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LOCAL QUATERNIONIC RIGIDITY FOR COMPLEX HYPERBOLIC

LATTICES

I. KIM, B. KLINGLER AND P. PANSU

Abstract. Let Γ
i

→֒ L be a lattice in the real simple Lie group L. If L is of rank at least

2 (respectively locally isomorphic to Sp(n, 1)) any unbounded morphism ρ : Γ −→ G into

a simple real Lie group G essentially extends to a Lie morphism ρL : L −→ G (Margulis’s

superrigidity theorem, respectively Corlette’s theorem). In particular any such morphism

is infinitesimally, thus locally, rigid.

On the other hand for L = SU(n, 1) even morphisms of the form ρ : Γ
i

→֒ L −→ G are

not infinitesimally rigid in general. Almost nothing is known about their local rigidity.

In this paper we prove that any cocompact lattice Γ in SU(n, 1) is essentially locally rigid

(while in general not infinitesimally rigid) in the quaternionic groups Sp(n,1), SU(2n, 2)

or SO(4n, 4) (for the natural sequence of embeddings SU(n, 1) ⊂ Sp(n, 1) ⊂ SU(2n, 2) ⊂

SO(4n, 4)).
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1. Introduction

1.1. Complex hyperbolic lattices and rigidity. The main open question concerning

lattices of Lie groups is certainly the study of complex hyperbolic lattices and their finite

dimensional representations. Indeed, Margulis’s super-rigidity theorem states that any irre-

ducible complex finite-dimensional representation of a lattice Γ of a simple real Lie group

L of real rank r > 1 either has bounded image, or is the restriction to Γ of an irreducible

finite-dimensional representation of L. The remaining case of simple real Lie groups of rank

1 contains 3 families : the real hyperbolic group SO(n, 1), the complex hyperbolic group

SU(n, 1) and the quaternionic hyperbolic group Sp(n, 1), plus one exceptional group F−20
4 .

Margulis’s description has been extended to lattices of Sp(n, 1) and F−20
4 by Corlette [7]

and Gromov-Schoen [12]. On the other hand one knows that SO(n, 1) admits lattices with

unbounded representations not coming from SO(n, 1). Examples have been constructed

by Makarov [17] and Vinberg [25] for small n and by Johnson-Millson [13] and Gromov-

Piatetski-Shapiro [11] for any n ∈ N. Concerning SU(n, 1), Mostow [20] exhibited a striking

counterexample to superrigidity for n = 2 : namely two cocompact (arithmetic) lattices Γ

and Γ′ in SU(2, 1) and a surjective morphism ρ : Γ −→ Γ′ with infinite kernel. Essentially

nothing is known for n > 3.

In this paper, we restrict ourselves to the deformation theory of complex hyperbolic

cocompact lattices. Let n > 1 be an integer and consider the complex hyperbolic group L =

SU(n, 1) : this is the group of real point of L = SU(n, 1) = SU(VC, hC), the special unitary

algebraic R-group of linear isometries of (VC, hC) where VC denotes the (n + 1)-dimensional

C-vector space endowed with the Hermitian form hC(z,w) = −z0w0 + z1w1 · · ·+ znwn. Let

i : Γ →֒ SU(n, 1) be a cocompact complex hyperbolic lattice. Let j : SU(n, 1) →֒ G be an

injective R-morphism of R-algebraic groups. Does there exist any non-trivial deformation
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of ρ = j ◦ i : Γ −→ G = G(R), i.e. a continuous family of morphisms ρt : Γ −→ G,

t ∈ I = [0, 1], with ρ0 = ρ not of the form ρt = gt ·ρ · g
−1
t for some continuous family gt ∈ G,

t ∈ I ?

1.2. First order deformations. Let M(Γ,G)(R) = (Hom(Γ,G)//G)(R) be the moduli

space of representations of Γ in G(R) up to conjugacy. The space of first-order deformations

of ρ, i.e. the real Zariski tangent space at [ρ] to M(Γ,G)(R), naturally identifies with

the first cohomology group H1(Γ, Ad ρ), where Ad ρ : Γ
ρ
→֒ G

Ad
→ Aut(g) is the natural

representation deduced from ρ and the adjoint action of G on its Lie algebra g. Thus the

non-vanishing of H1(Γ, Ad ρ) is a necessary condition for M(Γ,G)(R) not being trivial at the

point [ρ]. Raghunathan [21] gave the list of irreducible finite-dimensional SU(n, 1)-modules

which may have non-vanishing Γ-cohomology in degree 1 :

Theorem 1.2.1 (Raghunathan). Let λ : SU(n, 1) −→ GL(W ) be a real finite dimen-

sional irreducible representation of SU(n, 1) = SU(VC, hC). Let Γ be a cocompact lattice in

SU(n, 1). Then H1(Γ, W ) = 0 except if W ≃ SjVC for some j ≥ 0, where Sj denotes the

j−th symmetric power.

Remark 1.2.2. In this theorem VC is seen as a real representation. In particular SjV ∗
C
≃ SjVC

as a real SU(n, 1)-module.

As a corollary, [ρ] ∈ M(Γ,G)(R) is isolated except maybe if Ad j : SU(n, 1) −→ Aut(g)

contains an SU(n, 1)-direct factor isomorphic to SjVC or SjV ∗
C

for some integer j ≥ 0.

Remark 1.2.3. For each n and each j one can, following a method first introduced by

Kazhdan, exhibit a cocompact lattice Γ of SU(n, 1) such that H1(Γ, SjVC) 6= 0, c.f. [2,

chap. VIII].

Example 1.2.4. Let Γ
i
→֒ SU(n, 1) be a cocompact lattice. Let j = Id : SU(n, 1) −→

SU(n, 1). By Raghunathan’s theorem, H1(Γ, Ad i) = 0, thus Γ cannot be non-trivially

deformed in SU(n, 1). This was already proved by Weil [26].

Example 1.2.5. Let j : SU(n, 1) = SU(VC, hC) →֒ SO(2n, 2) = SO((VC)R, Re hC) be the

natural embedding. Notice that j factorizes as SU(n, 1) →֒ U(n, 1) →֒ SO(2n, 2). One

easily checks that the Lie algebra so(2n, 2) is isomorphic as an SU(n, 1)-module to the

direct sum of irreducible modules R ⊕ su(n, 1) ⊕ Λ2VC, where R = Lie(Z(R)) is the Lie

algebra of the centralizer Z of SU(n, 1) in U(n, 1). Thus H1(Γ, Ad ρ) = H1(Γ, R) and any

deformation of ρ in SO(2n, 2) is of the form ρ · χ, where χ : Γ −→ Z(R) = S1 is a unitary

character of Γ.

1.3. Local rigidity.
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1.3.1. Formal completion of M(Γ,G)(R) at [ρ]. Studying first-order deformations is not

enough the local rigidity problem stated in the introduction : even if j : SU(n, 1) →֒ G

is such that a priori H1(Γ, Ad ρ) does not vanish it may happen that very few of these

infinitesimal deformations can be integrated. However it is enough to study second order

deformations. Let Hn
C

= SU(n, 1)/U(n) denote the symmetric space of SU(n, 1) : this is

the complex hyperbolic n-space of negative lines in (VC, hC)), it is naturally endowed with

an SU(n, 1)-invariant Kähler form ωHn
C
. Without loss of generality (passing to a finite index

subgroup) one can assume that Γ is torsion-free, so that M = Γ\Hn
C

is a compact Kähler

manifold with fundamental group Γ. One can then apply the following formality theorem of

Goldman-Millson [10] (for the case of complex variations of Hodge structures) and Simpson

[24] (in general) :

Theorem 1.3.1 (Goldman-Millson, Simpson). Let M be a connected compact Kähler man-

ifold with fundamental group Γ, G a real reductive algebraic group and ρ : Γ −→ G = G(R)

a reductive representation. Let C ⊂ H1(Γ, Ad ρ) be the affine cone defined by

C = {u ∈ H1(Γ, Ad ρ) /[u, u] = 0 ∈ H2(Γ, Ad ρ)} .

Then the formal completion of M(Γ,G)(R) at [ρ] is isomorphic to the formal completion of

the good quotient C/H, where H denotes the centralizer of ρ(Γ) in G.

1.3.2. Goldman-Millson rigidity result. The first result about non-integrability of some first-

order deformations for cocompact complex hyperbolic lattices is due to Goldman-Millson

[9] : they consider the embedding

j : SU(n, 1) = SU(VC, hC) →֒ SU(n + 1, 1) = SU(VC ⊕ C, hC ⊕ 1) .

