Charles Bordenave 
  
AND Pietro Caputo 
  
Djalil Chafa 
  
SPECTRUM OF LARGE RANDOM REVERSIBLE MARKOV CHAINS: HEAVY TAILED WEIGHTS ON THE COMPLETE GRAPH

Keywords: Mathematics Subject Classification. 47A10, 15A52, 60K37, 05C80 Spectral theory, Objective method, Operator convergence, Stochastic matrices, Random matrices, Reversible Markov chains, Random walks, Random Graphs, Probability on trees, Random media, Heavy tailed distributions, α-stable laws, Poisson-Dirichlet laws, Point processes, Eigenvectors. 1

We consider the random reversible Markov kernel K obtained by assigning i.i.d. non negative weights to the edges of the complete graph over n vertices, and normalizing by the corresponding row sum. The weights are assumed to be in the domain of attraction of an α-stable law, α ∈ (0, 2). When 1 α < 2, we show that for a suitable regularly varying sequence κn of index 1 -1/α, the limiting spectral distribution µα of κnK coincides with the one of the random symmetric matrix of the un-normalized weights (Lévy matrix with i.i.d. entries). In contrast, when 0 < α < 1, we show that the empirical spectral distribution of K converges without rescaling to a non trivial law µα supported on [-1, 1], whose moments are the return probabilities of the random walk on the Poisson weighted infinite tree (PWIT) introduced by Aldous. The limiting spectral distributions are given by the expected value of the random spectral measure at the root of suitable self-adjoint operators defined on the PWIT. This characterization is used together with recursive relations on the tree to derive some properties of µα and µα. We also study the limiting behavior of the invariant probability measure of K.

Introduction

Let G n = (V n , E n ) denote the complete graph with vertex set V n = {1, . . . , n}, and edge set E n = { {i, j} , 1 i, j n}, including loops {i, i}, 1 i n. Assign a non negative random weight (or conductance) U i,j = U j,i to each edge {i, j} ∈ E n , and assume that the weights U = {U i,j ; {i, j} ∈ E n } are i.i.d. with common law L independent of n. This defines a random network, or weighted graph, denoted (G n , U). Next, consider the random walk on (G n , U) defined by the transition probabilities K i,j := U i,j ρ i , with ρ i := n j=1 U i,j .

(1.1)

The Markov kernel K is reversible with respect to the measure ρ = i∈Vn ρ i δ i in that

ρ i K i,j = ρ j K j,i
for all i, j ∈ V n . Note that we have not assumed that L has no atom at 0. If ρ i = 0 for some i, then for that index i we set K i,j = δ i,j , 1 j n. However, as soon as L is not concentrated at 0 then almost surely, for all n sufficiently large, ρ i > 0 for all 1 i n, K is irreducible and aperiodic, and ρ is its unique invariant measure, up to normalization; see e.g. [START_REF] Ch | Spectrum of large random reversible Markov chains: two examples[END_REF].

For any square n × n matrix M with eigenvalues λ 1 (M ), . . . , λ n (M ), the Empirical Spectral Distribution (ESD) is the discrete probability measure with at most n atoms defined by

µ M := 1 n n j=1
δ λj (M) .

All matrices M to be considered in this work have real spectrum, and the eigenvalues will be labeled in such a way that λ n (M )

• • • λ 1 (M ).
Note that K defines a square n × n random Markov matrix whose entries are not independent due the normalizing sums ρ i . By reversibility, K is self-adjoint in L 2 (ρ) and its spectrum σ(K) is real. Moreover, σ(K) ⊂ [-1, +1], and 1 ∈ σ(K). Since K is Markov, its ESD µ K carries further probabilistic content. Namely, for any ℓ ∈ N, if p ℓ (i) denotes the probability that the random walk on (G n , U) started at i returns to i after ℓ steps, then the ℓ th moment of µ K satisfies +1 -1

x ℓ µ K (dx) = 1 n tr(K ℓ ) = 1 n i∈V p ℓ (i).

