and let us prove that x1 ~y 5.
So let y1, 45 C |V] be such that v} ~yo yh, and assume that 21 Ny] # . Let
v € T be such that 21 Ny} N |U,| # 0. Since U £ V+ by Lemma 7, we have
yi N0, | ~y y5N|U,| and hence x2 Ny5 N |U,| # 0 and so 22 Nyh # 0. Let now
y1,y2 C |V| be such that y; ~y yo2 and let us show that y1 N|U| ~y y2N|U|, that
is y1 N|U,| ~v y2N|U,| for all v € T', which holds since U, T V' by assumption.

O

2.3.2 Variable PER-objects and fixpoints thereof. A functor (that is,
a “monotone” class function) ® : PerC" — PerC which commutes with the lubs
of directed families (of n-tuples) of PER-objects will be said to be continuous, or
to be a variable PER-object. Let ¥ : PerC — PerC be a variable PER-object.
Then ¥ has a least fixpoint fix(¥) = | |,y ¥¥(T) where T is the empty PER-
object (see 2.2.4). Of course, given a PER-object ® : PerC""!' — PerC, the
operation PerC" — PerC which maps (Uy,...,U,) to fix(®(Uy,...,U,, ))
is a variable PER-object. We have already seen that the map U — U*' is a
variable PER-objects.

Lemma 10 The operations (U, V) — U®V, U + U! and U + U are variable
PER-objects.

Proof. We observe first that ® is monotone, in the sense that if U C U’ and
VEV/, then U®V C U ® V’. This results from the fact that |U® V| C
|U"® V'| and from the obvious equations nygv|,jvev| = Mul, v @ Ny, v/
and piyev|,|vrev = Pl v @ pv),v:|- We check similarly that ! and ()
are monotone.

We show that (U, V) — (U — V) is a variable PER-object. It is monotone
by the considerations above. Let (Uy),er and (V,)yer be directed families of
PER-objects. We show that U — V' = [ | .((Uy — V) where U = |, . U,
and V = |—|vel“ Vy. Let t1,to C |U — VA’(. Assume first that t; ~y_oy to;
one has t; N |U, — V,| ~y, v, ta N |Uy — V,| because, if 21 ~p 2, one has
(ti NV |Uy, — V4 |)-z; = (t;i-z3)N|V;|. Conversely, assume that ¢; N, e (Uy—oVy) T2
and let us show that t; ~y_ov t2. So let 1,22 C |U| be such that x1 ~y 9,
and let us show that t; - 21 ~vy ta-x9. We have t; - z; = UW€F (tiN|U, — V4])-
(i O [U,) and (8 1 [T, —o Vi) - (o1 0|0 ) ~v, (20 [T = Vi) - (21 [05)
for each v € I'. We conclude applying Lemma 1 and using the fact that x; N
|Uy| ~u, 22 N |U,| for all v € T. Since U@V = (U —o V+)+, this shows that
(U, V) — U ®YV is a variable PER-object.
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One proves easily that U +— U is a variable PER-object.

To conclude, let us prove that ® : U ~ (1U)+ is a variable PER-object.
It is a monotone operation because ! is monotone as we have seen. So let
(Uy)yer be a directed family of PER-objects and let us show that ®(U) =
U, er ®(Uy), where U = | | . Uy. Let A}, Ay C Mo (|!U]). Assume first that
A}~y Ay and let v € T', we prove that A} N [®(U,)] ~ew,) 45N |2(U,)].
So let z1,z2 C |U,| with 2y ~p., 22 and assume that A} N |[®(U,)| Nz} # 0.
We have z; ~y @2 and hence Ay Nxh # 0, that is Ay N |®(U,)| N ah # 0.
Conversely, assume that A ~er 9(U) A5 and let us prove that A7 ~g)
Al. So let x1,75 C |U| with 2; ~py o2 and assume that A} Nz} # 0; let
m be an element of that intersection. Since I' is directed and m is a finite
multiset, one can find v € T" such that m € |®(U,)|. By assumption, we have
ALNN@(U,)| ~aw,y AeN|@(U,)| and 1 N|U,| ~u., x2N|U,|. We conclude using
the fact that (z1 N |U,])' = 2} N|®(U,)|: we have 4] Nz} N|®(U,)| # 0, that
is (A N |@(U,)]) N (z1 N|U,])" # 0 and hence (A5 N |®(U,)|) N (z2 N |U,])' # 0
which implies A5 Nz} # 0. O

2.3.3 An extensional reflexive PER-object. Consider the mapping of
PER-object ®, defined by ®(U) = (/(UY))*. By Lemmas 7 and 10, ®. is a
variable PER-object, and has therefore a least fixpoint, namely the PER-object
D. = I_lkeN @f(T). One has D, = D, = (!’DE)L%’De = (D)t BP(De) =
(D)1 ((DY))+ =~ (/(De & DY)+ by the fundamental isomorphism of 2.2.6.
We conclude since De & DY ~ DI (by the strong isomorphism which maps
(1,a) to (0,a) and (2, (i,a)) to (i +1,a)). Therefore D is an extensional model
of the pure lambda-calculus in the Kleisli category PerL.

The underlying set |D.| is the relational model of the pure lambda-calculus
described in [BEMO07]. We denote it as D,. It is the least fixpoint (in the
partially ordered class of sets) of the monotone and continuous operation E +
Man(N x E).

3 A linear Scott semantics

Given a preordered set (5, <), we denote with S°P the opposite preorder. Given
x C S, we denote with | x (or simply | z if the ambient preorder is clear from
the context) the set {a € S |3 € x a < b}. And we set gz = | gop 2. We also
define
7(S) = {x C S| Lo =z}
S

which, ordered by inclusion, is a prime-algebraic lattice.

3.1 Star-autonomous structure

Let S and T be preorders. A function f: Z(S) — Z(T) is linear if it commutes
with arbitrary lubs. In other words, for any family (z;);c; of elements of Z(S5),
we must have f (U,c;2) = U;e; f(2;). This implies in particular that f is
monotone, and that f(#) = 0 (of course, we do not necessarily have f(S) =T).
We denote with ScottL the corresponding category.

We equip the hom-set ScottL(S,T") with the ordinary pointwise order: f < g
itvVe e Z(X) f(z) C g(z).
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Given such a linear map f € ScottL(S,T), we define its linear trace as
tr(f) = {(a,b) €S xT|be f(g{a})}-

This is similar to the usual definition of the trace of a stable linear map (see [Gir87,
AC93)).

Then it is easily checked that tr(f) € Z(S°P x T'). Conversely, given any
t € Z(S°P x T), we define a function

fun®(t) : Z(S) — P(T)

r — t-x

and it is easy to check that fun®(¢) takes its values in Z(T) and is linear from
Z(S) to Z(T).

Proposition 11 The maps tr° and fun® define an order isomorphism between
the posets ScottL(S,T) and Z(S°P? x T'). Moreover, these isomorphisms com-
mute with composition (of maps and relations respectively).

Therefore, we set S — T = S°P x T. Thanks to the lemma above, we
can consider the morphisms of the category ScottL as linear functions or as
relations. For instance, as a function, the identity map S — S is of course the
identity function Z(S) — Z(S), but as a relation, it is Id®> = {(a,b) € S x S |
b < a}. In this paper, we prefer the relational viewpoint on morphisms.

The following observation is trivial but useful.

Lemma 12 Lett C S x T and let x € Z(S). One has ¢ (t-2) = (lg_opt) - .

3.1.1 Isomorphisms. An isomorphism (in the usual categorical sense) from
S to T is a relation ¢t € Z(S —o T') such that fun®(t) : Z(S) — Z(T) is an order
isomorphism. As a relation, an isomorphism from S to 7' has no reason to
be a bijection, not even a function. For instance, if S = {0} and T = N
(with the largest preorder, in which n < m for all n,m € N), then the relation
{(0,n) | n € N} is an isomorphism from S to T (it is actually the only non-empty
morphism from S to T').

We shall call strong isomorphism from S to T any function ¢ : S — T which
is an isomorphism of preorders (that is, ¢ is bijective and a <g b iff ¢(a) <p
©(b)). Such a ¢ is not an isomorphism (in the categorical sense above) in general,
but | g_,r ¢ is. And we shall say that S and T are strongly isomorphic if there
is a strong isomorphism from S to 7.

