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Abstract. We propose a remedy to that part of the state-explosion problem for
timed automata which is due to interleaving of actions. We prove the following
quite surprising result: the union of all zones reached by different@aeings of

the same set of transitionsésnvex Consequently we can improve the standard
reachability computation for timed automata by merging such zones wienev
they are encountered. Since passage of time distributes over unioajvomi-
tinue the successor computation from the new zone and eliminate completely th
explosion due to interleaving.

1 Introduction

Exploring the state space of timed automata [AD94] is a fumelatal activity with
numerous potential applications in circuit timing anaysicheduling, verification of
real-time software, performance analysis, etc. It is, h@rea very difficult problem
still waiting for a performance breakthrough despite @ffanvested during the last 15
years. We hope that the results of this paper will advanca thss respect.

Partial-order methods have been widely reported in theetiswerification litera-
ture. They focus on that part of the state-explosion prolpesed by the interleaving
semantics, as illustrated by the example of Figure 1 whersegetwo automata and
their asynchronous composition. Actiomsndb are mutually independent and hence,
in the product automaton, staté can be reached via two paththat commute in a
“diamond”. For certain simple reachability propertiesttida not mention paths and
intermediate states, it is sufficient to explore only onehafse paths. However, if ad-
ditional non-commuting transitions are possible from therimediate states, or if the
properties are more sequential and less invariant undemeaiutations, the situation
is more involved and has been a subject of numerous puldlicatihis is not the topic
of the present paper.

In the analysis of timed automata, diamonds pose additiprddlems. Due to the
clock variables, paths that seem to commute on the transitegram do not necessar-
ily converge to the same extended state which includes lésolock values. Consider
the timed automata appearing in Figure 2 together with tainposition. In each au-
tomaton the transition frorfi to 1 resets the respective clock. The standard reachabil-
ity computation algorithm for timed automata computes ardi® directed graph, the
nodes of which are “symbolic states” of the fo(g Z) wheregq is a discrete state arid
is azone a convex set of clock valuations satisfying some conjamctif inequalities.

1 In generalp! paths when there aretransitions.



Fig. 1. Two automata with independent actier@ndb, and their composition.

Apply this algorithm to the automaton we obtain two zone®eisdéed with statd 1,
one in whichz < y (because in all runs along this patlis reset aftery) and the other
with y < 2. So here, in a situation where untimed reachability will\ame to single
state, timed reachability will generate several symbdhtes from which the computa-
tion can be continued, leading very quickly to explosionugdy speaking, while the
ordinary explosion associated with a productrodutomata, each with states will
lead in the worst case ©(m") states, the additional splitting due to interleaving may
resultinO(n™") states, a fact that prevents verification of systems of neies?

In this paper we propose a solution to this problem, whiclaisel on a new surpris-
ing® result which shows that the set of all points in the clock spaached by runs con-
sisting of interleaving of the same set of actionsasvex Since evolution distributes
over union, zones that have been reached through diffeats jn the transition graph
can be merged during reachability computation, thus ebiimig the interleaving explo-
sion. The rest of the paper is organized as follows. In Se@iwe give the definition
of timed automata and their interaction. In Section 3 we prmwr main result which is
used in Section 4 to define a modified reachability algorithmse superiority is exper-
imentally confirmed. In Section 5 we discuss the applicgbdf the results to various
forms of interaction, and conclude in Section 6 with a distws of related work, in
particular the idea of local time scales.

2 Timed Automata

We consider a compositiad!||.4?|| - - - || A™ of timed automata. Interaction can be de-
fined using two types of mechanisms, the first one is by symired transitions and the
other one, which is more expressive and useful, is by shaagdbles. To simplify the
presentation we will use the former to present our resultdisclss later its extension
to state-based synchronization. For the same pedagogasbdms, we make additional

2 Note that if we can push the size limit of timed verification toward non-triiatems, the rest
of the battle against explosion can continue from there using abstraas®dmethods like
the ones we have recently proposed [BBM03,BBMO06].

