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The classical dam break problem has become the de facto standard in validating the nonlinear shallow water equations solvers. Moreover, the Nonlinear Shallow Water Equations (NSWE) are widely used for flooding simulations. While applied mathematics community is essentially focused on developing new numerical schemes, we tried to examine the validity of the mathematical model under consideration. The main purpose of this study is to check the pertinence of the NSWE for flooding processes. From the mathematical point of view, the answer is not obvious since all derivation procedures assumes the total water depth positivity. We performed a comparison between the two-fluid Navier-Stokes simulations and the NSWE solved analytically and numerically. Several conclusions are drawn out and perspectives for future research are outlined.

1. Introduction. During the last century there were more than 200 failures of dams greater than 15 m high [START_REF] Singh | Dam Breach Modelling Technology[END_REF][START_REF] Zoppou | Numerical solution of the two-dimensional unsteady dam break[END_REF]. They have caused a loss of more than 8000 lives and millions of dollars worth of damage. Consequently, dam break flows have become an important practical problem in civil engineering. Numerical models have become essential as a predictive tool in evaluating the risks associated with the failure of the hydraulic structures. That is why, the number of numerical studies has drastically increased during past decades.

To our knowledge, the dam break problem was studied analytically for the first time in the PhD thesis of [START_REF] Pohle | The Lagragian equations of hydrodynamics: solutions which are analytic functions of time[END_REF], [START_REF] Pohle | The Lagragian equations of hydrodynamics: solutions which are analytic functions of time[END_REF], who used a lagrangian description to solve this problem. The classical analytical solution for the dam break problem in the context of the NSWE can be found in the book of [START_REF] Stoker | Water Waves: The mathematical theory with applications[END_REF], [START_REF] Stoker | Water Waves: The mathematical theory with applications[END_REF]. Later, this solution was generalized to the constant slope case by [START_REF] Mangeney | Analytical solution for testing debris avalanche numerical models[END_REF], [START_REF] Mangeney | Analytical solution for testing debris avalanche numerical models[END_REF]. Note, that [START_REF] Hunt | Asymptotic solution for dam break problem[END_REF], [START_REF] Hunt | Asymptotic solution for dam break problem[END_REF], also considered the sloping channel case and he obtained a closed-form solution using a kinematic wave approximation. Among solution of Stoker [START_REF] Stoker | Water Waves: The mathematical theory with applications[END_REF] (see Section 3.3) was used in our comparison. Numerical solutions to the NSWE were obtained using the VOLNA code, cf. [START_REF] Dutykh | Mathematical modelling of tsunami waves[END_REF][START_REF] Poncet | On the inclusion of arbitrary topography and bathymetry in the nonlinear shallow-water equations[END_REF][START_REF] Dutykh | Complete numerical modelling of tsunami waves: generation, propagation and inundation[END_REF].

The present study is organized as follows. In Section 2 we present two mathematical models which are used in this study. In the same section we also discuss several mathematical properties and extensions of the NSWE. In Section 3 we review some known analytical solutions to the NSWE of the dam break problem. After discussing briefly the numerical techniques, (Section 4), we present and discuss our numerical results in Section 5. Conclusions are outlined in Section 6.

2. Mathematical models. In this section we briefly present two mathematical models which are used in the sequel. The first model is the well-known Nonlinear Shallow Water Equations (NSWE) which were derived for the first time by Saint-Venant (1871), cf. [START_REF] De Saint-Venant | Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leur lit[END_REF]. The second model is the two-fluid Navier-Stokes equations written under the assumption of fluids immiscibility. These equations are much more complete from physical and mathematical points of view. That is why, the two-fluid model is supposed to provide us reliable results.

2.1.

Nonlinear Shallow Water Equations. The Nonlinear Shallow Water Equations can be written in the following conservative form (2DH):

H t + ∇ • (H u) = 0, (1) 
(H u) t + ∇ • H u ⊗ u + g 2 H 2 I = gH∇h, (2) 
where H( x, t) is the total water depth and u( x, t) : R 2 × R + → R 2 is the depthaveraged horizontal velocity. Traditionally, g denotes the acceleration due to the gravity, h( x, t) is the bathymetry function and I is the identity tensor. We do not provide here the derivation of these equations since it is more than classical and can be found in various sources [START_REF] Stoker | Water Waves: The mathematical theory with applications[END_REF][START_REF] Mei | The applied dynamics of ocean surface waves[END_REF].

