N

N

Efficient Verification of Timed Automata using Dense
and Discrete Time Semantics
Marius Bozga, Oded Maler, Stavros Tripakis

» To cite this version:

Marius Bozga, Oded Maler, Stavros Tripakis. Efficient Verification of Timed Automata using Dense
and Discrete Time Semantics. Correct Hardware Design and Verification Methods 10th IFIP WG10.5
Advanced Research Working Conference, CHARME’99, Sep 1999, Bad Herrenalb, Germany. pp.125-
141, 10.1007/3-540-48153-2 . hal-00369798

HAL Id: hal-00369798
https://hal.science/hal-00369798
Submitted on 21 Mar 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00369798
https://hal.archives-ouvertes.fr

Efficient Verification of Timed Automata using
Dense and Discrete Time Semantics*

Marius Bozga, Oded Maler, Stavros Tripakis

VERIMAG, Centre Equation, 2, av. de Vignate, 38610 Gieres, France
{bozga,maler,tripakis}@imag.fr

Abstract. In this paper we argue that the semantic issues of discrete vs.
dense time should be separated as much as possible from the pragmatics
of state-space representation. Contrary to some misconceptions, the dis-
crete semantics is not inherently bound to use state-explosive techniques
any more than the dense one. In fact, discrete timed automata can be
analyzed using any representation scheme (such as DBM) used for dense
time, and in addition can benefit from enumerative and symbolic tech-
niques (such as BDDs) which are not naturally applicable to dense time.
DBMs, on the other hand, can still be used more efficiently by taking
into account the activity of clocks, to eliminate redundancy.

To support these claims we report experimental results obtained using an
extension of Kronos with BDDs and variable-dimension DBMs where we
verified the asynchronous chip STARI, a FIFO buffer which provides for
skew-tolerant communication between two synchronous systems. Using
discrete time and BDDs we were able to prove correctness of a STARI
implementation with 18 stages (55 clocks), better than what has been
achieved using other techniques. The verification results carry over to
the dense semantics.

Using variable-dimension DBMs we have managed to verify STARI for
up to 8 stages (27 clocks). In fact, our analysis shows that at most one
third of the clocks are active at any reachable state, and about one fourth
of the clocks are active in 90% of the reachable states.

1 Introduction

The analysis of discrete systems such as programs or digital circuits, while taking
into account the temporal uncertainty associated with transition delays, is a very
challenging and important task. In [MP95] and elsewhere, it has been demon-
strated that reasonable models of digital circuits with uncertain delay bounds
can be translated systematically into timed automata [AD94], which can then
be analyzed using various verification tools. However, this remains a theoretical
possibility as long as the performance bottleneck for timed verification remains

(see the discussion in [BMPY97] as well as [TKB97]). During the last decade the

* This work was partially supported by the European Community Esprit-LTR Project
26270 VHS (Verification of Hybrid systems) and the French-Israeli collaboration
project 970MAEFUTS (Hybrid Models of Industrial Plants).

VERIMAG laboratory has been engaged in development of the timing analyzer
KRONOS [DOTY96] and in attempts to improve its performance using various
techniques.

Timed automata operating on the dense real time axis constitute an instance
of hybrid automata and their analysis confronts researchers with problems usually
not encountered in “classical” finite-state verification. These problems, such as
Zeno’s paradox (the possibility of making infinitely-many steps in a bounded
interval) or the representation of an uncountable number of states, which are
related to the foundations of mathematics, sometime give a false impression on
the essense of timing analysis. We argue that this essence does not depend on the
time domain, and that the difference between dense and discrete time semantics
is “epsilon”, so to speak.

We demonstrate these claims by applying discrete and dense techniques to a
non-trivial case-study where we obtain the best performance results achieved so
far for timed automata. More precisely, we report the application of two tech-
niques: the BDD-based verification using the discrete time semantics [ABK*97]
[BMPY97], and the “standard” DBM-based method using variable-sized matri-
ces based on clock activity analysis [DY96], to a real hardware design, the STARI
chip due to M. Greenstreet [Gre97]. This chip is an asynchronous realization of
a FIFO buffer, composed of a sequence of stages, each consisting of two Muller
C-elements and one NOR gate. According to the principles laid out in [MP95],
and similarly to [TB97], each such stage is modeled as a product of 3 timed au-
tomata, each with 4 states and one clock. The (skewed) transmitter and receiver
are modeled as two timed automata using a shared clock.

