
HAL Id: hal-00369812
https://hal.science/hal-00369812v2

Preprint submitted on 23 Jun 2009 (v2), last revised 9 Jul 2009 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Volume and entropy of regular timed languages
Eugene Asarin, Aldric Degorre

To cite this version:
Eugene Asarin, Aldric Degorre. Volume and entropy of regular timed languages. 2009. �hal-
00369812v2�

https://hal.science/hal-00369812v2
https://hal.archives-ouvertes.fr

Volume and entropy of regular timed languages

Eugene Asarin1 and Aldric Degorre2

1 LIAFA, Université Paris Diderot / CNRS
case 7014, 75205 Paris Cedex 13, France

Eugene.Asarin@liafa.jussieu.fr
2

VERIMAG,
Centre Equation, 2 av. de Vignate, 38610 Gières, France

Aldric.Degorre@imag.fr

Abstract. For timed languages, we define size measures: volume for lan-
guages with a fixed finite number of events, and entropy (growth rate) as
asymptotic measure for an unbounded number of events. These measures
can be used for quantitative comparison of languages, and the entropy
can be viewed as information contents of a timed language. For languages
accepted by deterministic timed automata, we give exact formulas for
volumes. Next, we characterize the entropy, using methods of functional
analysis, as a logarithm of the leading eigenvalue (spectral radius) of
a positive integral operator. We devise several methods to compute the
entropy: a symbolical one for so-called “1 1

2
-clock” automata, and two nu-

merical ones: one using techniques of functional analysis, another based
on discretization. We give an information-theoretic interpretation of the
entropy in terms of Kolmogorov complexity.

1 Introduction

Since early 90s, timed automata and timed languages are extensively used for
modelling and verification of real-time systems, and thoroughly explored from
a theoretical standpoint. However, two important, and closely related, aspects
have never been addressed: quantitative analysis of the size of these languages
and of information content of timed words. In this paper, we formalize and solve
these problems for a large subclass of timed automata.

Recall that a timed word describes a behaviour of a system, taking into
account delays between events. For example, 2a3.11b means that an event a
happened 2 time units after the system start, and b happened 3.11 time units
after a. A timed language, which is just a set of timed words, may represent all
such potential behaviours. Our aim is to measure the size of such a language. For
a fixed number n of events, we can consider the language as a subset of Σn× IRn

(that is of several copies of the space IRn). A natural measure in this case is just
Euclidean volume Vn of this subset. When the number of events is not fixed, we
can still consider for each n all the timed words with n events belonging to the
language and their volume Vn. It turns out that in most cases Vn asymptotically
behaves as 2nH for some constant H that we call entropy of the language.

The information-theoretic meaning of H can be stated as follows: for a small
ε, if the delays are measured with a finite precision ǫ, then using the words of the
language L with entropy H one can transmit H + log(1/ε) bits of information
per event (see Thms. 7-8 below for a formalization in terms of Kolmogorov
complexity).

There can be several potential applications of these notions:

– The most direct one is capacity estimation for an information transmission
channel or for a time-based information flow.

– When one overapproximates a timed language L1 by a simpler timed lan-
guage L2 (using, for example, some abstractions as in [1]), it is important to
assess the quality of the approximation. Comparison of entropies of L1 and
L2 provides such an assessment.

– In model-checking of timed systems, it is often interesting to know the size of
the set of all behaviours violating a property or of a subset of those presented
as a counter-example by a verification tool.

In this paper, we explore, and partly solve the following problems: given a
prefix-closed timed language accepted by a timed automaton, find the volume
Vn of the set of accepted words of a given length n and the entropy H of the
whole language.

Related Work. Our problems and techniques are inspired by works concerning
the entropy of finite-state languages (cf. [2]). There the cardinality of the set Ln

of all elements of length n of a prefix-closed regular language also behaves as
2nH for some entropy H. This entropy can be found as logarithm of the spectral
radius of adjacency matrix of reachable states of A.3 The main technical tool
used to compute the entropy of finite automata is the Perron-Frobenius theory
for positive matrices, and, in this paper, in a first approach we will use its
extensions to infinite-dimensional operators [3]. In a second approach, we also
propose to reduce our problem by discretization to entropy computation for some
discrete automata.

In [4, 5] probabilities of some timed languages and densities in the clock space
are computed. Our formulae for fixed-length volumes can be seen as specializa-
tion of these results to uniform measures. As for unbounded languages, they use
stringent condition of full simultaneous reset of all the clocks at most every k
steps, and under such a condition, they provide a finite stochastic class graph
that allows computing various interesting probabilities. We use a much weaker
hypothesis (every clock to be reset at most every D steps, but these resets need
not be simultaneous), and we obtain only the entropy.

In [6] probabilities of LTL properties of one-clock timed automata (over in-
finite timed words) are computed using Markov chains techniques. It would be
interesting to try to adapt our methods to this kind of problems.

Last, our studies of Kolmogorov complexity of rational elements of timed
languages, relating this complexity to the entropy of the language, remind of

3 This holds also for automata with multiplicities, see [2].

earlier works on complexity of rational approximations of continuous functions
[7, 8], and those relating complexity of trajectories to the entropy of dynamical
systems [9, 8].

Paper Organization This paper is organized as follows. In Sect. 2 we define
volumes of fixed-length timed languages and entropy of unbounded-length timed
languages. We identify a subclass of deterministic timed automata, whose vol-
umes and entropy are considered in the rest of the paper, and a normal form for
such automata. Finally, we provide an algorithm for computing the volumes of
languages of such automata. In Sect. 3 we define a functional space associated
to a timed automaton and a positive operator on this space. We rephrase the
formulas for the volume in terms of this operator. Next, we state the main result
of the paper: a characterization of the entropy as the logarithm of the spectral
radius of this operator. Such a characterization could seem too abstract but later
on, in sections 4-5 we give three practical procedures for approximate comput-
ing this spectral radius. First, we show how to solve the eigenvector equation
symbolically in case of timed automata with 1 1

2 clocks defined below. Next, for
general timed automata we apply a “standard” iterative procedure from [3] and
thus obtain an upper and a lower bound for the spectral radius/entropy. These
bounds become tighter as we make more iterations. Last, in Sect. 5, also for
general timed automata, we devise a procedure that provides upper and lower
bounds of the entropy by discretization of the timed automaton. In the same
section, and using the same method, we give an interpretation of the entropy of
timed regular languages in terms of Kolmogorov complexity. We conclude the
paper by some final remarks in Sect. 7. Throughout the paper, the concepts and
the techniques are illustrated by several running examples.

2 Problem statement

2.1 Geometry, Volume and Entropy of Timed Languages

A timed word of length n over an alphabet Σ is a sequence w = t1a1t2 . . . tnan,
where ai ∈ Σ, ti ∈ IR and 0 ≤ ti (notice that this definition rules out timed
words ending by a time delay). Here ti represents the delay between the events
ai−1 and ai. With such a timed word w of length n we associate its untiming
η(w) = a1, . . . , an ∈ Σn (which is just a word), and its timing which is a point
θ(w) = (t1, . . . , tn) in IRn. A timed language L is a set of timed words. For a
fixed n, we define the n-volume of L as follows:

Vn(L) =
∑

v∈Σn

Vol{θ(w) | w ∈ L, η(w) = v},

where Vol stands for the standard Euclidean volume in IRn. In other words,
we sum up over all the possible untimings v of length n the volumes of the
corresponding sets of delays in IRn. In case of regular timed languages, these
sets are polyhedral, and hence their volumes (finite or infinite) are well-defined.

We associate with every timed language a sequence of n-volumes Vn. We
will show in Sect. 2.5 that, for languages of deterministic timed automata, Vn

is a computable sequence of rational numbers. However, we would like to find a
unique real number characterizing the asymptotic behaviour of Vn as n → ∞.
Typically, Vn depends approximately exponentially on n. We define the entropy
of a language as the rate of this dependence.

Formally, for a timed language L we define its entropy as follows4 (all loga-
rithms in the paper are base 2):

H(L) = lim sup
n→∞

log Vn

n
.