Remark 1. The bathymetry function h( x, t) can be time-dependent. It is especially important for tsunami generation problems by submarine earthquakes, landslides, etc. The coupling with seismology is usually done through this function. Namely, various earthquake models, cf. e.g. [START_REF] Dutykh | Water waves generated by a moving bottom[END_REF][START_REF] Dutykh | Tsunami generation by dynamic displacement of sea bed due to dip-slip faulting[END_REF][START_REF] Dutykh | Influence of sedimentary layering on tsunami generation[END_REF][START_REF] Kervella | Comparison between three-dimensional linear and nonlinear tsunami generation models[END_REF] give us the seabed displacements which are then transmitted to the ocean layer. Obviously, in this study we consider the fluid propagation over the flat bottom in view of applying analytical techniques.

Governing equations (1), (2) form the system of balance laws (conservation laws, if the bottom is even h = const). Moreover, this system is strictly hyperbolic provided that H > 0. This property is extensively used in the construction of various numerical schemes and, in particular, in the Characteristic Flux approach, cf. [START_REF] Ghidaglia | Une mthode volumes-finis flux caractristiques pour la rsolution numrique des systmes hyperboliques de lois de conservation[END_REF][START_REF] Ghidaglia | Flux schemes for solving nonlinear systems of conservation laws[END_REF][START_REF] Ghidaglia | Innovative Methods for Numerical Solution of Partial Differential Equations, chapter Flux schemes for solving nonlinear systems of conservation laws[END_REF][START_REF] Ghidaglia | On the numerical solution to two fluid models via cell centered finite volume method[END_REF][START_REF] Dutykh | Complete numerical modelling of tsunami waves: generation, propagation and inundation[END_REF], which is also implemented in the code VOLNA .

Let us discuss the eigensystem of the advective flux. First, we introduce the so-called conservative variables and rewrite the governing equations as a system of conservation laws:

∂ w ∂t + ∇ • F ( w) = S( w), (3) 
where we introduced the following notations:

w( x, t) : R 2 × R + → R 3 , w = (w 1 , w 2 , w 3 ) = (H, Hu, Hv), F ( w) =   Hu Hv Hu 2 + g 2 H 2 Huv Huv Hv 2 + g 2 H 2   =    w 2 w 3 w 2 2 w1 + g 2 w 2 1 w2w3 w1 w2w3 w1 w 2 3 w1 + g 2 w 2 1    .
After projecting the flux F ( w) on a unit normal direction n = (n x , n y ), | n| = 1, one can compute the Jacobian matrix A n . Its expression in the physical variables has the following form:

A n = ∂ F ( w) • n ∂ w =   0 n x n y -uu n + gHn x u n + un x un y -vu n + gHn y vn x u n + vn y   ,
where u n = u • n is the velocity vector projected on n. The Jacobian matrix A n has three distinct eigenvalues:

λ 1 = u n -c, λ 2 = u n , λ 3 = u n + c, (4) 
where c = √ gH is the gravity wave speed in infinite wavelength limit. This quantity plays the same rôle as the speed of sound in compressible fluid mechanics. The hyperbolicity condition for the system (1), (2) follows immediately from (4) and the definition of c. The eigenstructure of the Jacobian matrix A n is fundamental for constructing numerical flux function, cf. [START_REF] Dutykh | Complete numerical modelling of tsunami waves: generation, propagation and inundation[END_REF], and thus, upwinding the discrete solution.

2.1.1. Properties. Nonlinear Shallow Water Equations have many other interesting properties. Some of them will be briefly recalled here. To reveal these properties, we shall take the water wave theory point of view.