3 What is surprising is the fact that it has not been discovered befoa# those working in the
domain, the authors included.
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Fig. 2. Two timed automata, their composition and an example of reachability cotiguuta

simplifying assumptions concerning the form of invariaatel guards, but the results
extend naturally to any conjunction of timed inequaliti@s.for non-convex (disjunc-
tive) conditions allowed by the original definition of timadtomata, we have found no
use of them in more than 10 years experience in the dofridla also do not pay much
attention to the distinction between strict and non strietjualities which are irrelevant
to convexity.

Definition 1 (Timed Automaton). A timed automaton il = (X, Q, C, I, A) where

X is afinite set of transition labelg) is a finite set of stateg] is a finite set of clocks,
I is the staying condition (invariant), assigning to everye ¢ a conjunctionl, of
inequalities of the forme < wu, for some clock: and integeru, and A is a transition
relation consisting of elements of the foff@ g, a,r, ¢') whereq and ¢’ are states,

a € X' is a transition label g (the transition guard) is a conjunction of formulae of the
form (¢ > 1) for some clock and integerl andr C C'is a set of clocks to be reset by
the transition.

We assume one transition labelledor everya € Y. A clock valuationis a function

v : C — Ry and aconfigurationof the automaton is a pailg, v) consisting of a
discrete state (location) and a clock valuation. Werualso to denote the reset function
on clock valuation that sets the clocksrto zero and leaves the other intact. We use
v + d to denote the clock valuation obtained frenty addingd to all clock values. A
stepof the automaton is one of the following:

— A discrete step(q, v) = (¢,v'), for some transitioriq, g, a,,¢') € A such that
v satisfiegy andv’ = r(v).
— Atime step(q, v) <, (g,v + d) for somed € R>( such that + d satisfiesl,.

4 The tendency to look for results proved for the “most general” definitidrerited uncritically
from mathematics, can be sometimes very counter-productive in denvhioh are still evolv-
ing. Perhaps this could be one of the reasons for the sterility of certaichma of theoretical
computer science.



A compound stejs a time step (possibly of a zero duration) followed by aditestep:

(0,v) 25 (¢/,0') = (g,0) -5 (g0 +d) = (¢,0).

A run of the automaton starting from a configuration, vo) is a finite sequence of
compound steps ending in a time step.

di, dosas  dy, d.
€1 (goyv0) F (q1,01) B8 - Y (g, vp) = (gryvg + dy).

We use also the notatidig, v) N (¢’,v") for runs.

We will define the interaction between the automata via afithisted alphabet’>”
in the sense of the theory of traces [DR95]. For each autamatplet ¢ be its local
alphabet, that is the set of transition labels it uses. Ompmsition semantics requires
that all A; such thatz € X7 should participate in aa-labelled global transition. Hence
in any run of the global automaton artransition will be taken the same number of
times in all A? such tha € X°.

Definition 2 (Composition of Timed Automata). A composition of timed automata is
A = AY||A2||---||.A™ where each automaton is of the ford = (X%, Q%, C*, ', A?).
The sets of states and clocks of the automata are mutuajtyirtis

The global automaton obtained from the compositiodis= (X, Q, C, I, A) where
Q = I,Q",C =, C"andX = [J;_, 2. We write global states ag =
(¢*,...,¢") € Q and global clock valuations ovér asv = (v!,...,v"). The seman-
tics of the composition is given in terms of global steps diefics:

— A discrete step{q,v) — (q/,v’), such that for every eithera € X' and
(¢',v") = (¢, v") is astep ofd’, ora ¢ X% and(¢"*, v"") = (¢',v").
— A time step:(q, v) 4, (q,v + d) for somed € R, such thatv + d satisfies

Ny Iy
Global compound steps and runs are defined similarly to tbe@l counterparts. It is
sometimes (and this time in particular) useful to speak efgtojection of a global
run on each automaton. The projectiginof a global run¢ is obtained from¢ in two
stages. First we “hide” transitions in which?’ does not participate and collapse the
time passages, that is apply successively the followingsfcamation:

(@.v) 25 (@ V) =5 (@) — (@v) " ()

whenever’ ¢ X%, After all such external transitions have been eliminatedonoject
the run on the states and clocks4f.