We have modeled the intended behavior of the FIFO buffer operationally
as an automaton, and were able to verify that an 18-stage implementation (55
clocks) indeed realizes the specification. These are, to the best of our knowledge,
among the best performance results for timed automata verification, and they
show that some real circuits behave better than artificial examples of the kind
we used in [BMPY97].

The rest of the paper is organized as follows. In section 2 we give a very in-
formal survey of timed automata, their verification techniques and their discrete
and dense semantics. In section 3 we describe STARI and its desired properties,
which are then modeled using timed automata in section 4. The performance
results are reported and analyzed in section 5, and future work is discussed at
the end.

2 Verification using Timed Automata

2.1 Timed Automata

Timed automata can represent systems in which actions take some unknown,
but bounded, amount of time to complete, in a rigorous and verifiable manner.
They are essentially automata operating on the continuous time scale, employing
auxiliary continuous variables called clocks. These clocks, while in a given state,

keep on increasing with time. Their values, when they cross certain thresholds
can enable some transitions and also force the automaton to leave a state. Tem-
poral uncertainty is modeled as the possibility to choose between staying in a
state and taking a transition during an interval [l, u].

Since their introduction in 1990 [AD94], Timed Automata (TA) attracted a

lot of attention from the verification community, mainly for the following reasons:

1. They constitute a computational model in which one can faithfully represent
many real-world situations where timing constraints interfere with discrete
transitions.

2. In spite of the fact that their state-space is non-countable, their reachability
problems (which are the essence of any verification problem) are decidable.
Several verification tools such as Kronos [DOTY96], Timed Cospan [AK96]
and Uppaal [LPY97] have been implemented, featuring various verification
and synthesis algorithms which explore, this way or another, the state-space
of TA.

The use of a non-countable state-space, @ x X where || = m and X =
[0,k]¢, along with dense time, excludes immediately any verification method
which is based on explicit enumeration of states and trajectories. All existing
TA verification algorithms are based, either explicitly or implicitly, on the region
graph construction [AD94]: an equivalence relation is defined on X, unifying
clock configurations from which the future behaviors are essentially identical
(i.e. two clock valuations x and x' are equivalent, x ~ x', if the same sequences
of discrete transitions are possible from x and from x'). It turns out that in
TA this relation is of finite index, and the quotient graph of a TA, modulo
~, is a finite-state automaton with a combination of discrete transitions and
abstract “time-passage” transitions, indicating the temporal evolution of clock
values from one equivalence class to another.

Verification tools for TA, either construct first the region automaton (whose
size is O(mk?d!) and then use standard discrete verification algorithms, or calcu-
late the reachable configurations successively while representing them as unions
of polyhedra of certain restricted form. These “symbolic states”, which are gen-
erated by the equivalences classes of ~, are polyhedra which can be represented
by combinations of inequalities of the form z; < c or z; —z; < ¢ where z;, z; are
clock variables, < is either < or <, and ¢ an integer constant in {0,1,...,k—1}.
For convex regions, there is a canonical form based on an irredundant set of
inequalities, which can be efficiently represented using an O(n?)-sized integer
matrix, known as the difference bounds matriz (DBM). The main computational
activity in TA verification is the storage and manipulation of sets of these ma-
trices during fixed-point computations. The major bottleneck is due to the fact
that the number and size of DBMs grows exponentially with the number of
clocks and the size of k (roughly, the size of the largest constant in the TA
after normalization). Moreover the representation of non-convex polyhedra as
unions of convex ones is not unique. There have been many attempts to break
the computational bottleneck associated with the manipulation of DBMs, such
as [WD94,H93,B96,DY96,LLPY97,DT98], to mention a few, and to be able to

verify larger timed automata. One approach, [DY96], is based on the observation
that not all clocks are active at any configuration (see also [SV96]). A clock =; is
inactive in a configuration (g, x) if it is reset to zero before any future test of its
value. In that case its value can be eliminated from the state description of the
system. Consequently one can use variable-sized DBMs restricted to the relevant
clocks in every region of the TA. In section 5 we will report the results of clock
activity analysis of STARI and the performance of the variable-sized DBMs.

