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Abstract

The violent relaxation and the metastable states of the Hamiltonian Mean-Field

model, a paradigmatic system of long-range interactions, is studied using a

Hamiltonian formalism. Rigorous results are derived algebraically for the time

evolution of selected macroscopic observables, e.g., the global magnetization.

The high and low energy limits are investigated and the analytical predictions

are compared with direct N -body simulations. The method we use enables us to

re-interpret the out-of-equilibrium phase transition separating magnetized and

(almost) unmagnetized regimes.

Key words: Vlasov equation, Hamiltonian systems, out-of-equilibrium phase

transition

PACS: 05.70.Ln, 05.45.a, 05.70.Fh, 45.50.Pk

1. Introduction

Systems with long-range interactions [1, 2] exhibit a fascinating feature of

metastability: Starting from out-of-equilibrium initial conditions, the system

violently relaxes toward a metastable state, often called Quasi-Stationary State

(QSS). In this regime, macroscopic quantities reach values which substantially
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differ from the corresponding thermodynamic equilibrium configuration. Al-

though the QSS are only transient regimes, their lifetime have been shown to

diverge with the number of bodies in interaction [3]. For this reason they pos-

sibly correspond to the solely accessible experimental regimes.

We consider a paradigmatic system with long-range interactions, the Hamil-

tonian Mean-Field (HMF) [3] where particles on a circle are collectively inter-

acting through a cosine-like mean-field potential. After a fast relaxation, the

system typically enters a metastable regime in which the particles either aggre-

gate into a large cluster (magnetized phase), or they spread almost homoge-

neously around the circle (unmagnetized or homogeneous phase). In particular,

an out-of-equilibrium phase transition between these two states occurs when the

parameters of the initial conditions are varied [4].

In this paper, we focus on both the violent relaxation process and the sub-

sequent QSS regime. We use an algebraic framework based on a Hamiltonian

formulation of the Vlasov equation for the HMF model. This Vlasov equation

rules the evolution of the single particle distribution function in phase space

(as a kinetic equation) and naturally arises when investigating the continuous

version of the HMF model. As in the limit of infinite number of particles the

system gets permanently frozen in the QSS phase, it is customarily believed

that QSS can be interpreted as equilibria of the Vlasov equation. We exploit a

Hamiltonian formalism of this Vlasov equation to derive analytical expressions

for the global magnetization as function of time. This magnetization measures

the aggregation of the particles on the circle. It is a macroscopic observable

which is directly influenced by the microscopic, single particle trajectory. It is

in general particularly cumbersome to bridge the gap between the microscopic

realm of the many-body interacting constituents and the macroscopic world of

collective dynamics.

Using an expansion provided by the Hamiltonian framework, we here obtain

rigorous results on the time expansion of relevant observables. These results are

compared with direct numerical simulation. We consider in particular the high

and low energy regimes which allow some simplifications in the expansions. In
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addition, we characterize the aforementioned out-of-equilibrium phase transition

which occurs in an intermediate energy range. This is achieved by monitoring

the initial relaxation of the magnetization, as a function of relevant parame-

ters of the initial distribution. The parameter space is hence partitioned into

two regions, depending on the magnetization amount, a result which positively

correlates with direct numerics [4].

The paper is organized as follows: In Sec. 2 we will review the discrete HMF

model, presents its continuous counterpart and discuss the basic of the bracket

expansion method. Section 3 is devoted to the presentation of the analytical

results, with special emphasis to the high and low energy regimes. The out-

of-equilibrium phase transition issue is also addressed. Comparison with direct

simulations is provided to substantiate the accuracy of our predictions.

2. Model and methods

2.1. Lie-Poisson structure of the Vlasov equation

We consider N particles interacting on a circle with the following Hamilto-

nian:

H =

N
∑

i=1





p2
i

2
+

1

2N

N
∑

j=1

[1 − cos(θi − θj)]



 , (1)

where (θi, pi) are canonically conjugate variables which means that the Poisson

bracket giving the dynamics (Hamilton’s equations) is given by

{F, G} =
N
∑

i=1

(

∂F

∂pi

∂G

∂θi

− ∂F

∂θi

∂G

∂pi

)

.