In this case the space of first-order deformations H1(Γ, Ad ρ) at ρ = j ◦ i decomposes as

H1(Γ, R) ⊕ H1(Γ, VC). The first summand H1(Γ, R) corresponds once more to the uninter-

esting deformations obtained by deforming Γ in U(n, 1) by a curve of homomorphism into

the centralizer Z = U(1) of SU(n, 1) in U(n, 1). The second summand, which potentially

corresponds to Zariski-dense deformations of ρ in SU(n + 1, 1), is non-zero for general Γ.

However Goldman and Millson prove that none of these deformations can be integrated.

Thus any representation λ : Γ −→ SU(n + 1, 1) sufficiently close to ρ is conjugate to a rep-

resentation of the form ρ · χ, where χ : Γ −→ Z = S1. A similar result can be obtained by

replacing the natural embedding j : SU(n, 1) →֒ SU(n + 1, 1) with the natural embedding

j : SU(n, 1) →֒ SU(n + k, 1) for some integer k ≥ 1.

1.3.3. Possible extensions. One natural generalization of Goldman-Millson’s result consists

in studying global rigidity of representations ρ : Γ −→ G with G simple of Hermitian type,

under certain assumptions on ρ. Let XG be the (Kähler) symmetric space associated to G,

with Kähler form ωG. Let ωM be the natural Kähler form on M . Let f : M̃ = Hn
C
−→ XG

be any smooth ρ-equivariant map. The de Rham class [f∗ωG] ∈ H2
dR(M) depends only on
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ρ, not on f , and will be denoted [ρ∗ωG]. Define the Toledo invariant τ(ρ) of ρ as the number

τ(ρ) =
1

n!

∫

M

ρ∗ωG ∧ ωn−1
M .

One easily shows that τ is a locally constant function on M(Γ,G)(R). Moreover it satisfies

a Milnor-Wood inequality : under suitable normalizations of the metrics one has

|τ(ρ)| ≤ rk XG · Vol(M) .

One expects a global rigidity result for representations ρ : Γ −→ G with maximal Toledo

invariant : namely ρ is expected to be faithful, discrete and stabilizing a holomorphic totally

geodesic copy of Hn
C

in XG. This has been proven by Corlette [5, theor. 6.1] when G is of

rank one and Γ cocompact (thus generalizing Goldman-Millson’s result), then by Bürger-

Iozzi [3] and Koziarz-Maubon [15] for G of rank 1 and any complex hyperbolic lattice Γ.

Recently Koziarz-Maubon [16] proved it when the group G is of real rank 2. In the same

kind of direction, we also refer to [6].

1.4. The main result. From the point of view of non-abelian Hodge theory, it is natural

to enlarge the study of representations of complex hyperbolic lattices into groups of Her-

mitian type to the study of representations into groups of Hodge type (i.e. simple real Lie

groups admitting discrete series). Among groups of Hodge type there is a particularly sim-

ple subclass : the groups of quaternionic type, that is such that the associated symmetric

space XG is quaternionic-Kähler. The classical families in this class are Sp(n, 1), SU(n, 2)

and SO(n, 4), n ≥ 1. The corresponding 3 families of quaternionic Kähler non-compact

irreducible symmetric spaces of dimension 4n, n ≥ 2, are: Hn
H

= Sp(n, 1)/Sp(n) · Sp(1),

Xn = SU(n, 2)/S(U(n)×U(2)) and Y n = SO(n, 4)/S(O(n)×O(4)). The only Kähler ones

are Xn and Y 2.

The main result of this paper study quaternionic deformations of cocompact complex

hyperbolic lattices. Let VH = VC ⊗C H be the quaternionic right vector space of dimension

n + 1 (thus of real dimension 4n + 4) endowed with the quaternionic Hermitian form hH

of signature (n, 1) deduced from hC. The complex Hermitian part H of hH is a complex

Hermitian form on VC ⊕ jVC of signature (2n, 2). Let Sp(n, 1) = SU(VH, hH) be the special

unitary algebraic R-group of linear transformation of (VH, hH), U(2n, 2) the unitary R-group

of linear transformations of (VC ⊕ jVC, H) and SO(4n, 4) the special orthogonal group of

linear transformation of ((VH)R, ReH). One obtains a natural sequence of embeddings

SU(n, 1)
jU(n,1)

→֒ U(n, 1)
jSp(n,1)

→֒ Sp(n, 1)
jU(2n,2)

→֒ U(2n, 2)
jSO(4n,4)

→֒ SO(4n, 4)

corresponding to equivariant totally geodesic embeddings of symmetric spaces

Hn
C

fHn
H

→֒ Hn
H

f
X2n

→֒ X2n
f

Y 4n

→֒ Y 4n .
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Remark 1.4.1. Notice that the totally geodesic embedding Hn
C

f
X2n◦fHn

H

→֒ X2n between Her-

mitian symmetric spaces is not holomorphic : the pull-back (fX2n ◦ fHn
H
)∗ωX2n is identically

zero.

For i : Γ →֒ SU(n, 1) a cocompact lattice, and G = U(n, 1), Sp(n, 1), U(2n, 2) or

SO(4n, 4) let ρG : Γ −→ G be the composition jG ◦ · · · ◦ jU(n,1) ◦ i. The space of first-order

deformations H1(Γ, Ad ρG) at [ρG] is non-trivial for general Γ. As in Goldman-Millson’s

result we however prove :

Theorem 1.4.2. Let Γ
i
→֒ SU(n, 1) be a cocompact lattice and G one of the groups Sp(n, 1),

U(2n, 2) or SO(4n, 4). Then any morphism λ : Γ −→ G = G(R) close enough to ρG is

conjugate to a representation of the form ρG · χ, where χ : Γ −→ ZG(SU(n, 1)) (thus

ZSp(n,1)(SU(n, 1)) = U(1) and ZU(2n,2)(SU(n, 1)) = ZSO(4n,4)(SU(n, 1)) = U(1) × U(1)).

Remark 1.4.3. Following remark 1.4.1 notice that the representation ρU(2n,2) : Γ −→

U(2n, 2) satisfies τ(ρU(2n,2)) = 0, thus has the smallest possible (in absolute value) Toledo

invariant. In particular theorem 1.4.2 in this case is not covered by Koziarz-Maubon [16]

(nor Corlette [6]). Also the same method applies to prove the case when G = U(n + k, m),

more generally when G = Sp(n + k, m).

1.5. Organization of the paper. The proof of theorem 1.4.2 essentially reduces to the

case G = Sp(n, 1), with an extra argument for SO(4n, 4) (c.f. section 2). In sections 3, 4

and 5, we give a first proof of the main theorem 1.4.2 using Goldman-Millson’s strategy : first,

using Matsushima and Murakami’s method [19], we show that harmonic 1-forms representing

nontrivial classes in H1(Γ, Ad ρSp(n,1)) are severely restricted : most of their components

vanish, and one can interpret them as (1, 0)-forms α with values in a certain complex vector

bundle. Then we show that the cup-square [α, α] ∈ H2(Γ, Ad ρSp(n,1)) paired with the

Kähler form of complex hyperbolic space is proportional to the squared L2-norm of α,

which implies the result.

In sections 6, we indicate a more geometric proof of the main theorem 1.4.2 based on

period domains and a result of Carlson-Toledo [4].

2. Infinitesimal deformations of lattices of SU(n, 1) in G

2.1. The groups.

Definition 2.1.1. Let n > 1 be an integer. We denote by VR the n+1-dimensional R-vector

space, VC = VR ⊗R C its complexification and VH = VR ⊗R H its quaternionification (thus VH

is a right quaternionic vector space). We define GL(n + 1, H) as the R-group of H-linear

automorphism of VH.

Definition 2.1.2. Let QR be a real quadratic form of signature (n, 1) on VR. We denote

by QC (respectively QH) its complexification (resp. its quaternionification) on VC (resp. on

VH).
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Definition 2.1.3. We denote by hC the complex Hermitianisation of QR on VC and by hH

the quaternionic Hermitianisation of QR on VH. Thus hC(z,w) = QC(z,wC) where wC

denotes the complex conjugate of w ∈ VC and hH(z,w) = QH(z,wH) where wH denotes the

quaternionic conjugate of w ∈ VH.

On the complex vector space VH = VC ⊕ jVC, the quaternionic Hermitian form hH(z,w) can

be written as

hH(z,w) = H(z,w) − jΩ(z,w) ,

where H is a complex Hermitian form on VC ⊕ jVC and Ω is the skew-symmetric complex

bilinear form on VC ⊕ jVC defined by Ω(z,w) = H(z · j, w̄).

Definition 2.1.4. We define the real algebraic groups :

• Sp(n, 1) = Sp(VH, hH) as the subgroup of GL(n + 1, H) preserving hH.

• U(2n, 2) the unitary group U(VC ⊕ jVC, H).

• SO(4n, 4) the special orthogonal group SO((VC ⊕ jVC)R, ReH).

Moreover we denote by Sp(2n + 2, C) the complex symplectic group Sp(VC ⊕ jVC, Ω).