2.2 The Joy of Discrete Time

There is, however, an alternative semantics for TA based on discrete (and in fact,
integer) time, which has already been discussed in early works about real-time
logics (see the survey [AH92]). According to this view, time steps are multiples
of a constant, and at every moment the automaton might choose between incre-
menting time or making a discrete transition. Consider the fragment of a 2-clock
timed automaton depicted at the left of Figure 1. The automaton can stay in
the state and let the time progress (i.e. let the values of x; and x5 grow with
derivative 1) as long as 21 < u. As soon as x reaches | (we assume [< u) it can
take a transition to another state and reset z; to zero. By restricting the time
domain to the integers, the staying conditions (“invariants”) in every state are
replaced by “idle” transitions as in the right of Figure 1.

21 < u/
2 =21 + 1
2o = a9 4+ 1

Fig. 1. A timed automaton and its discrete time interpretation.

Under this interpretation clocks are nothing but bounded integer variables,
whose values are incremented simultaneously by time transitions and some of
them are reset to zero by certain discrete transitions. Such systems are finite-
state, but some components of the state-space, namely the clocks, have additional
structure (addition and linear-ordering of clock values), which can be exploited
by verification algorithms. In particular, any representation scheme for the dense
semantics which is based on clock inequalities can be specialized for the discrete
semantics. Since on discrete order, a strict inequality of the form z; < ¢ can be
written as the non-strict inequality z; < ¢ — 1, discrete regions can be expressed
using exclusively non-strict inequalities. Hence even DBM-based methods can
be tuned to work better on discrete time since the space of DBMs is smaller. A

typical step in the iterative calculation of reachable states is depicted in Figure 2
for the dense (left) and discrete (right) semantics.

I G

KX,
¢oo
o000
oo
°oo -
ORI

Fig. 2. Calculation of reachable configurations, starting from the initial set P, for the
dense and discrete timed automata of Figure 1.

In addition to these methods one can take advantage of the finite-state nature
of discrete TA and apply techniques which cannot be applied directly to dense
time. One possibility is to push clocks values into states and transform the TA
into a finite automaton (either off-line or on-the-fly). This provides for depth-
first traversal of the state-space, as well as other search regimes. An alternative
approach is the one advocated in [ABKT97,BMPY97] in which the clocks values
are encoded in binary and subsets of them are written as BDDs. The advantage
of this approach is that it gives a canonical representation for any subset (convex
or not) of the state-space, and that it combines naturally with BDD-based repre-
sentation of the control states. Most of this paper is a report of one success story
of this approach, where a non-trivial system with 55 clocks has been verified.
However, before that there is one little point to be clarified: although discrete
time verification is inherently more efficient than dense time, it is certainly less
expressive, and one might want to know what is sacrificed in order to improve
performance. Our answer, based on the results in [HMP92,AMP98], which we
explain below is: “not much”.

2.3 Why Discrete Time Suffices

Consider two clock valuations x and x’ sharing the same open unit square S =
(c1,¢1 +1,¢9,¢0 +1) (Figure 3-(a)). Clearly, every inequality of the form z; < ¢,
i€ {1,2} and <€ {<,<,>,>} is satisfied by x iff it is satisfied by x'. Hence a
transition that can be taken at x, leading to a new valuation y, iff it can be taken
at x' leading to a point y’ on the same square as y. For the same reasons time can
progress at x iff it can do so at x’, however unless the order among the fractional
parts of 1 and x5 is the same in x and x’ they might reach different squares as

time goes by. Only if they belong to the same triangular subset of X, namely a
set of the form {x : (1) < (z2)} where (z;) denotes the fractional part of x;,
they will meet the same squares during time evolution (Figure 3-(b)). Combining
these facts we obtain the equivalence relation on X which guarantees that all
the members of an equivalence class can exhibit essentially the same behaviors.