Remark 1. Many authors consider a slightly different kind of timed words: se-
quences w = (a1, d1), . . . , (an, dn), where ai ∈ Σ, di ∈ IR and 0 ≤ d1 ≤ · · · ≤ dn,
with di representing the date of the event ai. This definition is in fact isomorphic
to ours by a change of variables: t1 = d1 and ti = di − di−1 for i = 2..n. It is
important for us that this change of variables preserves the n-volume, since it is
linear and its matrix has determinant 1. Therefore, choosing date (di) or delay
(ti) representation has no influence on language volumes (and entropy). Due to
the authors’ preferences (justified in [10]), delays will be used in the sequel.

2.2 Three Examples

A1

p

a, x ∈ [2; 4]/x := 0

b, x ∈ [3; 10]/x := 0

A2

p q

a, x ∈ [0; 4]

b, x ∈ [2; 4]/x := 0

A3

p q

a, x ∈ [0; 1]/x := 0

b, y ∈ [0; 1]/y := 0

Fig. 1. Three simple timed automata A1,A2,A3

To illustrate the problem consider the languages recognized by three timed
automata on Fig. 1. Two of them can be analysed directly, using definitions and
common sense. The third one resists naive analysis, it will be used to illustrate
more advanced methods throughout the paper.

Rectangles. Consider the timed language defined by the expression

L1 = ([2; 4]a+ [3; 10]b)
∗
,

4 In fact, due to Assumption A2 below, the languages we consider in the paper are
prefix-closed, and lim sup is in fact a lim. This will be stated formally in Cor. 1.

recognized by A1 of Fig. 1.

For a given untiming w ∈ {a, b}n containing k letters a and n− k letters b,
the set of possible timings is a rectangle in IRn of a volume 2k7n−k (notice that
there are Ck

n such untimings). Summing up all the volumes, we obtain

Vn(L1) =
n

∑

k=0

Ck
n2k7n−k = (2 + 7)n = 9n,

and the entropy H(L1) = log 9 ≈ 3.17.

A Product of Trapezia. Consider the language defined by the automaton
A2 on Fig. 1, that is containing words of the form t1as1bt2as2b . . . tkaskb such
that 2 ≤ ti + si ≤ 4. Since we want prefix-closed languages, the last skb can be
omitted.

For an even n = 2k the only possible un-

s2 4

2

4
t

Fig. 2. Timings (ti, si) for A2.

timing is (ab)k. The set of timings in IR2k is a
Cartesian product of k trapezia 2 ≤ ti + si ≤
4. The surface of each trapezium equals S =
42/2 − 22/2 = 6, and the volume V2k(L2) =
6k. For an odd n = 2k + 1 the same product
of trapezia is combined with an interval 0 ≤
tk+1 ≤ 4, hence the volume is V2k+1(L2) =
6k · 4. Thus the entropy H(L2) = log 6/2 ≈
1.29.

Our Favourite Example. The language recognized by the automaton A3 on
Fig. 1 contains the words of the form t1at2bt3at4b . . . with ti + ti+1 ∈ [0; 1].
Notice that the automaton has two clocks that are never reset together. The
geometric form of possible untimings in IRn is defined by overlapping constraints
ti + ti+1 ∈ [0; 1].

It is not so evident how to compute the volume of this polyhedron. A sys-
tematic method is described below in Sect. 2.5. An ad hoc solution would be
to integrate 1 over the polyhedron, and to rewrite this multiple integral as an
iterated one. The resulting formula for the volume is

Vn(L3) =

∫ 1

0

dt1

∫ 1−t1

0

dt2

∫ 1−t2

0

dt3 . . .

∫ 1−tn−1

0

dtn.

This gives the sequence of volumes:

1;
1

2
;
1

3
;

5

24
;

2

15
;

61

720
;

17

315
;

277

8064
; . . .

In the sequel, we will also compute the entropy of this language.

2.3 Subclasses of Timed Automata

In the rest of the paper, we compute volumes and entropy for regular timed
languages recognized by some subclasses of timed automata (TA). We assume
that the reader is acquainted with timed automata; otherwise, we refer her or
him to [11] for details. Here we only fix notations for components of timed
automata and state several requirements they should satisfy. Thus a TA is a
tuple A = (Q,Σ,C,∆, q0). Its elements are respectively the set of locations, the
alphabet, the set of clocks, the transition relation, and the initial location (we
do not need to specify accepting states due to A2 below, neither we need any
invariants). A generic state of A is a pair (q,x) of a control location and a vector
of clock values. A generic element of ∆ is written as δ = (q, a, g, r, q′) meaning
a transition from q to q′ with label a, guard g and reset r. We spare the reader
the definitions of a run of A and of its accepted language.

Several combinations of the following Assumptions will be used in the sequel:

A1. The automaton A is deterministic5.

A2. All its states are accepting.

A3. Guards are rectangular (i.e. conjunctions of constraints Li ≤ xi ≤ Ui, strict
inequalities are also allowed). Every guard upper bounds at least one clock.

A4. There exists a D ∈ IN such that on every run segment of D transitions,
every clock is reset at least once.

A5. There is no punctual guards, that is in any guard Li < Ui.

Below we motivate and justify these choices:

A1: Most of known techniques to compute entropy of untimed regular languages
work on deterministic automata. Indeed, these techniques count paths in
the automaton, and only in the deterministic case their number coincides
with the number of accepted words. The same is true for volumes in timed
automata. R. Lanotte pointed out to the authors that any TA satisfying A4
can be determinized.

A2: Prefix-closed languages are natural in the entropy context, and somewhat
easier to study. These languages constitute the natural model for the set of
behaviours of causal systems.

A3: If a guard of a feasible transition is infinite, the volume becomes infinite.
We conclude that A3 is unavoidable and almost not restrictive.

5 That is any two transitions with the same source and the same label have their
guards disjoint.

A4: We use this variant of non-Zenoness condition several times in our proofs
and constructions. As the automaton of Fig. 3 shows, if we omit this as-
sumption some anomalies can occur.

The language of this automaton is

a, x ∈ [0; 1]

Fig. 3. An automaton
without resets

L = {t1a . . . tna | 0 ≤
∑

ti ≤ 1},

and Vn is the volume of an n-dimensional sim-
plex defined by the constraints 0 ≤

∑

ti ≤ 1,
and 0 ≤ ti. Hence Vn = 1/n! which decreases
faster than any exponent, which is too fine to be

distinguished by our methods. Assumption A4 rules out such anomalies.

This assumption is also the most difficult to check. A possible way would
be to explore all simple cycles in the region graph and to check that all of
those reset every clock.

A5: While assumptions A1-A4 can be restrictive, we always can remove the
transitions with punctual guards from any automaton, without changing
the volumes Vn. Hence, A5 is not restrictive at all, as far as volumes are
considered. In Sect. 6 we do not make this assumption.

2.4 Preprocessing Timed Automata

In order to compute volumes Vn and entropy H of the language of a nice TA,
we first transform this automaton into a normal form, which can be considered
as a (timed) variant of the region graph, the quotient of the TA by the region
equivalence relation defined in [11].

We say that a TA A = (Q,Σ,C, δ, q0) is in a region-split form if A1, A2, A4
and the following properties hold:

B1. Each location and each transition of A is visited by some run starting at
(q0, 0).

B2. For every location q ∈ Q a unique clock region rq (called its entry region)
exists, such that the set of clock values with which q is entered is exactly
rq. For the initial location q0, its entry region is the singleton {0}.

B3. The guard g of every transition δ = (q, a, g, r, q′) ∈ ∆ is just one clock
region.

Notice, that B2 and B3 imply that r(g) = rq′ for every δ.

Proposition 1. Given a nice TA A, a region-split TA A′ accepting the same
language can be constructed6.

6 Notice that due to A3 all the guards of original automaton are bounded w.r.t. some
clock. Hence, the same holds for smaller (one-region) guards of A′, that is the infinite
region [M ;∞)|C| never occurs as a guard.