In the continuous limit, we consider an Eulerian description of the system which

gives the dynamical evolution of the distribution of particles f(θ, p; t) in phase

space via the following Vlasov equation:

∂f

∂t
= −p

∂f

∂θ
+

dV [f ]

dθ

∂f

∂p
, (2)

where V [f ](θ) = 1 − Mx[f ] cos θ − My[f ] sin θ. The magnetization M [f ] =

Mx + iMy is defined as

M [f ] =

∫∫

feiθdθdp, (3)
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where the integrals are taken over [−π, π] × R. Equation (2) can be cast into a

Hamiltonian form where the (infinite dimensional) phase space is composed of

the functions f(θ, p) of ] − π, π] × R. The Hamiltonian is given by

H [f ] =

∫∫

f
p2

2
dθdp − Mx[f ]2 + My[f ]2 − 1

2
, (4)

and the associated Lie-Poisson bracket by

{F, G} =

∫∫

f

(

∂

∂p

δF

δf

∂

∂θ

δG

δf
− ∂

∂θ

δF

δf

∂

∂p

δG

δf

)

dθdp, (5)

for F and G two observables (that is, functionals of f). The functional deriva-

tives δF/δf are computed following the expansion :

F [f + ϕ] − F [f ] =

∫∫

δF

δf
ϕdθdp + O(ϕ2).

The Poisson bracket (5) satisfies several properties: bilinearity, Leibniz rule and

Jacobi identity (for more details, see Refs. [5, 6]). Its Casimir invariants are

given by

C[f ] =

∫∫

c(f)dθdp,

where c(f) is any function of f(θ, p). In particular, the total distribution
∫∫

fdθdp is one of such Casimir invariants and hence is conserved by the flow.

The evolution of any observable F [f ] is then given by

Ḟ = {H, F}. (6)

For instance, for F [f ] = f(θ, p), we recover Eq. (2). Another convenient ob-

servable to study is the magnetization M [f ] given by Eq. (3): It quantifies the

spatial aggregation of the particles. At low energies, the magnetization typically

relaxes until it reaches an out-of-equilibrium plateau, around which it fluctuates

(see Fig. 1). In this case, the particles are trapped into the large resonance cre-

ated by the finite magnetization, hence the name “magnetized state” (see upper

panel of Fig. 2). At high energies, the magnetization falls and fluctuates around

zero (see Fig. 1), which means that the particles failed to organize collectively.

This is called the “homogeneous phase” (see lower panel of Fig. 2).
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Figure 1: Real part of the magnetization given by Eq. (3) as a function of time obtained by

integrating the dynamics given by Eq. (6) for M0 = 0.6. The system reaches either a finite-

magnetization for low energies (U = 0.4, in blue), or a low-magnetization for high energies

(U = 3, in red). The plain lines refer to N-body simulations (with N = 10000), while the

dotted lines come from the predictions given by Eq. (9) for k0 = 20.

The dynamics given by Eq. (6) is deduced from the linear operator H. From

the evaluation of the functional derivative of H with respect to f

δH

δf
=

p2

2
− Mx[f ] cos θ − My[f ] sin θ,

we get the expression of H :

H ≡ {H, .}

=

∫∫

dθdpf

(

p
∂

∂θ
+

Me−iθ − M∗eiθ

2i

∂

∂p

)

δ

δf
. (7)

In the algebraic computations that follows, we make an explicit use of the

linearity of H and Leibniz rule:

H(F + αG) = HF + αHG,

H(FG) = FHG + (HF )G.

N -body simulations (Lagrangian point of view): In order to compare the

algebraic results with numerical ones, we integrate Eq. (6) via N -body simu-

lations, which are obtained by considering a Klimontovitch [7] distribution of

particles

f(θ, p; t) =
1

N

N
∑

i=1

δ (θ − θi(t)) δ (p − pi(t)) ,
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Figure 2: Phase space portrait of the system (1) once saturation has been reached for M0 =

0.6: The low energy regime (U = 0.5, upper panel) is characterized by one large cluster of

particles, whereas for higher energies (U = 1.7, lower panel), phase space is quite homogeneous,

except for two clusters at ± 2.2 (i.e. moving in opposite directions).
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whose dynamics is ultimately reduced to Hamiltonian (1). Such simulations are

used with a large number of particles (typically N = 105) such that the interme-

diate regime experienced by the N -body simulations is close to the behavior of

the Vlasov equations (at least for some observables like the magnetization) [8].

