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E�cient Veri�cation of Timed Automata usingDense and Discrete Time Semantics?Marius Bozga, Oded Maler, Stavros TripakisVerimag, Centre Equation, 2, av. de Vignate, 38610 Gi�eres, Francefbozga,maler,tripakisg@imag.frAbstract. In this paper we argue that the semantic issues of discrete vs.dense time should be separated as much as possible from the pragmaticsof state-space representation. Contrary to some misconceptions, the dis-crete semantics is not inherently bound to use state-explosive techniquesany more than the dense one. In fact, discrete timed automata can beanalyzed using any representation scheme (such as DBM) used for densetime, and in addition can bene�t from enumerative and symbolic tech-niques (such as BDDs) which are not naturally applicable to dense time.DBMs, on the other hand, can still be used more e�ciently by takinginto account the activity of clocks, to eliminate redundancy.To support these claims we report experimental results obtained using anextension of Kronos with BDDs and variable-dimension DBMs where weveri�ed the asynchronous chip STARI, a FIFO bu�er which provides forskew-tolerant communication between two synchronous systems. Usingdiscrete time and BDDs we were able to prove correctness of a STARIimplementation with 18 stages (55 clocks), better than what has beenachieved using other techniques. The veri�cation results carry over tothe dense semantics.Using variable-dimension DBMs we have managed to verify STARI forup to 8 stages (27 clocks). In fact, our analysis shows that at most onethird of the clocks are active at any reachable state, and about one fourthof the clocks are active in 90% of the reachable states.1 IntroductionThe analysis of discrete systems such as programs or digital circuits, while takinginto account the temporal uncertainty associated with transition delays, is a verychallenging and important task. In [MP95] and elsewhere, it has been demon-strated that reasonable models of digital circuits with uncertain delay boundscan be translated systematically into timed automata [AD94], which can thenbe analyzed using various veri�cation tools. However, this remains a theoreticalpossibility as long as the performance bottleneck for timed veri�cation remains(see the discussion in [BMPY97] as well as [TKB97]). During the last decade the? This work was partially supported by the European Community Esprit-LTR Project26270 VHS (Veri�cation of Hybrid systems) and the French-Israeli collaborationproject 970maefut5 (Hybrid Models of Industrial Plants).



Verimag laboratory has been engaged in development of the timing analyzerKRONOS [DOTY96] and in attempts to improve its performance using varioustechniques.Timed automata operating on the dense real time axis constitute an instanceof hybrid automata and their analysis confronts researchers with problems usuallynot encountered in \classical" �nite-state veri�cation. These problems, such asZeno's paradox (the possibility of making in�nitely-many steps in a boundedinterval) or the representation of an uncountable number of states, which arerelated to the foundations of mathematics, sometime give a false impression onthe essense of timing analysis. We argue that this essence does not depend on thetime domain, and that the di�erence between dense and discrete time semanticsis \epsilon", so to speak.We demonstrate these claims by applying discrete and dense techniques to anon-trivial case-study where we obtain the best performance results achieved sofar for timed automata. More precisely, we report the application of two tech-niques: the BDD-based veri�cation using the discrete time semantics [ABK+97][BMPY97], and the \standard" DBM-based method using variable-sized matri-ces based on clock activity analysis [DY96], to a real hardware design, the STARIchip due to M. Greenstreet [Gre97]. This chip is an asynchronous realization ofa FIFO bu�er, composed of a sequence of stages, each consisting of two MullerC-elements and one NOR gate. According to the principles laid out in [MP95],and similarly to [TB97], each such stage is modeled as a product of 3 timed au-tomata, each with 4 states and one clock. The (skewed) transmitter and receiverare modeled as two timed automata using a shared clock.We have modeled the intended behavior of the FIFO bu�er operationallyas an automaton, and were able to verify that an 18-stage implementation (55clocks) indeed realizes the speci�cation. These are, to the best of our knowledge,among the best performance results for timed automata veri�cation, and theyshow that some real circuits behave better than arti�cial examples of the kindwe used in [BMPY97].The rest of the paper is organized as follows. In section 2 we give a very in-formal survey of timed automata, their veri�cation techniques and their discreteand dense semantics. In section 3 we describe STARI and its desired properties,which are then modeled using timed automata in section 4. The performanceresults are reported and analyzed in section 5, and future work is discussed atthe end.2 Veri�cation using Timed Automata2.1 Timed AutomataTimed automata can represent systems in which actions take some unknown,but bounded, amount of time to complete, in a rigorous and veri�able manner.They are essentially automata operating on the continuous time scale, employingauxiliary continuous variables called clocks. These clocks, while in a given state,