Proof (sketch). Let A = (Q,Σ,C,∆, q0) be a nice TA and let Reg be the set
of its regions. The region-split automaton A′ = (Q′, Σ, C,∆′, q′0) can be con-
structed as follows:

1. Split every state q into substates corresponding to all possible entry regions.
Formally, just take Q′ = Q× Reg.

2. Split every transition from q to q′ according to two clock regions: one for
the clock values when q is entered, another for clock values when q is left.
Formally, for every δ = (q, a, g, r, q′) of A, and every two clock regions r and
r′ such that r′ is reachable from r by time progress, and r′ ⊂ g, we define a
new transition of A′

δ′rr′ = ((q, r), a,x ∈ r′, r, (q′, r(r′))) .

3. Take as initial state q′0 = (q0, {0}).
4. Remove all the states and transitions not reachable from the initial state. ⊓⊔

We could work with the region-split automaton, but it has too many useless
(degenerate) states and transitions, which do not contribute to the volume and
the entropy of the language. This justifies the following definition: we say that
a region-split TA is fleshy if the following holds:

B4. For every transition δ its guard g has no constraints of the form x = c in
its definition.

Proposition 2. Given a region-split TA A accepting a language L, a fleshy
region-split nice TA A′ accepting a language L′ ⊂ L with Vn(L′) = Vn(L) and
H(L′) = H(L) can be constructed.

Proof (sketch). The construction is straightforward:

1. Remove all non-fleshy transitions.
2. Remove all the states and transitions that became unreachable.

Inclusion L′ ⊂ L is immediate. Every path in A (of length n) involving a non-
fleshy (punctual) transition corresponds to the set of timings in IRn which is
degenerate (its dimension is smaller than n), hence it does not contribute to
Vn. ⊓⊔

From now on, we suppose w.l.o.g. that the automaton A is in a fleshy region-
split form (see Fig. 4).

2.5 Computing Volumes

Given a timed automaton A satisfying A1-A3, we want to compute n-volumes Vn

of its language. In order to obtain recurrent equations on these volumes, we need
to take into account all possible initial locations and clock configurations. For
every state (q,x), let L(q,x) be the set of all the timed words corresponding to
the runs of the automaton starting at this state, let Ln(q,x) be its sublanguage

p
x = 0

q
x ∈ (0; 1)

(0; 1)
q

x ∈ (1; 2)
q

x ∈ (2; 3)
q

x ∈ (3; 4)

(1; 2)
(2; 3)

a, x ∈ (3; 4)

b, x ∈ (2; 3)/x := 0

b, x ∈ (3; 4)/x := 0

p
x ∈ (0; 1)

y = 0

q
x = 0

y ∈ (0; 1)

a, x ∈ (0; 1)/x := 0

b, y ∈ (0; 1)/y := 0

p
x = 0
y = 0

a, x ∈ (0; 1)/x := 0

Fig. 4. Fleshy region-split forms of automata A2 and A3 from Fig. 1. An entry region
is drawn at each location.

consisting of its words of length n, and vn(q,x) the volume of this sublanguage.
Hence, the quantity we are interested in, is a value of vn in the initial state:

Vn = vn(q0, 0).

By definition of runs of a timed automaton, we obtain the following language
equations:

L0(q,x) = ε;

Lk+1(q,x) =
⋃

(q,a,g,r,q′)∈∆

⋃

τ :x+τ∈g

τaLk(q′, r(x + τ)).

Since the automaton is deterministic, the union over transitions (the first
⋃

in the formula) is disjoint. Hence, it is easy to pass to volumes:

v0(q,x) = 1; (1)

vk+1(q,x) =
∑

(q,a,g,r,q′)∈∆

∫

τ :x+τ∈g

vk(q′, r(x + τ)) dτ. (2)

Remark that for a fixed location q, and within every clock region, as defined
in [11], the integral over τ : x + τ ∈ g can be decomposed into several

∫ u

l
with

bounds l and u either constants or of the form c− xi with c an integer and xi a
clock variable.

These formulas lead to the following structural description of vn(q,x), which
can be proved by a straightforward induction.

Lemma 1. The function vn(q,x) restricted to a location q and a clock region
can be expressed by a polynomial of degree n with rational coefficients in variables
x.

Thus in order to compute the volume Vn one should find by symbolic inte-
gration polynomial functions vk(q,x) for k = 0..n, and finally compute vn(q0, 0).

Theorem 1. For a timed automaton A satisfying A1-A3, the volume Vn is a
rational number, computable from A and n using the procedure described above.

3 Operator Approach

In this central section of the paper, we develop an approach to volumes and
entropy of languages of nice timed automata based on functional analysis, first
introduced in [12].

We start in 3.1 by identifying a functional space F containing the volume
functions vn. Next, we show that these volume functions can be seen as iterates
of some positive integral operator Ψ on this space applied to the unit function
(Sect. 3.2). We explore some elementary properties of this operator in 3.3. This
makes it possible to apply in 3.4 the theory of positive operators to Ψ and
to deduce the main theorem of this paper stating that the entropy equals the
logarithm of the spectral radius of Ψ .

3.1 The Functional Space of a TA

In order to use the operator approach we first identify the appropriate functional
space F containing volume functions vn.

We define S as the disjoint union of all the entry regions of all the states of
A. Formally, S = {(q,x) | x ∈ rq}. The elements of the space F are bounded
continuous functions from S to IR. The uniform norm ‖u‖ = supξ∈S |u(ξ)| can be
defined on F , yielding a Banach space structure. We can compare two functions
in F pointwise, thus we write u ≤ v if ∀ξ ∈ S : u(ξ) ≤ v(ξ). For a function f ∈ F
we sometimes denote f(p, x) by fp(x). Thus, any function f ∈ F can be seen as
a finite collection of functions fp defined on entry regions rp of locations of A.
The volume functions vn (restricted to S) can be considered as elements of F .

3.2 Volumes Revisited

Let us consider again the recurrent formula (2). It has the form vk+1 = Ψvk,
where Ψ is the positive linear operator on F defined by the equation:

Ψf(q,x) =
∑

(q,a,g,r,q′)∈∆

∫

x+τ∈g

f(q′, r(x + τ)) dτ. (3)

We have also v0 = 1. Hence vn = Ψn1, and the problem of computing volumes
and entropy is now phrased as studying iterations of a positive bounded linear
operator Ψ on the functional space F . The theory of positive operators guaran-
tees, that under some hypotheses, vn is close in direction to a positive eigenvector
v∗ of Ψ , corresponding to its leading eigenvalue ρ. Moreover, values of vn will
grow/decay exponentially like ρn. In the sequel, we refer to the book [3] when a
result concerning positive operators is needed.

3.3 Exploring the Operator Ψ

Let us first state some elementary properties of this operator, starting by rewrit-
ing (3) as an operator on F and separating all its summands.

(Ψf)q(x) =
∑

δ=(q,...,q′)∈∆

(ψδfq′)(x). (4)

For δ = (q, a, g, r, q′) the operator ψδ acts from the space C(rq′) of bounded
continuous functions on the target region to the space C(rq) of functions on the
source region. It is defined by the integral:

ψδf(x) =

∫

x+τ∈g

f(r(x + τ)) dτ.

Iterating (4), we obtain a formula for powers of operator Ψ

(Ψkf)p(x) =
∑

δ1...δk from p to p′

(ψδ1
. . . ψδk

fp′)(x). (5)

Now we need some results on the iterations of ψδ. For this, first we state
some useful properties of ψδ and its partial derivatives:

Proposition 3. For any f ∈ C(rq):

1. If f ≥ 0 and f is not identically 0 then ψδf is not identically 0.
2. ‖ψδf‖ ≤ ‖f‖ (in other words, ‖ψδ‖ ≤ 1).
3. If δ resets xi then ψδf is continuously differentiable by xi and ‖ ∂

∂xi
ψδf‖ ≤

2‖f‖
4. If δ does not reset xi and f is continuously differentiable by xi, then ψδf is

continuously differentiable by xi and ‖ ∂
∂xi

ψδf‖ ≤ 2‖f‖ + ‖ ∂
∂xi

f‖.

Proof.
(1) Let x1 ∈ rq′ be such that f(x1) > 0.