(1.2)

Convergence of the ESD. The asymptotic behavior of µ K as n → ∞ depends strongly on the tail of L at infinity. When L has finite mean ∞ 0 x L(dx) = m we set m = 1. This is no loss of generality since K is invariant under the dilation t → t U i,j . If L has a finite second moment we write σ 2 = ∞ 0 (x -1) 2 L(dx) for the variance. The following result, from [START_REF] Ch | Spectrum of large random reversible Markov chains: two examples[END_REF], states that if 0 < σ 2 < ∞ then the bulk of the spectrum of √ nK behaves, when n → ∞, as if we had truly i.i.d. entries (Wigner matrix). Without loss of generality, we assume that the weights U come from the truncation of a unique infinite table (U i,j ) i,j 1 of i.i.d. random variables of law L. This gives a meaning to the almost sure (a.s.) convergence of µ √ nK . The symbol w → denotes weak convergence of measures with respect to continuous bounded functions. Note that λ 1 (

√ nK) = √ n → ∞.
Theorem 1.1 (Wigner-like behavior). If L has variance 0 < σ 2 < ∞ then a.s.

µ √ nK := 1 n n k=1 δ √ nλ k (K) w -→ n→∞ W 2σ , (1.3)
where W 2σ is the Wigner semi-circle law on [-2σ, +2σ]. Moreover, if L has finite fourth moment, then λ 2 ( √ nK) and λ n ( √ nK) converge a.s. to the edge of the limiting support [-2σ, +2σ].

This Wigner-like scenario can be dramatically altered if we allow L to have a heavy tail at infinity. For any α ∈ (0, ∞), we say that L belongs to the class H α if L is supported in [0, ∞) and has a regularly varying tail of index α, that is for all t > 0,

G(t) := L((t, ∞)) = L(t) t -α (1.4)
where L is a function with slow variation at ∞, i.e. for any x > 0, lim t→∞ L(x t) L(t) = 1.

Set a n = inf{a > 0 : n G(a) 1}. Then nG(a n ) = nL(a n )a -α n → 1 as n → ∞, and n G(a n t) → t -α as n → ∞ for all t > 0.

(1.5)

It is well known that a n has regular variation at ∞ with index 1/α, i.e.

a n = n 1/α ℓ(n)
for some function ℓ with slow variation at ∞, see for instance Resnick [24, Section 2.2.1]. As an example, if V is uniformly distributed on the interval [0, 1] then for every α ∈ (0, ∞), the law of V -1/α , supported in [1, ∞), belongs to H α . In this case, L(t) = 1 for t 1, and a n = n 1/α . To understand the limiting behavior of the spectrum of K in the heavy tailed case it is important to consider first the symmetric i.i.d. matrix corresponding to the un-normalized weights U i,j . More generally, we introduce the random n × n symmetric matrix X defined by X = (X i,j ) 1 i,j n (1.6) where (X i,j ) 1 i j n are i.i.d. such that U i,j := |X i,j | has law in H α with α ∈ (0, 2), and

θ = lim t→∞ P(X i,j > t) P(|X i,j | > t) ∈ [0, 1] . (1.7)
It is well known that, for α ∈ (0, 2), a random variable Y is in the domain of attraction of an α-stable law iff the law of |Y | is in H α and the limit (1.7) exists, cf. [17, Theorem IX.8.1a]. It will be useful to view the entries X i,j in (1.6) as the marks across edge {i, j} ∈ E n of a random network (G n , X), just as the marks U i,j defined the network (G n , U) introduced above. Remarkable works have been devoted recently to the asymptotic behavior of the ESD of matrices X defined by (1.6), sometimes called Lévy matrices. The analysis of the Limiting Spectral Distribution (LSD) for α ∈ (0, 2) is considerably harder than the finite second moment case (Wigner matrices), and the LSD is non explicit. Theorem 1.2 below has been investigated by the physicists Bouchaud and Cizeau [15] and rigorously proved by Ben Arous and Guionnet [7], and Belinschi, Dembo, and Guionnet [START_REF] Belinschi | Spectral measure of heavy tailed band and covariance random matrices[END_REF]; see also Zakharevich [START_REF] Zakharevich | A generalization of Wigner's law[END_REF] for related results.

Theorem 1.2 (Symmetric i.i.d. matrix, α ∈ (0, 2)). For every α ∈ (0, 2), there exists a symmetric probability distribution µ α on R depending only on α such that (with the notations of (1.5-1.6) a.s.