3.1.2 Monoidal structure. The tensor product of preorders is given by
S®T =S5 xT. Tt is easily seen to be functorial. Indeed, let s € Z(S; — Ss)
and t € Z(Ty — T3). Then, we set

s@t = {((a1,b1), (az,b2)) € (S1 ®T1) —o (S2 ®T2) | (a1, a2) € sand (by,bs) €t} .
One can check that s @ t € Z((S1 ®T1) — (S2 ®T»)) and that (s’ ®@t') o
(s@t)=(s0s)®@(t ot).

The neutral element of the tensor product is 1 = {*} (actually, any non-
empty preorder such that a < b for all a, b is isomorphic to 1, and therefore is
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neutral for ®). The so defined symmetric monoidal category ScottL is monoidal
closed, with linear evaluation morphism ev® € ScottL((S — T) ® S,T) given
by

ev® = {(((a,b),a'),b) | ' <7 band a <5 a'}.

We use the same object 1 as dualizing object, but when used in that way,
we denote it with L.

It is clear that S — 1 = S°P (up to the identification of a € S with
(a,x) € S — 1), and that the canonical map S — (S — 1) — L coincides
with the identity, so the monoidal category of preorders and linear maps is a
star-autonomous category in the sense of [Bar79].

3.2 Products and coproducts

Let (S;)icr be a collection of preorders, the cartesian product of this family is
denoted with & ey S; and is the disjoint union (J,c;({i} x S;), endowed with
the disjoint union of the preorder relations. One has Z(&icr) = [[;c; Z(S:) up
to a trivial and canonical isomorphism. The i-th projection 7ri5 s &icr Si — S
is given by

ﬂf ={((¢,a),b) | a,be S; b<a}.

And given morphisms t; : T — S;, the unique morphism t = (t;)ier : T —
&ie1 Si characterized by Vin? ot =t; is given by

t= U{(bv (i,a)) | (b,a) € ti)} .

The sum ®;er S; = (&iecr Si°P)°" is the operation dual to this product, and
coincides with it as easily checked.

If S is a preorder and I is a set, we use ST for the product &;c; S; where
S; = S for each I. We use T for the product of the empty family of preorders:
it is the terminal object, and, as a preorder, it is empty (so Z(T) = {0}). It is
obviously isomorphic to its dual, denoted with 0.

3.3 Exponentials

Given a preorder S, we define the preorder !S, whose elements are the finite
multisets of elements of S, with the following preorder relation: given p,q € 15,
one has p <5 ¢ if Va € supp(p) 3b € supp(q) a <g b. Of course we could have
taken 1S = Pg, (), with a similarly defined preorder, and the associated lattices
of initial segments would have been trivially isomorphic. We choose multisets
because our goal is to compare this preorder model with the relational model,
where the exponentials are defined with finite multisets. This choice makes the
study of the collapse much simpler.
Given 2 C S, we set ' = Mg, ().

Lemma 13 Let x C S. We have (|| r) = Lps (z').

We'll use this remark quite often, tacitly. It implies that, if 2 € Z(S), then
7 € Z(19). Given t : S — T, we set

It ={(p,q) €S x T | Vb€ qIacp(ab) €t}
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Then one shows easily that !t : 1S — !T') and that this operation on morphisms
is functorial. Moreover, it is quite useful to observe that

Ve e Z(S) -2t =(t-x)'.
And this property actually characterizes the morphism !¢.
3.3.1 Comonad structure of the exponential. As it is usual in models

of linear logic, this functor ! has a structure of comonad, which is given by the
natural morphism

d¥={(p,b)e!SxS|Jaecpb<a}l:'S—S
usually called dereliction and

pe =1{(p,[P1s---,0n)) €IS X NS | pr 4+ pn <isp}: 1S — 1S

usually called digging. Observe that d?g -2 = z and that p% - z' = (2')', and
that these equations characterize the morphisms dg and pg. With these obser-
vations, it is trivial to check that these morphisms are natural (as announced)
and provide the functor ! with a comonad structure.

3.3.2 Weakening and contraction. Given two preorders S; and S5, there
is a canonical and natural strong isomorphism between the preorders !(S; & S2)
and !S7 ® 155, which is actually the preorder isomorphism

[(L,a1),..., (Lan), (2,01), ..., (2,bm)] — ([a1, ..., an], [b1, - bm]) -

Similarly, there is a trivial isomorphism between !T and 1 (both are the one-
point preorder). Using these isomorphisms, and applying the ! functor to the
diagonal map dg : S — S & S (which, as easily checked, is the set {(a, (1,0)) |
b<a}U{(a,(2,0)]b<a}) and to the unique map S — T (the empty map),
we get the contraction and weakening maps:

contry = {(p.(a1,92)) | @1 + a2 <15 p)} 1S = 1S @IS
weaky = {(p,*)|pe!S}:1S —1.

With all these structures, ScottL is a new-Seely category in the sense of [Bie95],
see Section 1.4): this is the model discovered independently by Huth [Hut94]
and Winskel [Win99].

3.4 The Kleisli category

We denote with ScottL; the associated Kleisli category; remember that a mor-
phism from S to T' in this category is a linear morphism ¢ : 15 — T

ScottL(S,T) = ScottL(!S,T).
Given such a morphism ¢ : S — T, we can define a map
Fun®(t) : Z(S) — Z(T)

!
r — t-x
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In other words, Fun®(t)(z) = {b € T | 3p € !S supp(p) C z and (p,b) € t}

Observe that the function S — !S which maps = to @' is never linear (since
it maps 0 to {[]}; it is actually the “most non-linear” map from S to S...), but
is Scott continuous. Therefore, the map Fun®(t) is Scott-continuous as well.

Conversely, observe that Z(S) is a Scott domain, whose compact elements
are the finitely generated elements of Z(S), that is, the elements x¢ of Z(S5)
such that zo = | gu for some finite v C S. Given a Scott-continuous function
f:Z(S) — I(T), one defines the set

TP(f) = {(p,b) € Mgn(S) x T | be f(g (supp(p)))} -

that we call the trace of f. This is similar to the definition of the trace of a
stable function (see [Gir86, AC98|), with the essential difference that there is
no minimality requirement on p (such a requirement would not make sense in
general because usually our preorders are not well-founded).

Lemma 14 Let S and T be preorders. The maps Tr° and Fun® define an order
isomorphism between Z(1S — T) and the set of Scott-continuous functions from
Z(S) to Z(T), endowed with the pointwise order.

Proof. Let f,g:Z(S) — Z(T) be Scott-continuous functions such that f < g
for the pointwise order. Let (p,b) € Tr°(f). Then b € f(lg(supp(p))) C
9(ls (supp(p))), so (p,b) € Tr(g) and hence the map Tr> is monotone. Let
s,t € Z(1S —o T)) be such that s C ¢, let = € Z(S) and let b € Fun®(s)(x). This
means that there exists p € 1S such that (p,b) € s and supp(p) C x. Then
(p,b) € t and hence we also have b € Fun®(t)(z), and this shows that the map
Fun® is monotone as well,

Let f : Z(S) — Z(T) be continuous, f’ = Fun®(Tr®(f)) and let = € Z(S).
Let b € f(x). Since f is continuous, there is a finite subset w of x such that
be f(lg(u)). Let p € IS be such that supp(p) = u. Then we have (p,b) €
Tr°(f) and hence b € f'(z). Conversely, if b € f/(z), let p € 1S be such that
(p,b) € Tr*(f) and supp(p) C x, then b € f(|g(supp(p))) C f(z) and we have
shown that f'(z) = f(x) for all 2 € Z(S), so Fun® o Tr® is the identity map.