By B2 and B3, we know that there exists x2 ∈ g such that r(x2) = x1. As
x2 ∈ g, there also exists x3 ∈ rq and τ ∈ IR≥0 verifying x2 = x3 + τ0.

Furthermore, because δ is fleshy, there exists τ1 and τ2, τ1 < τ2, such that
for every τ ∈ [τ1, τ2], x3 + τ ∈ g.

Put together, the integration interval of ψδf(x3) =
∫

x3+τ∈g
f(r(x3 + τ)) dτ

contains a value τ0, for which the integrated function is positive, and includes
[τ1, τ2], thus is neither empty nor a singleton. The integrated function being
non-negative and continuous, its integral, ψδf(x3), is positive.
(2) In ψδf(x) =

∫

x+τ∈g
f(r(x + τ)) dτ , we estimate |f(·)| from above by the

constant ‖f‖ and the length of the integration interval by 1, as it is included in
the region g. This gives us the requested bound.
(3) As r resets xi, f(q′, r(x + τ)) does not depend on xi, and thus ψδ(q, x) =
∫

x+τ∈g
f(q′, r(x + τ)) dτ is differentiable by xi. Its derivative is

∂

∂xi
ψδf(q,x) =

∂

∂xi

∫

x+τ∈g

f(q′, r(x + τ)) dτ (6)

= ±(f(q′, r(x + τmax) − f(q′, r(x + τmin))). (7)

The choice of + or − sign in the line (7) and the bounds τmax and τmin depend
on the form of the guard.

First, observe that the latter term is a sum of continuous functions and, as
such, is continuous. Furthermore, this term is bounded in absolute value by 2‖f‖.
Thus, we prove | ∂

∂xi
ψδf(q,x)| ≤ 2‖f‖.

(4) As f is differentiable by xi, then so is ψδf(q,x) =
∫

x+τ∈g
f(q′, r(x + τ)) dτ .

Let us differentiate it:

∂

∂xi
ψδf(q,x) =

∂

∂xi

∫

x+τ∈g

f(q′, r(x + τ)) dτ

∂

∂xi
ψδf(q,x) = ± (f(q′, r(x + τmax) − f(q′, r(x + τmin)))

+

∫

x+τ∈g

∂

∂xi
f(q′, r(x + τ)) dτ.

The resulting expression is still continuous in xi. Indeed the newly added
term in the last equality is an integral of a continuous function that does not
depend on xi on an interval that continuously depends on xi.

We already stated that |(f(q′, r(x + τmax) − f(q′, r(x + τmin)))| is smaller
than 2‖f‖. Also in

∫

x+τ∈g

∂
∂xi

f(q′, r(x + τ)) dτ , we can estimate the integrated

function from above by the norm ‖ ∂
∂xi

f‖. As the integration interval is smaller
than 1, the integral is smaller than this norm too. Hence, the required inequality
holds: | ∂

∂xi
ψδf(q,x)| ≤ 2‖f‖ + ‖ ∂

∂xi
f‖. ⊓⊔

Now, we can prove the following result on the powers of Ψ .

Proposition 4. Consider operator Ψ .

1. If f ≥ 0 is not zero on p′ and there is a path of length k from p to p′ then
Ψkf is not identically zero on p.

2. For D defined in assumption A4 there exists a constant E ∈ IR such that for
any f ∈ F the following estimate hold:

∀i :

∥

∥

∥

∥

∂

∂xi
ΨDf

∥

∥

∥

∥

≤ E‖f‖.

Proof.
(1) This is a straightforward induction using (5) and Prop. 3-1.
(2) For some xi, and a location p, the following equality holds:

∂

∂xi
(ΨDf)p(x) =

∑

δ1...δD from p to p′

∂

∂xi
(ψδ1

. . . ψδD
fp′)(x).

Let us consider one term of this sum corresponding to one path. By hypoth-
esis, in this path, there is a first transition δk, 1 ≤ k ≤ D, such that δk resets
xi.

By Prop. 3-3, ψδk
. . . ψδD

fp′ is continuously differentiable by xi. By induction
and using Prop. 3-4, it follows that ψδ1

. . . ψδk
. . . ψδD

fp′ is also continuously
differentiable by xi.

Now we differentiate this term. For every j, 1 ≤ j ≤ D, iterating Prop. 3-2
D − j times, we obtain

∥

∥ψδj
. . . ψδD

fp′

∥

∥ ≤ ‖f‖. Thus, by Prop. 3-3, we have

∥

∥

∥

∂
∂xi

ψδk
. . . ψδD

fp′

∥

∥

∥
≤ 2 ‖f‖. It follows by induction on the path, using Prop.

3-4, that
∥

∥

∥

∂
∂xi

ψδ1
. . . ψδk

. . . ψδD
fp′

∥

∥

∥
≤ 2k ‖f‖.

Now, if we come back to the sum, we have, at least, the following bound:
∥

∥

∥

∂
∂xi

(ΨDf)p

∥

∥

∥
≤ 2dDD‖f‖ (d: maximal degree of the underlying graph of ∆),

which is true for every p, therefore ‖ ∂
∂xi

ΨDf‖ ≤ 2dDD‖f‖. ⊓⊔

Now we are ready to prove the following important property of Ψ :

Theorem 2. The operator ΨD is compact on F .

Proof. Consider B – the unit ball of F . Let us prove that ΨDB is a compact
set. This set is clearly bounded. It follows from Prop. 4-2, that the whole set
ΨDB is Lipschitz continuous with constant E#C, where #C is the dimension
of the clock space. Hence it is equicontinuous, and, by Arzela-Ascoli theorem,
compact. ⊓⊔

Next two lemmata will be used in the proof of the Main Theorem. Denote
by ρ the spectral radius of Ψ .

Lemma 2. If ρ > 0 then it is an eigenvalue of Ψ with an eigenvector v∗ ≥ 0.

Proof (of Lemma). According to Thm. 9.4 of [3] the statement holds for every
positive linear operator with a compact power. Thus, the result follows immedi-
ately from Thm. 2. ⊓⊔

Lemma 3. If ρ > 0 then the eigenvector v∗ satisfies v∗(q0, 0) > 0.

Proof. Let (p,x) be a state for which v∗ is positive. Consider a path from (q0, 0)
to (p,x), and let k be its length. By Prop. 4-1, the function Ψkv∗ is not identically
zero on the region of (q0, 0). Since this region is a singleton, this means that
(Ψkv∗)(q0, 0) > 0. Since v∗ is an eigenvector, we rewrite this as ρkv∗(q0, 0) > 0,
and the statement is immediate. ⊓⊔

3.4 Main Theorem

The main result of this paper can now be stated.

Theorem 3. For any nice TA A the entropy H of its language coincides with
logarithm of the spectral radius of the Ψ operator defined on F .

Proof. Notice that

Vn = vn(q0; 0) ≤ ‖vn‖ = ‖Ψn1‖ ≤ ‖Ψn‖.

Taking logarithm and dividing by n, we obtain logVn/n ≤ log ‖Ψn‖/n.
The limit of the right-hand side is log ρ due to Gelfand’s formula for spectral

radius: ρ = limn→∞ ‖Ψn‖1/n. Thus, we obtain the required upper bound for the
entropy:

H = lim sup
n→∞

logVn/n ≤ log ρ.

1. Transform A into the fleshy region-split form and check that it has 1 1

2
clock.

2. Write the integral eigenvalue equation (I) with one variable.
3. Derivate (I) w.r.t. x and get a differential equation (D).
4. Instantiate (I) at 0, and obtain a boundary condition (B).
5. Solve (D) with boundary condition (B).
6. Take ρ = max{λ| a non-0 solution exists}.
7. Return H(L(A)) = log ρ.