2.2. Bracket method

The evolution of a selected observable F [f ] given by Eq. (6) is obtained

formally from the operator H as

F [f ](t) = etHF [f0] ≡
∞
∑

k=0

tk

k!
HkF [f0], (8)

where f0 is the initial distribution. Here we compute a finite number of terms in

this series in order to obtain a Taylor expansion for the solution of the dynamics

of F :

F [f ](t) ≈
k0
∑

k=0

tk

k!
HkF [f0], (9)

where k0 is the truncation parameter. Of course, this approximation is accurate

up to some time t depending on k0. A convergence over longer times is expected

for increasing k0. Furthermore, the coefficients of the series HkF are obtained

recursively by applying H on the previous term Hk−1F . Finally, note that

Eq. (9) yields an explicit dependence on the initial conditions, and it is not

restricted to close-to-equilibrium initial conditions, thus being a useful tool to

investigate the far-from-equilibrium violent relaxation of the system.

We consider the subspace of functions composed by sums and products of

the following elements (which are also functionals of f):

bn,m[f ] =

∫∫

dθdpfeinθpm,

where (n, m) ∈ Z × N. We notice that the main observables of the system such

as the n-th order magnetization Mn =
∫∫

einθfdθdp or the momenta Pm =
∫∫

pmfdθdp of the system belong to this family. Furthermore this family is

stable by the action of H given by

Hbn,m = inbn,m+1 +
m

2i
(b1,0bn−1,m−1 − b−1,0bn+1,m−1). (10)
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We notice that only positive values of m are involved in the iterations of the

recursion relation since the second term is proportional to m. Taking into

account the linearity and the Leibniz rule for H mentioned in the previous

section, the derivation of the short-time evolution (9) of a given observable F

is computed algebraically as a sum of products of elements bn,m. For instance,

the magnetization is given by M = b1,0 and its first order evolution is obtained

from Eq. (10):

M(t) = b1,0[f0] + tHb1,0[f0] +
t2

2
H2b1,0[f0] + O(t3),

= b1,0[f0] + itb1,1[f0] + i
t2

2
Hb1,1[f0] + O(t3),

= b1,0[f0] + itb1,1[f0]

+
t2

2

(

−b1,2[f0] +
1

2
(b1,0[f0] − b−1,0[f0]b2,0[f0])

)

+O(t3).

Of course, a satisfying approximation of the time evolution of any observable

needs a large number of terms in the expansion (9). At a given time t, the

number of terms necessary to obtain a reasonably good approximation of the

dynamics depends on the initial distribution f0 as it is shown in Fig. 1 where,

at low energies, the accuracy extends to longer times than at high energies.

In addition, we need to specify the initial distribution which will be used to

compute bn,m(0) necessary to complete the computation of the approximate

evolution. In the following sections, we use a waterbag distribution as initial

condition.

2.3. Initial conditions

The waterbag initial distribution is a uniform distribution over a rectangle

in phase space corresponding to the points (θ, p) ∈ [−∆θ, ∆θ]× [−∆p, ∆p]. The

distribution f0(θ, p) is equal to 1/(4∆θ∆p) if (θ, p) ∈ [−∆θ, ∆θ] × [−∆p, ∆p]

and zero otherwise. The values of bn,m at t = 0 can be computed explicitly in

this case and are equal to

bn,m(0) =
(∆p)m+1 − (−∆p)m+1

2(m + 1)∆p
sinc(n∆θ),
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where sinc(·) = sin(·)/(·). In particular, we notice that bn,m(0) = 0 for m odd.

The waterbag is characterized by two parameters (∆θ, ∆p). Instead we consider

the initial magnetization M0 and the energy U to label the initial conditions:

M0 ≡ b1,0(0) = sinc(∆θ),

U ≡ 1

2
(b0,2 − b1,0b−1,0 + 1) =

∆p2

6
− M2

0 − 1

2
.

In the following, we investigate the high energy U ≫ 1 and low energy U ≪ 1

limits for the initial distribution.