The previous discussion implies immediately (where we consider Sp(2n + 2, C) as a real

algebraic group) :

Lemma 2.1.5. Sp(n, 1) = GL(n + 1, H) ∩ U(2n, 2) = Sp(2n + 2, C) ∩U(2n, 2).

Consider the sequence of natural embeddings :

(2.1) SU(n, 1)
jU(n,1)

→֒ U(n, 1)
jSp(n,1)

→֒ Sp(n, 1)
jU(2n,2)

→֒ U(2n, 2)
jSO(4n,4)

→֒ SO(4n, 4) .

Lemma 2.1.6. The sequence (2.1) induces an exact sequence of U(n, 1)-modules (under the

adjoint representation) :

0 −→ u(n, 1) −→sp(n, 1) = u(n, 1) ⊕ S2V ∗
C −→ u(2n, 2) = 2u(n, 1) ⊕ Λ2V ∗

C ⊕ S2V ∗
C −→

−→ so(4n, 4) = 2u(n, 1)⊕ 2Λ2V ∗
C ⊕ 2Λ2V̄ ∗

C ⊕ S2V ∗
C ⊕ S2V̄ ∗

C .

(2.2)

Proof. Case G = Sp(n, 1). Let M ∈ gl(n+1, H) and M = C+jD where C, D ∈ gl(n+1, C).

Then M ∈ sp(n, 1), if and only if C ∈ u(n, 1) and JD is symmetric where J is the diagonal

matrix with entries 1, · · · , 1,−1. Write E = JD. If A ∈ U(n, 1),

A−1MA = A−1(C + jJE)A = A−1CA + jJA⊥EA.

So, under U(n, 1), sp(n, 1) = u(n, 1) ⊕ S2V ∗
C

.

Case G = SU(2n, 2). Let q = a + jb be a quaternion, with a, b ∈ C. The matrix of left

multiplication by q is
(

a −b̄
b ā

)

. Therefore, if A ⊂ GL(n+1, C), its image under the embeddings

GL(n + 1, C) → GL(n + 1, H) → GL(2n + 2, C) is
(

A 0
0 Ā

)

. If u(n, 1) ⊂ gl(n + 1, C) is the

subspace of matrices A such that A∗Q + QA = 0 with Q =
(

In 0
0 −1

)

, then u(n, 1) is mapped
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to u(2n, 2) defined as the subspace of matrices M ∈ gl(2n + 2) such that M∗Q′ + Q′M = 0

with Q′ =
(

Q 0
0 Q

)

. Thus, under the adjoint action of U(n, 1),

u(2n, 2) = u(n, 1) ⊕ u(n, 1) ⊕ HomC(Cn+1, Cn+1),

where U(n, 1) acts on a square matrix N ∈ HomC(Cn+1, Cn+1) as follows,

(A, N) 7→ A−1NĀ.

Putting B = NQ conjugates this action to

(A, B) 7→ A−1B(A−1)⊤,

i.e. HomC(Cn+1, Cn+1) = V ∗
C
⊗C V ∗

C
. Then

u(2n, 2) = 2u(n, 1) ⊕ Λ2V ∗
C ⊕ S2V ∗

C ,

where S2V ∗
C

corresponds to matrices of the form
(

0 BQ
−B∗Q 0

)

in u(2n, 2) with B symmetric.

Case G = SO(4n, 4). We have seen that the embedding GL(n+1, C) → GL(n+1, H) →

GL(2n + 2, C) lands into the block diagonal subgroup GL(n + 1, C) × GL(n + 1, C) ⊂

GL(4n + 4, R). In particular, U(n, 1) lands into U(n, 1) × U(n, 1) ⊂ O(2n, 2) × O(2n, 2).

Under O(2n, 2) × O(2n, 2),

so(4n, 4) = so(2n, 2) ⊕ so(2n, 2) ⊕ EndR(R2n+2).

Since U(n, 1) preserves a complex structure, R2n+2 = Cn+1, every R-linear map L is the

sum of a C-linear and an anti-C-linear one, L = LC + LC̄, and the action of A ∈ U(n, 1) on

L is A−1LCĀ + Ā−1LC̄A. Thus EndR(Cn+1) equals the sum of EndC(Cn+1) = V ∗
C
⊗C V ∗

C

and its conjugate V̄ ∗
C
⊗C V̄ ∗

C
.

The map so(2n, 2) → Λ2(R2n+2)∗, C 7→ QC conjugates the adjoint SO(2n, 2) action with

its action on real alternating 2-forms. In presence of the U(n, 1)-invariant complex structure

J , alternating 2-forms split into two subspaces Λ+ and Λ−. Indeed, Λ2J is an involution.

The inverse map B 7→ QB maps Λ+ to u(n, 1) ⊂ so(2n, 2). J also acts as a derivation on

alternating 2-forms, yielding a complex structure on Λ−. Since

so(2n, 2) ⊗ C = Λ2,0(R2n+2)∗ ⊕ Λ1,1(R2n+2)∗ ⊕ Λ0,2(R2n+2)∗,

Λ1,1(R2n+2)∗ = Λ+ ⊗ C, Λ2,0(R2n+2)∗ ⊕ Λ0,2(R2n+2)∗ = Λ− ⊗ C, thus, as a complex rep-

resentation of U(n, 1), the Λ− factor in the first diagonal block is isomorphic to Λ2V ∗
C

, and

the Λ− factor in the second diagonal block is isomorphic to Λ2V̄ ∗
C

.

We conclude that

so(4n, 4) = z ⊕ 2su(n, 1) ⊕ 2Λ2V ∗
C ⊕ 2Λ2V̄ ∗

C ⊕ S2V ∗
C ⊕ S2V̄ ∗

C ,

where z = R2 is the sum of the centers of the 2 copies of u(n, 1), generated respectively by

( J 0
0 0 ) and ( 0 0

0 J ). �

Choose J =
(

0 −In+1

In+1 0

)

as a complex structure on R2n+2.
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Lemma 2.1.7. If M = A + iB is a complex matrix representing an anti-C-linear map, it

is mapped to
(

A B
B −A

)

in GL(2n + 2, R).

Then Z ∈ S2V ∗
C

, Z ′ ∈ S2V̄ ∗
C

can be written

Z =

(

0 BQ′

−B∗Q′ 0

)

, Z ′ =

(

0 B′Q′

−B′∗Q′ 0

)

respectively, where B =
(

C −D
D C

)

, B∗ =
(

C D
−D C

)

, B′ = B′∗ =
(

C′ D′

D′ −C′

)

and C, D, C′, D′

are symmetric real matrices.

Proof. The first statement comes directly from calculation. The second follows from the

first statement and the fact that the matrices are symmetric and the fact that they are in

so(4n, 4). �

2.2. Some reductions.

Lemma 2.2.1. The special case of the main theorem 1.4.2 for G = Sp(n, 1) implies the

main theorem for G = SU(2n, 2), but not quite for G = SO(4n, 4) .

Proof. One deduces from the sequence (2.1) the following commutative diagram :

H1(Γ, Ad ρSp(n,1))

q

��

�
�
jU(2n,2)

// H1(Γ, Ad ρU(2n,2))

q

��

�
�

jSO(4n,4)
// H1(Γ, Ad ρSO(4n,4))

q

��

H2(Γ, Ad ρSp(n,1))
�
�

jU(2n,2)

// H2(Γ, Ad ρU(2n,2))
�
�

jSO(4n,4)

// H2(Γ, Ad ρSO(4n,4))

,

where q : H1(Γ, Ad ρG) −→ H2(Γ, Ad ρG) denotes the quadratic map deduced from the

symmetric bilinear map

[·, ·] : H1(Γ, Ad ρG) × H1(Γ, Ad ρG) −→ H2(Γ, Ad ρG) .

As H1(Γ, Λ2V ∗
C

) = H1(Γ, su(n, 1)) = 0 and as the space H1(Γ, zg(su(n, 1)) belongs to the

null-space of the quadratic map q, the proof of the main theorem for G = Sp(n, 1) or

SU(2n, 2) reduces to showing that the quadratic map q : H1(Γ, S2V ∗
C

) −→ H2(Γ, sp(n, 1)) ⊂

H2(Γ, u(2n, 2)) is anisotropic. Thus solving the case G = Sp(n, 1) simultaneously solves the

case G = SU(2n, 2). However, the proof of the main theorem for G = SO(4n, 4), which

amounts to showing that the quadratic map

q : H1(Γ, S2V ∗
C ) ⊕ H1(Γ, S2V̄ ∗

C ) −→ H2(Γ, so(4n, 4))

is anisotropic, requires an extra computation. �
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3. A classical vanishing theorem

3.1. Matsushima and Murakami’s vanishing theorem. Let L be a simple real alge-

braic group of non-compact type, L = L(R) its Lie group of real points, K a maximal

compact subgroup of L, θ : l −→ l the Cartan involution associated to K of the Lie algebra

l of L, l = k ⊕ p the Cartan decomposition associated to θ, X = L/K the symmetric space

of L.