Conversely, let t € Z(1S — T) and let ¢’ = Tr°(Fun®(t)). Let (p,b) € t,
then b € Fun(t)(lg (supp(p))), and hence (p,b) € t'. Let (p,b) € ¢/, then
b € Fun®(t)(]4 (supp(p))) and hence there exists ¢ € !S such that (¢,b) € ¢
and supp(q) C |g (supp(p)), that is, ¢ <is p. Since (p,b) <is—r (¢,b) € t and
t€ZI(!S —T), wehave (p,b) € t, and this shows that Tr> o Fun® is the identity
map. O

3.4.1 The Kleisli category of preorders. This isomorphism is compati-
ble with composition, as easily checked, so that we can consider ScottL; as a full
subcategory of the category of Scott domains and continuous functions. More-
over, it is easily checked that the cartesian products and function space construc-
tions in both categories coincide: the cartesian product in ScottL; of S and T is
S & T, and we have seen that Z(S & T') ~ Z(S) x Z(T) (with the product order)
and their function space is S = T = 1S — T, and we have seen that Z(1S — T')
is isomorphic (as a poset) to the space of continuous maps from Z(S) to Z(T),
endowed with the pointwise order, which is precisely the function space of Z(S5)
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and Z(T) in the category of Scott domains and continuous functions. The
evaluation map Ev® € ScottL;((S = T) & S,T) ~ ScottL(!(S = T) ® !S,T)
satisfies

Ev® = {((r,p),b) | 3, 0') € b <y b and p’ <i5 p}

as easily checked using that fact that Ev® =
So ScottL is a full sub-CCC of the CCC of Scott domains and continuous
functions.

3.5 The partially ordered class of preorders

We say that the preorder S is a substructure of the preorder 7', and we write
S C T if, for any ay,a2 € S, one has a1 <g as <& a1 <r as. We denote
with ScottC the corresponding partially ordered class. It is easy to check that
ScottC is complete (any directed family (S,)yer has a lub || . S,), and that
all the constructions we have introduced on preorders are variables preorders,
that is, continuous class functions ScottC" — ScottC. Any variable preorder
P : ScottC — ScottC admits a least fixpoint. In particular, the operation
®, : ScottC — ScottC defined by ®(S) = (!(SV))* is a variable preorder and
therefore admits a least fixpoint Ds, which is an extensional model of the pure
lambda-calculus (same computation as in 2.3.3).

4 The category of preorders with projections

4.1 A duality on preorders

Now comes the most important definition of the paper. Let S be a preorder.
Given z,2’ C S, we shall say that « and 2’ are in duality (with respect to S)
and write z Lg 2’ if
zNa’' =0= (lz)na’ =0.
s

Of course, the converse implication always holds so that, when it holds, the
implication above is actually an equivalence. The intuition is clear: z and '’
are in duality if 2/ cannot separate x from its downward closure.

This duality relation is symmetric in the following sense: since clearly (] g z)N
¥=0szn(lga)=0% (lgz)N(Tga') =0, we have

Ve, €S zlga’ o Lo x.
If D CP(S), we set
Dts={a’ CS|VreD zlga'}

With this definition, we have D C D+s+s°0  Indeed, let z € D and let 2/ € D*s.
We have z Lg 2/, that is 2/ Lger z, and since this holds for all 2/ € D+s, we
have x € D+s+s°° . Moreover, if D, E C P(S), we have D C E = E+s C D+ts.
Therefore, one always has D+s+tsoels = Dls,

Let D C P(S) be such that D = D1sts°® (equivalently, D = E1s°* for
some E C P(S)). Then Z(S) € D C P(S). And one checks easily that
P(S)ts = Z(S°P) and Z(S)ts = P(S°P). Let (z;)iesr be a family of elements

of D. Then {J;c;#; € D. Indeed, since D = D+s+s°7 it suffices to show
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that (U;e;2:) Ls 2’ for all 2/ € D+s. So let 2’ € D*s, and let us assume
that (U,c; i) N2’ = 0. Then, for any i € I, we have ; N2’ = () and hence
ls®iNa’ =0 (since z; € D(X)) and therefore (|, | g )Nz’ = 0. We conclude
because clearly (U;c; ls i) = lg (U;e;@i)- So D, endowed with inclusion, is
a complete lattice, whose least element is (), and largest element is S.

A preorder with projection (a PP for short; the reason for this terminology
will appear later) is a pair X = (| X|,D(X)) where | X| is a preorder and D(X) C
P(|X|) satisfies D(X) = D(X)"XI1XI°°  We define then

X4 = (X, D(X)L).

By definition, we have X+ = X. Remember that Z(|]X|) € D(X) C P(|X]).
Given two PPs X and Y, we define X ® Y by setting | X @ Y| = |X| x |[Y],
endowed with the product order. Then D(X ® Y) is given by

DIX®Y)={zxy|zeD(X)and y € D(Y)}HXIxivitixierxyior

We define accordingly X — Y = (X ® Y1ir1)Lixixivir g0 that |[X — Y| =
| X|? x |Y| and, for t C |X — Y|, one has t € D(X — Y) iff, for all z € D(X)
and for all 4’ € D(Y1), one has

0.

tNzxy)=0=tn(|l zx T7Yy)
1X] Y]

Given ¢t C |X| x|V, remember that the transpose of ¢ is 't = {(b,a) | (a,b) €
t} C|Y| x| X|. One checks easily that t € D(X — Y) iff t € D(Y+ —o X1).

Fortunately, there is an easy functional characterization of the elements of
D(X —Y).

Proposition 15 Let X andY be PPs. Lett C |X|x |Y|. One hast € D(X —o
Y') iff the two following conditions are satisfied.

e For all x € D(X), one hast-z € D(Y)
e and, for all z € D(X), one has |y (t-7) = ||x oyt x| T

The second condition is equivalent to Vo € D(X) || x oyt ljx;z C L)y (t ),
which in turn is equivalent to Vo € D(X) |y (t- | x| %) C )y, (t-2), that is to

Proof. The equivalences at the end of the statement result from Lemma 12.

Assume first that ¢t € D(X — Y). Let 2 € D(X). We show first that ¢ -z €
D(Y) =D(Y1)4tivier solet y' € D(Y1) and let us assume that (t-z) Ny’ = (.
This is equivalent to ¢ N (z x y’) = 0, and since ¢t € D(X — Y), we have
tNTx_y (@ xy’) =0, that is t N (||x;z x T)y;y’) = 0. But this implies
t0(x x Ty y') = 0, that is, (t-z) N Ty y" = 0. Since this holds for all
y' € D(Y1), we have shown that t - € D(Y).

We must show now that ||y oyt x| @ C Ly (¢t 7). Solet b€ || x oy t-
lix =, we have Tyb € D(Y*) and Lx—oyt N (Lixj@ X Ty b) # 0, that is
bx—oy tNTx_oy (@ x {b}) # 0. Since t € D(X —o Y), this shows that ¢ N (x x
Tiy ) # 0, that is (¢ - ) N 1)y b # 0, that is b € ||y (¢ - x) as required.
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Assume conversely that the two conditions of the statement are satisfied, and
let us show that t € D(X —o Y). So let € D(X) and 3 € D(Y*), and assume
that t N Tx_ oy (z x y') # 0. Equivalently, we have t N (||xjz x Ty ¥) # 0,
that is (¢ ||x;2) N T)y;y" # 0. By our second assumption, we have therefore
Lyj@-2) 0Ty 9y # 0, and hence t N (z x y') # 0 since t -z € D(Y) and
y € D(Y1). O

4.2 The linear category

Let PpL be the category whose objects are the PPs, and with PpL(X,Y) =
D(X — YY), composition defined as the usual relational composition.

4.2.1 Identity and composition. Indeed, by Proposition 15, the identity
relation Id C | X| x | X| belongs to D(X — X).

As to composition, let s € D(X — Y) and t € D(Y — Z), then we
show that the relational composition u = ¢ - s of these morphisms belongs
to D(Y — Z), using Proposition 15. So let z € D(X). First, we have
u-x=t-(s-z) € D(Z)since s-x € D(Y). Next || (u-2) =5 (- (s-2)) =
(ly_ozt) - ly (s-z) (by Proposition 15 and the fact that s -2 € D(Y)). Hence
we have || (u-2) = ((ly_.zt) o (lx_—y $)) - ljxj2. To conclude, it suffices to
check that |y ., u = (ly_ozt) o (I x_oy 8). The “C” inclusion is straightfor-
ward, we check the converse. Let (a,¢) € (ly_ozt) o (| x_oy s). Let b € |Y|
be such that (b,¢) € |y_.,t and (a,b) € |x_ .y s. Let (a/,V') € s be such
that o’ <|x| a and b' >}y| b, and let (b”,c’) € t be such that b” <y| b and
a’ >z a. We have b"” < b" and hence (e.g.) (b',c) <jy_z (V. ¢') € t and
(a,b") <\ x—y| (a/,b") € s and we conclude.