3. Analytical results

The first terms of the expansion for the magnetization M(t) given by Eq. (9)

(for a waterbag initial distribution) are listed in Tab. 1 up to sixth order in time.

We notice that the number of terms in the expansion increases exponentially,

making such expressions difficult to handle in practice. In Fig. 1, we notice that

even with k0 = 20 which involves approximately one thousand terms, a good

agreement is observed only up to t = 2. In Fig. 3, the algebraic expressions for

the magnetization obtained by Eq. (9) are plotted at different orders. Other

than the initial regime, if one is interested in the intermediate regimes, the only

hope is to find the governing rules behind this algebraic computations in order

to draw some conclusions. This is the case for the low and high energy limits

where the leading terms of the expansion can be extracted to all orders. These

simplifications allow us to derive some dynamical properties of the system.

Table 1: First terms in the expansion of the magnetization M(t)

given by Eq. (9) for the waterbag initial distribution.

t2/2! ∆p0 (1 − sinc(2∆θ))M0/2

∆p2 −M0/3

t4/4! ∆p0 (1 − 2 sinc(2∆θ) + sinc(2∆θ)2 − 4M2
0 + 4M0 sinc(3∆θ))M0/4

∆p2 −2 (3 sinc(2∆θ) + 1)M0/3

∆p4 M0/5
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Figure 3: Magnetization M(t) versus time for M0 = 0.2 and U = 0.6 obtained from N-body

simulations (dotted black curve) and using the algebraic expansions at various orders from

the 4th to the 20th order.

t6/6! ∆p0 (1 + 3 sinc(2∆θ) + 64M2
0 + 3 sinc(2∆θ)2 + 26M0 sinc(3∆θ)

+98M2
0 sinc(2∆θ) − sinc(2∆θ)3 − 34M2

0 sinc(4∆θ)

−26M0 sinc(2∆θ) sinc(3∆θ))M0/8

∆p2 (−202 sinc(2∆θ)M0 − 51 sinc(2∆θ)2 + 58 sinc(2∆θ) + 138M2
0

−7)M0/12

∆p4 (−239 sinc(2∆θ) + 23)M0/30

∆p6 −M0/7

3.1. High-energy limit

First we consider the high energy limit, which corresponds to ∆p ≫ 1 in

the initial waterbag. In this regime, since the kinetic term is dominant, the

dynamics is driven by the reduced Liouville operator, which takes into account

only the kinetic term

HHE =

∫∫

dθdpfp
∂

∂θ

δ

δf
. (11)

From Eq. (10), the successive actions of H on bn,m is given by

Hkbn,m = (in)kbn,m+k.
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Figure 4: Real part of the magnetization M(t) versus time for M0 = 0.6 and U = 20. The

dashed red line refers to direct simulations, while the solid blue one stands for the approximate

solution (12).

For the waterbag initial distribution, it is straightforward to deduce the evolu-

tion of the magnetization of order n:

Mn(t) = Mn(0)sinc(n∆pt). (12)

The magnetization envelop exhibits a slow decay (as 1/(∆pt)) towards the

asymptotic (equilibrium) state M = 0 (see Fig. 4).

The profile obtained from N -body simulations is correctly interpolated over

a finite time window by Eq. (12). As U is increased, the agreement gets better,

even if deviations from Eq. (12) are observed at later times. Such a discrepancy

is due to the cumulative effects of the neglected contributions in ∆p (see Tab. 1).

It was reported in Ref. [9] that for large values of the energy, and for any given

initial magnetization, two large resonances spontaneously develop and effectively

divide the available phase space into independent regions. Such resonances

move in opposite directions, over the unit circle. Their velocity pr is identical

in modulus and tends to grow as the energy is increased. The magnetization

M(t) is mostly influenced by the instantaneous positions of the resonances. A

snapshot of the positions of the particles obtained using N -body simulations

is depicted in Fig. 2 (lower panel). It reveals the two resonances moving in

opposite directions (with velocity pr). The maxima of M(t) are obtained when
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Figure 5: The velocity of the resonances (in the high energy regime) as a function of the

energy U for M0 = 0.7. The circles refer to the velocities obtained numerically using N-body

simulations. The vertical bars delimit the width of the resonances in the p-direction. The

solid line is given by Eq. (13), and the dashed line by Eq. (14).