Let i : Γ →֒ L be a (torsion free) cocompact lattice and p : Γ\L −→ M = Γ\L/K the

natural principal K-bundle on the locally symmetric manifold M . Let ρ : L −→ GL(F ) be a

finite dimensional representation of L. For p a positive integer, the cohomology Hp(Γ, F ) is

canonically isomorphic to the cohomology Hp(M, Fρ) of the local system Fρ on M associated

to ρ, which can be computed using the usual de Rham complex (C•(M, Fρ), d).

Fix an admissible inner product (, )F on F , i.e. one which is ρ(K)-invariant and for

which elements of ρ(p) are symmetric. This is enough to define a natural Laplacian ∆ :

C•(M, Fρ) −→ C•(M, Fρ) and prove that Hp(M, Fρ) is isomorphic to the space

Hp(M, Fρ) = {η ∈ CP (M, Fρ) / ∆η = 0}

of harmonic forms [19, section 6].

Following p. 376 of [19], define an F -valued differential form η0 on G as follows.

η0
s = ρ(s−1)π∗ηs, s ∈ G.(3.1)

Fix a Killing-orthonormal basis X1, . . . , XN of p. The induced inner product on Hom(p, F )

is given by

(η, ζ) =

N
∑

h=1

(η(Xh), ζ(Xh))F .

Definition 3.1.1. Let p be a positive integer. One defines a symmetric operator Tp on

Hom(p, F ) as follows.

∀ η ∈ Hom(p, F ), ∀Y ∈ p, Tpη(Y ) =
1

p

N
∑

k=1

ρ(Xk)2η(Y ) + ρ([Y, Xk])η(Xk) .

Theorem 3.1.2 (Matsushima-Murakami). [19, theor.7.1] If η is a harmonic p-form on

M = Γ \ G/K, then
∫

Γ\G

(Tη0, η0) ≤ 0.

As a consequence, if the symmetric operator Tp on Hom(p, F ) is positive definite, then the

cohomology group Hp(Γ, Fρ) vanishes.
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3.2. Case of 1-forms.

Proposition 3.2.1. Let η ∈ Hom(p, F ). Let β : p ⊗ p −→ F denote the F -valued bilinear

form on p defined by β(X, Y ) = ρ(X)(η(Y )). Split β = σ + α into its symmetric and skew-

symmetric parts. Then (Tη, η) = 2|α|2 + |Trace(β)|2. So α = Trace(β) = 0.

Proof. The first term in (Tη, η) is

(T1η, η) :=
N
∑

k, ℓ=1

(ρ(Xk)2η(Xℓ), η(Xℓ))F =
N
∑

k, ℓ=1

(ρ(Xk)η(Xℓ), ρ(Xk)η(Xℓ))F

=

N
∑

k, ℓ=1

|β(Xk, Xℓ)|
2
F = |β|2 .

The second term in (Tη, η) is

(T2η, η) :=

N
∑

k, ℓ=1

(ρ([Xℓ, Xk])η(Xk), η(Xℓ))F = (T3η, η) − (T4η, η) ,

where

(T3η, η) :=

N
∑

k, ℓ=1

(ρ(Xℓ) ◦ ρ(Xk)η(Xk), η(Xℓ))F =

N
∑

k, ℓ=1

(ρ(Xk)η(Xk), ρ(Xℓ)η(Xℓ))F

=
N
∑

k, ℓ=1

(β(Xk, Xk), β(Xℓ, Xℓ))F = |
N
∑

k=1

β(Xk, Xk)|2F

= |Trace(β)|2 ,

and

(T4η, η) :=

N
∑

k, ℓ=1

(ρ(Xk) ◦ ρ(Xℓ)η(Xk), η(Xℓ))F =

N
∑

k, ℓ=1

(ρ(Xℓ)η(Xk), ρ(Xk)η(Xℓ))F

= (β, β ◦ φ) .

Here, φ ∈ End(p ⊗ p) is defined by φ(X, Y ) = (Y, X). Note that φ merely permutes vectors

in the basis of p ⊗ p. Therefore

(σ, α) = (σ ◦ φ, α ◦ φ) = (σ,−α) = −(σ, α),

thus (σ, α) = 0. Hence |β|2 = |σ|2 + |α|2 and

(β, β ◦ φ) = (σ + α, σ − α) = |σ|2 − |α|2 = |β|2 − 2|α|2 .

Summing up,

(Tη, η) = |β|2 + |Trace(β)|2 − (|β|2 − 2|α|2) = 2|α|2 + |Trace(β)|2.

The last assertion follows from Theorem 3.1.2. �
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4. Consequences of Matsushima-Murakami’s method

4.1. Restriction on S2V ∗
C
-harmonic one-forms. From now on, L = SU(n, 1), K = U(n)

and F = S2V ∗
C

is the space of complex quadratic forms on Cn+1, with the usual action of

GL(n + 1, C), (X, Q) 7→ X⊤QX , restricted to SU(n, 1). The admissible inner product on

F is the usual U(n + 1)-invariant Hermitian form.

Let su(n, 1) = u(n) ⊕ p be the Cartan decomposition of su(n, 1). Here, u(n) = s(u(1) ⊕

u(n)) consists of traceless block-diagonal skew-Hermitian complex (n+1)× (n+1) matrices,

and p consists of complex matrices of the form
(

0 x
x∗ 0

)

, x ∈ Cn.

Definition 4.1.1. We denote by χ : U(n) −→ C∗ the standard character det.

The SU(n, 1)-module VC decomposes as a U(n)-module :

VC = p ⊗ χ−1 ⊕ χ−1 ,

(notice that p ⊗ χ−1 is nothing else than the standard U(n)-module Cn). Thus S2V ∗
C

decomposes as U(n)-modules as

S2V ∗
C = (S2p∗ ⊕ p∗ ⊕ C) ⊗ χ2

(notice that the U(n)-module S2p∗ is nothing else than S2V ∗
C
∩ sp(n)) and Hom(p, S2V ∗

C
)

as :

Hom(p, S2V ∗
C ) = (Hom(p, S2p∗) ⊕ End p∗ ⊕ p) ⊗ χ2 .

As U(n)-modules, p and S2p∗ are C-linear. Thus the U(n)-module Hom(p, S2p∗) contains

as a direct factor HomC(p, S2p∗), which contains itself as a direct factor S3p∗.

Proposition 4.1.2. Let Γ be a cocompact lattice in G = SU(n, 1). Let α be a Γ-equivariant

harmonic S2V ∗
C
-valued 1-form on Hn

C
. Then, for all Y ∈ Tx0H

n
C

= p, αx0(Y ) ∈ S2p∗ ⊗ χ2.

Furthermore, αx0 ∈ HomR(p, S2p∗)⊗ χ2 is C-linear and belongs to the summand S3p∗ ⊗ χ2

of HomC(p, S2p∗) ⊗ χ2.

Remark 4.1.3. Since S2V̄ ∗
C

is the conjugate vector space of S2V ∗
C

, Proposition 4.1.2 implies

that Γ-equivariant harmonic S2V̄ ∗
C

-valued 1-forms on Hn
C

are in fact S2p̄∗⊗χ2-valued (0, 1)-

forms.

4.2. Proof of Proposition 4.1.2. A straightforward calculation yields

Lemma 4.2.1. Let X =
(

0 x
x∗ 0

)

, x ∈ C
n, be a vector of p. Let Q =

(

A B
B⊥ d

)

∈ S2V ∗
C
. Then

ρ(X)(Q) = X⊤Q + QX =
(

(Bx∗)⊤+Bx∗ Ax+dx̄

(Ax+dx̄)⊤ 2x⊤B

)

.

Let η ∈ Hom(p, S2V ∗
C

) be represented by a matrix Q = Y 7→
(

A(Y ) B(Y )

B(Y )⊥ d(Y )

)

of R-linear

forms on p. Then the bilinear form β =
(

β1 β2

β⊤

2 β3

)

becomes a triple of matrix valued bilinear
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forms on Cn,

β1(x, y) = (B(y)x∗)⊤ + B(y)x∗,

β2(x, y) = A(y)x + d(y)x̄,

β3(x, y) = 2x⊤B(y).

According to Proposition 3.2.1, (Tη, η) = 0 if and only if the following 6 equations hold.

β1, β2 and β3 are symmetric, Trace(β1) = 0, Trace(β2) = 0, Trace(β3) = 0.

Lemma 4.2.2. If β3 and β1 are symmetric, then B = 0.