4.2.2 Tensor product.

Lemma 16 Let X1, X3 and Y be PPs. Lett C |X; ® Xo —Y|. One has
t € PpL(X; ® X2,Y) iff, for all z1 € D(X1) and 2 € D(X32), one has

® {- (501 ®SCQ) S D(Y)

e and |y (t (1 ®@22)) = (l|x;0x,—v| 1) - (Lx,] T1 @ || x,| T2).

The second condition is equivalent to t-(||x, 21 ® | x, 22) C |y (t - (z1 @ 22)).

Proof. The conditions are necessary by Proposition 15. We prove that they are
sufficient, so assume that they hold. We prove that % € D(Y+ — (X; ® X3)*),
using Proposition 15, so let 3’ € D(Y'1).

We show first that -y’ € D((X;®X32)+). Solet 1 € D(X;) and x5 € D(X3)
and assume that (%-y")N(x1®@x2) = 0, hence (¢- (21 ® z2))Ny’ = 0. But we have
t- (1 ®x2) € D(Y), and hence (t - (z1 ® 22)) N Ty y" = 0, and hence, by our
second hypothesis, (|| x, g x,—oy|t) " (L|x;] 71 ® | x, 72) N Ty ¥ = 0. Therefore
Uixroxs—ovt) - Ty ¥ 0 (Lxy 1 @ | x, 22) = 0, which clearly implies that
-y N (Lx, 71 @ |x, T2) = 0, and this shows that -y € D((X1 ® X2)™").

Next, we must show that 1)y, g, (t-¥) = Ljy: ox,0x,)+ T (Ty ¥), and
the only non-trivial inclusion is “27, so let (a1, a2) € |jy+ o(x,0x,)+ - (Ty ¥')-
This means that |y, ox, {(a1,a2)} N ||y ox,0x0)2 - (Tyy') # 0, that is
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Lxioxa)—vi t Lxiex, {(a1,a2)} N Ty ¢y # 0, that is, by our second assump-
tion, we have |y (t-{(a1,a2)}) N Ty v/ # 0. m|

Let ti S PpL(XZ,}/Z) for i = 1, 2. Let tl & t2 g |(X1 (24 XQ) —0 (Y1 X Y2)| be
defined as usual as t| @ t9 = {((al, ag), (bl, bg)) | (ai, bl) et;fori=1, 2}. Then
we show that t; ®t2 € PpL(X;® X3, Y1 ®Y5) using Lemma 16. So let ; € D(X;)
for ¢ = 1,2. We have (tl ®t2) . ($1 ®.T2) = (tl '.Tl) (9 (tQ '.Tg) S D(Yl & ng)
since we have t; - z; € D(Y;) for i = 1,2. Moreover, we have

i@ty (| 21®@ | 22) = (t-(] )@t (| 22))
[ X1 ] [X2] [ X1 [ X2
C | (t1rz1)® | (t2-z2)
[Y1] |Ya|
= I ((t@t2) - (11 ® x2))
[Y1®Ya]|

applying Proposition 15 to ¢; and to.

4.2.3 Strong isomorphisms. Let X and Y be PPs. A strong isomorphism
from X to Y is a preorder isomorphism 6 : | X | — |Y| such that, for any « C | X|,
one has x € D(X) iff (x) € D(Y). A strong isomorphism from X to Y is an
isomorphism (in the categorical sense), as easily seen using Lemma, 16.

4.2.4 Associativity and symmetry isomorphisms. The obvious bijec-
tion « : |(X1 ® X2) ®@ X3] — | X7 ® (X2 ® X3)|. Then « is a preorder iso-
morphism which is also a PP strong isomorphism. Similarly, the bijection
o : |X1® Xs| — |X2® Xq| is a strong isomorphism. This shows that the
category PpL, equipped with the above defined tensor product, is a monoidal
category (of course, the unit of this tensor product is the PP 1 = ({*}, {0, {x}}).

4.2.5 Linear function space and monoidal closeness. We have already
defined X —o Y = (X ® Y1)+. We show that this object is the linear function
space from X to Y.

Lemma 17 The obvious bijection X : |(Z @ X) —oY| - |X — (Y — Z)| is a
strong isomorphisms from (Z @ X) —Y to X — (Y — Z).

Proof. We already know that A is a preorder isomorphism.

Let t € D((Z®X) — Y) and let us prove that ¢’ = A(t) € D(Z —
(X —Y)), using Lemma 15. So let z € D(Z), we show first that ¢'-z € D(X —o
Y). Let z € D(X), we have (t' - 2)-2 =t-(z ® x) € D(Y). Next, we have (' - z)-
bxjz=t (z2® Lixj®) € t'(l|z\ 2@ lix %) C Ly (t-(z®x))= by ((t"-2)- )
by Lemma 15 applied to ¢, and hence, by the same lemma applied to t’' - z, we
have t' - 2 € D(X — Y). We must show now that ¢’ - |7 2 C || x_oy| (¥’ - 2),
SO let (a,b) S t/ . l\Z| Z. We have b S (t/ . l|Z\ Z) . l’|X‘ a=1t- (l‘Z|z®l‘X|a) g
Ly (t-(2® [|x|a)) so we can find b" € [Y| with b’ > b, ¢ € 2z and @’ < a such
that ((¢,a’),b’) € t, that is (¢, (a/,')) € t'. Hence (a/,V’) € t' - z, and therefore
(a,0) € ||x—oy| (¥’ - 2) as required. O

Since we have taken PpL(X,Y) = D(X — Y) it results easily from that
lemma that the monoidal category PpL is monoidal closed, with X — Y as
function space.
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The category PpL is clearly star-autonomous (with 1. = 1+ = 1 as dualizing
object), since X —o 1 = (X ® 1)+ and this latter PP is isomorphic to X+ by
the strong PP isomorphism which maps a € |X| to (a, *) (one should check that
the induced isomorphism X — (X — L) — 1, which maps a to ((a, %), *) is
the canonical morphism between these two spaces as explained in [Bar79], but
this is quite easy).

4.2.6 The “par” connective. The co-tensor product, or par, is defined as
XBY = (Xt ®@Y+)t = X+ — Y and has the same associativity and symmetry
properties as the tensor product. Also, there is a miz morphism mix: X @ Y —
X®Y, which is the diagonal set mix = {((a,b), (a,b)) | @ € |X| and b € |Y]}.
As it is well known, the fact that this relation is a morphism results from
the fact that 1 = 1+ = 1. A natural question is whether this morphism is
an isomorphism, as in both categories ScottL and RelL (these categories are
compact closed), and we shall provide a counter-example showing that this is
not the case in general.

4.2.7 The morphism mix is not an isomorphism in general. Let X
be the PP defined by |X| = N (the natural numbers, with the usual order)
and D(X) = P(N), and let Y = X*. We check first that the “successor”
relation s = {(n,n + 1) | n € N} belongs to D(Y®X) = D(X — X). Let
x € D(X) = P(N). Obviously s-2 € D(X), and, if b € s | y x, then we have
b>0and b—1¢€ |y Let c€ xsuchthat c>b—1. Wehavec+1 € s-z and
hence b € | x (s - z).

On the other hand, we have Id € D(Y — Y) = D((Y ® X)) and, since |Y|
is N with the opposite order, we have sN Ly—y Id # ) (indeed s C Ly oy Id).
But sNId = ), therefore s = mix ' - s ¢ D(Y ® X), which shows that mix ™' ¢
PpL(YZX,Y ® X).

This strongly suggests that PpL is not compact closed.