the two resonances are aligned since the bunching of particles is maximum in this

case. During two successive maxima of M(t) each cluster travels on a segment

of length 2π in θ, which takes a time 2π/pr. On the other hand, according to

Eq. (12), two successive bumps in the magnetization are separated by a time

interval 2π/∆p. This leads to

pr = ∆p =

√

6

(

U − 1 − M2
0

2

)

, (13)

which applies in the high-energy limit. The above prediction is compared with

N -body simulations in Fig. (5): The velocity (and corresponding width) of the

resonances is plotted for different energies U (circles). The solid line refers to

the analytical expression (13). We notice a very good agreement between the

numerics and the prediction (13). As expected, as U decreases, some discrepancy

is observed since the system approaches the phase transition.

The above conclusion and in particular Eq. (12) can be also recovered using

the following argument: In the high energy limit, the particles move essentially

freely. The potential energy accommodates for just a small fraction of the total

energy. Under this hypothesis, the individual phase θ evolves as:

θ(t) = θ0 + p0t
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where the index 0 refers to the initial position of a single particle. From the

definition of the magnetization, once a change of variables has been applied from

(θ, p) to (θ0, p0), we obtain:

Mn(t) ≈
∫∫

ein(θ0+p0t)f(θ0, p0)dθ0dp0,

and Eq. (12) is recovered.

The next step is to incorporate the additional contributions, so far neglected.

In particular, we focus our attention on the terms t2n∆p2n−2 in Tab. 1. For

∆θ ≈ π (i.e. M0 ≪ 1), the dominant term is −M0∆p2t4/36 since all the other

terms are of higher order in M0. This latter can be seen as originated from a

modification of Eq. (12) where a constant factor c is being introduced as:

M(t) = M0sinc(t
√

∆p2 − c). (14)

The coefficient of ∆p4t4 of Eq. (12) is replaced by ∆p4t4 − 2c∆p2t4. Therefore

c = 5/3 matches the dominant term −M0∆p2t4/36, corresponding to the order

n = 2 . The approximation of the magnetization given by Eq. (14) is in better

agreement with the numerical simulations. In particular for the position of the

resonances, Equation (14) gives pr =
√

∆p2 − c, which is closer to numerical

values as shown Fig. 5 (dashed line). However, this additional term does not

balance the analogous contributions associated with higher orders (n > 2) for

which a slightly different value of c is required. Deviations are however reason-

ably small (less than 10 %) over the range of inspected coefficients. The above

argument can be extended to the case where ∆θ < π, so accounting for the

terms proportional to M0: In practice, an additional term of the type c1M0 is

introduced in the square roots of Eq. (14) where c1 is a constant.

3.2. Low-energy limit

We now consider the low-energy limit U ≃ (1 − M2
0 )/2, that is ∆p ≪ 1.

We notice that this limit is close to the line which marks the forbidden region

in the parameter space (M0, U) (see e.g. [10]). In what follows, we find an

approximation of the coefficients of M(t) proportional to ∆p0. We first observe
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that the Liouville operator (7) either increases or decreases by one order the

exponent of p. Thus, the odd powers HkM contain a set of elements bn,m with

m odd. For the waterbag initial distribution, such terms vanish so M(t) is an

even function. Then, the recursion relation (9) is generated by H2. In the

low-energy limit, if the kinetic terms are neglected, we get

H2bu,0 ≈ u

2
(b1,0bu−1,0 − b−1,0bu+1,0) . (15)

An algebraic expression of the magnetization in the low-energy limit is ob-

tained by studying the sequence of terms at the lowest order. In this way, we

approximate M as

M(t) ≈
∞
∑

n=0

(

αnb1,0 + βnb−1,0b2,0 + γnb−1,0b
2
1,0

) t2n

2n!
. (16)

Using Eq. (15), we deduce that, at a given order n+1, the b1,0 term comes from

the b1,0 term at order n, with αn+1 = αn/2. From this recursion relation, we

deduce the formula

αn =
1

2n
. (17)