Table 1. The idea of the symbolic algorithm: computing H for 1 1

2
clocks

In the case when ρ > 0 we also have to prove the lower bound. In this case
Lemma 2 applies and an eigenvector v∗ ≥ 0 with norm 1 exists. This yields the
inequality v∗ ≤ 1, to which, for any natural n, we can apply the positive operator
Ψn. Using the fact that v∗ is an eigenvector and the formula for vn we obtain
ρnv∗ ≤ vn. Then, taking the values of the functions in the initial state we get
ρnv∗(q0; 0) ≤ Vn. Hence, by Lemma 3, denoting the positive number v∗(q0; 0) by
δ: ρnδ ≤ Vn. Taking logarithm, dividing by n, and taking the limit we obtain:

log ρ ≤ lim inf
n→∞

logVn/n = H. ⊓⊔

The following result is immediate from the proof of the Theorem.

Corollary 1. For any nice TA A the lim sup in the definition of the entropy is
in fact a limit, that is H = limn→∞ logVn/n.

4 Computing the Entropy

The characterization of H in Theorem 3 solves the main problem explored in
this paper, but its concrete application requires computing the spectral radius
of an integral operator Ψ , and this is not straightforward. In 4.1, we solve this
problem for a subclass of automata by reduction to differential equations. As for
the general situation, in 4.2 we give an iterative procedure, which approximates
the spectral radius and the entropy with a guaranteed precision.

4.1 Case of “11

2
Clock” Automata

Consider now the subclass of (fleshy region-split) automata with entry regions
of all the locations having dimension 0 or 1. In other words, in such automata
for every discrete transition there is at most one clock non reset. We call this
class 1 1

2 clock automata. The idea of the symbolic algorithm for computing the
entropy of such automata is presented in Table 1.

Notice first that the set S = {(q,x) | x ∈ rq} is now a disjoint union of unit
length intervals and singleton points. After a change of variables, each of those
unit intervals can be represented as x ∈ (0; 1), and a singleton point as x = 0.

In both cases x is a scalar variable equal to xq − cq, where xq ∈ C is only clock
with a positive value in rq, and cq ∈ IN a constant. Thus, every f ∈ F can be
seen as a finite collection of function fq of one scalar argument.

In this case the expression of the operator ψδ, corresponding to one transition,
can be made more explicit. First we recall the definition of ψδ:

ψδf(x) =

∫

x+τ∈g

f(r(x + τ)) dτ.

A careful but straightforward analysis shows that from the entry region of every
state q, non-degenerated regions of two types are alternatively visited: regions
where xq is greater than the other clocks, and regions where it is not.

For guards g that are regions of the first type (a), x+ τ ∈ g is equivalent to
t ∈ (0, 1 − x), and for the other type (b), it is equivalent to t ∈ (1 − x, 1).

Furthermore, the reset function r can behave in three different ways: either
it resets every clock but one that is not xq (1), or it resets every clock but xq

(2), or it resets every clock (3).
Those two criteria can be combined in 6 different ways, partitioning the set

of transitions starting from q in as many sets: ∆qa1, ∆qb1, ∆qa2, ∆qb2, ∆qa3 and
∆qb3, such that Ψ can now be written the following way:

Ψf(q, x) =
∑

δ∈∆qa1

∫ 1−x

0

f(q′, x+ τ)dτ +
∑

δ∈∆qb1

∫ 0

−x

f(q′, x+ τ)dτ

+
∑

δ∈∆qa2

∫ 1−x

0

f(q′, τ)dτ +
∑

δ∈∆qb2

∫ 1

1−x

f(q′, τ)dτ

+
∑

δ∈∆qa3

(1 − x)f(q′, 0) +
∑

δ∈∆qb3

xf(q′, 0).

Now we define the square matrices Dij such that the operator can be written
as follows:

Ψf(x) = Da1

∫ 1−x

0
f(x+ τ)dτ + Db1

∫ 0

−x
f(x+ τ)dτ

+Da2

∫ 1−x

0
f(τ)dτ + Db2

∫ 1

1−x
f(τ)dτ

+Da3(1 − x)f(0) + Db3xf(0).

This is the explicit formula for Ψ we have been looking for. Now, computing
the entropy of the language of the automaton using Thm. 3 involves finding the
leading eigenvalue of Ψ , that is the greatest λ ∈ IR such that for some non-zero
function f ∈ F :

Ψf = λf. (8)

We will solve this by transforming this equality into a differential equation.
A smooth function h : [0, 1] → IR equals 0 iff h(0) = 0 and h′(x) = 0 for all

x ∈ (0, 1). Applying this to (Ψf − λf)7 we obtain that (8) is equivalent to the
differential equation

λf ′(x) = (Db1 −Da1)f(x) + (Db2 −Da2)f(1 − x) + (Db3 −Da3)f(0). (9)

with boundary condition

λf(0) = (Da1 +Da2)

∫ 1

0

f(τ)dτ +Da3f(0). (10)

Now we solve the differential equation (9) by introducing the functions u and
w as follows: u(x) = f(x) + f(1 − x) and w(x) = f(x) − f(1− x). This removes
the cumbersome dependency between f and x 7→ f(1 − x) and enables us to
rewrite the previous equation as a differential system:

λu′(x) = Aw(x)
λw′(x) = Bu(x) + C(u(0) + w(0))
w(1

2) = 0
, (11)

where A , Db1−Da1−Db2+Da2, B , Db1−Da1+Db2−Da2 and C , Db3−Da3.
Note that due to the properties of the functions u and w, this system has

to be considered on the interval [0, 1
2] only, and w(1

2) = 0 is the consequence of
the definition of w. This rewriting is without loss of information, as the original
equation (9) can be recovered by adding those two equations term by term.

System (11) implies

λ2w′′(x) = BAw(x)
λu′(x) = Aw(x)
w(1

2) = 0.
(12)

The first equation of (12) is homogeneous and has a solution space of di-
mension 2n, but using the fact that w(1

2) = 0, this allows us to consider only n
independent solutions wi.

Using the second equation, we get u(x) = 1
λ

∫ x

0 Aw(t)dt + u0, for every so-
lution w of the first equation and every u0 ∈ IRn. Thus (12) yields a solution
space of dimension 2n.

Now having a solution (u,w) to (12) implies that λ2w′′(x) = BAw(x), which
implies λw′(x) = 1

λ

∫ x

0
BAw(x)+λw′(0) and thus λw′(x) =

∫ x

0
Bu′(x)+w′(0) =

Bu(x) +Bu(0) + λw′(0).
Therefore (u,w) is also a solution to (11) if and only if C(u(0) + w(0)) −

Bu(0) = λw′(0). Coming back to (9), f , u+w
2 is a solution to this system if

and only if

λ(f(0) − f(1)) = 2Cf(0) −B(f(0) + f(1)),

7 It is easy to see that for eigenfunctions f this expression should be smooth and
well-defined in 0 and 1.

or again

(λ+B − 2C)f(0) = (λ−B)f(1). (13)

To sum up, the space of the solutions of (12) is of dimension 2n, thus so
is the space S of the functions f = u+w

2 such that (u,w) is solution to (12).
This allows us to write every such f as FM where F is an n× 2n matrix whose
columns are a basis of S, and M is a vertical vector of IR2n.

Every such f = FM is a solution of (8) if and only if both (10) and (13)
hold, which we rewrite here, replacing f by FM :

{

λF (0)M = ((Da1 +Da2)(
∫ 1

0
F (τ)dτ) +Da3F (0))M

(λ+B − 2C)F (0)M = (λ −B)F (1)M
{

(F (0) − ((Da1 +Da2)(
∫ 1

0
F (τ)dτ) +Da3F (0)))M = 0

((λ+B − 2C)F (0) − (λ−B)F (1))M = 0.

Considering this as an equation on M , this homogeneous linear system has non-
zero solutions if and only if

det

(

F (0) − ((Da1 +Da2)(
∫ 1

0
F (τ)dτ) +∆a3F (0))

(λ+B − 2C)F (0) − (λ− B)F (1)

)

= 0

This is a transcendental equation on λ (as F (x) has coefficients which are
polynomials of complex exponentials of x

λ) that can be solved numerically, and
which we know to have a maximal real solution, which is also the spectral ra-
dius of Ψ (Lem. 2). The logarithm of this value is the entropy of the language
(Thm. 3).

Summing up all those computations yields the complete algorithm for au-
tomata with 1 1

2 clocks depicted in Table 2.

