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Abstract. The classical dam break problem has become the de facto stan-
dard in validating the nonlinear shallow water equations solvers. Moreover,

the Nonlinear Shallow Water Equations (NSWE) are widely used for flood-
ing simulations. While applied mathematics community is essentially focused
on developing new numerical schemes, we tried to examine the validity of the
mathematical model under consideration. The main purpose of this study is
to check the pertinence of the NSWE for flooding processes. From the mathe-
matical point of view, the answer is not obvious since all derivation procedures
assumes the total water depth positivity. We performed a comparison between
the two-fluid Navier-Stokes simulations and the NSWE solved analytically and
numerically. Several conclusions are drawn out and perspectives for future
research are outlined.

1. Introduction. During the last century there were more than 200 failures of
dams greater than 15 m high [99, 118]. They have caused a loss of more than
8000 lives and millions of dollars worth of damage. Consequently, dam break flows
have become an important practical problem in civil engineering. Numerical models
have become essential as a predictive tool in evaluating the risks associated with the
failure of the hydraulic structures. That is why, the number of numerical studies
has drastically increased during past decades.

To our knowledge, the dam break problem was studied analytically for the first
time in the PhD thesis of Pohle (1950), [89], who used a lagrangian description to
solve this problem. The classical analytical solution for the dam break problem in
the context of the NSWE can be found in the book of Stoker (1957), [102]. Later,
this solution was generalized to the constant slope case by Mangeney et al. (2000),
[79]. Note, that Hunt (1982), [58], also considered the sloping channel case and
he obtained a closed-form solution using a kinematic wave approximation. Among
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2 DENYS DUTYKH AND DIMITRIOS MITSOTAKIS

classical works on this topic, we have to mention the prominent paper by Benjamin
(1968), [12]. Recently, Korobkin & Yilmaz (2008), [68], studied the initial stages of
the dam break flow in the framework of potential free surface flows.

It is interesting, however, to recall some other known analytical solutions to
NSWE even if they are not directly related to the dam break problem. Wave run-
up on a sloping beach was investigated by Carrier & Greenspan (1958), [22, 26],
using a hodograph transformation1. This solution is extensively used in the tsunami
waves community to validate the run-up algorithm of various NSWE solvers [60,
105, 109, 95, 94, 62, 35]. The transform of Carrier & Greenspan was employed later
by Synolakis and his collaborators to study analytically tsunami run up on a sloping
beach, cf. e.g. [103, 107, 108, 69]. There is also an analytical solution by Liu et

al. (2003), [72] of the linearized shallow water equations on a sloping beach, where
they used a forcing term to model an underwater landslide. This solution is also
currently used to test numerical codes, [35].

On the other hand, the dam break problem and various lock exchange flows were
extensively studied experimentally, cf. e.g. [81, 111, 65, 55, 96, 10, 11, 97]. In this
study, we do not directly appeal to them, since our main concern is to study the
validity of NSWE as an approximation to more complex mathematical models in
some extreme situations.

Numerical studies are also countless. We can divide them conventionally into
two big groups. In the first group, authors solved this problem in the framework of
the NSWE, cf. e.g. [113, 1, 110, 118, 54, 24, 115, 53, 15, 114, 19, 20, 88] and in the
second one where more advanced models were used, cf. e.g. [59, 82, 57, 56, 100, 83,
14, 86, 84, 8, 85, 25]. Obviously, this list does not pretend to be exhaustive.

The authors decided to perform this study because there is an apparent contra-
diction between the mathematical origins of the NSWE and some applications of
this model. When we look carefully at any derivation procedure of NSWE, we will
see that an implicit assumption of water depth positivity is adopted. Moreover,
these equations are designed to model infinitely long waves. That is why, strictly
speaking, these equations can be valid only in fluid regions. However, using vari-
ous numerical techniques (sometimes ad-hoc, semiempirical) this model is routinely
used for wetting/drying (run-up/run-down) simulations, cf. e.g. [105, 109]. This
process is considerably more complex and the validity of the NSWE is not obvious
a priori. Recall, that the shoreline can be considered as a triple point: water, air
and solid (soil) meet their. Of course, this situation is simplified for mathematical
modelling.

