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Abstract. - We report a lattice-Boltzmann scheme to compute the dispersion of charged tracers
in charged porous media under the combined effect of advection, diffusion and electro-migration.
To this end we extend the moment propagation approach, introduced to study the dispersion of
neutral tracers [Lowe et al., Phys. Rev. Lett. 77, 4552 (1996)], to include the effect of electrostatic
forces. This method allows us to compute the velocity autocorrelation function of the charged
tracers with high accuracy. The algorithm is validated studying the dispersion coefficient in the
case of electro-osmotic flow in a slit without added salt. We find excellent agreement between
the numerical and analytical results. This method also provides the full time dependence of the
diffusion coefficient, including for charged tracers. We illustrate on the slit case how D(t), which
is measured by NMR to probe the geometry of porous media, reflects how the porosity explored
by tracers depends on their charge.

The transport of charged particles in charged porous
media, under the combined effect of advection, diffu-
sion and migration, is encountered in many situations of
technological interest, such as the separation of species
by electro-osmotic flow in capillaries, microfluidic devices
and ion-exchange membranes. Contamination of soils by
toxic or radioactive waste, which often consist of charged
species, are examples of transport of charged tracers in
porous media with considerable environmental relevance.
Similarly, a better understanding of the electro-kinetic re-
moval of such contaminants is of considerable practical
importance. Even in complex biological systems such as
the living cell, electro-kinetic transport (often in the non-
linear regime) plays a relevant role. A saturated porous
media consists by definition of a solid phase and a fluid
phase. At mean-field level and neglecting the finite size
of the particles, the dynamics of charged species in the
fluid phase can be described in terms of the species den-
sity ρ(r, t), which follows a convection-diffusion equation

∂tρ(r, t) + ∇ · J(r, t) = 0 (1a)

J = ρu−D∇ρ+ ρβD [qE−∇V ] (1b)

where D is the particle’s molecular diffusion coefficient,

q its charge, and β = 1/kBT . In addition to the fluxes
due to advection (ρu) and diffusion (−D∇ρ), two forcing
terms contribute to the charged species dynamics. The
first includes the effect of particle interactions with the
rest of the system, as the gradient of the mean-field po-
tential V . This potential is in fact the excess part of the
tracer chemical potential. It is not necessarily limited to
the electrostatic term qψ where ψ satisfies the Poisson
equation ∆ψ = ρel/ε0εr, with ρel the charge density, ε0
and εr the void and fluid relative permittivities, respec-
tively. The second contribution accounts for the effect of
an external electric field, which does not necessarily derive
from a potential, e.g. for infinite systems.

Although the dispersion of tracers could in principle be
investigated by studying the spreading of a tracer pulse,
the evaluation of the dispersion coefficient requires solv-
ing Eq. (1), e.g. with a finite element method, for a large
number of initial conditions, which rapidly becomes com-
putationally intractable for complex porous media. An al-
ternative is to evaluate it for each tracer charge q from the
tracer velocity auto-correlation function (VACF) as [1, 2]:

Dγγ′ =

∫

∞

0

dt 〈 [vγ(0)− vγ ][vγ′(t)− vγ′ ] 〉 (2)
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where vγ is the average velocity in the direction γ ∈
{x, y, z}. The issue of averaging over initial conditions re-
mains, but it can be handled both elegantly and efficiently
using the moment propagation method introduced for the
dispersion of neutral tracers [1, 3, 4]. The purpose of the
present paper is to extend this method to the dispersion
of tracers experiencing forces, with the express intent to
study charged tracers in charged porous media.

Computing the VACF for a tagged particle requires
to keep track of its velocity. However, the convection-
diffusion equation does not contain any information on
the velocity of individual particles. Therefore, we will
describe the fluid dynamics on the basis of the lattice-
Boltzmann [5] approach, which follows the evolution of
the fluid particle distribution function f(r,v, t) on a lat-
tice, and allows to recover the hydrodynamic behavior on
long distances. Moreover, the distribution function at each
node is related to the transition probabilities of a particle
moving in the fluid from one node to a neighboring one.
This makes it possible to use the same scheme to analyze
the VACF of tracers. Such an approach, referred to as
moment propagation [1, 3, 4], has been pursued earlier for
neutral tracers in a neutral fluid, and it has been shown
to be an extremely efficient computational tool. Moment
propagation allows the propagation of any moment of the
particle distribution function: It has e.g. been used to
analyze the dynamic structure factor in neutral porous
media [6]. It has also been extended for neutral species to
the case of anisotropic advection-diffusion problems [7].