Let us recast equations ( 1), (2) in the following nonconservative form in one space dimension:

∂ t η + ∂ x (h + η)u = 0, (5) 
∂ t u + 1 2 ∂ x |u| 2 + g∂ x η = 0. ( 6 
)
These equations possess a (non-canonical) Hamiltonian structure [START_REF] Salmon | Hamiltonian fluid mechanics[END_REF][START_REF] Zakharov | Hamiltonian formalism for nonlinear waves[END_REF][START_REF] Radder | Hamiltonian dynamics of water waves[END_REF]:

∂ t η u + 0 ∂ x ∂ x 0 δH δη δH δu = 0,
where the Hamiltonian H is defined as

H := 1 2 +∞ -∞ gη 2 dx + 1 2 +∞ -∞ (h + η)u 2 dx.
Moreover, the pair of equations ( 5), ( 6) possesses an infinity of conservation laws [START_REF] Benney | Nonlinear wave motion, chapter Nonlinear waves[END_REF][START_REF] Miura | Conservation laws for the fully nonlinear long wave equations[END_REF]. Equations ( 5), ( 6) can be also derived from Luke's Lagrangian variational principle [START_REF] Luke | A variational principle for a fluid with a free surface[END_REF] if we introduce the velocity potential function φ( x, t) such that u = ∇φ. In this case, the Lagrangian reads

L = t2 t1 x2 x1 (η + h) φ t + 1 2 |∇φ| 2 + 1 2 gη 2 d x dt.
Governing equations ( 5), [START_REF] Bresch | Existence of global weak solutions for a 2d viscous shallow water equations and convergence to the quasi-geostrophic model[END_REF] 1), (2) arise after a series of approximations applied to complete set of equations. Strictly speaking, they model the propagation and transformation of infinitely long water waves. That is why, their validity for run-up and flooding simulations is not so obvious a priori.

The validity region of these equations can be extended by adding some new physical effects. The inclusion of the dispersion is beneficial for description of shorter wavelengths. As a result, one can derive Boussinesq equations, [START_REF] Boussinesq | Thorie gnrale des mouvements qui sont propags dans un canal rectangulaire horizontal[END_REF][START_REF] Boussinesq | Thorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond[END_REF][START_REF] Madsen | Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis[END_REF][START_REF] Bona | Boussinesq equations and other systems for smallamplitude long waves in nonlinear dispersive media. I: Derivation and linear theory[END_REF][START_REF] Bona | Boussinesq equations and other systems for smallamplitude long waves in nonlinear dispersive media: II. the nonlinear theory[END_REF][START_REF] Bona | Long wave approximations for water waves[END_REF][START_REF] Bona | Numerical solution of KdV-KdV systems of Boussinesq equations: I. The numerical scheme and generalized solitary waves[END_REF], Serre equations, [START_REF] Serre | Contribution l'tude des coulements permanents et variables dans les canaux[END_REF][START_REF] Barthélémy | Nonlinear shallow water theories for coastal waves[END_REF], Green-Naghdi model, [START_REF] Green | On the theory of water waves[END_REF][START_REF] Green | A derivation of equations for wave propagation in water of variable depth[END_REF][START_REF] Kim | A derivation of the Green-Naghdi equations for irrotational flows[END_REF][START_REF] Li | Hamiltonian structure and linear stability of solitary waves of the Green-Naghdi equations[END_REF], and several others.

Another physical effect is the dissipation. Situations where dissipation becomes important for water waves are discussed in [START_REF] Zabusky | Shallow water waves, the Korteweg-de Vries equation and solitons[END_REF][START_REF] Bona | An evaluation of a model equation for water waves[END_REF][START_REF] Wu | Long waves in ocean and coastal waters[END_REF][START_REF] Dutykh | Viscous potential free-surface flows in a fluid layer of finite depth[END_REF][START_REF] Dutykh | Visco-potential free-surface flows and long wave modelling[END_REF][START_REF] Dutykh | Group and phase velocities in the free-surface visco-potential flow: new kind of boundary layer induced instability[END_REF]. If one neglects the bottom boundary layer effects [START_REF] Dutykh | Viscous potential free-surface flows in a fluid layer of finite depth[END_REF][START_REF] Dutykh | Visco-potential free-surface flows and long wave modelling[END_REF], dissipative equations ( 5), ( 6) take the following form, cf. [START_REF] Dias | Theory of weakly damped free-surface flows: a new formulation based on potential flow solutions[END_REF][START_REF] Dutykh | Viscous potential free-surface flows in a fluid layer of finite depth[END_REF][START_REF] Dutykh | Visco-potential free-surface flows and long wave modelling[END_REF]:

∂ t η + ∇ • (h + η) u = ν∇ 2 η, ∂ t u + 1 2 ∇| u| 2 + g∇η = ν∇ 2 u,
where ν is the kinematic viscosity. Corresponding dissipative Boussinesq equations can be found in [START_REF] Khabakhpashev | Nonlinear evolution equation for sufficiently long two-dimensional waves on the free surface of a viscous liquid[END_REF][START_REF] Liu | Viscous effects on transient long-wave propagation[END_REF][START_REF] Liu | Experimental and numerical investigation of viscous effects on solitary wave propagation in a wave tank[END_REF][START_REF] Dutykh | Viscous potential free-surface flows in a fluid layer of finite depth[END_REF][START_REF] Dutykh | Visco-potential free-surface flows and long wave modelling[END_REF]. When equations are recast in the conservative form (1), ( 2), there is also an alternative approach to include the dissipation initiated by Gerbeau & Perthame and followed by other authors, cf. e.g. [START_REF] Gerbeau | Derivation of viscous Saint-Venant system for laminar shallow water[END_REF][START_REF] Bresch | Existence of global weak solutions for a 2d viscous shallow water equations and convergence to the quasi-geostrophic model[END_REF][START_REF] Bresch | On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models[END_REF][START_REF] Marche | Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects[END_REF].

Two-fluid Navier-Stokes equations.

Let us consider two immiscible and incompressible2 fluids (water and air, for example) occupying domain Ω = Ω + ∪ Ω -, where they are separated by an interface S. This situation is schematically depicted in Figure 1. We note that we do not make any assumption on the interface complexity and topology. In what follows we will denote by superscripts ± all quantities related to the heavy and light fluids respectively.

In each fluid we can write mass and momentum balance equations:

∇ • u = 0, (7) ρ ± (∂ t u + u • ∇ u) + ∇p = ∇ • (2µ ± D) + σκδ S n + ρ ± g. (8) 
The latter may be written in conservative form:

∂ t (ρ ± u) + ∇ • (ρ ± u ⊗ u + pI) = ∇ • (2µ ± D) + σκδ S n + ρ ± g,
where u is the fluid velocity, ρ ± are the fluids densities, µ ± are the fluids dynamic viscosities, D = 1 2 (∂ i u j +∂ j u i ) is the rate of deformation tensor. The surface tension term is a force concentrated at the interface, σ is the surface tension coefficient, κ is the curvature of the interface, n is the unit normal to the interface and δ S is the distribution (Dirac mass function) concentrated on the interface S.

Governing equations [START_REF] Bresch | On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models[END_REF], [START_REF] Boñgolan-Walsh | Impact of boundary conditions on entrainment and transport in gravity currents[END_REF] have to be completed by the following jump conditions across the interface:

• Velocity continuity [ u] S = 0 (9) 
• Tangential stress condition

[µ t • D • n] S = 0, (10) 
• Normal stress condition

[ n • (-pI + 2µD) • n] S = σκ, ( 11 
)
where t is a tangent vector ( t • n = 0) to the interface and notation [•] S represents the jump of a quantity across the surface S. However, for numerical computations it is advantageous to introduce a characteristic function φ, (cf. [START_REF] Ishii | Thermo-Fluid Dynamic Theory of Two-Phase Flow[END_REF][START_REF] Toumi | An approximate linearized Riemann solver for a two-fluid model[END_REF][START_REF] Ghidaglia | On the numerical solution to two fluid models via cell centered finite volume method[END_REF][START_REF] Dias | A two-fluid model for violent aerated flows[END_REF][START_REF] Dias | Simulation of free surface compressible flows via a two fluid model[END_REF][START_REF] Dias | A compressible two-fluid model for the finite volume simulation of violent aerated flows[END_REF]) defined as:

φ = 1, x ∈ Ω + (t), 0, x ∈ Ω -(t).
Thus, φ and n are related by the formula ∇φ = nδ S . In the absence of phase change, φ is simply advected by the fluid motion:

∂ t φ + ∇ • (φ u) = 0. ( 12 
)
In order to write a unique formulation for the entire domain, we express the density and the viscosity as functions of φ:

ρ = φρ + + (1 -φ)ρ -, µ = φµ + + (1 -φ)µ -.
Thus, we have the following momentum balance equation:

ρ(∂ t u + u • ∇ u) + ∇p = ∇ • (2µD) + σκδ S n + ρ g. ( 13 
)
Along with the mass conservation equation ( 7) and the volume fraction advection equation [START_REF] Benjamin | Gravity currents and related phenomenon[END_REF], it forms the two-fluid Navier-Stokes equations with an interface, which are solved numerically below.