We choose a Direct Numerical Simulation (DNS) by the two-fluid Navier-Stokes
equations [104, 90] as the reference solution. This system contains all the necessary
physical effects ranging from viscosity to the surface tension. Moreover, the ambient
fluid (air) is resolved. In the absence of experimental data, these simulations can be
assimilated to an idealized experiment. Up to graphical resolution, our numerical
results are very similar to the experiments of J. Martin and W. Moyce [81] and we
remain clearly in the laminar régime. We also underline that we consider a realistic
density ratio 1:1000 as for the air/water interface (see Table 1). The results of the
DNS are compared with several solutions to the NSWE. Namely, the analytical

1In this case, the hodograph transformation means that Riemann invariants were chosen as
independent variables. After this change of variables, governing equations become linear and they
are further solved by Hankel transform.
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solution of Stoker [102] (see Section 3.3) was used in our comparison. Numerical
solutions to the NSWE were obtained using the VOLNA code, cf. [37, 88, 35].

The present study is organized as follows. In Section 2 we present two mathemat-
ical models which are used in this study. In the same section we also discuss several
mathematical properties and extensions of the NSWE. In Section 3 we review some
known analytical solutions to the NSWE of the dam break problem. After dis-
cussing briefly the numerical techniques, (Section 4), we present and discuss our
numerical results in Section 5. Conclusions are outlined in Section 6.

2. Mathematical models. In this section we briefly present two mathematical
models which are used in the sequel. The first model is the well-known Nonlinear
Shallow Water Equations (NSWE) which were derived for the first time by Saint-
Venant (1871), cf. [36]. The second model is the two-fluid Navier-Stokes equations
written under the assumption of fluids immiscibility. These equations are much
more complete from physical and mathematical points of view. That is why, the
two-fluid model is supposed to provide us reliable results.

2.1. Nonlinear Shallow Water Equations. The Nonlinear ShallowWater Equations
can be written in the following conservative form (2DH):

Ht +∇ · (H~u) = 0, (1)

(H~u)t +∇ ·
(

H~u⊗ ~u+
g

2
H2I

)

= gH∇h, (2)

where H(~x, t) is the total water depth and ~u(~x, t) : R2 × R
+ 7→ R

2 is the depth-
averaged horizontal velocity. Traditionally, g denotes the acceleration due to the
gravity, h(~x, t) is the bathymetry function and I is the identity tensor.

We do not provide here the derivation of these equations since it is more than
classical and can be found in various sources [102, 78].

Remark 1. The bathymetry function h(~x, t) can be time-dependent. It is especially
important for tsunami generation problems by submarine earthquakes, landslides,
etc. The coupling with seismology is usually done through this function. Namely,
various earthquake models, cf. e.g. [28, 30, 29, 66] give us the seabed displacements
which are then transmitted to the ocean layer. Obviously, in this study we consider
the fluid propagation over the flat bottom in view of applying analytical techniques.

Governing equations (1), (2) form the system of balance laws (conservation laws,
if the bottom is even h = const). Moreover, this system is strictly hyperbolic
provided that H > 0. This property is extensively used in the construction of
various numerical schemes and, in particular, in the Characteristic Flux approach,
cf. [43, 41, 42, 44, 35], which is also implemented in the code VOLNA .

Let us discuss the eigensystem of the advective flux. First, we introduce the
so-called conservative variables and rewrite the governing equations as a system of
conservation laws:

∂ ~w

∂t
+∇ · F(~w) = S(~w), (3)

where we introduced the following notations:

~w(~x, t) : R2 × R
+ 7→ R

3, ~w = (w1, w2, w3) = (H,Hu,Hv),

F(~w) =





Hu Hv
Hu2 + g

2H
2 Huv

Huv Hv2 + g
2H

2



 =







w2 w3
w2

2

w1

+ g
2w

2
1

w2w3

w1

w2w3

w1

w2

3

w1

+ g
2w

2
1






.
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After projecting the flux F(~w) on a unit normal direction ~n = (nx, ny), |~n| = 1,
one can compute the Jacobian matrix An. Its expression in the physical variables
has the following form:

An =
∂
(

F(~w) · ~n
)

∂ ~w
=





0 nx ny

−uun + gHnx un + unx uny

−vun + gHny vnx un + vny



 ,

where un = ~u ·~n is the velocity vector projected on ~n. The Jacobian matrix An has
three distinct eigenvalues:

λ1 = un − c, λ2 = un, λ3 = un + c, (4)

where c =
√
gH is the gravity wave speed in infinite wavelength limit. This quantity

plays the same rôle as the speed of sound in compressible fluid mechanics. The
hyperbolicity condition for the system (1), (2) follows immediately from (4) and
the definition of c. The eigenstructure of the Jacobian matrix An is fundamental
for constructing numerical flux function, cf. [35], and thus, upwinding the discrete
solution.