In order to use the same approach for charged fluids,
we need to generalize the underlying lattice-Boltzmann
scheme to account for the dynamics of the dissolved elec-
trolyte. The fact that tracers evolve on average following
a convection-diffusion equation has been used earlier [8]
to take advantage of moment propagation scheme to sim-
ulate eq. (1) including the coupling to the electric field
to linear order. The particle density is indeed the zeroth
moment in velocity space of the distribution function and
falls as such into the scope of the moment propagation
scheme. As other lattice-Boltzmann schemes, this original
algorithm can lead in the presence of moving boundaries
to spurious ionic fluxes across the fluid/solid boundaries.
To overcome this difficulty, Capuani et al. [9] introduced
an alternative approach, the link-flux method, to repro-
duce the dynamics of charge densities and recover eq. (1).
At the price of treating advection on a different level than
diffusion and migration, they proposed an algorithm satis-
fying the detailed balance condition between neighboring
nodes at steady-state, thereby allowing at the same time
to rigorously cancel the fluxes into the solid and to deal
with larger electrostatic potential gradients.

Either of the two methods described above allows for
a proper simulation charged fluid dynamics. Our goal is
to exploit the moment propagation method beyond the
zeroth order moment (density) in order to compute the
VACF of charged tracers. Since moment propagation re-
quires a strict probability conservation, we need to (a)

avoid particle leakage into the solid and ensure that the de-
tailed balance condition is satisfied at steady-state, while
(b) treating advection, diffusion and migration on the
same footing. This latter point is essential for the proba-
bilistic interpretation of the LB scheme and the connection
with the VACF, as we describe subsequently.

In a lattice-Boltzmann scheme the system is described
by a lattice of spacing ∆x whose nodes are either in the
solid or the fluid phase. The particles can move from one
node to the neighbouring ones through a finite set of dis-
crete velocities {ci}i∈[1..Nmax]. The probability of being
at a given node is P (r, t) = ρ(r, t)/ρ̄, with ρ̄ the mean
density. The moment propagation algorithm evolves this
probability according to

P (r, t+ ∆t) =
∑

i

P (r− ci∆t, t)pi(r− ci∆t, t)

+ P (r, t)p0(r, t) (3)

where the sum runs over all directions connecting adjacent
nodes, while pi(r, t) stands for the probability of leaving
node r along the direction ci. The fraction of particles
remaining on node r is p0(r, t) = 1 − ∑

i pi(r, t). Cen-
tral in this description is the expression for pi, which we
generalize to

pi(r, t) = padv
i (r, t) + λwi

{

1

4
βqE · ci∆t

+
1

1 + e−β[V (r)−V (r+ci∆t)]

}

(4)

if r + ci∆t belongs to the fluid phase, and 0 otherwise.
The weights wi depend on the underlying lattice [5, 10].

The first term in Eq. (4) accounts for fluid advection.
It is obtained by coupling the tracer motion to a fluid
that evolves on the same lattice according to a standard
lattice-Boltzmann scheme. Thus padv

i is computed from
the probability density fi of fluid particles with the same
discrete velocity ci and the local density ρf of fluid parti-
cles:

padv
i (r, t) =

fi(r, t)

ρf (r, t)
− wi (5)

The terms between braces in Eq. (4) are specific to the
tracer and include both the drift velocity DβqE under an
applied electric field and the effect of conservative forces.
These conservative forces are accounted for via the second
term between braces. The last term in eq. (4) ensures de-
tailed balance at steady state. This physical constraint is
required to guarantee a proper computation of the VACF
and other correlation functions. Previous schemes which
made use of a linearized coupling between densities and
electric fields, valid in the limit of small potential gradi-
ents (β|∇V ·ci∆t| � 1), will not recover generally the ap-
propriate VACF. Note that the new expression for pi also
contains the effect of diffusion that arised from a constant
term in the original algorithm, because the expansion of
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the Fermi function in powers of β∇V · ci∆t contains a
constant (1/2) term. The dimensionless parameter λ de-
termines the diffusion coefficient and hence the mobility of
the tracer. Indeed, a Taylor expansion shows that Eqs. (3)
and (4) propagate P (r, t) according to (1) with a diffusion
coefficient D = λc2s∆t/4 with cs the speed of sound in the
fluid, as was shown in Ref. [8] in the corresponding small
gradient limit.