Finally let us define two additional notions. Two rufs’ of A are qualitatively
equivalentf they go through the same sequence of discrete transiinddiffer only
in timing. We denote this fact by ~ ¢’ and write equivalence classesrety [¢]. We
say thatt and¢’ arelocally equivalentdenoted by ~ &', if all their local projections
are equivalent, that is? ~ ¢’* for everyi. We denote equivalence classes~ofas
(&). Clearly, = is stronger thanv, and perhaps too strong. Whén~ ¢’, both runs
agree on the order of local transitions whilez ¢’ means that they agree also on their
interleaving.



3 Main Result

We can now formulate our main result.

Theorem 1 (Convexity).Let Z be a convex timed polyhedron and ¢gaindq’ be two
global states ofd. Let¢ be a run starting aty and ending ing’. Then the set
Rz = J{vV:idveZ (av) 5 (@.v)}
§'e(€)

is convex.

The proof is given via a characterization of the reachaldelclaluations by a quanti-
fied formula consisting of conjunctions of inequalities oeck values and auxiliary
variables. Since convex sets are closed under projectresult follows. For economy
of notation we assume thais such that each automatgti makes exactly: steps. The
restriction of.A’ to the states and transitions involved in the run is of thenfdepicted

in Figure 3.

a6 91:a1,m1 | a1 a1 9k Ok Tk | 9k

Fig. 3. The part ofA® which participates irg*.

As a first step we extend the description of local runs to idelthetime stamp®f
the transitions:

51 : (qévvéaté) - (qivi?tzl) T (qllmvllc?t?c) - (qlk’vlk—&-l’t}c-‘rl)'
Eacht;i variable denotes thabsolute timein which the corresponding transition has
been taken. Every global run if§) is completely characterized by the valugsand
vj fori = l.nandj = 0..k + 1. All those runs satisfy the natural local ordering
among time stamps, i.¢; < t;;, while those that are alss-equivalent agree also
on the ordering of time stamps of different automata, whichracterize the particular
interleaving (shuffle) of the local runs.

We can now proceed to the logical characterization. We wi! tlne following auxil-
iary notations and abbreviationg; = (qjl-, ...q}) for global statesy; = (vjl-, cv),
for global clock valuationsy® = {vg, ..., v} }, for the set of valuations appearing in a
local rung” andt® = {t}, ...t} } for the set of local time stamps. The set of all values
that characterize a run ave= | J; v;, andt = | J, t'. The predicate$®’ } characterize
the clock values and time stamps in a valid stejf A°.

Elddft"fti A
% A\
g[)l 1 ,t , 71 = jz 11(1}] 1 )
-0 t-0 % 5) = Y g 4 d) A
v = ;(v;71+d)



This is nothing but a recapitulation of the definition of a qgaand step, namely that
time passage does not violate the staying condition, timsitran guard is satisfied and
that a reset takes place. Note that this definition is inmanimder a shift of global
time, that is. @’ (v, t,v',t') is equivalent tab’ (v, t + d,v’,t' + d) for everyd. We can
now define what constitutes a valid run.df in isolation without taking into account
synchronization constraints. We keep this definition shifariant as well and do not
yet insist on the initial zone which is defined globally.

k
Pt v = /\ @;‘-(U;_l,tﬁ»_l,v;,té)
j=1

The predicate which defines what constitutes a valid glaloais a conjunction of the
conditions for local runs with additional conditions thaké care of all the synchro-
nization aspects, including the fact that all runs starttenchinate simultaneously. For
everya € X letS, = {(i,j) : a} = a} be the set of steps that synchronizewro
force alla-transitions to take place at the same time we define theqatedi

T, (t) = N =t

(4,9),(¢",5")€Sa
The conditions for a valid global run starting 44 are then:

th=td=--- =12 A
Vo € Zg A
P(t,v) = N, DV, EY) A
/\aEE g/(l (t) A
t11v+1 = ti+1 ==l
Note that the first and last conditions can be viewed as spnitation conditions for
two additional fictitious transitions “start” and “end” inhich all automata participate.