Remark 2. We can recover jump conditions ( 9) -( 11) if we investigate the governing equations ( 7), ( 12), [START_REF] Benney | Nonlinear wave motion, chapter Nonlinear waves[END_REF] in the neighborhood of the surface S and making use of the formula ∇φ = nδ S .

3. Analytical solutions. In this section we review known analytical solutions related to the dam break problem that we use in the comparison with the numerical results.
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. Sketch of the solution to the LSWE.

3.1. Linear solution. The simplest analytical solution for the dam break problem can be derived when we consider Linear Shallow Water Equations (LSWE). The latter can be obtained in a straightforward manner from ( 5), ( 6):

∂ t η + ∂ x (h 0 u) = 0, ∂ t u + g∂ x η = 0.
In some situations, it is advantageous to eliminate the velocity variable u to obtain

∂ 2 η ∂t 2 - ∂ ∂x c 2 0 ∂η ∂x = 0, c 0 := gh 0 . (14) 
The Initial Value Problem (IVP) for ( 14) corresponding to the dam break takes the following form:

η(x, 0) = h 0 H(x), ∂ t η(x, 0) = 0,
where H(x) is the Heaviside function. This IVP can be easily solved using the Fourier transform:

η(x, t) = h 0 1 2 + 1 π +∞ 0 sin(kx) k cos(c 0 kt) dk .
The sketch of this solution is presented in Figure 2. Namely, it consists of two waves propagating in opposite directions with velocities ±c 0 . Hence, the front speed is equal to -c 0 . Of course, this result is nonphysical as it will be shown below. Similar solutions can be constructed considering the linearized Euler equations for either one or two fluids separated by an interface.

3.2.

Small time asymptotics. Several small time asymptotics were proposed to solve the dam break problem. One of the first solutions was derived by [START_REF] Pohle | The Lagragian equations of hydrodynamics: solutions which are analytic functions of time[END_REF], [START_REF] Pohle | The Lagragian equations of hydrodynamics: solutions which are analytic functions of time[END_REF]. Such methods generally require the use of lagrangian description. The prominent book by Stoker, [START_REF] Stoker | Water Waves: The mathematical theory with applications[END_REF], also contains such a solution:

X(a, b, t) = a - g 2π t 2 log cos 2 πb 4h0 + sinh 2 πa 4h0 sin 2 πb 4h0 + sinh 2 πa 4h0 + o(t 2 ), (15) 
Y (a, b, t) = b - g π t 2 arctan sin πb 2h0 sinh πa 2h0 + o(t 2 ), (16) 
where (X, Y ) are new coordinates of the particle (a, b) at time t. Recently this solution was generalized by [START_REF] Korobkin | The initial stage of dam-break flow[END_REF] [START_REF] Korobkin | The initial stage of dam-break flow[END_REF]. We tried to compare the solution ( 15), ( 16) with our numerical results and found that its validity time is too short for any practical use. That is why this solution is not plotted bellow.
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. Sketch of the initial condition for the shallow water computations.

Note, that expressions ( 15) and ( 16) are singular at the shoreline (a, b) = (0, 0). Thus, some special care is needed to get an asymptotic expansion valid in the vicinity of this point, cf. [START_REF] Korobkin | The initial stage of dam-break flow[END_REF].

Nonlinear solution.

The classical book by J.J. Stoker, [START_REF] Stoker | Water Waves: The mathematical theory with applications[END_REF], contains an analytical solution of the NSWE for the dam break problem. Consider the classical initial condition:

H(x, 0) = h 0 , x ≥ 0, 0, x < 0. u(x, 0) ≡ 0, ∀x ∈ R.
Schematically it is depicted on Figure 3. Then, by considering the Riemann invariants and using the method of characteristics, [START_REF] Lax | Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves[END_REF][START_REF] Godlewski | Hyperbolic systems of conservation laws[END_REF][START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF][START_REF] Chechkin | Analytical and Numerical Aspects of Partial Differential Equations[END_REF], one can derive the following solution:

H(x, t) =      0,
x < -2c 0 t,

1 9g x t + 2c 0 2 , -2c 0 t ≤ x ≤ c 0 t, h 0 , x > c 0 t, (17) 
u(x, t) =      0, x < -2c 0 t, 2 3 x t -c 0 , -2c 0 t ≤ x ≤ c 0 t, 0, x > c 0 t, (18) 
where c 0 := √ gh 0 is the gravity wave speed in the undisturbed region. The front position is given by the characteristic outgoing from the fluid region:

x f (t) = -2c 0 t.
Recall that recently this solution was generalized to the constant slope case by [START_REF] Mangeney | Analytical solution for testing debris avalanche numerical models[END_REF], [START_REF] Mangeney | Analytical solution for testing debris avalanche numerical models[END_REF].