Proof. Let BC and BC̄ denote the C-linear (resp. anti C-linear) components of the R-linear

map B. Matrixwise, each of BC and BC̄ is given by a n × n complex matrix BC (resp. BC̄),

and B(y) = BCy + BC̄ȳ. Thus

β3(x, y) = x⊤BCy + x⊤BC̄ȳ

is the sum of a C-bilinear and a sesquilinear form. If β3 is symmetric, the sesquilinear part

vanishes (i.e. BC̄ = 0), and BC is symmetric.

Next,

β1(x, y) = (BCyx∗)⊤ + BCyx∗

is sesquilinear. If β1 is symmetric, it is identically zero. Since rank one matrices of the form

yx∗ span all n × n complex matrices, (BCM)⊤ + BCM = 0 for all n × n complex matrices

M . Take M = B∗
C

and take the trace to conclude that BC = 0. �

Lemma 4.2.3. If β2 is symmetric and Trace(β2) = 0, then d = 0 and A(y) depends

C-linearly on y. Furthermore, identifying Cn-valued bilinear maps with trilinear forms,

(x, y) 7→ A(y)x is fully symmetric.

Proof. Let AC and AC̄ denote the C-linear (resp. anti C-linear) components of the R-linear

map A : Cn → S2(Cn). Similarly, let dC and dC̄ denote the C-linear (resp. anti C-linear)

components of the R-linear form d. If β2 : (x, y) 7→ A(y)x + d(y)x̄ is symmetric, then














∀x, y ∈ Cn, AC̄(y)x = dC(x)ȳ,

(x, y) 7→ dC̄(y)x̄ is symmetric,

(x, y) 7→ AC(y)x is symmetric.

The trace of the restriction of β to a complex line Ce, |e| = 1, depends only on its

sesquilinear part

βsq
2 (x, y) = AC̄(y)x + dC(y)x̄ = dC(x)ȳ + dC(y)x̄.

and is equal to 2βsq
2 (e, e) = 4dC(e)ē. Let e1, . . . , en be a Hermitian basis of Cn. Then

Trace(β2) = Trace(βsq
2 ) = 4

n
∑

k=1

dC(ek)ēk.
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Since Trace(β2) = 0, we get dC = 0. This implies that AC̄(y)x = 0 for all x and y, i.e.

AC̄ = 0.

Next, pick a nonzero vector y ∈ ker(dC̄). Since (x, y) 7→ dC̄(y)x̄ is symmetric, for all

x ∈ Cn, dC̄(x)ȳ = 0, thus dC̄ = 0.

Finally, view the components of AC(y)x in some Hermitian basis e1, · · · , en of Cn as

bilinear forms on Cn, with respective matrices A1 = AC(e1), . . . ,A
n = AC(en). Since the

values AC(y) are symmetric matrices, these matrices are symmetric, Aℓ
jk = Aℓ

kj . But for

every y = (y1, . . . , yn) ∈ C
n,

(AC(y)x)j = yℓA
ℓ
jkxk = (AC(x)y)j = xkA

k
jℓyℓ.

This implies that Aℓ
jk = Ak

jℓ. Hence Aℓ
jk is fully symmetric. �

5. Second order obstruction

5.1. Cup-product, case G = Sp(n, 1).

Definition 5.1.1. Let λ : sp(n, 1) −→ R be the SU(n, 1)-invariant linear form defined

by the Killing inner product with the SU(n, 1)-invariant vector iIn+1, which generates the

centralizer of SU(n, 1) in Sp(n, 1).

The restriction of the Killing form of Sp(n, 1) to Sp(n) is proportional to the Killing form

of Sp(n), which is proportional to ℜe(TraceH(A∗A)). Therefore, for A ∈ sp(n) ⊂ sp(n, 1),

λ(A) = A · iIn+1 = −ℜe(i TraceH(A)),

Lemma 5.1.2. Let α be an sp(n)-valued (1, 0)-form on Tx0H
n
C

= p. Assume that α belongs

to HomC(p, S2p∗). Thanks to the Lie bracket of sp(n), [α, α] becomes an sp(n)-valued 2-form

on p. Let ω denote the Kähler form on p. There is a nonzero constant c such that

λ ◦ [α, α] ∧ ωn−1 = c|α|2ωn.

Proof. Recall that the embedding of S2p∗ to sp(n) is defined by A 7→ jQA where Q =

(In,−1) a diagonal matrix. Write α = jQδ where δ is a symmetric complex matrix of

(1, 0)-forms. Then, for all Y , Y ′ ∈ p,

α ∧ α(Y, Y ′) = α(Y ) ⊗ α(Y ′) − α(Y ′) ⊗ α(Y ) ∈ sp(n) ⊗ sp(n) ,

[α, α](Y, Y ′) = [α(Y ), α(Y ′)] − [α(Y ′), α(Y )] = 2[α(Y ), α(Y ′)] ∈ sp(n).

Let A, B be two symmetric complex matrices. The Lie bracket of their images in sp(n) is

[jQA, jQB] = jQAjQB − jQBjQA = −ĀB + B̄A,

(note it belongs to u(n)), thus

[α, α](Y, Y ′) = −2(δ(Y )δ(Y ′) − δ(Y ′)δ(Y )),
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showing that [α, α] is a matrix of (1, 1)-forms. Up to a nonzero constant,

λ ◦ [α, α](Y, Y ′) = ℑm(TraceC(δ(Y )∗δ(Y ′))).

Note that λ ◦ [α, α](Y, iY ) = Trace(δ(Y )∗δ(Y )) = |δ(Y )|2 > 0.

If φ is a (1, 1)-form on Cn, then

φ ∧ ωn−1

ωn
=

2

n

n
∑

k=1

φ(Ek, iEk),

where E1, . . . , En is a unitary basis of Cn (i.e. (E1, iE1, . . . , En, iEn) is an orthonormal basis

of the underlying real Euclidean vectorspace). Therefore

λ ◦ [α, α] ∧ ωn−1

ωn
=

2

n

n
∑

k=1

|δ(Ek)|2

is a nonzero multiple of |α|2. �

The following proposition finishes the proof of theorem 1.4.2, in case G = Sp(n, 1):

Proposition 5.1.3. Let α be a nonzero harmonic sp(n, 1)-valued 1-form on Γ\Hn
C
. Assume

that the component of α on the centralizer of su(n, 1) in sp(n, 1) vanishes. Then [α, α] 6= 0

in H2(Γ, sp(n, 1)). In particular, α does not integrate into a nontrivial deformation of the

conjugacy class of the embedding Γ →֒ Sp(n, 1).

Proof. By contradiction. According to Weil’s vanishing theorem, the su(n, 1)-component

of α vanishes, thus α is S2V ∗
C

-valued. According to Proposition 4.1.2, α can be viewed as

a smooth section of the homogeneous bundle over Γ\Hn
C

whose fiber is the subspace S3p∗

of HomC̄(p, S2p∗). In particular, α can be viewed pointwise as a sp(n)-valued (1, 0)-form.

Assume that [α, α] = 0, i.e., that there exists a sp(n, 1)-valued 1-form η on M such that

dη = [α, α]. Then, with Lemma 5.1.2,

2c ‖ α ‖2
L2(M) =

∫

M

c|α|2ωn =

∫

M

λ ◦ [α, α] ∧ ωn−1

=

∫

M

λ ◦ (dη) ∧ ωn−1 =

∫

M

d(λ ◦ η ∧ ωn−1) = 0 ,

thus α = 0, contradiction. �

5.2. Cup-product, case G = SO(4n, 4). Choose J =
(

0 −In+1

In+1 0

)

as a complex structure

on R
2n+2.

Definition 5.2.1. On so(4n, 4), there is a SU(n, 1)-invariant linear forms λ′ and λ′′, given

by Killing inner product with the SU(n, 1)-invariant vectors J ′ =
(

J 0
0 −J

)

and J ′′ = ( J 0
0 J ).

Proposition 5.2.2. λ′ vanishes on [S2V̄ ∗
C

, S2V̄ ∗
C

], λ′′ vanishes on [S2V ∗
C

, S2V ∗
C

], and they

both vanish on [S2V ∗
C

, S2V̄ ∗
C

].
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Proof. Let Z =
(

0 BQ′

−B∗Q′ 0

)

, Z ′ =
(

0 B′Q′

−B′∗Q′ 0

)

∈ S2V ∗
C
⊕ S2V̄ ∗

C
. View Z and Z ′ as

vectors in so(4n, 4). Then using the fact that Q′ commutes with B, B′, B∗, B′∗,

λ′([Z, Z ′]) = Trace(J [−BB′∗ + B′B∗ + B∗B′ − B′∗B])

λ′′([Z, Z ′]) = Trace(J [−BB′∗ + B′B∗ − B∗B′ + B′∗B]).

If both Z and Z ′ are in S2V ∗
C

,

λ′([Z, Z ′]) = 2Trace(J [B′B∗ − BB′∗])

and vanishes if both are in S2V̄ ∗
C

, using the fact that J anti-commutes with B′ and B′∗.