This simple (and simplified) story becomes more complicated if transition
guards and invariants are allowed to contain strict inequalities. In that case
some transitions might be enabled in the interior of a region but not in its
boundaries, and the region graph becomes a more involved mathematical object
with elements of all dimensionalities from 0 to n. If, however, timing constraints
are restricted to be closed (i.e. non-strict) every boundary point satisfies all the
constraints satisfied by the regions in its neighborhood. In particular the set of
integral points, the grid {0,1,...,k — 1}™ “covers” all X in the sense that it
intersects the boundaries of all open full-dimensional regions and satisfies all the
constraints that they satisfy (Figure 3-(c)). Hence these integral points can be
taken as representatives and all the (qualitative) trajectories starting from them
cover all the possible behaviors of the system.

/ i

v 7

X, x

Fig. 3. a) Two points satisfying the same constraints; b) Two equivalent points; ¢) An
integer point satisfying all the constraints satisfied by its six neighboring regions.

To be more precise, a discrete run might be a slight variation of some of
the dense runs it represents: it may sometimes have few transitions taken si-
multaneously while in the dense run these transitions are separated by small
amount of time. Nevertheless, the following results [HMP92,AMP98] underlie
the soundness of discrete verification:

Theorem 1 (Emptiness of Closed TA). The set of dense behaviors of a
closed TA is non-empty iff it contains a discrete run.

Combining this with the fact that untimed properties can be expressed as
TAs in which all constraints are true (which is closed), we have:

Corollary 1 (Discrete Time Verification). A closed TA satisfies an untimed
property ¢ iff its discrete time version satisfies .

If the TA is not closed, its closure is an over-approximation and a satisfaction
of any linear-time property by the closure implies satisfiability by the original
automaton.

3 STARI Description

STARI (Self-Timed At Receiver’s Input) [Gre97] is a novel approach to high-
bandwidth communication which combines synchronous and self-timed design
techniques. Generally speaking, a transmitter communicates synchronously with
a receiver through an asynchronous FIFO buffer (see Figure 4). The FIFO makes
the system tolerant to time-varying skew between the transmitter and receiver
clocks. An internal handshake protocol using acknowledgments prevents data
loss or duplication inside the queue.

Transmitter FIFO Receiver
---data ---

<+t---ack ---

Global Clock

varying delay varying delay

Fig. 4. The STARI overview.

The functioning of STARI is based on a rather intuitive idea. The FIFO must
be initialized to be half-full. During each period of the clock one value is inserted
to the FIFO by the transmitter and one value is removed by the receiver. Due
to the complementary nature of these actions no control is required to prevent
queue underflow or overflow. Short-term fluctuations in the clock rates of the
transmitter and the receiver are handled by inserting or removing, more items
to or from the queue.

Following the STARI model proposed by Tasiran and Brayton in [TB97],
which differs slightly from the original description in [Gre97], we represent the
boolean values true and false by dual rail encoding (see Figure 5). An auxiliary
empty value is needed to distinguish between the case of two consecutive identical
values and the case of one value maintained during more than one clock cycle.
The transmitter is constrained to send sequences of true and false where each
two occurrences of these values are separated by an occurrence of empty. The
STARI chip consists of a linear array of n identical stages, each capable of storing
a data value X.

The following two properties need to be proved to ensure the correct opera-
tion of the STARI circuit:

X |true false empty
Xt 1 0 0
Xfl o0 1 0

Fig. 5. Dual rail encoding.

— Each data value output by the transmitter must be inserted in the FIFO
before the next one.

— A new value must be output by the FIFO before each acknowledgment from
the receiver

We specify the desired behavior of an n-stage STARI as an ideal FIFO buffer
combined with a receiver and a transmitter respecting the abovementioned con-
vention (see Figure 6). Note that in this specification, every transition is labeled
with a pair of put and get actions, with the intended meaning that they can
occur in any order including simultaneously. The goal of the verification is to
show that if we hide the internal operations of STARI, the realizable sequences
of put’s and get’s conform with this specification.

The operation principle of a stage k can be summarized as follows: it may
copy its predecessor value (X := Xy_1) when its successor has already copied
(and acknowledged) its current value (X = Xg11). Using the dual rail encoding
of data values, such a behavior can be achieved using two Muller C-elements
that hold the X.t and X.f components, and one NOR gate for computing the
acknowledgment (see Figure 7).