keep on increasing with time. Their values, when they cross certain thresholdscan enable some transitions and also force the automaton to leave a state. Tem-poral uncertainty is modeled as the possibility to choose between staying in astate and taking a transition during an interval [l; u].Since their introduction in 1990 [AD94], Timed Automata (TA) attracted alot of attention from the veri�cation community, mainly for the following reasons:1. They constitute a computational model in which one can faithfully representmany real-world situations where timing constraints interfere with discretetransitions.2. In spite of the fact that their state-space is non-countable, their reachabilityproblems (which are the essence of any veri�cation problem) are decidable.Several veri�cation tools such as Kronos [DOTY96], Timed Cospan [AK96]and Uppaal [LPY97] have been implemented, featuring various veri�cationand synthesis algorithms which explore, this way or another, the state-spaceof TA.The use of a non-countable state-space, Q � X where jQj = m and X =[0; k]d, along with dense time, excludes immediately any veri�cation methodwhich is based on explicit enumeration of states and trajectories. All existingTA veri�cation algorithms are based, either explicitly or implicitly, on the regiongraph construction [AD94]: an equivalence relation is de�ned on X , unifyingclock con�gurations from which the future behaviors are essentially identical(i.e. two clock valuations x and x0 are equivalent, x � x0, if the same sequencesof discrete transitions are possible from x and from x0). It turns out that inTA this relation is of �nite index, and the quotient graph of a TA, modulo�, is a �nite-state automaton with a combination of discrete transitions andabstract \time-passage" transitions, indicating the temporal evolution of clockvalues from one equivalence class to another.Veri�cation tools for TA, either construct �rst the region automaton (whosesize is O(mkdd!) and then use standard discrete veri�cation algorithms, or calcu-late the reachable con�gurations successively while representing them as unionsof polyhedra of certain restricted form. These \symbolic states", which are gen-erated by the equivalences classes of �, are polyhedra which can be representedby combinations of inequalities of the form xi � c or xi�xj � c where xi, xj areclock variables, � is either < or �, and c an integer constant in f0; 1; : : : ; k�1g.For convex regions, there is a canonical form based on an irredundant set ofinequalities, which can be e�ciently represented using an O(n2)-sized integermatrix, known as the di�erence bounds matrix (DBM). The main computationalactivity in TA veri�cation is the storage and manipulation of sets of these ma-trices during �xed-point computations. The major bottleneck is due to the factthat the number and size of DBMs grows exponentially with the number ofclocks and the size of k (roughly, the size of the largest constant in the TAafter normalization). Moreover the representation of non-convex polyhedra asunions of convex ones is not unique. There have been many attempts to breakthe computational bottleneck associated with the manipulation of DBMs, suchas [WD94,H93,B96,DY96,LLPY97,DT98], to mention a few, and to be able to