4.3 The additives

Given a family (X;);e; of PPs, we define their cartesian product X =&;ec; X;
by setting | X| = [J;c;{i} x | Xi| and saying that a set x C |X| belongs to D(X)
if, for all ¢ € I, one has m; -z € D(X;) (where m; C | X —o X;|is m; = {((¢,a),a) |
a € |X;]}, so that m; - @ = {a € |X;| | (¢,a) € x}; we shall use the notation z;
for 7; - x in the sequel).

One must check that D(X) = D(X) X111 For this it will suffice to show
that, for all 2/ C | X|, one has 2’ € D(X)*1x1 iff 2 € D(X;)**:! for all i € I; this
will show that X defined above is a PP, with X+ =&icr X f Assume first that
z; € D(X;)~1X:l for all i € I and assume that || x| zNa’ # () for some z € D(X).
There exists i € I such that ||y, z; N2} # 0, and therefore z; N2} # 0, and
hence zNa’ # (. Conversely, assume that 2’ € D(X)*1xI and let i € I, we must
show that 2/ € D(X;)11xil. So let y € D(X;) and assume that Lixi y Ny # 0.
Let © = {i} x y C |X|, we have x € D(X) (remember the definition of D(X)
and the fact that ( € D(Y) for any PP Y) and ||y 2 N2’ # (. Therefore we
have x Na’ # 0, that is y Nz} # 0.

It is straightforward to check that &;c; X; is the cartesian product of the
X;s, with the relations 7; as projections.
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4.4 The exponentials

Let X be a PP. We define !X by setting |!X| = !|X|; remember that this means
that |!X] is the set of all finite multisets of elements of | X|, with the preorder
defined as follows: p < ¢ iff Va € p3b € g a <x| b. Given z C |X|, we set
7' = Mgn(z), and remember that we have the following property:

L (@) =(] ). (1)

['X] [X]
We set L

D(1X) = {a' | z € D(X)} "7

Lemma 18 Let X and Y be PPs and let t C ['X — Y|. We have t € D(!X —o
Y) iff, for all x € D(X),

o t-2' cD(Y)

o and |y (t-2') = (Lx—yt) - (J1x) @)
and the second condition is equivalent to t - (| x| z)' C Ly (- z').

The proof is similar to that of Lemma 16.
Let t € PpL(X,Y), we define It C |IX — Y| by

t={([a1,...,an],[b1,...,bn]) | (as,b;) €t foralli=1,...,n}.

Using Lemma 18, we prove that It € PpL(!X,!Y). So let « € D(X). We
have It - ' = (t-2)' € D('Y) since - € D(Y). Next we have !t - (| |y z)" =
(t-lx;=)" S (ly(t-z))" by Proposition 15 applied to ¢, and we conclude
because (}y (¢ r)) = Ly (¢ r) = Ly (- z'), using Equation (1).

We check that the usual comonad structure of the exponential in the rela-
tional model gives rise to a comonad structure for the ! functor we have just
defined.

We define first dy as dx = djx| = {([a],a) | @ € |X|} C |'X — X|. Given
x € D(X), we have dx - 2' =z and dx - (||x|2)' = |jxj ¢ = |jx (dx -2') and
so dx € PpL(!X, X) by Lemma 18. Similarly, we define py as py = p|y| =
{(m1 + -+ mp,[m1,...,my]) | m1,...,m, € |1X|} C !X — IX]| and we
show that py € D(!X —o !IlX), using Lemma 18 again. So let z € D(X), we
have py - o' = 2" € D(I1X), since ' € D(!X). Next we have py - (x| z) =
(x| z)' = Lnx| (") = Ljux| (px - ') and this completes the proof that py is
a morphism.

4.4.1 Fundamental isomorphism. We show that the PPs (X & Y) and
IX ®Y are isomorphic, by the bijection 6 : |/(X & V)| — |'X ® Y| which maps
the multiset [(1,a1),...,(1,a),(2,b1),...,(2,b.)] (with a; € |X| and b; € |Y])
to ([al, ce ,al], [bl, ceey br])

We show that 6 is a morphism from (X & Y) to !X ® Y. So let z € D(X)
and y € D(Y). We have 6 - (z,y) = ' ® y' € D(!X ®!Y) which shows by
Lemma 18 that 6 is a morphism, since it is a preorder isomorphism (so that the
second condition of the lemma is trivially satisfied). Conversely, let p = =1
and let o’ C|IX| x [(IY — (X & Y))| be given by

P ={(p,(g,;m)) | m=10(p,q)}.
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By monoidal closeness, it suffices to prove that p’ is a morphism from !X to
Y — (X &Y), and for this, we apply twice Lemma 18 as follows. First,
let 2 € D(X), we must show that p' - 2! € D(IY — (X & Y)). For this,
let y € D(Y), we have (p'-2') -y = (z,9)' € D((X & Y)). Next, we have
(o - ') - (lm y) = (xalm y)' on the one hand and Iixey) ((p-ah)-y) =
Iixey) (z,y) = (I xev| (z,y))' on the other hand, from which it clearly
results that (p’ - z') - (v y) C Lixery (0 -2')-y') and therefore p’ - ' €
D(Y — (X &Y)) by Lemma 18. To conclude, we must show that p’ -
(Lix) )" € Lpy—axayy (0 - '), so let ¢ € [1Y] and m € [{(X & V)| and as-
sume that (¢,m) € p' - (||x«)'. There exists p € [!X| such p € (||xx)" and
m = 0(p,q). Since p € (||x x)', we can find p’ € z' such that p <px| p'. Let
m' = 6(,q), we have (g, m') € ¢/ - 2! and hence (q,m) € Ly —y(xav) (7 - %)
since m Sl(x&y)ll m'.

Observe that there is also an obvious isomorphism from !T to 1 (the “0-ary
version” of the isomorphism above).

4.4.2 Structural maps. Using these fundamental isomorphisms, it is easy
to define the weakening and contraction maps, which endow !X with a coalgebra
structure: it suffices to apply the functor ! to the “terminal map” in PpL(X, T)
and to the diagonal map in PpL(X, X & X) and then to compose the resulting
map with the suitable fundamental isomorphism. In that way, we get weakx €
PpL(!X, 1), given by weakx = {([],*)} and contrx € PpL(!X ® !X,!X) given
by contry = {(p,q,p + q) | p,q € |'X|}, which satisfy all the diagrams required
(see [Bie95]).

4.4.3 Cartesian closeness. Equipped with this structure (the comonad
(! ,d,p), the fundamental isomorphisms), the cartesian star-autonomous cat-
egory PpL is a model of linear logic in the sense of Section 1.4. It gives rise
therefore to a cartesian closed category, which is the Kleisli category PpL, of
that comonad. The cartesian product of (X;);cr in PpL, is X = &5 X; with
projections 7; o dx (simply denoted as 7;). The object of morphisms from X to
YVis X =Y =!X — Y with evaluation morphism Ev (defined in Section 2.1).

4.5 The partially ordered class of PPs

Let X and Y be two PPs. We say that X is a subobject of Y and we write
X CY if [ X| C |Y] (in the sense of Section 3.5) and if nx||y| € PpL(X,Y)
and p|x|,y| € PpL(Y, X). This means that the two following conditions must
hold:

Vz C |X| zeD(X)=aeD®Y)
Vy C Y] yeD(Y)= (yn|X]eD(X) and (ély)ﬁle < l)lq(yﬂle))-

Observe that, in the second condition, the converse inclusion always holds be-
cause | X|C |Y].

It is clear that C is an order relation on the class of PPs; let us denote with
PpC the corresponding partially ordered class.

As usual, the first thing to observe is that linear negation is covariant with
respect to this notion.
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Lemma 19 If X C Y then X+ C YL,

Proof. Same proof as for Lemma 7. O

4.5.1 Completeness.

Lemma 20 Let (X)) er a directed family of PPs. Let X = Uver X, be defined
as follows: | X| = || cr | X+ (in the partially ordered class ScottC) and D(X) =
{z C|X||VyeTl zn|X,| € D(X,)}. Then X is a PP.