1. Transform A into the fleshy region-split form and check that it has 1 1

2
clock.

2. Compute the matrices Dij and next A, B, C.
3. Deduce the general solution FM to (9).
4. Find the greatest root ρ (w.r.t. the unknown λ) of

det

(

F (0) − ((Da1 + Da2)(
∫

1

0
F (τ)dτ) + ∆a3F (0))

(λ + B − 2C)F (0) − (λ − B)F (1).

)

5. Then we have H(L(A)) = log ρ.

Table 2. Concrete symbolic algorithm: computing H for 1 1

2
clocks

Application to the Running Example We apply the method just described
to compute the entropy of the language of the automaton A3 of Fig. 1 which is
a “1 1

2 clocks” one. Its fleshy region-split form is presented on Fig. 4.
By symmetry, the volume of a path of length n ∈ IN is the same function vn

in both non-initial states. Thus vn is characterized by:

{

v0(x) = 1

vn+1(x) = (Ψvn)(x) ,
∫ 1−x

0 vn(t)dt.

According to Thm. 3, the entropy can be found as log ρ(Ψ), and by Lemma 2
ρ(Ψ) is the maximal eigenvalue of Ψ . Let us write the eigenvalue equation:

λv(x) =

∫ 1−x

0

v(t)dt. (14)

Differentiating it twice w.r.t x we get:

λv′(x) = −v(1 − x) (15)

λ2v′′(x) = −v(x) (16)

The solutions have the form v(x) = α sin(x
λ) + β cos(x

λ). Using (14) with x = 1
we find v(1) = 0. We inject this in (15) for x = 0 and deduce α = 0. Thus
v(x) = β cos(x

λ) and cos(1
λ) = 0. This implies that the solutions correspond to

λ = 2
(2k+1)π with k ∈ ZZ. The highest of those is λ = 2/π, and we can verify

that v(x) = cos(xπ
2) satisfies 2

π v = Ψv. Therefore ρ(Ψ) = 2/π, and the entropy
of this automaton is log(2/π).

4.2 General Case

If several clocks are not reset in some transitions, then the entry regions are
multi-dimensional, and the volume functions therefore depend on several real
variables. Hence, we cannot reduce the integral equation to an ordinary differ-
ential equation, which makes it difficult to find the eigenfunction symbolically.
Instead, we can use standard iterative procedures for eigenvalue approximation
for positive operators. Recall that the volume function satisfies vn = Ψn1. The
following theorem is close to Thms. 16.1-16.2 from [3].

Theorem 4. If for some α, β ∈ IR,m ∈ IN the following inequality holds: αvm ≤
vm+1 ≤ βvm, and the volume Vm = vm(q0, 0) > 0, then logα ≤ H ≤ log β.

Proof. Applying the positive operator Ψn to the inequalities αvm ≤ vm+1 ≤
βvm, and using the formula vn = Ψn1 we obtain that for all n

αvm+n ≤ vm+n+1 ≤ βvm+n.

From this by induction, we prove that for all n

αnvm ≤ vm+n ≤ βnvm.

1. Transform A into the fleshy region-split form.
2. Choose an m and compute symbolically the piecewise polynomial func-

tions vm and vm+1.
3. Check that vm(q0, 0) > 0.
4. Compute α = min(vm+1/vm) and β = max(vm+1/vm).
5. Conclude that H ∈ [log α; log β].

Table 3. Iterative algorithm: bounding H

m vm(x) α β log α log β

0 1 0 1
1 1 − x 0.5 1 -1 0

2 1 − x − 1/2 (1 − x)2 0.5 0.667 -1 -0.584

3 1/2 (1 − x) − 1/6 (1 − x)3 0.625 0.667 -0.679 -0.584

4 1/3 (1 − x) + 1/24 (1 − x)4 − 1/6 (1 − x)3 0.625 0.641 -0.679 -0.643

5 5
24

(1 − x) + 1
120

(1 − x)5 − 1/12 (1 − x)3 0.6354 0.641 -0.6543 -0.643

6 2
15

(1 − x) − 1
720

(1 − x)6 + 1
120

(1 − x)5 − 1
18

(1 − x)3 0.6354 0.6371 -0.6543 -0.6506

7 61
720

(1 − x) − 1
5040

(1 − x)7 + 1
240

(1 − x)5 − 5
144

(1 − x)3 0.6364 0.6371 -0.6518 -0.6506

Table 4. Iterating the operator for A3 (H = log(2/π) ≈ log 0.6366 ≈ −0.6515)

We apply this to the initial state (q0, 0) (remember that Vn = vn(q0, 0)):

αnVm ≤ Vm+n ≤ βnVm.

Take a logarithm, divide by m + n and take a lim supn→∞ (remember that
H = lim supn→∞ logVn/n):

logα ≤ H ≤ log β

(we have used the fact that Vm > 0). ⊓⊔

This theorem yields a procedure8 to estimate H summarized in Table 3.

Example: Again A3 We apply the iterative procedure above to our running
example A3. As explained in Sect. 4.1, we can just consider the operator on
C(0; 1)

Ψf(x) =

∫ 1−x

0

f(s) ds.

The iteration results are given in Table 4.

8 One possible optimization is to compute α and β separately on every strongly con-
nected reachable component of the automaton, and take the maximal values.

5 Discretization Approach

5.1 Discretizing the Volumes

Another approach, we first published in [13], is to volume/entropy computation
is by discretization. This approach sheds also a new light on the information-
theoretic interpretation of entropy. The discretizations of timed languages we
use are strongly inspired by [14, 15].

5.2 ε-words and ε-balls

We start with a couple of preliminary definitions. Take an ε = 1/N > 0. A
timed word w is ε-timed if all the delays in this word are multiples of ε. Any
ε-timed word w over an alphabet Σ can be written as w = hε(v) for an untimed
v ∈ Σ ∪ {τ}, where the morphism hε is defined as follows:

hε(a) = a for a ∈ Σ, hε(τ) = ε.

The discrete word v with ticks τ (standing for ε delays) represents in this way
the ε-timed word w.

Example Let ε = 1/5, then the timed word 0.6a0.4ba0.2a is ε-timed. Its repre-
sentation is τττaττbaτa.

The notions of ε-timed words and their representation can be ported straight-
forwardly to languages.

For a timed word w = t1a1t2a2 . . . tnan we introduce its North-East ε-
neighbourhood like this:

BNE
ε (w) = {s1a1s2a2 . . . snan | ∀i (si ∈ [ti; ti + ε])} .

For a language L, we define its NE-neighbourhood elementwise:

BNE
ε (L) =

⋃

w∈L

BNE
ε (w). (17)

The next simple lemma will play a key role in our algorithm (here #L stands
for the cardinality of L).

Lemma 4. Let L be some finite set of timed words of length n. Then

Vol(BNE
ε (L)) ≤ εn#L.

If, moreover, L is ε-timed, then

Vol(BNE
ε (L)) = εn#L.

Proof. Notice that for a timed word w of a length n the set BNE
ε (w) is a hyper-

cube of edge ε (in the delay space), and of volume εn. Notice also that neigh-
bourhoods of different ε-timed words are almost disjoint: the interior of their
intersections are empty. With these two remarks, the two statements are imme-
diate from (17). ⊓⊔

5.3 Discretizing Timed Languages and Automata

Suppose now that we have a timed language L recognized by a timed automaton
A satisfying A2-A5 and we want to compute its entropy (or just the volumes
Vn). Take an ε = 1/N > 0. We will build two ε-timed languages L− and L+

that under- and over-approximate L in the following sense:

BNE
ε (L−) ⊂ L ⊂ BNE

ε (L+). (18)

The recipe is like this. Take the timed automaton A accepting L. Discrete
automata Aε

+ and Aε
− can be constructed in two stages. First, we build counter

automata Cε
+ and Cε

−. They have the same states as A, but instead of every
clock x they have a counter cx (roughly representing x/ε). For every state add
a self-loop labelled by τ and incrementing all the counters. Replace any reset of
x by a reset of cx. Whenever A has a guard x ∈ [l;u] (or x ∈ (l;u), or some
other interval), the counter automaton Cε

+ has a guard cx ∈ [l/ε
.
−D;u/ε− 1]

(always the closed interval) instead, where D is as in assumption A4. At the
same time, Cε

− has a guard cx ∈ [l/ε;u/ε − D]. Automata Cε
+ and Cε

− with
bounded counters can be easily transformed into finite-state ones Aε

+ and Aε
− .