verify larger timed automata. One approach, [DY96], is based on the observationthat not all clocks are active at any con�guration (see also [SV96]). A clock xi isinactive in a con�guration (q;x) if it is reset to zero before any future test of itsvalue. In that case its value can be eliminated from the state description of thesystem. Consequently one can use variable-sized DBMs restricted to the relevantclocks in every region of the TA. In section 5 we will report the results of clockactivity analysis of STARI and the performance of the variable-sized DBMs.2.2 The Joy of Discrete TimeThere is, however, an alternative semantics for TA based on discrete (and in fact,integer) time, which has already been discussed in early works about real-timelogics (see the survey [AH92]). According to this view, time steps are multiplesof a constant, and at every moment the automaton might choose between incre-menting time or making a discrete transition. Consider the fragment of a 2-clocktimed automaton depicted at the left of Figure 1. The automaton can stay inthe state and let the time progress (i.e. let the values of x1 and x2 grow withderivative 1) as long as x1 � u. As soon as x1 reaches l (we assume l � u) it cantake a transition to another state and reset x1 to zero. By restricting the timedomain to the integers, the staying conditions (\invariants") in every state arereplaced by \idle" transitions as in the right of Figure 1.x1 < u=x1 := x1 + 1x2 := x2 + 1x1 � l=x1 := 0 x1 � l=x1 := 0x1 � uFig. 1. A timed automaton and its discrete time interpretation.Under this interpretation clocks are nothing but bounded integer variables,whose values are incremented simultaneously by time transitions and some ofthem are reset to zero by certain discrete transitions. Such systems are �nite-state, but some components of the state-space, namely the clocks, have additionalstructure (addition and linear-ordering of clock values), which can be exploitedby veri�cation algorithms. In particular, any representation scheme for the densesemantics which is based on clock inequalities can be specialized for the discretesemantics. Since on discrete order, a strict inequality of the form xi < c can bewritten as the non-strict inequality xi � c� 1, discrete regions can be expressedusing exclusively non-strict inequalities. Hence even DBM-based methods canbe tuned to work better on discrete time since the space of DBMs is smaller. A



typical step in the iterative calculation of reachable states is depicted in Figure 2for the dense (left) and discrete (right) semantics.
P l ul uPFig. 2. Calculation of reachable con�gurations, starting from the initial set P , for thedense and discrete timed automata of Figure 1.In addition to these methods one can take advantage of the �nite-state natureof discrete TA and apply techniques which cannot be applied directly to densetime. One possibility is to push clocks values into states and transform the TAinto a �nite automaton (either o�-line or on-the-
y). This provides for depth-�rst traversal of the state-space, as well as other search regimes. An alternativeapproach is the one advocated in [ABK+97,BMPY97] in which the clocks valuesare encoded in binary and subsets of them are written as BDDs. The advantageof this approach is that it gives a canonical representation for any subset (convexor not) of the state-space, and that it combines naturally with BDD-based repre-sentation of the control states. Most of this paper is a report of one success storyof this approach, where a non-trivial system with 55 clocks has been veri�ed.However, before that there is one little point to be clari�ed: although discretetime veri�cation is inherently more e�cient than dense time, it is certainly lessexpressive, and one might want to know what is sacri�ced in order to improveperformance. Our answer, based on the results in [HMP92,AMP98], which weexplain below is: \not much".2.3 Why Discrete Time Su�cesConsider two clock valuations x and x0 sharing the same open unit square S =(c1; c1+1; c2; c2+1) (Figure 3-(a)). Clearly, every inequality of the form xi � c,i 2 f1; 2g and �2 f<;�; >;�g is satis�ed by x i� it is satis�ed by x0. Hence atransition that can be taken at x, leading to a new valuation y, i� it can be takenat x0 leading to a point y0 on the same square as y. For the same reasons time canprogress at x i� it can do so at x0, however unless the order among the fractionalparts of x1 and x2 is the same in x and x0 they might reach di�erent squares as



time goes by. Only if they belong to the same triangular subset of X , namely aset of the form fx : hx1i � hx2ig where hxii denotes the fractional part of xi,they will meet the same squares during time evolution (Figure 3-(b)). Combiningthese facts we obtain the equivalence relation on X which guarantees that allthe members of an equivalence class can exhibit essentially the same behaviors.This simple (and simpli�ed) story becomes more complicated if transitionguards and invariants are allowed to contain strict inequalities. In that casesome transitions might be enabled in the interior of a region but not in itsboundaries, and the region graph becomes a more involved mathematical objectwith elements of all dimensionalities from 0 to n. If, however, timing constraintsare restricted to be closed (i.e. non-strict) every boundary point satis�es all theconstraints satis�ed by the regions in its neighborhood. In particular the set ofintegral points, the grid f0; 1; : : : ; k � 1gn \covers" all X in the sense that itintersects the boundaries of all open full-dimensional regions and satis�es all theconstraints that they satisfy (Figure 3-(c)). Hence these integral points can betaken as representatives and all the (qualitative) trajectories starting from themcover all the possible behaviors of the system.
xx0 xx0(a) (b) (c)Fig. 3. a) Two points satisfying the same constraints; b) Two equivalent points; c) Aninteger point satisfying all the constraints satis�ed by its six neighboring regions.To be more precise, a discrete run might be a slight variation of some ofthe dense runs it represents: it may sometimes have few transitions taken si-multaneously while in the dense run these transitions are separated by smallamount of time. Nevertheless, the following results [HMP92,AMP98] underliethe soundness of discrete veri�cation:Theorem 1 (Emptiness of Closed TA). The set of dense behaviors of aclosed TA is non-empty i� it contains a discrete run.Combining this with the fact that untimed properties can be expressed asTAs in which all constraints are true (which is closed), we have:



Corollary 1 (Discrete Time Veri�cation). A closed TA satis�es an untimedproperty ' i� its discrete time version satis�es '.If the TA is not closed, its closure is an over-approximation and a satisfactionof any linear-time property by the closure implies satis�ability by the originalautomaton.3 STARI DescriptionSTARI (Self-Timed At Receiver's Input) [Gre97] is a novel approach to high-bandwidth communication which combines synchronous and self-timed designtechniques. Generally speaking, a transmitter communicates synchronously witha receiver through an asynchronous FIFO bu�er (see Figure 4). The FIFO makesthe system tolerant to time-varying skew between the transmitter and receiverclocks. An internal handshake protocol using acknowledgments prevents dataloss or duplication inside the queue.
varying delayGlobal ClockdataackTransmitter ReceiverFIFO

varying delayFig. 4. The STARI overview.The functioning of STARI is based on a rather intuitive idea. The FIFO mustbe initialized to be half-full. During each period of the clock one value is insertedto the FIFO by the transmitter and one value is removed by the receiver. Dueto the complementary nature of these actions no control is required to preventqueue under
ow or over
ow. Short-term 
uctuations in the clock rates of thetransmitter and the receiver are handled by inserting or removing, more itemsto or from the queue.Following the STARI model proposed by Tasiran and Brayton in [TB97],which di�ers slightly from the original description in [Gre97], we represent theboolean values true and false by dual rail encoding (see Figure 5). An auxiliaryempty value is needed to distinguish between the case of two consecutive identicalvalues and the case of one value maintained during more than one clock cycle.The transmitter is constrained to send sequences of true and false where eachtwo occurrences of these values are separated by an occurrence of empty. TheSTARI chip consists of a linear array of n identical stages, each capable of storinga data value X .The following two properties need to be proved to ensure the correct opera-tion of the STARI circuit:



X true false emptyX.t 1 0 0X.f 0 1 0Fig. 5. Dual rail encoding.{ Each data value output by the transmitter must be inserted in the FIFObefore the next one.{ A new value must be output by the FIFO before each acknowledgment fromthe receiverWe specify the desired behavior of an n-stage STARI as an ideal FIFO bu�ercombined with a receiver and a transmitter respecting the abovementioned con-vention (see Figure 6). Note that in this speci�cation, every transition is labeledwith a pair of put and get actions, with the intended meaning that they canoccur in any order including simultaneously. The goal of the veri�cation is toshow that if we hide the internal operations of STARI, the realizable sequencesof put's and get's conform with this speci�cation.The operation principle of a stage k can be summarized as follows: it maycopy its predecessor value (Xk := Xk�1) when its successor has already copied(and acknowledged) its current value (Xk = Xk+1). Using the dual rail encodingof data values, such a behavior can be achieved using two Muller C-elementsthat hold the X:t and X:f components, and one NOR gate for computing theacknowledgment (see Figure 7).A Muller C-element works as follows: when the two inputs become identical,after some delay the output takes on their value, otherwise the output maintainsits previous value. Consider, for example, a situation where stages k and k + 1hold the empty value, stage k� 1 the true value and Ackk+1 = 0. When Ackk+1becomes 1, the C-element for Xk:f remains unchanged at 0 because its inputsare di�erent (i.e. Ackk+1 = 1, Xk�1:f = 0). However, both the inputs of theC-element for Xk:t are equal to 1 (Ackk+1 = Xk�1:t = 1), and after some delay,it will switch to 1. This way the true value has been copied from stage k � 1 tostage k.4 Modeling STARI by Timed AutomataThe correct functioning of STARI depends on the timing characteristics of thegates (the time it takes, say, for a C-element to switch) and its relation withthe central clock period and the skew between the receiver and transmitter.We model the uncertainty concerning the delay associated with gates using thebi-bounded delay model, that is, we associate with every gate an interval [l; u]indicating the lower and upper bounds for its switching delay (see [L89], [BS94],[MP95] and [AMP98] for the exact de�nitions).Following [MP95] we can model any logical gate with a delay [l; u] using atimed automaton with 4 states (0-stable, 0-excited, 1-stable and 1-excited) and