Remark 3. The run-up algorithm used in our numerical code VOLNA is based on this analytical result. Namely, we impose just obtained front speed when the wet/dry transition is detected. This simple approach was validated and shown to be very robust. For more details we refer to [START_REF] Dutykh | Tsunami generation by dynamic displacement of sea bed due to dip-slip faulting[END_REF], [START_REF] Dutykh | Complete numerical modelling of tsunami waves: generation, propagation and inundation[END_REF].

4. Numerical methods. The main purpose of this study is to draw out some conclusions on the validity of NSWE for wetting (flooding) process simulations. That is why, we do not provide here any details about numerical methods used to compute solutions. The interested reader can consult references given below to get technical details.

In order to solve numerically the two-fluid Navier-Stokes equations ( 7), ( 13) and ( 12), we applied the finite volumes method, cf. e.g. [START_REF] Jasak | Error analysis and estimation for the finite volume method with applications to fluid flows[END_REF][START_REF] Rusche | Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions[END_REF][START_REF] Opencfd | The Open Source CFD Toolbox[END_REF]. Namely, a freely available solver interDyMFoam of the OpenFOAM CFD Toolbox [START_REF] Opencfd | The Open Source CFD Toolbox[END_REF] was used. The interface between two fluids is reconstructed from the volume fraction φ distribution using the VOF method, cf. [START_REF] Hirt | Volume of fluid (VOF) method for the dynamics of free boundaries[END_REF][START_REF] Scardovelli | Direct numerical simulation of free-surface and interfacial flow[END_REF][START_REF] Popinet | A front-tracking algorithm for accurate representation of surface tension[END_REF]. Let us underline that all twofluid computations presented in this study are 3D with only one cell in z-direction. Everywhere we impose the classical no-slip boundary condition.

Nonlinear Shallow Water Equations are solved with our operational numerical code VOLNA , cf. [START_REF] Dutykh | Mathematical modelling of tsunami waves[END_REF][START_REF] Dutykh | Complete numerical modelling of tsunami waves: generation, propagation and inundation[END_REF]. This code was developed in close collaboration with R. Poncet and F. Dias when the first author was at CMLA, ENS de Cachan. The VOLNA code uses unstructured triangular meshes and is able to run in arbitrary complex coastal regions. The numerical method is a second-order finite volumes MUSCL-TVD scheme along with the SSP-RK3(4) method for the discretization in time, cf. [START_REF] Spiteri | A new class of optimal high-order strong-stability-preserving time discretization methods[END_REF]. Details on adopted discretization procedure can be found in [START_REF] Dutykh | Mathematical modelling of tsunami waves[END_REF][START_REF] Poncet | On the inclusion of arbitrary topography and bathymetry in the nonlinear shallow-water equations[END_REF][START_REF] Dutykh | Complete numerical modelling of tsunami waves: generation, propagation and inundation[END_REF]. All the computations we performed are in 2D and only one-dimensional cross sections are presented below. On the lateral boundaries we impose the wall boundary condition u • n = 0. This choice is consistent with two-fluid computation and allows us to have an insight into the impact process.

5.

Comparison results and discussion. In this section we perform a comparison between a two-fluid simulation (DNS), the analytical solution by [START_REF] Stoker | Water Waves: The mathematical theory with applications[END_REF] and numerical solutions to the NSWE by the VOLNA code. The initial set-up for the VOLNA code is shown in Figure 3. Sketch of the initial condition for the DNS is depicted on Figure 4. The simulation time and propagation distance is chosen so that the right boundary do not influence obtained results. All parameters used in computations are given in Table 1. These parameters are chosen suitable to simulate the air/water interaction.