This set is a convex subset of the space consisting of alatialis and time stamps in
the run, and so is its projection on the laslimensions which is the reachable set:

RZ,<§> (Vk—i-l) = Htﬂvl, ..., VL @(t,vl, ce Vk,Vk+1).

O
Let us mention that the result extends naturally to arhjtfénear” hybrid automata
with convex guards and invariants.

4 Application to Reachability Computation

4.1 A Modified Algorithm

We will now modify the standard reachability computatiogalithm for timed au-
tomata to take advantage of this result. The idea is to genssanbolic states in a
breadth-firstmanner and at each level merge those reached by the samesetpiund



steps. To identify those we need to decorate symbolic stategpartially ordered) path

information. Ashuffle expressioaver X is a = o!||...|Ja™ with o’ € (X%)*. Con-
catenation of a shuffle expression and a symb@ defined agal||...||a") - a =
(BY]...1|8™) where’ = o' if a ¢ X and3" = o' - a otherwise.

Reachability computation for timed automata [HNSY94] iséd on zones (timed
polyhedra) which are expressed as conjunctions of rectanmequalities of the form
¢ < d orc > d and diagonal inequalities of the forax— ¢’ < d for clockse, ¢’ and
integerd. A symbolic state is a paifq, Z) whereZ is a zone. Thei-successor of a
symbolic statéq, Z) such thayy admits aru transition is defined as

Suc*(q,Z) ={(¢’,v") : Fv e Z3Id >0 (g,v) e, (q',v").

The computationq’, Z') = Suc®(q, Z) is done by first applying “time passage” to
Z, intersecting the result witlh, and with the transition guard and then applying the
corresponding reset. This computation c@3ts?) time forn clocks.

Algorithm 1 performs this computation. At each iteratidfaiting is a list of ex-
tended zones to be explored, all reached by the same numbtransitions. We com-
pute the successors of all those symbolic states and putitharist New TheMerge
procedure scaridewand replaces every subset of symbolic states of the form

{((b Zl»a)v ety (qv Zm»a)}

by a single statdq, Z, o) where Z is the convex hull of all these zones. From our
result it follows thatZ is exactly the union of the zones. Note that the path labels of
a zone need not be kept after its successors have been camphig also guarantees
termination due to the finite number of zones.

Algorithm 1 (New Reachability Algorithm)

Explored:= New:=)
Waiting:={ (dg, Zo. &]|.-lle)}
while Waiting= () do
for each(q, Z, @) € Waiting such thatq, Z) ¢ Exploreddo
for eacha € X' do
New :=NewJ{(Suc®(q, Z),c - a)}
Explored := ExploredJ{(q, Z)}
Waiting := Merge(New)
return (Explored)

4.2 Experimental Results

To confirm the complexity reduction empirically we have fiestted a preliminary im-
plementation of Algorithm 1 restricted to products of chhlke automata. Such au-
tomata are notorious for generating state explosion dugédéaving. We have consid-
ered two simple families of synthetic benchmarks shown gufé 4. The first consists
of parallel compositions of independenteset sequences lengthm each. The second
class consists of parallel compositionskoindependent synchronization chains, each



being a parallel composition af synchronized sequenceslengthm. A synchronized
sequenceA”’) alternates between actions that synchronize with thedeff) and the
right (a;+1,;) neighbor while separating them by at least 4 time units.

Ti/xi =0 a;j/xi; =0

[ [t

*Ti/CE»L‘ =0 [xi; > 4] aiq1

a;j/xi; =0

<

[ XX ]
@4— 0004—@

Fig. 4. The structure of the synthetic benchmarks.

The experimental results obtained for the two benchmankdifterent values of,
m andk are summarized in Table 1. Each entry in the table is of the B/C where B
is the number of symbolic states encountered in an ordinagdth-first exploration,
while C is the number of states explored by Algorithm 1. Watlmarselves to instances
with less thanl 0% symbolic states, and use tHesymbol to denote the fact that this
limit has been reached. Let us note that we achieve an expaheduction both for
the interleaving oindependenactions (reset sequences) and for strongly-synchronized
actions (a single synchronization chain with= 1). The reduction is clearly much
more impressive in the synchronized case, where redudtiassd on partial order or
symmetry [HBLF 03] are not directly applicable.