one clock. In particular, each stage of STARI is modeled by the three timedautomata of Figures 8, 9 and 10.Let us look at the automaton of Figure 8 which models the X:t componentof the kth stage. Its state is characterized by two boolean variables Xk:t, xk:t,the former stores the gate output and the latter stores the gate internal value,i.e. the value to which the gate \wants" to go after the delay. The stable statesare those in which Xk:t = xk :t. The conditions for staying and leaving stablestates are complementary and do not depend on clock values: for example, theautomaton leaves state (0; 0) and goes to the unstable state (0; 1) exactly whenboth its inputs are 1. During this transition the clock variable Ck :t is reset tozero. The automaton can stay at (0; 1) as long as Ck:t < uC and can change itsoutput and stabilize in (1; 1) as soon as Ck:t � lC , where [lC ; uC ] is the delayinterval associated with a C-element. The automaton for the X:f component(Figure 9) is exactly the same (with di�erent inputs) and the automaton for theNOR gate (Figure 10) is similarly characterized by two boolean variables Ackk,ackk, a clock variable Ck :a and a delay bounded by [lN ; uN ]. This means thatan n-stage STARI can be translated into 3n automata with 3n clocks and 6nboolean variables.In addition to the automata for modeling the stages, we need three otherautomata for modeling the transmitter, the reciever and their clock cycle. Theglobal clock cycle is modeled by a simple timed automaton using one clock vari-able C. Whenever C reaches the cycle size p it is reset to zero. (see Figure 11).The transmitter is modeled as a 3-state automaton (Figure 11). At eachclock cycle it puts a value at the input ports of the �rst stage (X0:t and X0:f),according to the convention that every pair of data items is separated by anempty item. Moreover, the transmission can be done with some skew with respectto the clock cycle, bounded by the sT constant, that is, the actual time oftransmission can be anywhere in the interval [p� sT ; p].The receiver is a 1-state automaton (see Figure 11) which reads the currentoutput value (i.e. Xn:t and Xn:f) and acknowledges the reception by modifyingAckn+1 according to whether or not Xn is empty. As in the transmitter, a skewbounded by sR is allowed.Note that the receiver and transmitter skews cannot accumulate during suc-cessive cycles. They always range in an interval depending on the (perfect) globalclock cycle. However, each one can vary non-deterministically from one cycle toanother. This is more general than assuming a �xed skew given in advance, ora �xed skew chosen at start-up from a given interval. The transitions of theseautomata are annotated by action names such as put and get whose role isexplanatory { they have no e�ect on the functioning of the system.5 Veri�cation Results and Performance Analysis5.1 Discrete Time and BDDsWe have modeled various instants of STARI, each with a di�erent number ofstages. For each instance we have composed the timed automata and then min-
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Fig. 6. The speci�cation of an ideal 3-stage bu�er. The states correspond to the bu�ercontents.

Xk:f
Xk:tAckk+1C

C
Xk�1:tAckkXk�1:f Fig. 7. Stage k of STARI.



Xk�1:t = 0_Ackk+1 = 0Xk:t = 0xk:t = 0

Ck:t < uCXk:t = 1xk:t = 0
Ck:t < uCXk:t = 0xk:t = 1

Xk�1:t = 1_Ackk+1 = 1xk:t = 1Xk:t = 1
Ck:t � lC^Xk�1:t = 1^Ackk+1 = 1

Xk�1:t = 1 _ Ackk+1 = 1
Xk�1:t = 0 _ Ackk+1 = 0

Xk�1:t = Ackk+1 = 0 = Ck:t := 0
Ck:t � lC^Xk�1:t = 0^Ackk+1 = 0

Xk�1:t = Ackk+1 = 1 = Ck:t := 0

Fig. 8. The timed automaton for the C-element Xk:t.
Xk�1:f = 0_Ackk+1 = 0Xk:f = 0xk:f = 0