If both Z and Z ′ are in S2V̄ ∗
C

,

λ′′([Z, Z ′]) = 2Trace([B′B∗ − BB′∗]J)

and vanishes if both are in S2V ∗
C

.

If Z ∈ S2V ∗
C

and Z ′ ∈ S2V̄ ∗
C

, both λ′, λ′′ vanish. Indeed, since BJ = JB and B′J =

−JB′, for example, Trace(JB′B∗) = Trace(B′B∗J) = Trace(−B′JB∗) = Trace(−B′B∗J) =

0. �

If Z and Z ′ ∈ S2p∗ ⊂ S2V ∗
C

, write B =
(

C −D
D C

)

and B′ =
(

C′ −D′

D′ C′

)

where C, C′, D, D′

are symmetric.

λ′([Z, Z ′]) = 8Trace(DC′ − CD′).

The complex structure on S2V ∗
C

is B 7→ J (B) = JB, i.e. (C, D) 7→ (−D, C). Thus

λ′([Z,J (Z)]) = 8Trace(−D2 − C2)

= −8Trace(D⊤D + C⊤C) = −4|B|2 = −2|Z|2.

If Z and Z ′ ∈ S2p̄∗ ⊂ S2V̄ ∗
C

, write B = B∗ =
(

C D
D −C

)

and B′ = B′∗ =
(

C′ D′

D′ −C′

)

where

C, C′, D and D′ are symmetric. Then

λ′([Z, Z ′]) = 8Trace(DC′ − CD′).

The complex structure on S2V̄ ∗
C

is B 7→ J (B) = −JB, i.e. (C, D) 7→ (D,−C). Thus

λ′([Z,J (Z)]) = 8Trace(D2 + C2)

= 8Trace(D⊤D + C⊤C) = 4|B|2 = 2|Z|2.

Let η be an equivariant harmonic so(4n, 4)-valued 1-form. According to [21] and Propo-

sition 4.1.2, η = τ + α + α′ where τ is z-valued, α is a S2p∗-valued (1, 0)-form and α′ a

S2p̄∗-valued (0, 1)-form.

We have seen that

λ′ ◦ ([α ∧ α′]) = 0,

λ′′ ◦ ([α ∧ α′]) = 0.
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Therefore

(λ′ + λ′′) ◦ ([(α + α′) ∧ (α + α′)]) = λ′ ◦ ([α ∧ α]) + λ′′ ◦ ([α′ ∧ α′]).

If Y ∈ p, since α has type (1, 0), α(iY ) = J (α(Y )),

λ′ ◦ ([α ∧ α])(Y, iY ) = 2|α(Y )|2.

Since α′ has type (0, 1), α′(iY ) = −J (α′(Y )),

λ′′ ◦ ([α′ ∧ α′])(Y, iY ) = 2|α′(Y )|2.

It follows that

(λ′ + λ′′) ◦ [(α + α′) ∧ (α + α′)] ∧ ωn−1

ωn
=

2

n
(|α|2 + |α′|2).

Again, if the cohomology class of [(α + α′) ∧ (α + α′)] vanishes, then the L2 norm of α

and α′ vanishes. This shows that the quadratic map induced by bracket-cup product on

H1(Γ, so(4n, 4))/H1(Γ, z) is anisotropic.

6. A more geometric proof

In this section, we sketch a second proof of the proposition 4.1.2 for G = Sp(n, 1), using

a theorem of Carlson-Toledo [4] and some non-Abelian Hodge theory.

6.1. Reminder on quaternionic Kähler manifolds. For the convenience of the reader

we recall some general facts on quaternionic Kähler manifolds. We refer to [23] for a

panorama.

Definition 6.1.1. A Riemannian manifold M of dimension 4n is quaternionic Kähler if its

holonomy group is contained in the subgroup Sp(n)Sp(1) := Sp(n) ×Z/2Z Sp(1) of SO(4n),

where Z/2Z is generated by (−I,−1).

It is well known that such a Riemannian manifold M is always Einstein. Even if M is

not necessarily Kähler, its geometry can be essentially understood from the point of view of

complex geometry.

Definition 6.1.2. We denote by PM the canonical Sp(n, 1)Sp(1)-reduction of the principal

bundle of orthogonal frames of M , and by EM the canonical 3-dimensional parallel sub-bundle

PM ×Sp(n)Sp(1) R3 of End(TM).

Definition 6.1.3. Let p : Z −→ M be the S2-fiber bundle on M associated to the action of

Sp(1)/Z2 ≃ SO(3) on S2 : Z = PM ×Sp(n)Sp(1) S2. The space Z is called the twistor space

of M .

In other words, Z is the unit sphere of EM .

Theorem 6.1.4. [22, theor. 4.1] Let M be a quaternionic Kähler manifold. Then its

twistor space Z admits a canonical complex structure, for which the fibers of p : Z −→ M

are complex rational curves.
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As EM is parallel, it inherits from the Levi-Civita connection on TM a linear connection

compatible with the metric. It follows that the corresponding horizontal distribution induces

a horizontal distribution T R

h (Z) ⊂ T R(Z). In the case where the scalar curvature of M is

non-zero, one can show that T R

h (Z) naturally defines an horizontal holomorphic distribution

ThZ ⊂ TZ making Z a holomorphic contact manifold [23, prop. 5.2].

An other ingredient of some importance for us is the following :

Lemma 6.1.5. Any quaternionic Kähler manifold M admits a non-zero closed 4-form ΩM ,

canonical up to homothety.

Proof. Just notice that the Sp(n)Sp(1)-module
∧4

(R4n)∗ admits a unique trivial submodule

of rank 1. �

Lemma 6.1.6. The form ΩM (conveniently normalized) is the Chern-Weil form of the first

Pontryagin class p1(EM ) ∈ H4(M, Z).

Proof. This is proved in [22, p.148-151]. �

6.2. Quaternionic Kähler symmetric spaces. The description of quaternionic Kähler

symmetric spaces and their twistor spaces is due to Wolf [27], following Boothby [1]. There

exists 3 families of quaternionic Kähler non-compact irreducible symmetric spaces of di-

mension 4n, n ≥ 2 : Hn
H

= Sp(n, 1)/Sp(n) · Sp(1), Xn = SU(n, 2)/S(U(n) × U(2)) and

Y n = SO(n, 4)/S(O(n)×O(4)). The only Kähler one is Xn. In each case the isotropy group

is of the form K · Sp(1) and the twistor space is obtained by replacing the Sp(1)-factor by

U(1). Notice that the twistor map for Xn is not holomorphic.

By functoriality of the twistor construction, we associate to the sequence of totally geo-

desic quaternionic Kähler embeddings Hn
H
→֒ X2n −→ Y 4n the commutative diagram :

(6.1)

DH
2n+1 = Sp(n,1)

Sp(n)×U(1)

p

��

�
�

// DC
4n+1 = SU(2n,2)

S(U(1)×U(2n)×U(1))

p

��

�
�

// DR
8n+1 = SO(4n,4)

S(O(4n)×U(2))

p

��

Hn
H

�
�

// X2n �
�

// Y 4n

,

where the vertical maps are twistor fibrations and the horizontal maps on the top line are

holomorphic closed horizontal (i.e. preserving the contact structure) immersions.

6.3. An invariant for quaternionic representations. Let X a smooth manifold and ρ :

Γ = π1(X) −→ Sp(n, 1) a representation. Choose any ρ-equivariant smooth map φ : X̃ −→

Hn
H
. The pull-back φ∗EHn

H
is a Γ-equivariant rank 3 real bundle on X̃. Thus it descends to

a bundle on X , still denoted φ∗EHn
H
. By lemma 6.1.6 and the functoriality of characteristic

classes, the 4-form φ∗ΩHn
H

represents the Pontryagin class p1(φ
∗EHn

H
) ∈ H4(X, Z). As Hn

H

is a contractible space, any two ρ-equivariant maps φ, φ′ : X̃ −→ Hn
H

are ρ-equivariantly

homotopic. Finally the class [φ∗ΩHn
H
] ∈ H4(X, Z) depends only on ρ.
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Definition 6.3.1. Let X a smooth manifold and ρ : Γ = π1(X) −→ Sp(n, 1) a representa-

tion. We denote by cρ ∈ H4(X, Z) the class [φ∗ΩHn
H
] ∈ H4(X, Z).

Remark 6.3.2. The invariant cρ is a quaternionic version of the (Hermitian) Toledo invariant.

Lemma 6.3.3. Let M be a smooth manifold and Γ = π1(M). The function

c : M(Γ,Sp(n, 1))(R) −→ H4(X, Z)

which to [ρ] associates cρ is constant on connected components of M(Γ,Sp(n, 1))(R).