We have then implemented Algorithm 1 into the IF toolset [BE&¥and tested its
performance on several publicly-available benchmarkbleT2 compares the perfor-
mance of the new algorithm on the Fisher mutual-exclusiatgeol benchmark with
other reported results. We compare with old Kronos reseftented in [T98], Uppaal
results reported in [U] and results obtained with IF withasing the new algorithm.
It is interesting to note that although our new algorithmf@ens much better than
the standard Uppaal machinery, their performances ardasimhen the convex-hull
approximation option of the latter is employed. Our reshitivgs that this “approxima-
tion” can be easily made exact.

5 Generalizations and Limitations

Let us discuss briefly the applicability of our result to mgemeral modes of interaction
between timed automata. A crucial condition for expressimghronization constraints



n=2

| n=4 |

n=6

Independent reset sequences

m=1

5/4

65/16

1957 /64

109601 / 25¢

iy

D

171024

13/9

633/81

759731729

1 /6561

1 /59049

25/16

2713/ 256

732529/ 409

5 | /65536

/7L

hronization chains = 1

4/4

6/6

8/8

10/10

12/12

8/8

37117

236/30

1600 /47

10949/ 68

12/12

86/32

1441 /72

30841 /140

660615 / 244

hronization chaink = 3

2012 /64

812375/216

1/512

1 /1000

1/1728

97142 /512

1 /4913

1 /27000

1/103823

1/314432

745197 /172

8 1 /32768

1 /373248

171

/7L

Table 1. Experimental results on the synthetic acyclic benchmarks.

|Sizd|Kronos||
2 -/-
-
752/-
3552/-
16320/
73620/
1/1
1/1
1/1
1/1

Uppaal |Uppaal-A||
-/0.01s -/0.00s
-/0.03s -/0.01s
-/0.23s -/0.06s
-/5.09s -/0.29s
-/310.97s| -/1.34s
-/51598.175 -/5.89s
/1 -/25.83s
/1 -/113.53s
/1 -/498.88s
/1 -/2525.318§

>

IF ‘
29/0.003s
165/0.01s

1099/0.07s
8453/1.07s
74939/21.065
762429/595.75
/L
/L
/L
/L

IF-U |
18/0.002s
53/0.01s
164/0.03s
527/0.04s

1726/0.20s

s 5693/1.75s
18792/5.73s
61883/28.42s
202994/367.76
662873/4489.23

U)

OO N| OO bW

10
11

)

S

Table 2. Results on the Fisher protocol benchmark. The Uppaal-A columnsgonels to results
obtained using the convex-hull approximation, while the IF-U columnesgmts our new algo-
rithm. Table entries represent the number of symbolic states and cdioputame. The symbol
“-" means “ not reported” (or “irrelevant” for the case of computattone on older computers)
and_L means “too big”.



in a conjunctive form is that in every abstract run, everpgraion admits a unique set
of transitions with which it is has to synchronize. This citied is fulfilled by requiring
that whenever an-transition takes place, all automata havingn their alphabet must
participate. If a transition could choose some subset obther transitions to synchro-
nize with,& may contain disjunctions that cannot be eliminated anddkeltno longer
holds.

State-based synchronization in which the state of one oe matomata may appear
in the invariants and transition guards of other automatadee general and has a more
asymmetric flavor as one automaton may enable a transitittreinther without being
obliged to take a transition by itself. Suppadé can take a transition whed? is in
stateq and consider an abstract run in whigh takes this transition andl?> passes
throughg twice (see Figure 5). Let be the time stamp of thel! transition, and let
[t1,t2] and([ts,t4] be the time intervals in whicti? stays ing. The synchronization
condition in this case will be disjunctive: € [t1,t2] V ¢ € [t3,t4]. If, however, the
disabling of the A transition is always accompanied by an explicit transition4!
the run that synchronizes with the first sojourryiand the one synchronizing with the
second one, are not qualitatively equivalent and the résylteserved. This property
holds, for example, in the automata we use to model bi-badimd®tial delays [MP95]
as well as in models derived from free-choice Petri nets.