The probability density of the fluid required in (5)
can be evolved using any lattice-Boltzmann scheme, such
as the celebrated Bhatnagar-Gross-Krook collision oper-
ator [11]: C[fi] = fi − (fi − feq

i )/τ , with f eq
i the equi-

librium probability density (which corresponds to a dis-
cretized, low-velocity expansion, of a Maxwellian), and
τ the relaxation time. A particularly simple and illus-
trative example corresponds to the choice τ = 1, for
which the fluid kinematic viscosity c2s∆t/2. In this case
C[fi] = feq

i , i.e. to a first order expansion in the veloc-
ities [5]: padv

i (r, t) ≈ wi(u + a∆t) · ci
c2

s
, where u and a

correspond to the local fluid velocity and accelerations,
respectively. In the absence of coupling to a fluid, the first
term in Eq. (4) vanishes and the tracer dynamics reduces
to diffusion in the presence of electric fields. Let us con-
clude this discussion of the transition probabilities by a re-
mark on the fluid-solid boundaries. Since the correspond-
ing probability pi(r, t) is zero, velocities leading to solid
nodes do not contribute either to transport or to the aver-
age tracer velocity u∗(r, t) =

∑

i pi(r, t)ci, which to first
order in β||∇V ·ci∆t|| reduces to u∗ = u+DβqE−Dβ∇V .

As has been emphasized in the introduction, we are
not interested in using the moment propagation algo-
rithm only to simulate a convection-diffusion equation for
charged tracers, but also to compute their VACF. To this
end, we take advantage of the fact that the tracer ve-
locities are restricted to the finite set of allowed displace-
ments, {ci}. Accordingly, the autocorrelation function of
the γ ∈ {x, y, z} component of the velocity can be ex-
pressed as a discrete sum over velocities at times 0 and
t

Zγ(t) =
〈

v0
γv

t
γ

〉

=
∑

r0,c0
γ

π(r0, c0γ)π(ctγ |r0, c0γ)ctγc
0
γ

=
∑

r0,c0
γ

π(r0, c0γ)c0γ
∑

rt

π(rt, ctγ |r0, c0γ)ctγ , (6)

where π(r0, c0γ) gives the probability of being at node r0

with velocity c0γ while π(ctγ |r0, c0γ) stands for the corre-
sponding conditional probability. The previous formu-
lation allows us to quantify the probability of all possi-
ble paths that a tracer follows to arrive at node r and
time t with velocity ci, in a way similar to path inte-
gral methods. Taking the post-collisional velocity of a
given tracer distributed according to probabilities pi(r, t)
independently of the pre-collisional velocity of that parti-
cle, we can replace π(rt, ctγ |r0, c0γ)ctγ by the post-collisional
average π(rt|r0, c0γ)

∑

i pi(r, t)ciγ = π(rt|r0, c0γ)u∗γ(r, t) to

rewrite Eq. (6) as:

Zγ(t) =
∑

rt





∑

r0,c0
γ

π(r0, c0γ)c0γπ(rt|r0, c0γ)



 u∗γ(r, t)

=
∑

r

P (r, t; γ)u∗γ(r, t) (7)

where we have introduced the probability to arrive at node
r at time t weighted by the γ component of the initial
velocity of the tracers P (r, t; γ). Since these quantities
(one per direction) are linear combinations of π(rt|r0, c0γ),
which is a solution of the linear advection-diffusion equa-
tion, it also evolves according to (1). This fact is exploited
by the moment propagation method, which consists in
propagating this weighted average by Eqs. (3) and (4) after

initializing at time 1 as P (r, 1; γ) =
∑

i
e−βV (r−c

i
∆t)

Q pi(r−
ci∆t, 0)ciγ , with Q =

∑

r e
−βV (r). The average over all

initial conditions in (6) is thus performed at once while
propagating P (r, t; γ). For the initial value of the VACF

we simply have: Zγ(0) =
∑

r,i
e−βV (r)

Q pi(r, 0)ciγciγ , con-
sistent with the need to start from an equilibrium tracer
configuration.