Proof. Observe first that, if € D(X,), then € D(X). Indeed, let § € T', we
must check that = N |Xs| € D(X5). So let € € T' be such that v,0 < e. Since
X, C X, we have z € D(X.), and since Xs C X., we have 2 N |X;| € D(Xs).
For proving the lemma, we build X’ =[ | cp X,YL (this makes sense since the
family (Xj-),yep is directed by Lemma 19), and we show that X = X’*. Since
obviously | X| = | X'*| (as preorders), it remains to show that D(X) = D(X")*.
First, let z € D(X) and let us show that » € D(X’)*. So let 2’ € D(X’) and
assume that ||y N2’ # 0. Let a € x and let a’ € 2’ be such that o’ <|x| a. Let
v € T be such that a,a’ € |X,| (so that a’ <x_ | a). We have 2N |X,| € D(X,),
2'N|X,| € D(X5) and a’ € Lix, (@N]X,]) N (2" N]X,]), and hence z Na’ # 0.
Conversely, let x € D(X’)*, and let us show that z € D(X). So let v € I’
and let us show that = N |X,| € D(X,). Let 2’ € D(X;) and assume that
lix, & Na" # 0. By our initial observation, we have 2’ € D(X'). Since ||x_ |z N
a' # 0, we have || x|z N2’ # () and hence z N2’ # 0. O

Lemma 21 I—l’YEF X, is the least upper bound of the family (X,)yer in the
partially ordered class PpC.

Proof. Let § € T', we check that X5 C Uver X, = X. We have already seen
that, if z € D(Xj), then = € D(X). So let € D(X). By definition, we have
x N |Xs| € D(Xs). We have to check that ||y N [Xs| C | x| (z N[X;5]), so
let a' € ||x @ N[Xs| and let a € x such that o’ <x| a. We can find e > §
such that a,a’ € [Xc|. Then a’ € ||y 2N [Xs| and since X5 C X., we have
LixxN[Xs| C |ix, (N[Xs]) and hence a’ € | x,| (x N[X;s|) as required.

Let Y be a PP such that X, C Y for each v € I' and let us show that X =
L, er Xy C Y. We already know that | | . [X,| C [Y]. First, let 2 € D(X) and
let, us show that x € D(Y). So let 4’ € D(Y'1) and assume that Lixjzny' #0.
Let o € lixj Ny" and let a € = be such that a’ <|x| a. Let 0 € I' be such
that a,a’ € | X5/, so that o’ <|x,| a. We have a’ € | x| (z N [Xs]) N (y' N [Xs]),
z N |Xs| € D(X;5) (by definition of X) and y' N |X;| € D(X;) (since X5 C Y,
and by Lemma 19). Hence x Ny’ # 0, and this shows that = € D(X).

Next, let y € D(Y). We must show first that y N |X| € D(X), but this
results immediately from the definition of X and from the fact that X5 C Y
for each § € I'. Last, we must show that ||y y N [X] C [x(yN|X]). Let
a" € |y yN[X]. Let § € I' be such that a’ € |X;|. Since X5 C Y, we have
Ly y N [Xs| € |ix,) (yN|Xs]) and we conclude because a’ € |y y N |Xs| and,
obviously, ||x,| (¥ N |X5]) € |x| (y N [X]). U

30



4.5.2 Variable PPs and least fixpoints thereof. A wvariable PP is a
functor ® : PpC" — PpC which commutes with the lubs of directed families
of PPs (as usual we say then that ® is continuous).

Lemma 22 The operations (X,Y) — X ®Y, X — X! and X — X are
variable PPs.

Proof. We observe first that these operations are monotone, as in the proof of
Lemma 10.

So the operation (X,Y) — (X — Y) is monotone, we prove that it is
continuous. Let (X,),er and (Y5),er be directed families of PPs, and let X and
Y be their lubs. Then (X, — Y, )cr is a directed family of PPs (we have just
seen that _ —  is monotonous wrt. C), let Z be its lub. We must show that
Z =X —o Y. We already know that |Z| = |X — Y] and that ZC X — Y, s0it
will be enough to show that D(X — Y) C D(Z). Solet t € D(X — Y) and let
v € T', we must prove that t, =t N |X, — Y,| € D(X, —Y,). Let € D(X,),
we have z € D(X) and ¢, -z = (t - 2) N [Y;| € D(Y;). Moreover, ¢, - |y jz =
Therefore, since Y, C Y, wehave ty ||y 2 C )y ((t-2) N[Y,]) = Ly, (- 2)
(remember that z € D(X)) and this concludes the proof that ¢, € D(X, — Y;),
and therefore also the proof that —  is a variable PP.

The operation ® : X +— (!X) is monotone, and we conclude by proving
that it is continuous. Let (Xy)er be a directed family, let X be its lub, and
let Y be the lub of the directed family (®(X,))yer. We have Y T ®(X) and
Y| = |®(X)]|, so it will be sufficient to prove that D(®(X)) C D(Y). Let
A" € D(®(X)) and let v € T', we must prove that A’N[®(X,)| € D(®(X,)). Let
@ € D(X,) and assume that A'N ] | (') # 0. Then we have A’ |}y (z') # 0
and hence A’ N z' # (), since z € D(X), that is (A’ N |®(X,)|) Na' # 0. O

Of course, any variable PP ® : PpC — PpC admits a least fixpoint, namely
Lpen @*(T) (remember that T = (0, {0}), so that T is the least element of PpC
for the preorder C).

4.5.3 An extensional reflexive PP. The operation ¢, : PpC — PpC
defined by ®,(X) = (1(X))* is a variable PP and has therefore a least fixpoint
that we denote with Dy,. One checks easily (as in 2.3.3) that D, is an extensional
reflexive object in the CCC PpL,.

4.6 PPs are heterogeneous logical relations

We know that Rel; and ScottL, are CCCs and that ScottL; is well-pointed,
so we can apply to these categories the constructions of 1.3.2. We shall see
that, up to canonical isomorphisms, PpL, is a sub-cartesian closed category of
€mod (Relg, ScottLy).

If F is a set considered as an object of Rely, a point of E (that is an element
of Reli(T, E)) is just a subset of E. And if S is a preordered set considered as
an object of ScottL,, a point of S is an element of Z(S).

4.6.1 Heterogeneous relation associated with a PP. Given a PP X, we
can define an object h(X) of the category e(Rel;, ScottL;) by setting "h(X)" =
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|X| (considered as a simple set), Lh(X)1 = |X| (considered as a preordered set)
and
rlryxyuw if 2 €D(X)and u= ‘llz.
X
Given a morphism t € PpL,(X,Y’), we define a pair of morphisms h(t) =
("h(t)7,th(t)2) with "h(?)" =t € Reli("h(X)","h(Y) ") and Lh(t)o = |1 x oy t,
which belongs to ScottL(Lh(X )1, h(Y)J).

Theorem 23 The operation h defined above is a full and faithful cartesian
closed functor from PpL, to e(Reli, ScottLy).

Proof.  Observe first that h(¢) € e(Reli, ScottL;)(h(X),h(Y)) (with the nota-
tions above). Indeed, due to the definition of Ik x) and of Iy, this amounts
to checking that, for any € D(X), one has ¢-2' € D(Y) and |}y (t-2') =
Iix—oyyt- (x| x)'. This holds by Lemma 18.

Let us check the functoriality of h, solet s € PpL,(X,Y) and t € PpL(Y, Z).
One has first "h(t o s)" =t o s ="h(t)" o Th(s)™. Next, we have Lh(t o )1 =
lix—oz| (t o s). Let z € D(X). We have, applying again Lemma 18,

Lhtos)s-(La) = | (tos)-(] @)
|X| 'X—Z| |X]
= |%((tos)-ac’)
= |%(t-((s-ac!)‘))
- l|in|t-(|$‘(s-x!))!
- |'Yl th- (|'Xl Y|S ' (|)l<\z)!)!
= (1 to | s (lLa)
Y —Z|  |IX—oY]| |X|

and hence Lh(t o s)1 = Lh(t)s o Lh(s)s because the category ScottL, is well-
pointed, and because any element of Z(|X|) can be written | x| = for some
x € D(X) (remember that Z(| X|) C D(X)). One proves similarly that identities
are preserved.

Fullness of h results again from Lemma 18 (used in the converse direction).
It remains to prove that this functor is cartesian closed.