A Muller C-element works as follows: when the two inputs become identical,
after some delay the output takes on their value, otherwise the output maintains
its previous value. Consider, for example, a situation where stages k and k + 1
hold the empty value, stage k — 1 the true value and Ackyy1 = 0. When Acky41
becomes 1, the C-element for Xj.f remains unchanged at 0 because its inputs
are different (i.e. Ackyy; = 1, Xp_1.f = 0). However, both the inputs of the
C-element for Xj.t are equal to 1 (Ackyy; = Xi_1.t = 1), and after some delay,
it will switch to 1. This way the true value has been copied from stage k — 1 to
stage k.

4 Modeling STARI by Timed Automata

The correct functioning of STARI depends on the timing characteristics of the
gates (the time it takes, say, for a C-element to switch) and its relation with
the central clock period and the skew between the receiver and transmitter.
We model the uncertainty concerning the delay associated with gates using the
bi-bounded delay model, that is, we associate with every gate an interval [l, u]
indicating the lower and upper bounds for its switching delay (see [L89], [BS94],
[MP95] and [AMP98] for the exact definitions).

Following [MP95] we can model any logical gate with a delay [I,u] using a
timed automaton with 4 states (0-stable, 0-excited, 1-stable and 1-excited) and

one clock. In particular, each stage of STARI is modeled by the three timed
automata of Figures 8, 9 and 10.

Let us look at the automaton of Figure 8 which models the X.t component
of the k* stage. Its state is characterized by two boolean variables Xy.t, xy.t,
the former stores the gate output and the latter stores the gate internal value,
i.e. the value to which the gate “wants” to go after the delay. The stable states
are those in which Xy.t = z.t. The conditions for staying and leaving stable
states are complementary and do not depend on clock values: for example, the
automaton leaves state (0,0) and goes to the unstable state (0, 1) exactly when
both its inputs are 1. During this transition the clock variable C.t is reset to
zero. The automaton can stay at (0,1) as long as Cy.t < uc and can change its
output and stabilize in (1,1) as soon as Cy.t > l¢, where [lc,uc] is the delay
interval associated with a C-element. The automaton for the X.f component
(Figure 9) is exactly the same (with different inputs) and the automaton for the
NOR gate (Figure 10) is similarly characterized by two boolean variables Acky,
acky, a clock variable Cj.a and a delay bounded by [ln,un]. This means that
an n-stage STARI can be translated into 3n automata with 3n clocks and 6n
boolean variables.

In addition to the automata for modeling the stages, we need three other
automata for modeling the transmitter, the reciever and their clock cycle. The
global clock cycle is modeled by a simple timed automaton using one clock vari-
able C'. Whenever C reaches the cycle size p it is reset to zero. (see Figure 11).

The transmitter is modeled as a 3-state automaton (Figure 11). At each
clock cycle it puts a value at the input ports of the first stage (Xo.t and Xg.f),
according to the convention that every pair of data items is separated by an
empty item. Moreover, the transmission can be done with some skew with respect
to the clock cycle, bounded by the sy constant, that is, the actual time of
transmission can be anywhere in the interval [p — st, p].

The receiver is a 1-state automaton (see Figure 11) which reads the current
output value (i.e. X,,.t and X,,.f) and acknowledges the reception by modifying
Ack,,+1 according to whether or not X, is empty. As in the transmitter, a skew
bounded by sg is allowed.

Note that the receiver and transmitter skews cannot accumulate during suc-
cessive cycles. They always range in an interval depending on the (perfect) global
clock cycle. However, each one can vary non-deterministically from one cycle to
another. This is more general than assuming a fixed skew given in advance, or
a fixed skew chosen at start-up from a given interval. The transitions of these
automata are annotated by action names such as put and get whose role is
explanatory — they have no effect on the functioning of the system.

5 Verification Results and Performance Analysis

5.1 Discrete Time and BDDs

We have modeled various instants of STARI, each with a different number of
stages. For each instance we have composed the timed automata and then min-

get false T et empty
put empty ut false

get true get empty
put empty {ttrie

get e:wm 4&%
put false put empty
get empty T get true

put true put empty

Fig. 6. The specification of an ideal 3-stage buffer. The states correspond to the buffer
contents.