The snapshots of our simulations are given on Figures 5 -11. On the left image (a) we represent the volume fraction φ distribution provided by the DNS. On the right image (b) we plot together the analytical solution (17) (red dotted line) and simulation results by the VOLNA code (black solid line) for the free surface elevation η. The analytical solution is almost superposed with our numerical simulation as it is expected. This result can be considered as one more validation test of the wetting/drying algorithm used in the VOLNA code.

In the beginning of the simulation, the water column is slightly deformed due to the gravity force (Figure 5). Only a small time interval is needed for the heavy fluid to acquire the kinetic energy and to enter into the propagation régime depicted on 12. This creates a strong distortion of the interface which is elongated near the bottom (it can be easily seen in Figures 1011). This effect is not present in NSWE simulations since, the vertical flow structure is not resolved by this approximate model. Consequently, in NSWE we obtain a piecewise linear distribution of the velocity field as it follows from analytical solution [START_REF] Bona | An evaluation of a model equation for water waves[END_REF].

Let us notice another one fact. In Figure 11 one can observe that the NSWE solution has already reached the left vertical wall. From this moment, the analytical solution is not valid anymore. However, the two-fluid simulation has not yet reached the left boundary. This discrepancy comes from the time lag due to initial acceleration stage, on one hand, and slightly different front propagation speeds, on 2. Front speed predicted by four different approaches. stage (t ≤ 0.25 s) which is present in the two-fluid model. Another explanation consists in the front velocity which can be determined by measuring the slope to the curve t → x f (t). Determined in this way front speeds (in permanent régime, t ≥ 0.25 s) are given in Table 2. The LSWE give completely wrong results showing again that the nonlinearity plays the crucial rôle in this process. It is also worth to note that the numerical front speed by the VOLNA code is closer to the DNS. This positive fact can be attributed to the effect of the numerical diffusion on unstructured meshes. 5.1. Impact process. In the previous section we presented results concerning the initial and propagation stages of the dam break problem. However, we continued the computations until the interaction with the left wall and even slightly beyond. The goal is to test again the validity of the NSWE in such extreme conditions. For this kind of situations there is no analytical solution, and thus, we compare only DNS and VOLNA code results. In two-fluid simulation we use the same noslip condition for all solid boundaries. The implementation of the wall boundary condition of VOLNA solver can be found in [START_REF] Dutykh | Complete numerical modelling of tsunami waves: generation, propagation and inundation[END_REF], and it is based on considerations of incoming characteristics. The general methodology is presented in works of J.-M. Ghidaglia and F. Pascal [START_REF] Ghidaglia | On boundary conditions for multidimensional hyperbolic systems of conservation laws in the finite volume framework[END_REF][START_REF] Ghidaglia | Flux boundary conditions for hyperbolic systems of conservations laws in the finite volume framework[END_REF][START_REF] Ghidaglia | The normal flux method at the boundary for multidimensional finite volume approximations in cfd[END_REF].

The comparison results are presented in Figures 14 and15. For instance, the wave amplitude on Figure 15 (a) reaches the upper boundary (its height is 0.5 m), while NSWE numerical solution amplitude does not exceed 0.2 m. From these results it is obvious that the wave impact process is not correctly modelled by NSWE. It is possible to foresee this conclusion if one recalls two main constutive assumptions behind NSWE:

• The pressure is hydrostatic • Vertical velocity and acceleration are neglected Notice, that for infinitely long waves, these two hypotheses are equivalent. Since, the dynamic pressure dominates in the impact process, we get qualitatively wrong results (it is especially clear from Figure 15).

Conclusions and perspectives.

In the present study we tried to examine the validity of the NSWE for wetting (flooding) process modelling. As a test-case we chose the classical dam break problem which is the de facto standard in this field. This problem was solved in the context of two completely different models in terms of physical precision and, by consequence, of different complexity. The two-fluid DNS was chosen as the reference solution since all necessary physical effects are included in it.

Comparison results presented above show good overall performance of the NSWE. In order to appreciate more these results, one should take into account also the computational cost of the DNS and relatively inexpensive shallow water simulations.

However, we revealed several drawbacks of the depth-integrated model. Namely, the free surface shape differs from the parabolic profile predicted by NSWE. This discrepancy is attributed to the non-piecewise linear distribution of the velocity field inside the water column. To compare, see Figure 12 for the DNS result and formula [START_REF] Bona | An evaluation of a model equation for water waves[END_REF] for the analytical prediction by NSWE. The experimental and theoretical study of P.K. [START_REF] Stansby | The initial stages of dam-break flow[END_REF] [START_REF] Stansby | The initial stages of dam-break flow[END_REF] also revealed some differences during the initial stages. However, their objection concerned essentially some new jet-like phenomena just after release. For later times, they found relatively close agreement with NSWE.