Proof. This follows immediately from the integrality of cρ. �

6.4. Link with Hodge theory. Twistor spaces of quaternionic Kähler symmetric spaces

are the simplest examples of Griffiths’s period domains for variations of Hodge structures.

One easily proves the following lemma (a proof for the global embedding Hn
H

→֒ Y 4n is

provided in [4, p.192-193], the proof for the other maps is similar) :

Lemma 6.4.1. Let K be R, C or H. Let rK be 4, 2 or 1 respectively.

• Each twistor space DK
2rK ·(n+1) is the Griffiths’s period domain for polarized weight

2 pure Hodge structures with Hodge numbers (2, 4n, 2) on R4n+4, stable under K-

multiplication (when we identify R4n+4 with KrK ·(n+1)).

• The inclusions in the sequence DH
2n+1 →֒ DC

4n+1 →֒ DR
8n+1 correspond to the functors

partially forgetting the K-stability condition, for the inclusions R ⊂ C ⊂ H.

6.5. Any deformation is a complex variation of Hodge structures. Let n > 1,

SU(n, 1) = SU(VC, hC) and let j : SU(n, 1) →֒ U(n, 1) →֒ Sp(n, 1) = SU(VH, hH) be

the natural embedding. Let f : Hn
C

→֒ Hn
H

be the corresponding totally geodesic U(n, 1)-

equivariant embedding. Notice that it canonically lifts to a holomorphic U(n, 1)-equivariant

embedding f̃ : Hn
C
→֒ DH

2n+1 making the U(n, 1)-equivariant diagram

Hn
C

�
� f̃

//
� q

f
""E

E

E

E

E

E

E

E

E

DH
2n+1

p

��

Hn
H

,

commutative.

Let i : Γ →֒ SU(n, 1) = SU(n, 1)(R) be a cocompact torsion-free lattice and ρ = j ◦ i :

Γ −→ Sp(n, 1) the corresponding representation. Let M be the compact Kähler manifold

Γ\Hn
C
.

Lemma 6.5.1. cρ 6= 0 ∈ H4(M, Z)/torsion.

Proof. By lemma 6.1.6 the (descent to M of the) curvature form f∗ΩHn
H

is nothing else

than the Chern-Weil form of (the descent to M of) the bundle p1(f
∗EHn

H
). As the standard

representation R3 of SO(3) decomposes as R ⊕ C as an U(1) ⊂ SO(3)-module, where R
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is the trivial representation and C is the standard U(1)-module, we obtain that f∗EHn
H

is

the direct sum of the trivial bundle and (the descent to M of) the holomorphic line bundle

L = U(n, 1) ×U(n)×U(1) C −→ Hn
C
. Thus

p1(f
∗EHn

H
) = −c2(L ⊗R C) = −c2(L ⊕ L) = c2

1(L) .

Finally f∗ΩHn
H

= ω2
M , where ωM is the standard Kähler form on the quotient M of Hn

C
.

Thus cρ = [ωM ]2 6= 0 ∈ H4(M, Z)/torsion (as n > 1). �

Let λ : Γ −→ Sp(n, 1) be a reductive representation in the same connected component of

M(Γ,Sp(n, 1))(R) as ρ. By lemma 6.3.3 and 6.5.1, cλ = cρ 6= 0 ∈ H4(M, Z)/torsion. Let

fλ : M̃ −→ Hn
H

be the λ-equivariant harmonic map. As cλ = [f∗
λΩHn

H
] ∈ H4(M, R), the

harmonic map fλ is of rank at least 4 on some open subset of M̃ . Thus we can apply the

following result of Carlson-Toledo :

Theorem 6.5.2. [4, theor. 6.1.] Let X be a compact Kähler manifold, λ : Γ = π1(X) −→

Sp(n, 1)(R) a reductive representation and fλ : X̃ −→ Hn
H

the ρ-equivariant harmonic map,

where X̃ denotes the universal covering of X. Assume that the rank of the differential

df : T X̃ −→ THn
H

is larger than 2 at some point x of X. Then there exists a horizontal

holomorphic λ-equivariant period map f̃λ : X̃ −→ DH
2n+1 making the following diagram

commute :

X̃
�
� f̃λ

//
� p

fλ
""D

D

D

D

D

D

D

D

D

DH
2n+1

p

��

Hn
H

.

Thus we obtain that any deformation λ of ρ is still the monodromy of a variation of Hodge

structure f̃λ : M̃ −→ DH
2n+1. To prove proposition 4.1.2 is thus equivalent to the following :

Proposition 6.5.3. The tangent space at (f, ρ) to the space of Sp(n, 1)-variations of Hodge

structures identifies (as a real vector space) with :

H1(M, zu(n,1)su(n, 1)) ⊕ H0(M, S3T ∗M ⊗ Lχ2) ,

where zu(n,1)su(n, 1) ≃ R denotes the Lie algebra of the centralizer S1 of SU(n, 1) in U(n, 1)

and Lχ2 = Γ\SU(n, 1) ×U(n),χ2 C denotes the automorphic line bundle on M associated to

the character χ2 : U(n) −→ S1.

6.6. Proof of proposition 6.5.3.

6.6.1. Explicit notations. We fix a basis (e0, · · · , en) of VR over R. This is also a basis of VC

over C. As a (2n + 2)-C-vector space, VH is isomorphic to VC ⊕ jVC and we choose (f0 =

eo, · · · , fn = en, fn+1 = −en · j, · · · , f2n = −e1 · j, f2n+1 = e0 · j). The right multiplication
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by j ∈ H on a column vector v = (v0, · · · , v2n)t in the basis (fi)0≤i≤2n+1 is given by

v · j =
(

−J1

Jt
1

)

· v, where J1 denotes the (n + 1) × (n + 1)-matrix

J1 =

(

−1
1

. .
.

1

)

.

This realizes the group GL(n + 1, H) of H-linear automorphism of VH as the matrix group

GL(n + 1, H) = {X ∈ GL(2n + 2, C) / X ·
(

J1

−Jt
1

)

=
(

J1

−Jt
1

)

· X} .

The real orthogonal form QR of signature (n, 1) on VR is defined by : QR(x0 · e0 +

· · ·xnen) = −x2
0 + x2

1 + · · ·x2
n. We define the matrix

J0 =

(

1
. .

.

1

)

.

Let Λ0 be the (n + 1) × (n + 1) matrix diag(−1, 1, · · · , 1) in the basis (ei)0≤i≤n. Let

Λ′
0 = J0 · Λ0 · J0 = diag(1, · · · 1,−1). As a complex Hermitian form, H is of signature

(2, 2n) with matrix Λ = diag(−1, 1, · · · , 1,−1) = diag(Λ0, Λ
′
0) in the basis (fi)0≤i≤2n+1.

Thus

Sp(n, 1) = {X ∈ GL(2n + 2, C) / X ·
(

J1

−Jt
1

)

=
(

J1

−Jt
1

)

· X and X∗ · Λ · X = Λ } ,

where X∗ denotes the complex trans-conjugate of X .

Definition 6.6.1. We denote by J =
(

J0

−J0

)

the product Λ ·
(

−J1

J1

)

.

The complex symplectic form Ω on VC ⊕ jVC has matrix J in the basis (fi)0≤i≤2n+1. One

can rewrite

Sp(n, 1) = {X ∈ GL(2n + 2, C) / X∗ · Λ · X = Λ and Xt · J · X = J } .

We thus recover the isomorphism Sp(n, 1) = U(2n, 2)∩Sp(2n+2, C), where Sp(2n+2, C) =

Sp(VC ⊕ jVC, Ω).

¿From the previous descriptions we obtain :

sp(2n + 2, C) = {
(

A B
C −J0·A

t·J0

)

/ J0 · C = Ct · J0 and J0 · B = Bt · J0} .

u(2n, 2) = {
(

A B
−Λ0·B

∗·Λ′

0 D

)

/ A∗ · Λ0 + Λ0 · A = D∗ · Λ′
0 + Λ′

0 · D = 0} .

sp(n, 1) = {
(

A B
−Λ0·B

∗·Λ′

0 −J0·A
t·J0

)

/ A∗ · Λ0 + Λ0 · A = 0 = J0 · B − Bt · J0} .

Notice that the canonical embedding j∗ : su(n, 1) →֒ sp(n, 1) factorizes through u(n, 1).

The embedding u(n, 1) = {A / A∗ ·Λ0 +Λ0 ·A = 0} −→ sp(n, 1) is the morphism associating

to A ∈ u(n, 1) the element
(

A 0
0 −J0·A

t·J0

)

∈ sp(n, 1).
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6.6.2. Hodge filtration. The action of the subgroup S1 of Sp(n, 1) with complexified Lie

algebra C · v (where v =

(

−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

)

∈ sp(2n + 2, C)) on the Lie algebra sp(2n + 2, C)

defines a filtration F •sp(2n+2, C) on sp(2n+2, C) with graded pieces (we only indicate the

non-positive ones) :

Gr0sp(2n + 2, C) = {

( a 0 0 0
0 X R 0
0 S −J0·X

t·J0 0
0 0 0 −a

)

/J0 · R = Rt · J0 and J0 · S = St · J0} .