Fig. 5. AutomataA' ||.4% do not satisfy Theorem 1 whild"* || 42 do.

Another illuminating example which is particularly impant for our motivating
application domain (circuits) is the following: let*, AY and .4* be three Boolean
automata modeling an AND gate= x A y and consider runs in which bothandy
rise from0 to 1 and consequently rises as well. Denoting the respective time stamps
by ¢, t, andt., the synchronization condition is of the form

(tm Sty: z)\/(ty Stm :tz)

or equivalentlyt, = max{t,, t, }, which does not define a convex set. In order to apply
Algorithm 1 correctly to systems admitting this type of siranization we need to split
every such transition to several copies, each with a unignetsonization context.

Let us remark that when the local automata are acyclic aredsevdeterministic (no
state is entered via two different sequences of transitjatigylobal symbolic states that



agree on the discrete state are reached via the same saisifitras. Hence our result
can be exploited without decorating the states with patbrin&tion.

6 Related Work and Discussion

The application of partial-order techniques to timed systdias been subject to sev-
eral publications [R94,YS97,DGKK98,BJJY98,M99,LNZ0%/X¥03] but nothing that
resembles our simple and easily-usable result has beegidystated. Neither has any
solution that works in practice been reported so far.

The closest work, at least in spirit, to ours is that of Ni¢le¢al. [ZYNO3,LNZ05]
who are more ambitious with respect to full-fledged paniaer reductions and use
“event zones” rather than the standard “clock zones” useldrpresent paper. Event
zones contain sufficient additional dimensions to repredependency such that all
representatives of a trace lead to the same event zone.Ht beghe case that the union
that we compute here could be extracted (and proved to begpaging their results.
It would be interesting to compare the reductions providgdhe two approaches in
terms of scope and performance.

An interesting idea which was first proposed in [BJJY98]pired by distributed
simulation, is to usécal time scalesthat is to compute successors for each automaton
separately on its own clock subspace, and somehow combise thcal zones upon
synchronization. Although the idea is aesthetically glegsit suffers from several
problems including the implicit global synchronizatiorattiakes place at time zero,
and the fact that you need to augment each automaton with ditioaal clock that
measures its corresponding total elapsed time. This iadsegVer, inspired our proof of
convexity.

We prove, nevertheless, a small result which indicates tteeirostances under
which local time scales can be effectively exploited. Wesprd the result informally.
Consider two automatal' and.4? and a prefix of a global run that reaches a global
state(q', ¢?), and in which each of the two has passed through a local statéich
all its clocks were inactivé.If no synchronized action has taken place since then,
one can see that if' — ¢’! andg® — ¢'2 via synchronization-free local runs, then
(¢4, ¢%) — (¢'*, ¢’?) in the product automaton. The reason is that because ofdbk cl
inactivity, each of the local runs can be “delayed” and evenal state that can be
reached at time can be reached as well at atly> ¢ and hence any pair of local states
can be made to be reached simultaneously. This implies fteatsaich a “desynchro-
nization” point, reachable sets can be computed separfatebach automaton and be
merged via intersection before the next synchronizatibis dbservation can be useful
for verifying products of automata that repeatedly go tigftosuch inactive states.

As a final remark, let us note that reducing the number of zbgéaking their con-
vex hull has been considered in the past [DT98] but alwaysawar-approximation
We speculate that the reason for not discovering the restittegpresent paper is due
to the fact that the systems studied were cyclic, in whichstmae discrete state could
be reached by different paths, not all of which being pertinnia of the same set of

5 A clock is inactive in a state if along any path starting in that state it will be resfet® being
tested. This fact has been used to reduce the dimension of reachabitipytadion [DY96].



transitions. That is why the possibility of exact convexlfadcaped the attention. In
general we think that looking at the structureindividual runscan give insights that
are sometimes masked by focusing exclusively on the redithgjoaph representation.

AcknowledgmentThis paper has benefitted from discussions with P. Niebert.
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