2.1.1. Properties. Nonlinear Shallow Water Equations have many other interesting
properties. Some of them will be briefly recalled here. To reveal these properties,
we shall take the water wave theory point of view.

Let us recast equations (1), (2) in the following nonconservative form in one space
dimension:

∂tη + ∂x
(

(h+ η)u
)

= 0, (5)

∂tu+
1

2
∂x|u|2 + g∂xη = 0. (6)

These equations possess a (non-canonical) Hamiltonian structure [93, 117, 91]:

∂t

(

η
u

)

+

(

0 ∂x
∂x 0

)(

δH
δη
δH
δu

)

= 0,

where the Hamiltonian H is defined as

H :=
1

2

+∞
∫

−∞

gη2 dx+
1

2

+∞
∫

−∞

(h+ η)u2 dx.

Moreover, the pair of equations (5), (6) possesses an infinity of conservation laws
[13, 80].

Equations (5), (6) can be also derived from Luke’s Lagrangian variational prin-
ciple [75] if we introduce the velocity potential function φ(~x, t) such that ~u = ∇φ.
In this case, the Lagrangian reads

L =

t2
∫

t1

~x2
∫

~x1

{

(η + h)
(

φt +
1

2
|∇φ|2

)

+
1

2
gη2
}

d~x dt.

Governing equations (5), (6) are obtained by varying L with respect to η and φ.
Recently, a generalized variational principle was proposed by Clamond & Dutykh,
cf. [21]. Their approach allows for more flexibility and can be used to derive various
generalized shallow and deep water approximations.
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Ω+(t)
Ω−(t)

S

Figure 1. Two immiscible fuids separated by an interface.

2.1.2. Extensions. The Nonlinear Shallow Water Equations (1), (2) arise after a
series of approximations applied to complete set of equations. Strictly speaking,
they model the propagation and transformation of infinitely long water waves. That
is why, their validity for run-up and flooding simulations is not so obvious a priori.

The validity region of these equations can be extended by adding some new
physical effects. The inclusion of the dispersion is beneficial for description of shorter
wavelengths. As a result, one can derive Boussinesq equations, [16, 17, 77, 4, 5, 3, 9],
Serre equations, [98, 2], Green-Naghdi model, [45, 46, 64, 71], and several others.

Another physical effect is the dissipation. Situations where dissipation becomes
important for water waves are discussed in [116, 18, 112, 27, 39, 38]. If one neglects
the bottom boundary layer effects [27, 39], dissipative equations (5), (6) take the
following form, cf. [34, 27, 39]:

∂tη +∇ ·
(

(h+ η)~u
)

= ν∇2η,

∂t~u+
1

2
∇|~u|2 + g∇η = ν∇2~u,

where ν is the kinematic viscosity. Corresponding dissipative Boussinesq equations
can be found in [67, 73, 74, 27, 39].

When equations are recast in the conservative form (1), (2), there is also an
alternative approach to include the dissipation initiated by Gerbeau & Perthame
and followed by other authors, cf. e.g. [47, 6, 7, 76].

2.2. Two-fluid Navier-Stokes equations. Let us consider two immiscible and
incompressible2 fluids (water and air, for example) occupying domain Ω = Ω+ ∪
Ω−, where they are separated by an interface S. This situation is schematically
depicted in Figure 1. We note that we do not make any assumption on the interface
complexity and topology. In what follows we will denote by superscripts ± all
quantities related to the heavy and light fluids respectively.