µ a -1 n X := 1 n n i=1 δ λi(a -1 n X) w -→ n→∞ µ α .
In Section 3.2, we give a new independent proof of Theorem 1.2. The key idea of our proof is to exhibit a limiting self-adjoint operator T for the sequence of matrices a -1 n X, defined on a suitable Hilbert space, and then use known spectral convergence theorems of operators. The limiting operator will be defined as the "adjacency matrix" of an infinite rooted tree with random edge weights, the so called Poisson weighted infinite tree (PWIT) introduced by Aldous [START_REF] Aldous | Asymptotics in the random assignment problem[END_REF], see also [3]. In other words, the PWIT will be shown to be the local weak limit of the random network (G n , X) when the edge marks X i,j are rescaled by a n . In this setting the LSD µ α arises as the expected value of the (random) spectral measure of the operator T at the root of the tree. The PWIT and the limiting operator T are defined in Section 2. Our method of proof can be seen as a variant of the resolvent method, based on local convergence of operators. It is also well suited to investigate properties of the LSD µ α , cf. Theorem 1.6 below.

Let us now come back to our random reversible Markov kernel K defined by (1.1) from weights with law L ∈ H α . We obtain different limiting behavior in the two regimes α ∈ (0, 1) and α ∈ (1, 2). The case α > 2 corresponds to a Wigner-type behavior (special case of Theorem 1.1). We set

κ n = na -1 n .
Theorem 1.3 (Reversible Markov matrix, α ∈ (1, 2)). Let µ α be the probability distribution which appears as the LSD in the symmetric i.i.d. case (Theorem 1.2). If L ∈ H α with α ∈ (1, 2) then a.s.

µ κnK := 1 n n k=1 δ λ k (κnK) w -→ n→∞ µ α .
Theorem 1.4 (Reversible Markov matrix, α ∈ (0, 1)). For every α ∈ (0, 1), there exists a symmetric probability distribution µ α supported on [-1, 1] depending only on α such that a.s.

µ K := 1 n n k=1 δ λ k (K) w -→ n→∞ µ α .
The proof of Theorem 1.3 and Theorem 1.4 is given in Sections 3.3 and 3.1 respectively. As in the proof of Theorem 1.2, the main idea is to exploit convergence of our matrices to suitable operators defined on the PWIT. To understand the scaling in Theorem 1.3, we recall that if α > 1, then by the strong law of large numbers, we have n -1 ρ i → 1 a.s. for every row sum ρ i , and this is shown to remove, in the limit n → ∞, all dependencies in the matrix na -1 n K, so that we obtain the same behavior of the i.i.d. matrix of Theorem 1.2. On the other hand, when α ∈ (0, 1), both the sum ρ i and the maximum of its elements are on scale a n . The proof of Theorem 1.4 shows that the matrix K converges (without rescaling) to a random stochastic self-adjoint operator K defined on the PWIT. The operator K can be described as the transition matrix of the simple random walk on the PWIT and is naturally linked to Poisson-Dirichlet random variables. This is based on the observation that the order statistics of any given row of the matrix K converges weakly to the Poisson-Dirichlet law PD(α, 0), see Lemma 2.4 below for the details. In fact, the operator K provides an interesting generalization of the Poisson-Dirichlet law.

Since

µ K is supported in [-1, 1], (1.
2) and Theorem 1.4 imply that for all ℓ 1, a.s.

1 n n i=1 p ℓ (i) = R x ℓ µ K (dx) -→ n→∞ R x ℓ µ α (dx) =: γ ℓ . (1.8) 
The LSD µ α will be obtained as the expectation of the (random) spectral measure of K at the root of the PWIT. It will follow that γ ℓ (the ℓ th moment of µ α ) is the expected value of the (random) probability that the random walk returns to the root in ℓ-steps. In particular, the symmetry of µ α follows from the bipartite nature of the PWIT. It was proved by Ben Arous and Guionnet [7, Remark 1.5] that α ∈ (0, 2) → µ α is continuous with respect to weak convergence of probability measures, and by Belinschi, Dembo, and Guionnet [5, Remark 1.2 and Lemma 5.2] that µ α tends to the Wigner semi-circle law as α ր 2. We believe that Theorem 1.3 should remain valid for α = 2 with LSD given by the Wigner semi-circle law. Further properties of the measures µ α and µ α are discussed below.