«Q

-

e

Xp_1.t 7%@7 Xkt
o Ackis
Xpor.f 7%C> Xy f

Fig. 7. Stage k of STARI

Acky, =

Xp_q.t=Ackppq =1/ Cp.t =0

Cp-t
Xj_ 1t =0V Ackpyq =0 kot < e

Cpt> 1A

Xp_1.t = 1A
Ackjqq =1

Cp.t > oA

Xp_q.t = 0A
Acky 41 =0

Xp_1t =1V Ackpyq =1

Xp_1t=Ackpyq =0/ Cp.t =0

Fig. 8. The timed automaton for the C-element Xj.t.

Xp—1f =Ackpypq =1/ Cp.f:=0

Ch-
Xp_1.f =0V Ackjyq =0 kS <me

Cp-f>1cA

Xp_1-f =1A
Ackpyq =1

Xp_1-f =1V Ackpqq =1

Xp_1.f = Ackpyq =0/ Cp.f:=0

Fig. 9. The timed automaton for the C-element Xj.f.

Xt =Xp.f=0/Cp.a:=0

Xpt=1VXp.f=1

Cp.a > INA
Xp .t =0A
Xpf =
Cp-a>INA

(Xp.t =1V
Xp-f=1)

Xpt=Xp.f=0

Xpt=1VXp.f=1/Cp.a:=0

Fig. 10. The timed automaton for the NOR gate Acky.

get empty

get false get true

p—sp <C/ Xq.f:=0 p—sp <C/ Xg.t =1

put false w put empty w

p—sp <C/ Xq.f =1 p—sp <C /[Xg.t:=0

Fig. 11. A global clock with a period p, the receiver and the transmitter.

imized them by hiding the unobservable transitions. In Figure 12 one can see
the automaton obtained for three stages, where in addition to the put and get
actions, we left also the tick action which indicates the end of the global clock
cycle. After hiding the tick we obtain a realization of the ideal FIFO as specified
in Figure 6.

Fig.12. A three-stage realizations of Stari with internal actions hidden.

We used the following concrete parameters to model the chip: [lo,uc] =
[N, un) = [2,4] for gate delays, p = 12 for the clock cycle and st = sg = 2 for
the maximal allowed skew of the transmitter and the receiver.

The BDD implementation is based on the model-checker SMI [B97] and it
uses the CUDD package [S95]. The 18-stage STARI is modeled by a network of

timed automata summing up to 55 clocks. It uses 286 BDD variables to encode
the clocks and the states. The reachable state space is of order of 10! states.
We were able to prove that each STARI model with n < 18 stages, right
initialized with m distinct values (m ~ n/2) simulates an ideal buffer of size m.
Moreover, we verified that the transition graphs of the implementation and the
specification are equivalent with respect to the branching bisimulation [vGW89],
if we consider only the reading and writing to be observable. The equivalence is
verified symbolically using the method described in [FKM93]. The time and the
memory needed' to perform this verification are presented in Figure 13.

oo £ e
// /

10000
. - B oo
; 1000 % /
e Ll

7 7

10 15 10 15
number of stages number of stages

Fig. 13. Time and memory consumption for STARI verification using BDDs.

5.2 Variable-dimension DBMs

We have also verified STARI, interpreted over dense-time, using the DBM repre-
sentation of Kronos and the forward-analysis technique of [DT98]. To overcome
the explosion associated with the size and number of DMBs we have used the
techniques of [DY96,DT98], based on the notion of active and inactive clocks.

As one can see in Figure 8, the basic building block which is used to model
a timed gate is a four-state automaton with one clock which is active only in
the unstable states. So a-priori, each clock is active in half of the global control
states. However, in real designs, especially when there is some natural order in
which information flows in the circuit, the average over the reachable states of
the number of active clocks can be much smaller.

The information concerning clock activity has been extracted automatically
from the TA description and,using the variable-dimension DBM library of KRO-
NOS, we were able to verify STARI with up to 8 stages (27 clocks). The main
reason for the relative inferiority compared to the BDD approach is the large
size of the discrete state-space (224): using DBMs, discrete variables are enumer-
ated, whereas using discrete time and BDDs all variables (including clocks) are

1 All the results reported here were obtained on a Pentium II with 512 MB of memory.

handled uniformly, which results in more compact representation. Future tech-
niques, combining BDDs for the state variables and DBMs for the clocks might
improve performance significantly.