In each fluid we can write mass and momentum balance equations:

∇ · ~u = 0, (7)

ρ±(∂t~u+ ~u · ∇~u) +∇p = ∇ · (2µ±D) + σκδS~n+ ρ±~g. (8)

The latter may be written in conservative form:

∂t(ρ
±~u) +∇ · (ρ±~u⊗ ~u+ pI) = ∇ · (2µ±D) + σκδS~n+ ρ±~g,

2The case of the two compressible and miscible fluids was recently studied by Dias, Dutykh
and Ghidaglia, cf. [37, 33, 32, 31].
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where ~u is the fluid velocity, ρ± are the fluids densities, µ± are the fluids dynamic
viscosities,D = 1

2 (∂iuj+∂jui) is the rate of deformation tensor. The surface tension
term is a force concentrated at the interface, σ is the surface tension coefficient, κ
is the curvature of the interface, ~n is the unit normal to the interface and δS is the
distribution (Dirac mass function) concentrated on the interface S.

Governing equations (7), (8) have to be completed by the following jump condi-
tions across the interface:

• Velocity continuity

[~u]S = 0 (9)

• Tangential stress condition

[µ~t ·D · ~n]S = 0, (10)

• Normal stress condition

[~n · (−pI+ 2µD) · ~n]S = σκ, (11)

where ~t is a tangent vector (~t · ~n = 0) to the interface and notation [·]S represents
the jump of a quantity across the surface S.

However, for numerical computations it is advantageous to introduce a charac-
teristic function φ, (cf. [61, 106, 44, 33, 32, 31]) defined as:

φ =

{

1, ~x ∈ Ω+(t),
0, ~x ∈ Ω−(t).

Thus, φ and ~n are related by the formula ∇φ = ~nδS . In the absence of phase
change, φ is simply advected by the fluid motion:

∂tφ+∇ · (φ~u) = 0. (12)

In order to write a unique formulation for the entire domain, we express the density
and the viscosity as functions of φ:

ρ = φρ+ + (1 − φ)ρ−, µ = φµ+ + (1− φ)µ−.

Thus, we have the following momentum balance equation:

ρ(∂t~u+ ~u · ∇~u) +∇p = ∇ · (2µD) + σκδS~n+ ρ~g. (13)

Along with the mass conservation equation (7) and the volume fraction advection
equation (12), it forms the two-fluid Navier-Stokes equations with an interface,
which are solved numerically below.

Remark 2. We can recover jump conditions (9) – (11) if we investigate the gov-
erning equations (7), (12), (13) in the neighborhood of the surface S and making
use of the formula ∇φ = ~nδS .

3. Analytical solutions. In this section we review known analytical solutions
related to the dam break problem that we use in the comparison with the numerical
results.
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Figure 2. Sketch of the solution to the LSWE.

3.1. Linear solution. The simplest analytical solution for the dam break problem
can be derived when we consider Linear Shallow Water Equations (LSWE). The
latter can be obtained in a straightforward manner from (5), (6):

∂tη + ∂x(h0u) = 0,

∂tu+ g∂xη = 0.

In some situations, it is advantageous to eliminate the velocity variable u to obtain

∂2η

∂t2
− ∂

∂x

(

c20
∂η

∂x

)

= 0, c0 :=
√

gh0. (14)

The Initial Value Problem (IVP) for (14) corresponding to the dam break takes the
following form:

η(x, 0) = h0H(x), ∂tη(x, 0) = 0,

where H(x) is the Heaviside function. This IVP can be easily solved using the
Fourier transform:

η(x, t) = h0

(1

2
+

1

π

+∞
∫

0

sin(kx)

k
cos(c0kt) dk

)

.

The sketch of this solution is presented in Figure 2. Namely, it consists of two waves
propagating in opposite directions with velocities ±c0. Hence, the front speed is
equal to −c0. Of course, this result is nonphysical as it will be shown below.

Similar solutions can be constructed considering the linearized Euler equations
for either one or two fluids separated by an interface.

3.2. Small time asymptotics. Several small time asymptotics were proposed to
solve the dam break problem. One of the first solutions was derived by Pohle
(1950), [89]. Such methods generally require the use of lagrangian description. The
prominent book by Stoker, [102], also contains such a solution:

X(a, b, t) = a− g

2π
t2 log

(

cos2 πb
4h0

+ sinh2 πa
4h0

sin2 πb
4h0

+ sinh2 πa
4h0

)

+ o(t2), (15)

Y (a, b, t) = b− g

π
t2 arctan

(

sin πb
2h0

sinh πa
2h0

)

+ o(t2), (16)

where (X,Y ) are new coordinates of the particle (a, b) at time t. Recently this
solution was generalized by Korobkin & Oguz (2008) [68]. We tried to compare the
solution (15), (16) with our numerical results and found that its validity time is too
short for any practical use. That is why this solution is not plotted bellow.
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H ≡ 0, u ≡ 0

x

H ≡ h0, u ≡ 0

O

y

Figure 3. Sketch of the initial condition for the shallow water computations.