Ck:f < uCXk:f = 1xk:f = 0
Ck:f < uCXk:f = 0xk:f = 1

Xk�1:f = 1_Ackk+1 = 1xk:f = 1Xk:f = 1
Ck:f � lC^Xk�1:f = 1^Ackk+1 = 1

Xk�1:f = 1 _ Ackk+1 = 1
Xk�1:f = 0 _ Ackk+1 = 0

Xk�1:f = Ackk+1 = 0 = Ck:f := 0
Ck:f � lC^Xk�1:f = 0^Ackk+1 = 0

Xk�1:f = Ackk+1 = 1 = Ck:f := 0

Fig. 9. The timed automaton for the C-element Xk:f .



Xk:t = 1_Xk:f = 1Ackk = 0ackk = 0

Ck:a < uNAckk = 1ackk = 0
Ck:a < uNAckk = 0ackk = 1

Xk:t = 0Xk:f = 0ackk = 1Ackk = 1
Ck:a � lN^Xk:t = 0^Xk:f = 0

Xk:t = Xk:f = 0
Xk:t = 1 _Xk:f = 1

Xk:t = 1 _Xk:f = 1 = Ck:a := 0
Ck:a � lN^(Xk:t = 1_Xk:f = 1)

Xk:t = Xk:f = 0 = Ck:a := 0

Fig. 10. The timed automaton for the NOR gate Ackk.C = p = C := 0
C � p C < p p � sR � C ^Xn:t = 1 =Ackn+1 := 0get false get trueget empty

C < p C < p C < pput trueput emptyput falseput emptyp� sT � C = X0:f := 0p� sT � C = X0:f := 1 p� sT � C = X0:t := 1p� sT � C = X0:t := 0
p� sR � C ^Xn:f = 1 =Ackn+1 := 0

p � sR � C ^Xn:t = Xn:f = 0 =Ackn+1 := 1

Fig. 11. A global clock with a period p, the receiver and the transmitter.



imized them by hiding the unobservable transitions. In Figure 12 one can seethe automaton obtained for three stages, where in addition to the put and getactions, we left also the tick action which indicates the end of the global clockcycle. After hiding the tick we obtain a realization of the ideal FIFO as speci�edin Figure 6.
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Fig. 12. A three-stage realizations of Stari with internal actions hidden.We used the following concrete parameters to model the chip: [lC ; uC ] =[lN ; uN) = [2; 4] for gate delays, p = 12 for the clock cycle and sT = sR = 2 forthe maximal allowed skew of the transmitter and the receiver.The BDD implementation is based on the model-checker SMI [B97] and ituses the CUDD package [S95]. The 18-stage STARI is modeled by a network of



timed automata summing up to 55 clocks. It uses 286 BDD variables to encodethe clocks and the states. The reachable state space is of order of 1015 states.We were able to prove that each STARI model with n � 18 stages, rightinitialized with m distinct values (m � n=2) simulates an ideal bu�er of size m.Moreover, we veri�ed that the transition graphs of the implementation and thespeci�cation are equivalent with respect to the branching bisimulation [vGW89],if we consider only the reading and writing to be observable. The equivalence isveri�ed symbolically using the method described in [FKM93]. The time and thememory needed1 to perform this veri�cation are presented in Figure 13.
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Fig. 13. Time and memory consumption for STARI veri�cation using BDDs.
5.2 Variable-dimension DBMsWe have also veri�ed STARI, interpreted over dense-time, using the DBM repre-sentation of Kronos and the forward-analysis technique of [DT98]. To overcomethe explosion associated with the size and number of DMBs we have used thetechniques of [DY96,DT98], based on the notion of active and inactive clocks.As one can see in Figure 8, the basic building block which is used to modela timed gate is a four-state automaton with one clock which is active only inthe unstable states. So a-priori, each clock is active in half of the global controlstates. However, in real designs, especially when there is some natural order inwhich information 
ows in the circuit, the average over the reachable states ofthe number of active clocks can be much smaller.The information concerning clock activity has been extracted automaticallyfrom the TA description and,using the variable-dimension DBM library of KRO-NOS, we were able to verify STARI with up to 8 stages (27 clocks). The mainreason for the relative inferiority compared to the BDD approach is the largesize of the discrete state-space (224): using DBMs, discrete variables are enumer-ated, whereas using discrete time and BDDs all variables (including clocks) are1 All the results reported here were obtained on a Pentium II with 512 MB of memory.