We went beyond the initial purpose of this study and continued our simulations until the impact process with the left wall. It was shown that the NSWE strongly underestimate the wave height. This discrepancy has its origins in the hydrostatic pressure assumption. Actually, the dynamic pressure becomes dominant during the impact process. Its excess is responsible of spectacular splashes that we may have a chance to observe in nature.

Concerning the front propagation speed, we obtained slightly different values between the DNS and the NSWE solutions. We have to note that in a physical experiment this quantity strognly depends on the soil conditions. The standard no-slip boundary condition is clearly insufficient to describe all kinds of soils. We believe that future research activities will focus on developing wall function laws and realistic boundary conditions for Navier-Stokes equations (two-fluid or with free surface). On the other hand, NSWE can also be improved. To produce physically correct results, these equations should be completed by friction laws (Chézy, Manning, Darcy-Weisbach and other laws) with properly adjusted coefficients. Recently, bottom boundary layer effects on long waves were studied [START_REF] Dutykh | Visco-potential free-surface flows and long wave modelling[END_REF]. Another direction consists in extending NSWE to account for bed material transport as it was recently proposed by [START_REF] Fraccarollo | Riemann wave description of erosional dam-break flows[END_REF] [START_REF] Fraccarollo | Riemann wave description of erosional dam-break flows[END_REF].

HFigure 4 .

 4 Figure 4. Sketch of the initial condition for two-fluid numerical simulation (DNS).

  parameter value gravity acceleration, g, m/s 2 1.0 fluid column height, h 0 , m 0.25 fluid column length, ℓ, m 1.0 total domain height, H, m 0.5 fluid density, ρ + , kg/m 3 1000.0 fluid viscosity, ν + , m 2 /s 10 -6 air density, ρ -, kg/m 31.0 air viscosity, ν -, kg/m 3 10 -6 surface tension, σ, kg 0.07 Table1. Parameters used in numerical simulations.

Figure 5 .

 5 Figure 5. Initial deformation of the water column under the gravity force (t = 0.2 s).

Figure 6 .

 6 Figure 6. Transition to the propagation régime (t = 0.4 s).

Figures 6 - 11 .

 611 Figures 6 -11. Analytical solution[START_REF] Boussinesq | Thorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond[END_REF] prescribes a parabolic form of the interface. However, the DNS shows somehow different shape. Lower fluid layers undergo stronger acceleration than in NSWE and thus propagate faster. Nonuniform distribution of the velocity field along the heavy fluid is illustrated on Figure12. This creates a strong distortion of the interface which is elongated near the bottom (it can be easily seen in. This effect is not present in NSWE simulations since, the vertical flow structure is not resolved by this approximate model.

Figure 7 .

 7 Figure 7. Heavy fluid entering into the propagation régime (t = 0.6 s).

Figure 8 .

 8 Figure 8. Heavy fluid in the propagation régime (t = 0.8 s).

Figure 9 .

 9 Figure 9. Heavy fluid in the propagation régime (t = 1 s).

Figure 10 .

 10 Figure 10. Heavy fluid front before the interaction with the left wall (t = 1.2 s).

Figure 11 .

 11 Figure 11. Heavy fluid front before the interaction with the left wall (t = 1.4 s).

Figure 12 .Figure 13 .

 1213 Figure 12. Velocity field magnitude at t = 1.4 s.

Figure 14 .Figure 15 .

 1415 Figure 14. Interaction with the left vertical wall at t = 1.6 s.

  are obtained by varying L with respect to η and φ.
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In this case, the hodograph transformation means that Riemann invariants were chosen as independent variables. After this change of variables, governing equations become linear and they are further solved by Hankel transform.

The case of the two compressible and miscible fluids was recently studied by Dias, Dutykh and Ghidaglia, cf.[37, 

[START_REF] Dias | A two-fluid model for violent aerated flows[END_REF][START_REF] Dias | Simulation of free surface compressible flows via a two fluid model[END_REF][START_REF] Dias | A compressible two-fluid model for the finite volume simulation of violent aerated flows[END_REF].
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