Note, that expressions (15) and (16) are singular at the shoreline (a, b) = (0, 0).
Thus, some special care is needed to get an asymptotic expansion valid in the
vicinity of this point, cf. [68].

3.3. Nonlinear solution. The classical book by J.J. Stoker, [102], contains an
analytical solution of the NSWE for the dam break problem. Consider the classical
initial condition:

H(x, 0) =

{

h0, x ≥ 0,
0, x < 0.

u(x, 0) ≡ 0, ∀x ∈ R.

Schematically it is depicted on Figure 3.
Then, by considering the Riemann invariants and using the method of charac-

teristics, [70, 51, 52, 23], one can derive the following solution:

H(x, t) =











0, x < −2c0t,

1
9g

(

x
t
+ 2c0

)2

, −2c0t ≤ x ≤ c0t,

h0, x > c0t,

(17)

u(x, t) =











0, x < −2c0t,
2
3

(

x
t
− c0

)

, −2c0t ≤ x ≤ c0t,

0, x > c0t,

(18)

where c0 :=
√
gh0 is the gravity wave speed in the undisturbed region. The front

position is given by the characteristic outgoing from the fluid region:

xf (t) = −2c0t.

Recall that recently this solution was generalized to the constant slope case by
Mangeney et al. (2000), [79].

Remark 3. The run-up algorithm used in our numerical code VOLNA is based
on this analytical result. Namely, we impose just obtained front speed when the
wet/dry transition is detected. This simple approach was validated and shown to
be very robust. For more details we refer to Dutykh et al. (2009), [35].

4. Numerical methods. The main purpose of this study is to draw out some
conclusions on the validity of NSWE for wetting (flooding) process simulations.
That is why, we do not provide here any details about numerical methods used to
compute solutions. The interested reader can consult references given below to get
technical details.

In order to solve numerically the two-fluid Navier-Stokes equations (7), (13)
and (12), we applied the finite volumes method, cf. e.g. [63, 92, 87]. Namely,
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H

Figure 4. Sketch of the initial condition for two-fluid numerical
simulation (DNS).

a freely available solver interDyMFoam of the OpenFOAM CFD Toolbox [87] was
used. The interface between two fluids is reconstructed from the volume fraction φ
distribution using the VOF method, cf. [57, 104, 90]. Let us underline that all two-
fluid computations presented in this study are 3D with only one cell in z-direction.
Everywhere we impose the classical no-slip boundary condition.

Nonlinear Shallow Water Equations are solved with our operational numerical
code VOLNA , cf. [37, 35]. This code was developed in close collaboration with
R. Poncet and F. Dias when the first author was at CMLA, ENS de Cachan. The
VOLNA code uses unstructured triangular meshes and is able to run in arbitrary
complex coastal regions. The numerical method is a second-order finite volumes
MUSCL-TVD scheme along with the SSP-RK3(4) method for the discretization
in time, cf. [101]. Details on adopted discretization procedure can be found in
[37, 88, 35]. All the computations we performed are in 2D and only one-dimensional
cross sections are presented below. On the lateral boundaries we impose the wall
boundary condition ~u · ~n = 0. This choice is consistent with two-fluid computation
and allows us to have an insight into the impact process.

5. Comparison results and discussion. In this section we perform a comparison
between a two-fluid simulation (DNS), the analytical solution by Stoker (1957) and
numerical solutions to the NSWE by the VOLNA code. The initial set-up for the
VOLNA code is shown in Figure 3. Sketch of the initial condition for the DNS is
depicted on Figure 4. The simulation time and propagation distance is chosen so
that the right boundary do not influence obtained results. All parameters used in
computations are given in Table 1. These parameters are chosen suitable to simulate
the air/water interaction.