Lemma 5. Languages L+ = hε(L(Aε
+)) and L− = hε(L(Aε

−)) have the required
property (18).

Proof (sketch).

Inclusion BNE
ε (L−) ⊂ L. Let a discrete word u ∈ L(Aε

−), let v = hε(u) be its
ε-timed version, and let w ∈ BNE

ε (v). We have to prove that w ∈ L. Notice
first that L(Aε

−) = L(Cε
−) and hence u is accepted by Cε

−. Mimic the run of
Cε

− on u, but replace every τ by an ε duration, thus, a run of A on v can
be obtained. Moreover, in this run every guard x ∈ [l, u] is respected with a
security margin: in fact, a stronger guard x ∈ [l, u−Dε] is respected. Now one
can mimic the same run of A on w. By definition of the neighbourhood, for
any delay ti in u the corresponding delay t′i in w belongs to [ti, ti + ε]. Clock
values are always sums of several (up to D) consecutive delays. Whenever a
narrow guard x ∈ [l, u−Dε] is respected on v, its “normal” version x′ ∈ [l, u]
is respected on w. Hence, the run of A on w obtained in this way respects
all the guards, and thus A accepts w. We deduce that w ∈ L. ⊓⊔

Inclusion L ⊂ BNE
ε (L+). First, we define an approximation function on IR+ as

follows:

t =

0 if t = 0
t− ε if t/ε ∈ IN+

ε⌊t/ε⌋ otherwise.

Clearly, t is always a multiple of ε and belongs to [t − ε, t) with the only
exception that 0 = 0.
Now we can proceed with the proof. Let w = t1a1 . . . tnan ∈ L. We define its
ε-timed approximation v by approximating all the delays: v = t1a1 . . . tnan.
By construction w ∈ BNE

ε (v). The run of A on w respects all the guards

x ∈ [l;u]. Notice that the clock value of x on this run is a sum of several (up
to D) consecutive ti. If we try to run A over the approximating word v, the
value x′ of the same clock at the same transition would be a multiple of ε and
it would belong to [x−Dε;x). Hence x′ ∈ [l .−Dε, u−ε]. By definition of C+

this means that the word u = h−1
ε (v) is accepted by this counter automaton.

Hence v ∈ L+.
Let us summarize: for any w ∈ L, we have constructed v ∈ L+ such that
w ∈ BNE

ε (v). This concludes the proof. ⊓⊔

5.4 Counting Discrete Words

Once the automata Aε
+ and Aε

− constructed, we can count the number of words
with n events and its asymptotic behaviour using the following simple result.

Lemma 6. Given an automaton B over an alphabet {τ} ∪Σ, let

Ln = L(B) ∩ (τ∗Σ)
n
.

Then (1) #Ln is computable; and (2) limn→∞(log #Ln/n) = log ρB with ρB a
computable algebraic real number.

Proof. We proceed in three stages. First, we determinize B and remove all the
useless states (unreachable from the initial state). These transformations yield
an automaton D accepting the same language, and hence having the same car-
dinalities #Ln. Since the automaton is deterministic, to every word in Ln cor-
responds a unique accepting path with n events from Σ and terminating with
such an event.

Next, we eliminate the tick transitions τ . As we are counting paths, we obtain
an automaton without silent (τ) transitions, but with multiplicities representing
the number of realizations of every transition. More precisely, the procedure is as
follows. Let D = (Q, {τ} ∪ Σ, δ, q0). We build an automaton with multiplicities
E = (Q, {e}, ∆, q0) over one-letter alphabet. For every p, q ∈ Q the multiplicity
of the transition p → q in E equals the number of paths from p to q in D over
words from τ∗Σ. A straightforward induction over n shows that the number of
paths in D with n non-tick events equals the number of n-step paths in E (with
multiplicities).

Let M be the adjacency matrix with multiplicities of E . It is well known
(and easy to see) that the #L(n) (that is the number of n-paths) can be found
as the sum of the first line of the matrix Mn

−. This allows computing #L(n).
Moreover, using Perron-Frobenius theorem we obtain that #L(n) ∼ ρn where ρ
is the spectral radius of M , the greatest (in absolute value) real root λ of the
integer characteristic polynomial det(M − λI). ⊓⊔

5.5 From Discretizations to Volumes

As soon as we know how to compute the cardinalities of under- and over- ap-
proximating languages #L−(n) and #L+(n) and their growth rates ρ− and ρ+,
we can deduce the following estimates solving our problems.

Theorem 5. For a timed automaton A satisfying A2-A5, the n-volumes of its
language satisfy the estimates:

#L−(n) · εn ≤ Vn ≤ #L+(n) · εn.

Proof. In inclusions (18) take the volumes of the three terms, and use Lemma 4.
⊓⊔

Theorem 6. For a timed automaton A satisfying A2-A5, the entropy of its
language satisfies the estimates:

log(ερ−) ≤ H(L(A)) ≤ log(ερ+).

Proof. Just use the previous result, take the logarithm, divide by n and pass to
the limit. ⊓⊔

We summarize the algorithm in Table 5.

1. Choose an ε = 1/N .
2. Build the counter automata Cε

− and Cε
+.

3. Transform them into finite automata Aε
− and Aε

+.
4. Eliminate τ transitions introducing multiplicities.
5. Obtain adjacency matrices M− and M+.
6. Compute their spectral radii ρ− and ρ+.
7. Conclude that H ∈ [log ερ−; log ερ+].

Table 5. Discretization algorithm: bounding H

This theorem can be used to estimate the entropy. However, it can also be
read in a converse direction: the cardinality of L restricted to n events and
discretized with quantum ε is close to 2Hn/εn. Hence, we can encode H− log ε
bits of information per event. These information-theoretic considerations are
made more explicit in Sect. 6 below.

A Case Study. Consider the example L3 = {t1at2bt3at4b · · · | ti + ti+1 ∈ [0; 1]}
from Sect. 2.2. We need two clocks to recognize this language, and they are never
reset together. We choose ε = 0.05 and build the automata on Fig. 5 according
to the recipe (the discrete ones A+ and A− are too big to fit on the figure).

We transform C0.05
− and C0.05

+ , into A+ and A−, eliminate silent transitions
and unreachable states, and compute spectral radii of adjacency matrices (their
sizes are 38x38 and 40x40): #L0.05

− (n) ∼ 12.41n, #L0.05
+ (n) ∼ 13.05n. Hence

12.41n · 0.05n ≤ Vn ≤ 13.05n · 0.05n, and the entropy

H ∈ [log 0.62; log 0.653] ⊂ (−0.69;−0.61).

a, x ∈ [0; 1]/x := 0

b, y ∈ [0; 1]/y := 0

a, c ∈ [0; 18]/c := 0

b, d ∈ [0; 18]/d := 0

ττ a, c ∈ [0; 19]/c := 0

b, d ∈ [0; 19]/d := 0 ττ

Fig. 5. A two-clock timed automaton A3 and its approximations C0.05
−

and C0.05
+ . All τ -transitions

increment counters c and d.

Taking a smaller ε = 0.01 provides a better estimate for the entropy:

H ∈ [log 0.6334; log 0.63981] ⊂ (−0.659;−0.644).

We proved in 4.1 that the true value of the entropy is H = log(2/π) ≈ log 0.6366 ≈
−0.6515.