Figure 14 shows the time performance and the number of symbolic states
(discrete variables plus DBM) generated for number of stages. We have also
measured the number of active clocks in each symbolic state and the results
confirm our expectations that only a small fraction of clocks are active at any
time. For instance, in the case of 8 stages, out of 27 clocks at most 9 were active,
and this in less than 4% of the total number of DBMs generated (see diagram
on the right of Figure 15). In more than 85% of the symbolic states, only 6 to
8 clocks were active. The distributions have the same shape for other STARI
configurations.

/ 1000000 /
10000
8
T
g 1000 g 100000
; 2
»§, 100 2‘
= g 10000
5 ,/
10 =
1 1000
4 4
number of stages number of stages

Fig. 14. Experimental results for STARI verification using DBMs.

DBMs (% over total: 586479)

o T T T T T T !
0 3 6 9 12 15 18 21 24 27
number of active clocks

Fig. 15. The distribution of active clocks in an 8-stage STARI.

6 Discussion

Our performance resuts are significantly better than those reported by Tasiran
and Brayton [TB97], from whom we have adopted the model. They prove, using
techniques developed in [TAKB96], that every stage can be abstracted into a
timed automaton having 5 states and only one clock. Using this abstract model
and the tool Timed-Cospan they were able to verify an 8-stage buffer, while
using the detailed model they could not verify more than 3 stages. Another
attempt to verify STARI was reported by Belluomini and Myers [BM98] who
model the circuit using a variant of timed Petri nets which they verify using
the tool POSET which employs partial-order methods. The largest example
they reported was of 10 stages. Yoneda and Ryu [YR99] improve these results
significantly using circuit-specific heuristics.

We have demonstrated that a rather large example can be verified by tools
based on timed automata, and we hope that this will contribute to the wide
adoption of timed automata as a model for quantitative timing analysis. Our
results indicate that in certain cases, discretized BDD-based approaches out-
perform other techniques. In the future we will try to characterize the class of
systems for which this is the case. It is clear, however, that in examples where
large constants (or equivalently, smaller time granularity) are involved, discrete
time becomes less attractive.

References

[AD94] R. Alur and D.L. Dill; A Theory of Timed Automata, Theoretical Computer
Science 126, 183-235, 1994.

[AH92] R. Alur and T.A. Henzinger, Logics and Models for Real-Time: A survey,
J.W. de Bakker et al (Eds.), Real-Time: Theory in Practice, LNCS 600,
74-106, Springer, 1992.

[AK96] R. Alur, and R.P. Kurshan, Timing Analysis in COSPAN, in R. Alur,
T.A. Henzinger and E. Sontag (Eds.), Hybrid Systems III, LNCS 1066,
220-231, Springer, 1996.

[ABK'97] E. Asarin, M. Bozga, A. Kerbrat, O. Maler, A. Pnueli and A. Rasse, Data-
Structures for the Verification of Timed Automata, in O. Maler (Ed.), Proc.
HART’97, LNCS 1201, 346-360, Springer, 1997.

[AMP98] E. Asarin, O. Maler and A. Pnueli, On the Discretization of Delays in
Timed Automata and Digital Circuits, in R. de Simone and D. Sangiorgi
(Eds), Proc. Concur’98, LNCS 1466, 470-484, Springer, 1998.

[B96] F. Balarin, Approximate Reachability Analysis of Timed Automata, Proc.
RTSS°96, 52-61, IEEE, 1996.
[B97] M. Bozga, SMI: An Open Toolbox for Symbolic Protocol Verification, Tech-

nical Report 97-10, Verimag, 1997.
http://wwv.imag.fr/VERIMAG/DIST_SYS/SMI/

[BM9S] W. Belluomini and C.J. Myers, Verification of Timed Systems Using
POSETSs, in A.J. Hu and M.Y. Vardi (Eds.), Proc. CAV’98, 403-415, LNCS
1427, Springer, 1997.

[BMPY97]

[BS94]
[DOTY96]
[DT98]
[DY96]

[D8Y]

[FKMO93]
[Gre97]
[H93]
[HMP92]

[LLPY97]

[LPY97]
[L8Y]

[MP95]

[S95]
[SV96]

[TAKBY6]

[TB97]

[TKB97]

[VGW89)]

[WD94]

[YR99]

M. Bozga, O. Maler, A. Pnueli, S. Yovine, Some Progress in the Symbolic
Verification of Timed Automata, in O. Grumberg (Ed.) Proc. CAV’97, 179-
190, LNCS 1254, Springer, 1997.