In order to validate this new scheme, we consider the
dispersion of charged tracers by electro-osmotic flow in a
charged slit without added salt. Two plates of negative
charge density σe with e the elementary charge and σ < 0
are located at x = ±L/2, and the monovalent counteri-
ons are dissolved in a solvent of viscosity η. The coun-

terion concentration is (see e.g. [8]) c+(x) = α2

2πlB
1

cos2 αx

where αL
2 tan αL

2 = πσLlB , with lB = e2/4πε0εrkBT
the Bjerrum length, while α−1 stands for the analog of
the Debye screening length and characterizes the distor-
sion of the counterion profile. For small charge densi-
ties, αL ∼

√
4πσLlB , whereas at large charge densities

αL → π. In presence of an applied electric field Eyey an
electro-osmotic flow profile arises

uy(x) =
eEy

2πηlB
ln

cosαx

cosαL/2
≡ urefh(x) (8)

with characteristic velocity uref = eEy/2πηlB .
If we now consider the transport of tracers of charge

q = ze under the influence of both the electric field and
the induced electro-osmotic flow, the average velocity is
given by

vy,q = βDqEy + uref

∫ 1/2

−1/2

dξ Bq(ξ)h(ξ) , (9)

where ξ = x/L and Bq(x) is the normalized Boltzmann
weight for a charge q in the electrostatic potential: ψ(x) =
ψ(L/2) + ln

[

cos2(αx)/ cos2(αL/2)
]

. The dispersion of
tracers around this average is characterized by a disper-
sion coefficient varying at sufficiently low Péclet number
Pe = urefL/D as

Dy

D
= 1 + f(αL, q)× Pe2. (10a)
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This expression comes from the fact that there is no lin-
ear contribution in Pe and defines the dispersion factor f
as the prefactor of the quadratic contribution, which de-
pends on both the surface charge density and the tracer
charge [12]. Since the dispersion tensor (2) is symmetric in
this case, in the following we will consider only its diagonal
components, and use the simplified notation Dγ ≡ Dγγ.
In the x and z directions the average velocity is zero. Thus
the corresponding components reduce to the same compo-
nents of the diffusion tensor. If the tracers can explore the
whole slit section, the dispersion factor can be expressed
as [12]

f(αL, q) = −
∫ 1/2

−1/2

dξ Bq(ξ)gq(ξ) ×
∫ ξ

0

dξ′
1

Bq(ξ′)

∫ ξ′

0

dξ′′ Bq(ξ
′′)gq(ξ

′′) (10b)

where the deviation from the average velocity gq(ξ) =
[uy(ξ) +βDqEy − vy,q]/uref depends on both the charge q
of the tracer and αL via the local velocity uy.

Simulations are performed using the D3Q19 lattice for
which c2s = 1/3(∆x/∆t)2 [5], on Nx×Ny×Nz = 62×5×5
lattice points with a layer of solid nodes at nx = 1 and 62.
Bounce-back rules between fluid and solid nodes ensure
the no-slip condition at the solid surface, and correspond
to a distance between walls of L = (Nx − 2)∆x = 60∆x.
Periodic boundary conditions in y and z directions are
used. To evolve the fluid probability density appearing
in (5) we have used the BGK collision operator described
above with a relaxation time τ = 1. This corresponds for
the D3Q19 lattice to a kinematic viscosity of the solvent
ν = 1/6(∆x2/∆t). Also, λ is chosen to give a diffusion co-
efficient D = 0.05(∆x2/∆t), such that the Schmidt num-
ber Sc = ν/D is large, as expected for small ions in water.
We choose a lattice spacing of ∆x = 2.5lB to ensure suf-
ficient sampling of the ionic concentrations in the regions
where it varies most rapidly, i.e. near the surface over a
distance α−1 which is in our case always large compared
to lB . For water at room temperature the Bjerrum length
is lB ∼ 7 Åand it corresponds to a distance between walls
of L = 60∆x ∼ 100 nm. The electric field is applied along
y, with βeEy∆x = 0.0 to 0.2 (only to 0.1 for αL = 2.90
and 3.02, to ensure numerical stability). The potential ψ
is computed from the charge density with the Successive
Over Relaxation method [13].