6 Kolmogorov Complexity of Timed Words

To interpret the results above in terms of information content of timed words
we state, using similar techniques, some estimates of Kolmogorov complexity of
timed words. Recall first the basic definition from [16] (see also [17]). Given a
partial computable function (decoding method) f : {0; 1}∗ × B → A, a descrip-
tion of an element x ∈ A knowing y ∈ B is a word w such that f(w, y) = x. The
Kolmogorov complexity of x knowing y, denoted Kf (x|y) is the length of the
shortest description. According to Kolmogorov-Solomonoff theorem, there exists
the best (universal) decoding method providing shorter descriptions (up to an
additive constant) than any other method. The complexity K(x|y) with respect
to this universal method represents the quantity of information in x knowing y.

Coming back to timed words and languages, remark that a timed word within
a “simple” timed language can involve rational delays of a very high complexity,
or even uncomputable real delays. For this reason, we consider timed words with
finite precision ε. For a timed word w and ε = 1/N we say that a timed word v is
a rational ε-approximation of w if all delays in v are rational and w ∈ BNE

ε (v)9.

Theorem 7. Let A be a timed automaton satisfying A2-A4, L its language, H
its entropy. For any rational α, ε > 0, and any n ∈ IN large enough there exists
a timed word w ∈ L of length n such that the Kolmogorov complexity of all the
rational ε-approximations v of the word w is lower bounded as follows

K(v|n, ε) ≥ n(H + log 1/ε− α). (19)

Proof. By definition of the entropy, for n large enough

Vn > 2n(H−α).

9 In this section, we use such South-West approximations v for technical simplicity
only.

Consider the set S of all timed words v violating the lower bound (19)

S = {v | K(v|n, ε) ≤ n(H + log(1/ε) − α)} .

The cardinality of S can be bounded as follows:

#S ≤ 2n(H+log(1/ε)−α) = 2n(H−α)/εn.

Applying Lemma 4 we obtain

Vol(BNE
ε (S)) ≤ εn#S ≤ 2n(H−α) < Vn.

We deduce that the set Ln of timed words from L of length n cannot be included
into BNE

ε (S). Thus, there exists a word w ∈ Ln \ BNE
ε (S). By construction, it

cannot be approximated by any low-complexity word with precision ε. ⊓⊔

Theorem 8. Let A be a timed automaton satisfying A2-A4, L its language,
α > 0 a rational number. Consider a “bloated” automaton A′, which is like A, but
in all the guards each constraint x ∈ [l, u] is replaced by x ∈ [l .−α, u+α]. Let H′ be
the entropy of its language. Then the following holds for any ε = 1/N ∈ (0;α/D),
and any n large enough.

For any timed word w ∈ L of length n, there exists its ε-approximation
v with Kolmogorov complexity upper bounded as follows:

K(v|n, ε) ≤ n(H′ + log 1/ε+ α).

Proof. Denote the language of A′ by L′, the set of words of length n in this
language by L′

n and its n-volume by V ′
n. We remark that for n large enough

V ′
n < 2n(H′+α/2).

Let now w = t1a1 . . . tnan in Ln. We construct its rational ε-approximation as
in Lemma 5: v = t1a1 . . . tnan. To find an upper bound for the complexity of v
we notice that v ∈ U , where U is the set of all ε-timed words u of n letters such
that BNE

ε (u) ⊂ L′
n. Applying Lemma 4 to the set U we obtain the bound

#U ≤ V ′
n/ε

n < 2n(H′+α/2)/εn.

Hence, in order to encode v (knowing n and ε) it suffices to give its number in
a lexicographical order of U , and

K(v|n, ε) ≤ log #U + c ≤ n(H′ + log 1/ε+ α/2) + c ≤ n(H′ + log 1/ε+ α)

for n large enough. ⊓⊔

Two theorems above provide close upper and lower bounds for complexity of
ε-approximations of elements of a timed language.

However, the following example shows that because we removed Assumption
A5, in some cases these bounds do not match and H′ can possibly not converge
towards H when α becomes small.

p q

b, x = 1/x := 0

a, x ∈ [0; 5]/x := 0a, x ∈ [0; 3]/x := 0

Fig. 6. A pathological automaton

Example 1. Consider the automaton of Fig. 6. For this example, the state q
does not contribute to the volume, and H = log 3. Nevertheless, when we bloat
the guards, both states become “usable” and, for the bloated automaton H′ ≈
log 5. As for Kolmogorov complexity, for ε-approximations of words from the
sublanguage 1b([0; 5]a)∗ it behaves as n(log 5+log(1/ε)). Thus, for this bothering
example, the complexity matches H′ rather than H.

7 Conclusions and Further Work

In this paper, we have defined size characteristics of timed languages: volume
and entropy. The entropy has been characterized as logarithm of the leading
eigenvalue of a positive operator on the space of continuous functions on a part
of the state space. Three procedures have been suggested to compute it.

Research in this direction is very recent, and many questions need to be
studied. We are planning to explore practical feasibility of the procedures de-
scribed here and compare them to each other. We believe that, as usual for timed
automata, they should be transposed from regions to zones. We will explore po-
tential applications mentioned in the introduction.

Many theoretical questions still require exploration. It would be interesting to
estimate the gap between our upper and lower bounds for the entropy (we believe
that this gap tends to 0 for strongly connected automata) and establish entropy
computability. We would be happy to remove some of Assumptions A1-A5, in
particular non-Zenoness. Kolmogorov complexity estimates can be improved, in
particular, as shows Example 1, it could be more suitable to use another variant
of entropy, perhaps H+ = maxHq, where the entropy is maximized with respect
to initial states q. Extending results to probabilistic timed automata is another
option. Our entropy represents the amount of information per timed event. It
would be interesting to find the amount of information per time unit. Another
research direction is to associate a dynamical system (a subshift) to a timed
language and to explore entropy of this dynamical system.

Acknowledgment

The authors are thankful to Oded Maler for motivating discussions and valuable
comments on the manuscript.

References

1. Ben Salah, R., Bozga, M., Maler, O.: On timed components and their abstraction.
In: SAVCBS’07, ACM (2007) 63–71

2. Lind, D., Marcus, B.: An introduction to symbolic dynamics and coding. Cam-
bridge University Press (1995)

3. Krasnosel’skij, M., Lifshits, E., Sobolev, A.: Positive Linear Systems: The method
of positive operators. Number 5 in Sigma Series in Applied Mathematics. Helder-
mann Verlag, Berlin (1989)

4. Bucci, G., Piovosi, R., Sassoli, L., Vicario, E.: Introducing probability within state
class analysis of dense-time-dependent systems. In: QEST’05, IEEE Computer
Society (2005) 13–22

5. Sassoli, L., Vicario, E.: Close form derivation of state-density functions over dbm
domains in the analysis of non-Markovian models. In: QEST’07, IEEE Computer
Society (2007) 59–68

6. Bertrand, N., Bouyer, P., Brihaye, T., Markey, N.: Quantitative model-checking
of one-clock timed automata under probabilistic semantics. In: QEST’08, IEEE
Computer Society (2008) 55–64

7. Asarin, E., Pokrovskii, A.: Use of the Kolmogorov complexity in analyzing control
system dynamics. Automation and Remote Control (1) (1986) 25–33

8. Rojas, C.: Computability and information in models of randomness and chaos.
Mathematical Structures in Computer Science 18(2) (2008) 291–307

9. Brudno, A.: Entropy and the complexity of the trajectories of a dynamical system.
Trans. Moscow Math. Soc. 44 (1983) 127–151

10. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. Journal of the ACM
49 (2002) 172–206

11. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126 (1994) 183–235

12. Asarin, E., Degorre, A.: Volume and entropy of regular timed languages: Analytic
approach. To appear in proceedings of FORMATS’09 (2009)

13. Asarin, E., Degorre, A.: Volume and entropy of regular timed languages: Dis-
cretization approach. To appear in proceedings of Concur’09 (2009)

14. Asarin, E., Maler, O., Pnueli, A.: On discretization of delays in timed automata
and digital circuits. In: CONCUR’98. LNCS 1466, Springer-Verlag (1998) 470–484

15. Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In:
ICALP’92. LNCS 623, Springer-Verlag (1992) 545–558

16. Kolmogorov, A.: Three approaches to the quantitative definition of information.
Problems of Information Transmission 1(1) (1965) 1–7

17. Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications.
3 edn. Springer (2008)