handled uniformly, which results in more compact representation. Future tech-niques, combining BDDs for the state variables and DBMs for the clocks mightimprove performance signi�cantly.Figure 14 shows the time performance and the number of symbolic states(discrete variables plus DBM) generated for number of stages. We have alsomeasured the number of active clocks in each symbolic state and the resultscon�rm our expectations that only a small fraction of clocks are active at anytime. For instance, in the case of 8 stages, out of 27 clocks at most 9 were active,and this in less than 4% of the total number of DBMs generated (see diagramon the right of Figure 15). In more than 85% of the symbolic states, only 6 to8 clocks were active. The distributions have the same shape for other STARIcon�gurations.
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Fig. 14. Experimental results for STARI veri�cation using DBMs.
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6 DiscussionOur performance resuts are signi�cantly better than those reported by Tasiranand Brayton [TB97], from whom we have adopted the model. They prove, usingtechniques developed in [TAKB96], that every stage can be abstracted into atimed automaton having 5 states and only one clock. Using this abstract modeland the tool Timed-Cospan they were able to verify an 8-stage bu�er, whileusing the detailed model they could not verify more than 3 stages. Anotherattempt to verify STARI was reported by Belluomini and Myers [BM98] whomodel the circuit using a variant of timed Petri nets which they verify usingthe tool POSET which employs partial-order methods. The largest examplethey reported was of 10 stages. Yoneda and Ryu [YR99] improve these resultssigni�cantly using circuit-speci�c heuristics.We have demonstrated that a rather large example can be veri�ed by toolsbased on timed automata, and we hope that this will contribute to the wideadoption of timed automata as a model for quantitative timing analysis. Ourresults indicate that in certain cases, discretized BDD-based approaches out-perform other techniques. In the future we will try to characterize the class ofsystems for which this is the case. It is clear, however, that in examples wherelarge constants (or equivalently, smaller time granularity) are involved, discretetime becomes less attractive.References[AD94] R. Alur and D.L. Dill, A Theory of Timed Automata, Theoretical ComputerScience 126, 183{235, 1994.[AH92] R. Alur and T.A. Henzinger, Logics and Models for Real-Time: A survey,J.W. de Bakker et al (Eds.), Real-Time: Theory in Practice, LNCS 600,74-106, Springer, 1992.[AK96] R. Alur, and R.P. Kurshan, Timing Analysis in COSPAN, in R. Alur,T.A. Henzinger and E. Sontag (Eds.), Hybrid Systems III, LNCS 1066,220-231, Springer, 1996.[ABK+97] E. Asarin, M. Bozga, A. Kerbrat, O. Maler, A. Pnueli and A. Rasse, Data-Structures for the Veri�cation of Timed Automata, in O. Maler (Ed.), Proc.HART'97, LNCS 1201, 346-360, Springer, 1997.[AMP98] E. Asarin, O. Maler and A. Pnueli, On the Discretization of Delays inTimed Automata and Digital Circuits, in R. de Simone and D. Sangiorgi(Eds), Proc. Concur'98, LNCS 1466, 470-484, Springer, 1998.[B96] F. Balarin, Approximate Reachability Analysis of Timed Automata, Proc.RTSS'96, 52-61, IEEE, 1996.[B97] M. Bozga, SMI: An Open Toolbox for Symbolic Protocol Veri�cation, Tech-nical Report 97-10, Verimag, 1997.http://www.imag.fr/VERIMAG/DIST SYS/SMI/[BM98] W. Belluomini and C.J. Myers, Veri�cation of Timed Systems UsingPOSETs, in A.J. Hu and M.Y. Vardi (Eds.), Proc. CAV'98, 403-415, LNCS1427, Springer, 1997.
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