The counterion and steady-state flow profiles are first
determined using the link-flux method [9]. The latter are
reported in Fig. 1 for fixed applied electric field βeEyL = 3
as a function of αL. Except for the highest charge density
(αL ∼ 3.02), the choice of simulation parameters allows
to accurately reproduce the continuum results. The lack
of accuracy for large αL values can be cured by increasing
the number of lattice points and scaling the charge density
accordingly.

The diagonal components of the VACF tensor Zγ(t)
(γ ∈ {x, y, z}) for tracers of valence -1, 0 and +1 are com-

Fig. 1: Steady-state flow profile across the slit for an applied
electric field βeEyL = 3 as a function of αL. The results
are normalized by uref = eEy/2πηlB . Symbols are simulation
results using the link flux method. The drawn curves have been
computed on the basis of Eq. (8).

puted using the moment propagation algorithm with the
steady-state velocity u and potential V = qψ for the scat-
tering probabilities in (4) and (5). For the z component of
the VACF, one finds numerically that Zz(0) = 2D/∆t and
Zz(t > 0) = 0, i.e. the discrete version of the expected
result Dδ(t) for free Brownian motion. The diffusion co-
efficient in this direction Dz =

∫

∞

0
dt Zz(t) is thus equal

to the molecular diffusion coefficient D, independently of
αL and of the tracer charge. In the direction normal to
the surface we also have Zx(0) = 2D/∆t, but at long time
a negative tail always leads to

∫

∞

0 dt Zx(t) = 0, because
of the confinement by the surfaces.

Fig. 2: Time-dependent diffusion coefficient in the direction
normal to the surfaces Dx(t) =

R t

0
dt′Zx(t′) for anions (+),

neutral (�) and cations (◦) for αL = 1.98. The line is the
analytical result for neutral tracers. The inset shows the char-
acteristic decay time τ =

R

∞

0
dtDx(t)/D as a function of αL.

The time-dependence of Zx(t) does however vary with
αL and tracer charge. This is more conveniently ana-
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lyzed in terms of the time-dependent diffusion coefficient
Dx(t) =

∫ t

0 dt′Zx(t′), which can be experimentally mea-
sured with NMR using pulsed field gradients and often
applied to quantify the surface to volume ratio of porous
media [14]. Simulation results for αL = 1.98 are reported
in Fig. 2 together with the analytical solution for neutral

tracers: Dx(t)/D = 8
π2

∑

∞

n=0
1

(2n+1)2 exp[−(2n+1)2 π2Dt
L2 ].

Dx(t) decays faster for anions than for neutral tracers,
because the repulsion from the negatively charged walls
confines them to a smaller region. This results in a faster
memory loss of their initial velocity. After a fast decay,
Dx(t) for cations exhibits a long time tail: The initial part
corresponds to confinement in the vicinity of one surface
and the longer tail to the escape from one surface to the
other.

These findings have implication for the time needed to
consider that the motion can be averaged in the direc-
tion normal to the surfaces, i.e. to the flow, which is the
assumption underlying Eq. (10b). This time can be esti-
mated as τ =

∫

∞

0 dtDx(t)/D and is reported in the inset
of Fig. 2 as a function of αL. It is seen to be constant for
neutral species (integration of the analytical expression
given in the previous paragraph gives L2/12D), shorter
and decreasing for anions, while longer and increasing for
cations. It is worth emphasizing that although the time-
dependent diffusion coefficient of neutral tracers has al-
ready been computed in complex porous media [15], no
such determination has been made in the case of charged
species. The present method offers a way to address this
issue.

The average velocity of each tracer can be obtained
from vy,q =

√

Zy,q(∞). It is reported as a function of
the applied electric field in Fig. 3, which illustrates the
quantitative agreement of simulation results with Eq. (9).
For our choice of simulation parameters (corresponding
to small ions in water and a distance between surfaces
of ∼ 100 nm), the electro-osmotic flow is larger than the
direct electrostatic contribution βDqE to the average ve-
locity. The average velocity is larger for co-ions (here an-
ions), which are mainly located near the center of the slit
where the flow velocity is larger, than for neutral trac-
ers or counterions (here cations), which are concentrated
near the surfaces where the flow vanishes. Increasing the
charge density increases both the average velocities and
the difference between tracers of different charge. This
last effect arises because the velocity profiles are more in-
homogeneous for larger charge densities, as suggested by
Eq. (8).