The snapshots of our simulations are given on Figures 5 – 11. On the left image
(a) we represent the volume fraction φ distribution provided by the DNS. On the
right image (b) we plot together the analytical solution (17) (red dotted line) and
simulation results by the VOLNA code (black solid line) for the free surface elevation
η. The analytical solution is almost superposed with our numerical simulation as
it is expected. This result can be considered as one more validation test of the
wetting/drying algorithm used in the VOLNA code.

In the beginning of the simulation, the water column is slightly deformed due to
the gravity force (Figure 5). Only a small time interval is needed for the heavy fluid
to acquire the kinetic energy and to enter into the propagation régime depicted on
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parameter value

gravity acceleration, g, m/s2 1.0
fluid column height, h0, m 0.25
fluid column length, ℓ, m 1.0
total domain height, H , m 0.5
fluid density, ρ+, kg/m3 1000.0
fluid viscosity, ν+, m2/s 10−6

air density, ρ−, kg/m3 1.0
air viscosity, ν−, kg/m3 10−6

surface tension, σ, kg 0.07
Table 1. Parameters used in numerical simulations.

(a) Two-fluid simulation
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Figure 5. Initial deformation of the water column under the grav-
ity force (t = 0.2 s).

(a) Two-fluid simulation
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Figure 6. Transition to the propagation régime (t = 0.4 s).

Figures 6 – 11. Analytical solution (17) prescribes a parabolic form of the inter-
face. However, the DNS shows somehow different shape. Lower fluid layers undergo
stronger acceleration than in NSWE and thus propagate faster. Nonuniform distri-
bution of the velocity field along the heavy fluid is illustrated on Figure 12. This
creates a strong distortion of the interface which is elongated near the bottom (it
can be easily seen in Figures 10 – 11). This effect is not present in NSWE simula-
tions since, the vertical flow structure is not resolved by this approximate model.
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(a) Two-fluid simulation
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Figure 7. Heavy fluid entering into the propagation régime (t =
0.6 s).

(a) Two-fluid simulation
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Figure 8. Heavy fluid in the propagation régime (t = 0.8 s).

(a) Two-fluid simulation
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Figure 9. Heavy fluid in the propagation régime (t = 1 s).

Consequently, in NSWE we obtain a piecewise linear distribution of the velocity
field as it follows from analytical solution (18).

Let us notice another one fact. In Figure 11 one can observe that the NSWE
solution has already reached the left vertical wall. From this moment, the analyt-
ical solution is not valid anymore. However, the two-fluid simulation has not yet
reached the left boundary. This discrepancy comes from the time lag due to initial
acceleration stage, on one hand, and slightly different front propagation speeds, on
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(a) Two-fluid simulation
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Figure 10. Heavy fluid front before the interaction with the left
wall (t = 1.2 s).

(a) Two-fluid simulation
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(b) NSWE

Figure 11. Heavy fluid front before the interaction with the left
wall (t = 1.4 s).

Figure 12. Velocity field magnitude at t = 1.4 s.

the other hand. Bottom boundary layer may have some effect onto the propagation
speed of the heavy fluid front [37, 39].

From these simulations, we extracted the wave front position, shown in Figure 13
as a function of time for two different initial heights: h0 = 0.25 m (as in simulations
presented above) and h0 = 0.125 m. Qualitatively these two results are similar.
We can underline again a very good agreement between numerical and analytical
NSWE results. On the other hand, there is a slightly increasing difference in the
front position with the two-fluid DNS. It can be attributed to the initial acceleration
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Figure 13. Comparison of the front position according to three
different models: blue line with circles corresponds to the DNS,
black line shows the front position predicted by VOLNA solver
(NSWE) and the red dotted line is the analytical solution (17).

h0 = 0.25 m h0 = 0.125 m

Two-fluid (DNS) −0.81 −0.58
VOLNA (NSWE) −0.96 −0.68

Analytical (NSWE) −1.0 −0.71
Analytical (LSWE) −0.5 −0.35

Table 2. Front speed predicted by four different approaches.

stage (t ≤ 0.25 s) which is present in the two-fluid model. Another explanation
consists in the front velocity which can be determined by measuring the slope to
the curve t → xf (t). Determined in this way front speeds (in permanent régime,
t ≥ 0.25 s) are given in Table 2. The LSWE give completely wrong results showing
again that the nonlinearity plays the crucial rôle in this process. It is also worth
to note that the numerical front speed by the VOLNA code is closer to the DNS.
This positive fact can be attributed to the effect of the numerical diffusion on
unstructured meshes.