Gr−1sp(2n + 2, C) = {

(

0 u v 0
0 0 0 v·J0

0 0 0 u·J0
0 0 0 0

)

u, v ∈ C
n} .

Gr−2sp(2n + 2, C) = {

(

0 0 0 z
0 0 0 0
0 0 0 0
0 0 0 0

)

/z ∈ C} .

This Hodge decomposition restricts to a Hodge decomposition of the complexified Lie

algebra gl(n + 1, C) = su(n, 1) ⊗R C.

6.6.3. Automorphic bundles. Let K denote the maximal compact subgroup S(U(n)×U(1))

of SU(n, 1) and KC ≃ GL(n, C) its complexification. This is a Levi subgroup of the parabolic

subgroup Q ∩ SU(n, 1)(C), where Q denotes the parabolic subgroup of Sp(2n + 2, C) with

Lie algebra F 0sp(2n + 2, C). The natural inclusion

Hn
C = SU(n, 1)/K →֒ SU(n, 1)(C)/(Q ∩ SU(n, 1)(C)) ≃ Pn

C

is the natural open embedding of the period domain Hn
C

into its dual.

Definition 6.6.2. Given a KC-module m, we denote by F(m) the holomorphic automorphic

vector bundle Γ\(SU(n, 1)(C) ×Q∩SU(n,1)(C) m)|Hn
C

with fiber m on M .

Definition 6.6.3. We denote by LM the automorphic line bundle n + 1-th root of K−1
M ,

where KM denotes the canonical line bundle on M .

6.6.4. Non-Abelian Hodge theory. Let (GrPf , θf ) be the system of Hodge bundles associated

to the variation of Hodge structures (ρ, f). Thus

GrPf = F(Gr•sp(2n + 2, C)) .

As proven in [14] the tangent space T to the space of Sp(n, 1)-variations of Hodge structures

(equivalently : to the subspace of systems of Hodge bundles in the space of semistable

Sp(2n+2, C)-Higgs bundles) on M , modulo the trivial deformations in the centralizer U(n, 1)

of SU(n, 1), identifies with the hypercohomology of complex of coherent sheaves :

H
1(M,F(

Gr0sp(2n + 2, C)

Gr0gl(n + 1, C)
)

θf

−→ F(
Gr−1sp(2n + 2, C)

Gr−1gl(n + 1, C)
)⊗Ω1

M

θf

−→ F(
Gr−2sp(2n + 2, C)

Gr−2gl(n + 1, C)
)⊗Ω2

M ) .
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One easily computes :

F(
Gr0sp(2n + 2, C)

Gr0gl(n + 1, C)
) =

(

0 0 0 0
0 0 S2Ω1

M⊗L2
M 0

0 S2TM⊗L−2
M

0 0
0 0 0 0

)

F(
Gr−1sp(2n + 2, C)

Gr−1gl(n + 1, C)
) =

(

0 0 v∈Ω1
M⊗L2

M 0
0 0 0 v·J0
0 0 0 0
0 0 0 0

)

F(
Gr−2sp(2n + 2, C)

Gr−2gl(n + 1, C)
) =

(

0 0 0 L2
M

0 0 0 0
0 0 0 0
0 0 0 0

)

.

Thus

T = H
1(M,

(

0 S2Ω1
M⊗L2

M

S2TM⊗L−2
M

0

) ( 0
1 )

−→
(

(Ω1
M⊗L2

M )⊗Ω1
M

0

) ( 0
1 )

−→ L2
M ⊗ Ω2

M ) .

Thus :

T = H
1(M,

(

(

S2TM⊗L−2
M

S2Ω1
M⊗L2

M

) ( 0 0
1 0 )
−→

(

S2Ω1
M⊗L2

M

Ω2
M⊗L−2

M

)

( 0 1 )
−→ Ω2

M ⊗ L2
M

)

= H1(M, S2TM ⊗ L−2
M ) .

Notice that H1(M, S2TM⊗L−2
M ) is conjugate to H0(M, S3Ω1

M⊗L2
M ) via the natural pairing :

H0(M, S3Ω1
M ⊗ L2

M ) ⊗ H1(M, S2TM ⊗ L−2
M ) −→ H1(M, Ω1

M ) = H1,1(M, C)
·∧ωn−1

M−→ C .

This finishes the proof of proposition 6.5.3.

References

[1] Boothby W.M., Homogeneous complex contact manifolds, PSPM 3, AMS, (1961) 144-154

[2] Borel A., Wallach N., Continuous cohomology, discrete subgroups, and representations of reductive

groups. Second edition. Mathematical Surveys and Monographs 67 American Mathematical Society,

Providence, RI, 2000

[3] Bürger M., Iozzi A., Bounded cohomology and deformation rigidity in complex hyperbolic geometry,

preprint

[4] Carlson J., Toledo D., Harmonic mappings of Kähler manifolds to locally symmetric spaces, Publ.

Math. IHES 69, (1989), 173–201

[5] Corlette K., Flat G-bundles with canonical metrics, J. Differential Geometry 28 (1988) 361-382

[6] Corlette K., Rigid representations of Khlerian fundamental groups J. Differential Geom. 33 (1991),

no. 1, 239–252

[7] Corlette K., Archimedean superrigidity and hyperbolic geometry, Annals of Math. 135 (1992) 165-182

[8] Deligne P., Mostow G.D, Monodromy of hypergeometric functions and non-lattice integral monodromy,

Publ. Math. IHES 63 (1986), 5-89

[9] Goldman W.M., Millson J.J., Local rigidity of discrete groups acting on complex hyperbolic space,

Inventiones Math. 88 (1987) 495-520

[10] Goldman W.M., Millson J.J., The deformation theory of representations of fundamental groups of

compact Kähler manifolds. Publ. Math. I.H.E.S. 67, (1988), 43-96.

[11] Gromov M., Piatetski-Shapiro I., Non-arithmetic groups in Lobachevsky spaces, Publ. Math. IHES 65

(1988), 93-103



24 I. KIM, B. KLINGLER AND P. PANSU

[12] Gromov M., Schoen R., Harmonic maps into singular spaces and p-adic superrigidity for lattices in

groups of rank one, Publ. Math. IHES 76 (1992), 165-246

[13] Johnson D., Millson J.J., Deformation spaces associated to compact hyperbolic manifolds. Discrete

groups in geometry and analysis (New Haven, Conn., 1984), , Progr. Math., 67, Birkhuser Boston,

Boston, MA, 1987, 48-106

[14] Klingler B., Some remarks on non-Abelian Hodge theory, preprint

[15] Koziarz V., Maubon J., Harmonic maps and representations of non-uniform lattices of PU(m, 1). Ann.

Inst. Fourier (Grenoble) 58 (2008), no. 2, 507-558

[16] Koziarz V., Maubon J., Representations of complex hyperBolic lattices into rank 2 classical Lie groups

of Hermitian type, preprint.

[17] Makarov V.S, On a certain class of discrete subgroups of Lobachevsky space having an infinite funda-

mental region of finite measure, Soviet Math. Dokl. 7 (1966), 328-331

[18] Margulis G.A, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer

Grengebiete 17, Springer-Verlag, (1991)

[19] Matsushima Y., Murakami S., On vector bundle valued harmonic forms and automorphic forms on

symmetric spaces, Ann. Math. 78 (1963), 365-416

[20] Mostow G.D., On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86,

(1980), 171-276

[21] Raghunathan M.S., On the first cohomology of discrete subgroups of semi-simple Lie groups, American

Journal of Math. 87 (1965), 103-139

[22] Salamon S., Quaternionic Kähler manifolds, Invent. Math. 67 (1982), no. 1, 143-171

[23] Salamon S., Quaternion-Kähler geometry. Surveys in differential geometry: essays on Einstein mani-

folds, 83-121, Surv. Differ. Geom., VI, Int. Press, Boston, MA, 1999

[24] Simpson C., Higgs bundles and local systems, Publ. Math. IHES, 75, (1992), 5-95

[25] Vinberg E.B., Discrete groups generated by reflections in Lobachevsky spaces, Math. USSR SB 1

(1967) 429-444

[26] Weil A., Discrete subgroups of Lie groups, II, Annals of Mathematics 75 (1962), 97-123

[27] Wolf J., Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech.

14 (1965) 1033-1047

Inkang Kim

School of Mathematics

KIAS, Hoegiro 87, Dongdaemun-gu

Seoul, 130-722, Korea

inkang@kias.re.kr

Bruno Klingler
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