The b−1,0b2,0 term at the order n + 1 is generated from both the b1,0 and the

b−1,0b2,0 terms at the lower order n. The recursion relation becomes βn+1 =

(βn − αn)/2, which leads to

βn = − n

2n
. (18)

The third term in b−1,0b
2
1,0 is not only generated through the reduced operator

given by Eq. (15), but also from other nonlinearities: The latter terms have been

neglected in Eq. (15), but appear when considering H4 (and possibly higher

powers of H) in the low-energy limit. We resort to an ansatz for γ2n, fitting the

coefficients derived algebraically up to γ10:

γn ≈ −1

9

(

9

2

)n

, (19)

for large n. It follows that the magnetization in the low-energy regime is ap-
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Figure 6: The magnetization M(t) is plotted versus time, in the low-energy regime (U = 0.01),

for M0 = 0.2 (blue curves) and 0.6 (red curves). The solid lines refer to Eq. (20) for k0 = 20,

the dotted ones to direct N-body simulations.

proximated by

M(t) ≈ M0cosh

(

t√
2

)

− M0M2(0)
t

2
√

2
sinh

(

t√
2

)

−M3
0

1

9
cosh

(

√

9

2
t

)

. (20)

This expression of the magnetization is compared with numerical simulations in

Fig. 6. We notice the good agreement up to the saturation regime. As expected,

for longer times, the approximation gets worse due to higher order nonlinearities

which have been neglected.

3.3. Out-of-equilibrium phase transition

As previously reported, increasing the energy U at a fixed value of the initial

magnetization M0 leads to a drastic change in phase space which materializes

as an out-of-equilibrium phase transition [4] from an inhomogeneous to a homo-

geneous phase. This phenomenon was first explained by invoking a principle of

entropy maximization, based on the so-called theory of “violent relaxation” [11].

Another dynamical explanation of such transition comes from a bifurcation anal-

ysis in phase space [9].

We here show that the transition can be also retrieved when tracking the

short-time behavior of the magnetization. It means that the system relaxes
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very quickly in its metastable phase. The idea goes as follows: We monitor

the magnetization dynamics via the analytical expression obtained from Eq. (9)

and store the first local maximum, for each choice of the pair (M0, U). In case

the series diverges, without passing through a local maximum, the intensity

is recorded when its derivative crosses a given threshold (as a polynomial, it

eventually explodes). We choose k0 = 20 in the algebraic computations. The

resulting values of the magnetizations are displayed in Fig. 7 adopting a color

code which continuously interpolates between the large (M ≈ 1) and small

(M ≈ 0) magnetization. As clearly shown, the upper portion of the parame-

ter plane corresponds to almost homogeneous configurations while magnetized

phases are observed as the energy is reduced for fixed M0. This scenario qual-

itatively agrees with direct numerical integrations, as confirmed by inspection

of Fig. 8. In the N -body simulations, the available parameter space (M0, U)

is partitioned in small cells, each associated with a reference water-bag distri-

bution (that is, a two-level distribution). The QSS magnetization is measured

by averaging the numerical time series over a finite time window after relax-

ation. The average QSS magnetization is then represented using the same color

code as above. When comparing Figs. 7 and 8 it should be emphasized that

the QSS regime occurs significantly after the violent relaxation process, beyond

the first local maximum of the magnetization which is computed here. The

results show that the average magnetization as recorded in the QSS correspond

approximately to these local maxima in the non-homogeneous phase. A better

quantitative matching can be obtained by considering higher order terms (larger

k0). Even though, improving the accuracy of the theoretical analysis is a crucial

requirement, already at this level of approximation it emerges a phase transition

as clearly shown in Fig. 7.