5.1. Impact process. In the previous section we presented results concerning the
initial and propagation stages of the dam break problem. However, we continued
the computations until the interaction with the left wall and even slightly beyond.
The goal is to test again the validity of the NSWE in such extreme conditions.
For this kind of situations there is no analytical solution, and thus, we compare
only DNS and VOLNA code results. In two-fluid simulation we use the same no-
slip condition for all solid boundaries. The implementation of the wall boundary
condition of VOLNA solver can be found in [35], and it is based on considerations of
incoming characteristics. The general methodology is presented in works of J.-M.
Ghidaglia and F. Pascal [49, 48, 50].

The comparison results are presented in Figures 14 and 15. For instance, the
wave amplitude on Figure 15 (a) reaches the upper boundary (its height is 0.5 m),
while NSWE numerical solution amplitude does not exceed 0.2 m.
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Figure 14. Interaction with the left vertical wall at t = 1.6 s.
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Figure 15. Interaction with the left vertical wall at t = 2.2 s.

From these results it is obvious that the wave impact process is not correctly
modelled by NSWE. It is possible to foresee this conclusion if one recalls two main
constutive assumptions behind NSWE:

• The pressure is hydrostatic
• Vertical velocity and acceleration are neglected

Notice, that for infinitely long waves, these two hypotheses are equivalent. Since,
the dynamic pressure dominates in the impact process, we get qualitatively wrong
results (it is especially clear from Figure 15).

6. Conclusions and perspectives. In the present study we tried to examine the
validity of the NSWE for wetting (flooding) process modelling. As a test-case we
chose the classical dam break problem which is the de facto standard in this field.
This problem was solved in the context of two completely different models in terms
of physical precision and, by consequence, of different complexity. The two-fluid
DNS was chosen as the reference solution since all necessary physical effects are
included in it.

Comparison results presented above show good overall performance of the NSWE.
In order to appreciate more these results, one should take into account also the com-
putational cost of the DNS and relatively inexpensive shallow water simulations.

However, we revealed several drawbacks of the depth-integrated model. Namely,
the free surface shape differs from the parabolic profile predicted by NSWE. This
discrepancy is attributed to the non-piecewise linear distribution of the velocity field
inside the water column. To compare, see Figure 12 for the DNS result and formula
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(18) for the analytical prediction by NSWE. The experimental and theoretical study
of P.K. Stansby et al (1998) [96] also revealed some differences during the initial
stages. However, their objection concerned essentially some new jet-like phenomena
just after release. For later times, they found relatively close agreement with NSWE.

We went beyond the initial purpose of this study and continued our simulations
until the impact process with the left wall. It was shown that the NSWE strongly
underestimate the wave height. This discrepancy has its origins in the hydrostatic
pressure assumption. Actually, the dynamic pressure becomes dominant during the
impact process. Its excess is responsible of spectacular splashes that we may have
a chance to observe in nature.

Concerning the front propagation speed, we obtained slightly different values
between the DNS and the NSWE solutions. We have to note that in a physical
experiment this quantity strognly depends on the soil conditions. The standard
no-slip boundary condition is clearly insufficient to describe all kinds of soils. We
believe that future research activities will focus on developing wall function laws
and realistic boundary conditions for Navier-Stokes equations (two-fluid or with free
surface). On the other hand, NSWE can also be improved. To produce physically
correct results, these equations should be completed by friction laws (Chézy, Man-
ning, Darcy-Weisbach and other laws) with properly adjusted coefficients. Recently,
bottom boundary layer effects on long waves were studied [39]. Another direction
consists in extending NSWE to account for bed material transport as it was recently
proposed by Fraccarollo & Capart (2002) [40].
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Céline Acary-Robert for her permanent assistance and valuable advice. Finally,
special thanks go to David Lannes who organized the workshop “Oceanography
& Mathematics” (26 – 28 January 2009 at ENS Paris) and brought together the
authors.

REFERENCES

[1] K. Anastasiou and C. T. Chan. Solution of the 2d shallow water equations using the fi-
nite volume method on unstructured triangular meshes. International Journal for Numerical
Methods in Fluids, 24:1225–1245, 1999.
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