J.A. Brzozowski and C-J.H. Seger, Asynchronous Circuits, Springer, 1994.
C. Daws, A. Olivero, S. Tripakis, and S. Yovine, The Tool KRONOS, in
R. Alur, T.A. Henzinger and E. Sontag (Eds.), Hybrid Systems I1I, LNCS
1066, 208-219, Springer, 1996.

C. Daws and S. Tripakis, Model checking of Real-time Reachability Prop-
erties using Abstractions, Proc. TACAS’98, LNCS 1384, 1998.

C. Daws and S. Yovine, Reducing the Number of Clock Variables of Timed
Automata, Proc. RTSS’96, 73-81, IEEE, 1996.

D.L. Dill, Timing Assumptions and Verification of Finite-State Concurrent
Systems, in J. Sifakis (Ed.), Automatic Verification Methods for Finite State
Systems, LNCS 407, 197-212, Springer, 1989.

J.C. Fernandez, A. Kerbrat, and L. Mounier, Symbolic Equivalence Check-
ing, In C. Courcoubetis (Ed.), Proc. CAV’93, LNCS 697, Springer, 1993.
M. R. Greenstreet, STARI: Skew Tolerant Communication, to appear in
IEEE Transactions on Computers, 1997.

N. Halbwachs, Delay Analysis in Synchronous Programs, in C. Courcou-
betis (Ed.), Proc. CAV’93, LNCS 697, 333-346, Springer, 1993.

T. Henzinger, Z. Manna, and A. Pnueli. What Good are Digital Clocks?,
in W. Kuich (Ed.), Proc. ICALP’92, LNCS 623, 545-558, Springer, 1992.
K. Larsen, F. Larsson, P. Pettersson and W. Yi, Efficient Verification of
Real-Time Systems: Compact Data Structure and State-Space Reduction,
Proc. RTSS’98, 14-24, 1997.

K.G. Larsen, P. Pettersson and W. Yi, UPPAAL in a Nutshell, Software
Tools for Technology Transfer 1/2, 1997.

H.R. Lewis, Finite-state Analysis of Asynchronous Circuits with Bounded
Temporal Uncertainty, TR15-89, Harvard University, 1989.

O. Maler and A. Pnueli, Timing Analysis of Asynchronous Circuits
using Timed Automata, in P.E. Camurati, H. Eveking (Eds.), Proc.
CHARME’95, LNCS 987, 189-205, Springer, 1995.

F. Somenzi, CUDD: CU Decision Diagram Package, 1995.

J. Springintveld and F.W. Vaandrager, Minimizable Timed Automata, in
B. Jonsson and J. Parrow (Eds.), Proc. FTRTFT’96, LNCS 1135, 130-147,
Springer, 1996.

S. Tasiran R. Alur, R.P. Kurshan and R. Brayton, Verifying Abstractions
of Timed Systems, in Proc. CONCUR’96, 546-562, Springer, 1996.

S. Tasiran and R.K. Brayton, STARI: A Case Study in Compositional and
Hierarchical Timing Verification, in O. Grumberg (Ed.) Proc. CAV’97,
191-201, LNCS 1254, Springer, 1997.

S. Tasiran, Y. Kukimoto and R.K. Brayton, Computing Delay with Cou-
pling using Timed Automata, Proc. TAU’97, 1997.

R. J. van Glabbeek and W. P. Weijland, Branching-Time and Abstraction
in Bisimulation Semantics (extended abstract), CS R8911, Centrum voor
Wiskunde en Informatica, Amsterdam, 1989.

H. Wong-Toi and D.L. Dill, Approximations for Verifying Timing Proper-
ties, in T. Rus and C. Rattray (Eds.), Theories and Ezperiences for Real-
Time System Development, World Scientific Publishing, 1994.

T. Yoneda and H. Ryu, Timed Trace Theoretic Verification Using Partial
Order Reductions, in Proc. Async’99, 108-121, IEEE Press, 1999.