Let (X;)ier be a finite family of PPs and let X = &;er X, so that "h(X)7 =
&ier™h(X;)and Lh(X)y = &ierch(X;)a. Moreover, "h(m;) T = m; and Lh(m;) o =
Lixi—ox;| i = ;- Last, given z = (2;)ier € P(IX|) and u = (u;)iesr € Z(1X]),
we have z Ik xy v iff z € D(X) and lixj@ = u. The first of these two con-
ditions is equivalent to Vi € T x; € D(X;) and the second one is equivalent to
Viel l|X¢| x; = u; and therefore x I, (x) u < Vi € I z; IFx, u; and this shows
that h commutes with cartesian products.

It remains to show that h commutes with the function space construction,
solet X and Y be PPsandlet Z = (X = Y) = (IX —Y). We clearly have
"h(Z)" = Th(X)" = Th(Y)7 and Lh(Z)s = Lh(X)2 = Lh(Y)J. Next we have
"h(Ev)" = Ev and Lh(Ev)a = |5 Ev = Ev® (see 3.4.1). Finally, let ¢t € P(|Z])
and let w € Z(|Z|). Assume first that ¢ Iby(z) w, that ist € D(Z) and ||t = w.
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We must prove that ¢ IFpx)—ny) w. Solet x € P(|X][) and v € Z(|X|) be such
that = IFx u, that is € D(X) and | xjz = u. By definition of #(z) and
w(u) (see Section 1.1), we have t(z) = t-z' and w(u) = w-u' = (Jjz1) -
(Ljx) )" = ljy| (t(x)) by Lemma 18. By the same lemma, we have ¢(x) € D(Y),
and hence t(x) Ikpyy w(u) as required. Conversely, assume that ¢ IFpx)—n(y)
w; we must prove that t IFyz) w. We apply again Lemma 18, so let = €
D(X). We have x IFx || x|« and hence t(x) € D(Y) (that is ¢ - 2! € D(Y)) and
Ly (¢ ) =w- (J1x )" (by definition of IFy(x)=n(y)). We prove that Lizit=
w. Let (m,b) € |Z]. We have ||y (t- (x| supp(m))’) = w - (|x|supp(m))".
Assume first that (m,b) € |5t and let (m’,b’) € t be such that (m,b) <z
(m',0). Then m’ € (||x supp(m))" and hence b € |y (t- (1| supp(m))'). So
let m” € (|x supp(m))" be such that (m”,b) € w. Since w € Z(|Z|), we have
(m,b) € w. Conversely, assume that (m,b) € w. Since m € (| x| supp(m))",
we have b € |y (t- (l|x supp(m))') so we can find (m’, ') € t such that m’ €
(x| supp(m))' and b < V', that is (m,b) <,z (m/,), which show that (m,b) €
ljz/t- Therefore, = being an element of D(X), we have |y (t-z') = |t -
(ljx) )" and so t € D(Z) by Lemma 18. This concludes the proof that ¢ IFz w,

and therefore we have h(Z) = h(X) = h(Y). Therefore h is a CCC functor.
g

So we can consider PpL, as a sub-CCC of e(Rel;, ScottLy).

4.7 A functor from PPs to PER-objects

Given a PP X, we obviously define a PER (denoted with Bx for the time being)
on P(|X|) by saying that « Bx y if z,y € D(X) and |y x = | x y. Observe that
x Bx |y« for any z € D(X).

Lemma 24 For any PP X, one has B)L( = By and therefore Bx+ = Bx.

Proof. Let a',y’ C |X|. Assume first that 2’ By ¢’ and let us show that
2’ Bx. y'. We prove first that 2/ € D(X)*, so let + € D(X), and assume
that 2’ N || x| # 0, we must show that 2’ Nz # (. This results from the
fact that x Bx ||x 2. Similarly we get y' € D(X)t. We must show now that
Tixj2" = Tjx|¥’, so let a € Tx;2'. This means that | xjaNa’ # (). Since
lixja Bx ljx|a, we get ||y any’ #0, that is a € T x|y

Conversely, assume that 2’ Bx. 3’ and let us show that z’ B)l( y'. So let
x,y C |X| be such that  Bx y, and assume that z Nz’ # (); we must show that
yNy' # 0. We have a fortiori || x 2N 7T x 2" #0, that is ||y yNTx v #0.
But then, since y € D(X) and 3 € D(X)*, we get y Ny’ # 0. |

We can rephrase this result as follows.

Lemma 25 For any PP X, ¢(X) = (|X|, Bx) is a PER-object and we have
(X)) =¢e(X)t.

The relation Bx can therefore also be denoted with ~e(X)-
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Lemma 26 Let X and Y be PPs and let s1,s2 € P(|X —Y]). One has
S1 ~e(X—oY) 52 iﬁfor all x1,To € 7)(|X|), ifﬂfl ~e(X) To then S1°T1 ~e(Y) $2°X2.
This means that (X —Y) =e(X) —o e(Y).

Proof. Assume first that s; ~.x_y) s2. Let x1,20 C |X| be such that
Ty ~e(x) T2, we want to show that s1 -1 ~.(y) s2-72. Let yj,y5 C [Y] be such
that yj ~.(y1) y5. Onehas (sy-21)Ny) # 0 iff sN(z1 xy]) # 0 and, since x; €
D(X) and y; € D(Y)*, this latter condition holds iff s; Nlixegys| (@1 xy1) # 0,
which in turn is equivalent to ||y oy 51 0 |xgyr (21 X y1) # 0 since s; €
D(X — Y). Since ||x_oy|81 = |ljx_y|s2 (because si ~.(x oy) s2) and
Lixeve (@1 xy1) = ljxgy1| (w2 X y5) (because w1 ~(x) w2 and y§ ~.(y 1) ¥3),
we conclude that (s1-x1) Nyl # 0 & (s1-x2) Nyh # 0, and this shows that
81 T1 ~e(y) S2° T2 by Lemma 24.

Conversely, assume that s -z ~e(y) S2 7 T2 whenever z; ~e(x) T2, and
let us show that s; ~.(x_.y) s2. Observe that our assumption implies that
81 T1 ~e(y) 8112 (indeed, 2 ~e(X) T2, hence sy - 29 ~e(y) 82 T2 and we can
apply transitivity of the relation ~.(y)). We show first that s; € D(X — Y).
So let 2 € D(X). We have x ~_(x) x and hence s1 - & ~(y) s2 -z, which implies
s1-x € D(X). Let b € s1-|xx, we show that b € [y (s1-z). We have
T ~c(x) lix| @ and hence s1 - @ ~.(y) s1 - ||x @ which implies |y (s1-z) =
Ly (1 ljx; ) and we conclude since b € ||y (s1 - | x| ). By Proposition 15,
we have s; € D(X — Y), and of course the same holds for s by symmetry. It
remains to show that || x_,y|s1 = || x oy s2-

Let (a,0) € ||x_.y|s1. This means that | ygyo|(a,b) Nsy # 0, that is
(51 Lxj@) N Ty b # 0. But |ya ~.x) lxa and hence s - || xja ~cy)
s2 - || x| @ and since T}y b Nj(y) Ty b, we have (s2 - x| a) N Ty b # 0, that is
(a,0) € ||x oy S2- O

In particular, for any PPs X and Y, one has PpL(X,Y’) = PerL(s(X),e(Y))
and so the operation ¢ is a full and faithful functor, which is the identity on
morphisms. Indeed, composition of morphisms is defined in the same way in
both categories, as the standard composition of relations.

Lemma 27 Let X andY be PPs. We have e(X ® Y) = e(X) ®¢e(Y), that is,
the functor e is strict monoidal.

Proof. Apply the fact that X @ Y = (X — Y1)+, Lemma 25 and Lemma, 26.
O

Lemma 28 The functor e commutes with all cartesian products.
Lemma 29 Let X be a PP, one has e(1X) = le(X).

Proof. By Lemma 25, it suffices to show that (!1X)+ = (le(X))*. Let A}, A C
1X].