A reference line in parameter space (M0, U) marking the transition between

the magnetized and unmagnetized phases can be computed based on the cele-

brated Lynden-Bell procedure, also known as the violent relaxation theory. The

central idea of the Lynden-Bell approach consists in coarse-graining the micro-

scopic one-particle distribution function f(θ, p; t) by introducing a local average
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in phase space. Starting from a waterbag initial profile with a uniform distri-

bution f0, a fermionic-like entropy can be rigorously associated with the coarse

grained profile f̄ , namely s[f̄ ] = −
∫

dpdθ
[

f̄

f0

ln f̄

f0

+
(

1 − f̄

f0

)

ln
(

1 − f̄

f0

)]

. The

corresponding statistical equilibrium, which applies to the relevant QSS regimes,

is hence determined by maximizing such an entropy, while imposing the con-

servation of the Vlasov dynamical invariants: Energy, momentum and norm

of the distribution. The analysis translates into the out-of-equilibrium phase

transition line reported in Ref. [4]. Notice that the Lynden-Bell scenario re-

called above formally applies to the waterbag initial condition from which the

fermionic principle is derived. Different energy functionals are at variance to

be assumed when dealing with more complex initial conditions and there is no

a priori guarantee that the maximum entropy strategy would perform equally

well. Aiming at extracting a transition line from the viewpoint of the bracket

calculation, one could impose a critical threshold Mc to the magnetization: First

local maximum values of the magnetization larger than Mc are assumed to yield

a magnetized QSS, while for magnetization below the reference value Mc the

system evolves toward a homogeneous QSS. The (arbitrary) choice Mc = 0.4

leads to a transition line (dashed line in Fig. 8) which resembles qualitatively the

Lynden-Bell line (solid line). Notice that magnetized patches are numerically

seen to extend over the region of homogeneous QSS, so effectively deforming

the transition boundary in a non trivial way. Interestingly, such islands are

entrapped in the wiggles of the bracket transition profile.

In conclusion, the bracket method returns sensible information on the exis-

tence of an out-of-equilibrium transition, so resulting in a powerful tool for those

generalized settings where the Lynden-Bell ansatz proves inadequate (as for in-

stance, for Gaussian initial conditions) or, at least, cumbersome (e.g. multi-level

initial distribution).
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Figure 7: Map of the magnetization evaluated at the first local maximum of Eq. (9) in the

(M0, U) plan. The data refer to the theoretical prediction calculated for k0 = 20. The white

region is the forbidden one.
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Figure 8: Map of the QSS magnetization in the (M0, U) plan, as recorded via direct N-body

simulations (N = 10000). The solid line refers to the Lynden-Bell prediction. The dashed line

stands for the bracket transition line with threshold magnetization set to Mc = 0.4.
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4. Conclusion

In this paper we have focused on a paradigmatic Hamiltonian mean-field

model, often being investigated for its long-living Quasi Stationary States (QSS),

and for its peculiar out-of-equilibrium dynamics and phase transitions. Starting

from an out-of-equilibrium initial conditions of the waterbag type, the system

rapidly evolves toward an intermediate dynamical regime, distinct from the

corresponding equilibrium configuration. When increasing the number of in-

teracting elements the time to equilibration gets longer and formally diverges

when the thermodynamic limit is performed. Aiming at shedding light onto

the short time dynamics, which ultimately governs the QSS emergence, we have

here resorted to an analytical approach. The idea is to develop an algebraic

technique based on the Lie-Poisson structure of the HMF dynamics. In doing

so we are able to return an analytical prediction for the global magnetization as

a function of time, a macroscopic parameter sensitive to the microscopic par-

ticles evolution. Two limiting cases are explicitly considered, respectively the

high and low energy settings, and shown to yield to tractable expressions for the

magnetization amount. In general, and due to the perturbative nature of the

calculation, the full analytic expression contains a vast collection of terms which

are difficult to handle. The number of terms involved increases rapidly with the

order of the approximation making it practically difficult to address the dynam-

ics in the relevant, saturated, QSS regime. However, targeting the analysis to

the first local maxima in the magnetization, and accounting for 20 orders in the

perturbative expansion, the existence of an out-of-equilibrium phase transition

was singled out, separating between homogeneous and non-homogeneous QSS.

This transition was already recognized in Ref. [4] and interpreted using an ad

hoc maximum entropy principle suited for waterbag initial profiles. Although

the calculations are carried out for the so-called waterbag initial condition, the

technique we use in this article is rather flexible and can be readily extended

to other, possibly more general classes of initial conditions so returning fully

predictive scenarios. We also notice that the proposed method can be adapted
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to other contexts where long-range many body interactions are at play. The

method is particularly adapted to short-time dynamics (transients, metastable

states, violent relaxation, etc...).
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