The dispersion coefficient along the flow is
computed from the VACF via (2) as Dy,q =
∫

∞

0 dt [Zy,q(t)− Zy,q(∞)], for each tracer charge q.
Dispersion is caused by the crossing of streamlines in
the direction normal to the surfaces and is thus affected
by the electric potential gradient in this direction. The
agreement of the moment propagation results in Fig. 4
with the continuous prediction of Eq. (10) is seen to be

Fig. 3: Average velocity under an applied electric field, for neg-
atively charged surfaces. Symbols are the simulation results,
lines that of Eq. (9). The electro-osmotic flow is larger than the
direct electrostatic contribution βDqE: Anions (+), mainly lo-
cated in the center of the slit where the flow is faster, have a
larger average velocity than neutral tracers (�) and cations (◦),
the latter being concentrated near the surfaces, where the flow
vanishes. Increasing the charge density from αL = 2.39 (solid
line) to 2.90 (dashed line) incresases both the average velocities
and the difference between tracers of different charge.

excellent. Anions are less dispersed than neutral tracers
and cations because they are concentrated in the center of
the slit, where the flow is less inhomogeneous. Increasing
the charge density has a larger effect on counterions
(cations) and neutral tracers than on co-ions (anions).

Fig. 4: Dispersion coefficient from moment propagation (sym-
bols) and Eq. (10) (lines). Anions (+) are less dispersed than
neutral (�) and cations (◦), because they are concentrated
in the center of the slit, where the flow is more homoge-
neous. Increasing the charge density incresases both the disper-
sion coefficient and the difference between tracers of different
charge. Inset: dispersion factor f obtained by fitting Dy/D
using Eq. (10a) for different values of αL; lines are results of
Eq. (10b).

From the dispersion coefficient we finally compute the
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dispersion factors defined by Eq. (10a) and compare them
to the approximate analytical solution (10b). Results are
reported in the inset of Fig. 4. Except for the highest
charge density (corresponding to αL ∼ 3.02) the agree-
ment is again quantitative. The discrepancy for the ex-
treme case is not due to the breakdown of the approxi-
mations leading to (10b), but to an effect of the lattice
already visible on the flow profile (Fig. 1). Increasing the
number of lattice points while maintaining αL constant
leads to better agreement, but requires longer simulation
times.

We have proposed a new method to study efficiently
the VACF of charged tracers, based on the moment prop-
agation method. We have used previous proposals which
make use of the lattice-Boltzmann approach to study the
dynamics of electrolytes and have proposed a transition
probability for tracers which ensures detailed balance at
steady-state. This has made it possible to compute the
statistical properties of tracer trajectories following the
underlying dynamics of the charged fluid. Such an ap-
proach is based on the transition probabilities between
neighboring lattice sites defined by Eqs. (4) and (5). The
algorithm has been validated by studying the dispersion
in an electro-osmotic flow between charged walls without
added salt. Previous studies have only focused on effec-
tive treatments of the electrokinetic couplings present in
porous media [16]. Therefore, the proposed generaliza-
tion significantly widens the application range of the mo-
ment propagation method; it has wide implications, since
charged porous media are ubiquitous. Moreover, the tran-
sition probabilities introduced constitute the basis for the
study of tracer statistics in non-ideal fluids. The method
benefits from all the advantages offered by its lattice-
Boltzmann nature, in particular for the handling of vari-
ous hydrodynamic conditions and the ease of paralleliza-
tion. Furthermore, moment propagation can be applied
to compute other correlation functions. For example, it
has been used to compute the dynamic structure factor of
uncharged tracers [6]. The extension to the charged tracer
case from the results of the present paper is straightfor-
ward. Future work will be devoted to the study of diffusion
and dispersion of charged tracers in more complex porous
media. The computation of the time-dependent diffusion
coefficient made possible by this algorithm will then be
of particular interest, since it reflects the different porosi-
ties probed by tracers of different charge and it can be
measured by NMR.
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