On the one hand, A} ~.qx). Aj means that A} NEL(!X) AL, that is

VA, Ay C |'X| Aq ~e(1X) Agi(AlﬂAll#@@AgﬁAIQ#@),
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and remember that A; ~.qx) A2 means that A;, Ay € D(!X) and l\!x\ Al =
ljix) A2, By Lemma 25, A} ~_1x)+ A5 is also equivalent to A} ~.1x)r) A3,
that is
AL AL eD(IX)E and 1 Ap= 1 AL (2)
X [X]

On the other hand, A} ~((x))+ Aj means that A} ~;_ ) Aj, that is

Vay,xy C | X| 1 ~e(x) T2 = (xh N AL # 0 < ahn Ay #0)

and remember that z; ~e(X) T2 Means that 1,29 € D(X) and l\x| T = l|x\ To.

Hence @1 ~.(x) ¥z implies #},25 € D(!X) and l|!X\z!1 = (le‘:cl)! =
(Lx)z2)' = Ljix| @5, that is #} ~.(x) #5 and hence A} Ni_(!x) Al = A} Ni(x)
Al

Let us prove the converse implication, so assume that A Né(x) Al and
let us prove that property (2) holds. We prove first that A5 € D(!X)*. So
let 2 € D(X) and assume that A} Na' = 0. Since x ~.(x) ||x| &, we have
!t~y (Lxg@)' = Ly (@), and hence 4] N |y (¢') = 0 since we have
Al N!J;(X) Aj. Tt remains to show that 1),y A} = T)x| A3, we only prove the
“C” inclusion. So let m € |!X| and assume that m € 1), A}. This means that
AL N iy m # 0, and since |y m ~ic(x) x| m, we have m € 1),x| A45. O

Theorem 30 The functor ¢ is an LL-functor.

Proof. This results from Lemmas 26, 27, 28 and 29, from the fact that ¢ acts
trivially on morphisms and from the fact that the operations on morphisms are
defined in the same way in both categories. O

It follows that ¢ is a cartesian closed functor from PpL, to PerL,.

4.7.1 Continuity of . Let X and Y be PPs such that X T Y. Since
nx|,)y] € PPL(X,Y) and since ¢ acts trivially on morphisms, we have 7 x| y| €
PerL(s(X),e(Y)). Similarly, we have p x| |y| € PerL(s(Y),e(X)). Therefore
e(X) C e(Y), that is € is a monotone class function from PpC to PerC.

Theorem 31 The monotone class function € : PpC — PerC is continuous.

Proof. Let (X5)yer be a directed family of PPs and let X = l_lwel“ X, € PpC.
We already know that [X| = U, |X,| and so we have to prove that, given
x,y C | X]|, the two following conditions are equivalent:

2. forally € I', zN[X, [, yN[X, | € D(X,) and || x_ (N [X,]) = |jx ) (v O [ X))

That (1) implies (2) results from the monotonicity of ¢ (for each v € T', we have
X, C X and hence (X)) C (X)), so let us prove the converse and assume that
(2) holds. That x,y € D(X) results directly from the definition of X (see 4.5.1).
We conclude by checking that || xjz C ||x|y. For this, it is sufficient to have
z C ||x|y, solet a € z. Let v € I' be such that a € z N |X+|. By assumption,
a € lix, (yN|Xy|), solet b € yN[X,[ be such that a <|x_ | b. Since [X| is the
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lub of the |X,[s in the partially ordered class ScottC, we have a < x| b and
this concludes the proof. O

4.7.2 Image of the reflexive object of PpL,. Remember from 4.5.3 that
we have defined a reflexive object Dy, in PpL, as the least fixpoint of a continuous
class function ®, : PpC — PpC, in other words Dy = | |,.y®;(T). By
continuity of e, we have (Dn) = | |, e €(PH(T)) = |l,en Pe(T) = De (see 2.3.3)
since ¢ is an LL-functor from PpL to PerL

4.8 A functor from PPs to preorders

We define a functor o from PpL to ScottL. Given a PP X, we set o(X) = | X],
which is a preorder. Given two PPs X and Y andt € PpL(X,Y) =D(X —Y),
we set
ot)= | teI(|X —-Y])~ ScottL(|X]|,|Y]).
| X —oY|
In other words, the linear map o(t) : Z(|X|) — Z(|Y]) is given by o(t)(z) =
Ly (t-z) (see Lemma 12).

Lemma 32 The operation o on morphisms is a functor, that is o(ldx) = §(
and, given s € PpL(X,Y) and t € PpL(Y, Z), one has o(t - s) = o(t) - o(s).
Proof. See 4.2.1, where the proof is given. O

Theorem 33 The functor o is an LL-functor.

Proof. This is a routine verification.

As an example, let X and Y be PPs. We have o(1X) = [!X]| = | X]| = lo(X).
Let ¢t € PpL(X,Y), we prove that o(!t) = lo(t). Let (p,q) € |!X| x |!Y|. If
(p,q) € o('t), we can find (p’,¢') € !t such that p’ <;x| p and ¢ <;y| ¢'; we
show that (p,q) €lo(t) =ljx—yt)- Let b€ g, let V' € ¢’ such that b <y V.
Let a’ € p’ be such that (a’,0’) € t (since (p/,q") € It). Let a € p be such that
a' <|x| a (since p’ <x| p). We have (a/,b') € t and (a,b) <|x_oy| (d,V),
hence (a,b) € o(t) and this shows that (p,q) € lo(t). Assume conversely that
(p,q) € lo(t) and let us show that (p,q) € o(!t). For each b € g, let us choose
I(b) € p such that (I(b),b) € o(t) = ||x_oy|t- Let (ul(b),ur(b)) € ¢ be such
that ul(b) <x| I(b) and b <jy| ur(b). We pick p’ € ![X| and ¢’ € ![Y] such
that supp(p’) = {ul(b) [ b € supp(q)} and supp(q’) = {ur(b) | b € supp(q)}. We
have p’ <y x| p (if &’ € p’, we can choose b € ¢ such that o’ = ul(b), and hence
a’ <ix) I(b) € p), ¢ <yy) ¢ (if b € q, we have b <y ur(b) € ¢') and (p',¢') € 't
(let & € ¢'; we can choose b € ¢ such that b = ur(b), we have ul(b) € p’ and
(ul(b),ur(b)) € t). This shows that (p,q) € o(!t).

Last, let us check that o(py) = pi(X). Let (p, P) € | X| x 1| X], so that
P can be written P = [p1,...,p,] with p1,...,p, € |!X]|. Assume first that
(p, P) € o(px) = ljx—onx|Px and let us show that (p, P) € Pg(x)’ that is
p1+ -+ pn <yx| p- Solet a € p1+ -+ pp, and let i € {1,...,n} be
such that a € p;. Let (p/,P’) € px be such that p’ <x| p and P <y x|
P’, so that P = [p),...,p}] with p’ = p} +--- +p}. Let j € {1,....k}
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be such that p; <x| pj. Let a’ € pj be such that a <|x| a’ (remember
that a € p;). Then we have o/ € p’ and hence we can find a” € p such that
a' <|x| «”. This shows that p; 4+ --- 4+ p, <;x| p as required. Conversely,
assume that (p, P) € pi(X) (that is p; + - + pn <yjx| p) and let us show that
(p, P) € o(px). We have (p1 + -+ + pn, P) € px by definition of px and we
have (p, P) <;ix—onx| (p1 + -+ + pn, P) since p1 + --- + p, <y x| p- Therefore
(p, P) € o(px) as announced. O

It follows that o is a cartesian closed functor from PpL, to ScottL.

It is straightforward from the definition of PpC that o is a continuous class
function from PpC to ScottC. Since o is also an LL-functor from PpL to
ScottL, it follows that o(Dy) = Ds (as in 4.7.2). According to the definitions
of Section 1.3.2, we can summarize the situation as follows (at least as far as
CCCs are concerned).

Theorem 34 The CCC ScottL, represents the extensional collapse of the CCC
Rel, in the sense of 1.3.2. The reflexive object Ds of ScottL, represents the
extensional collapse of the reflexive object D, of Rely in the sense of 1.3.4.

Of course, the results presented in this paper are more general than what is
stated in that theorem, since they concern the linear structures of the models,
not, only their cartesian closed structures.
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