The case α = 1 is qualitatively similar to the case α ∈ (1, 2) with the difference that the sequence κ n in Theorem 1.3 has to be replaced by κ n = na -1 n w n where

w n = an 0 xL(dx) .
(1.9) Indeed, here the mean of U i,j may be infinite and the closest one gets to a law of large numbers is the statement that ρ i /nw n → 1 in probability (see Section 3.4). The sequence w n (and therefore κ n ) is known to be slowly varying at ∞ for α = 1 (see e.g. Feller [17,VIII.8]). The following mild condition will be assumed: There exists 0 < ε < 1/2 such that lim inf n→∞ w ⌊n ε ⌋ w n > 0.

(1.10)

For example, if U -1 i,j is uniform on [0, 1], then κ n = w n = log n and lim n→∞ w ⌊n ε ⌋ /w n = ε. In the next theorem µ 1 stands for the LSD µ α from Theorem 1.2, at α = 1.

Theorem 1.5 (Reversible Markov matrix, α = 1). Suppose that L ∈ H α with α = 1 and assume

(1.10). If µ κnK is the ESD of κ n K, with κ n = na -1 n w n , then, as n → ∞, a.s. µ κnK w -→ n→∞ µ 1 .
Properties of the LSD. In Section 4 we prove some properties of the LSDs µ α and µ α .

Theorem 1.6 (Properties of µ α ). Let µ α be the symmetric LSD in Theorems 1.2-1.3. (i) µ α is absolutely continuous on R with bounded density.

(ii) The density of µ α at 0 is equal to

1 π Γ 1 + 2 α Γ(1 -α 2 ) Γ(1 + α 2 ) 1 α
.

(iii) µ α is heavy-tailed, and as t goes to +∞,

µ α ((t, +∞)) ∼ 1 2 t -α .
Statements (i)-(ii) answer some questions raised in [7,[START_REF] Belinschi | Spectral measure of heavy tailed band and covariance random matrices[END_REF]. Statement (iii) is already contained in [START_REF] Belinschi | Spectral measure of heavy tailed band and covariance random matrices[END_REF]Theorem 1.7], but we provide a new proof based on a Tauberian theorem for the Cauchy-Stieltjes transform that may be of independent interest. Theorem 1.7 (Properties of µ α ). Let µ α be the symmetric LSD in Theorem 1.4, with moments γ ℓ as in (1.8). Then the following statements hold true.

(i) For α ∈ (0, 1), there exists δ > 0 such that

γ 2n δ n -α for all n 1 .
Moreover, we have lim inf αր1 γ 2 > 0. (ii) For the topology of the weak convergence, the map α → μα is continuous in (0, 1). (iii) For the topology of the weak convergence,

lim αց0 μα = 1 4 δ -1 + 1 2 δ 0 + 1 4 δ 1 .
It is delicate to provide liable numerical simulations of the ESDs. Nevertheless, Figure 1 provides histograms for various values of α and a large value of n, illustrating Theorems 1.3-1.7.

Invariant measure and edge-behavior. Finally, we turn to the analysis of the invariant probability distribution ρ for the random walk on (G, U). This is obtained by normalizing the vector of row sums ρ:

ρ = (ρ 1 + • • • + ρ n ) -1 (ρ 1 , . . . , ρ n ). Following [11, Lemma 2.2], if α > 2 then n max 1 i n |ρ i -n -1 | → 0 as n → ∞ a.
s. This uniform strong law of large numbers does not hold in the heavy-tailed case α ∈ (0, 2): the large n behavior of ρ is then dictated by the largest weights in the system.

Below we use the notation ρ = ( ρ 1 , . . . , ρ n ) for the ranked values of ρ1 , . . . , ρn , so that ρ 1 ρ 2

• • • and their sum is 1. The symbol d -→ denotes convergence in distribution. We refer to Subsection 2.4 for more details on weak convergence in the space of ranked sequences and for the definition of the Poisson-Dirichlet law PD(α, 0).

Theorem 1.8 (Invariant probability measure). Suppose that L ∈ H α . (i) If α ∈ (0, 1), then ρ d -→ n→∞ 1 2 (V 1 , V 1 , V 2 , V 2 , . . . ) , (1.11 
)

where V 1 > V 2 > • • • stands for a Poisson-Dirichlet PD(α, 0) random vector. (ii) If α ∈ (1, 2), then κ n(n+1)/2 ρ d -→ n→∞ 1 2 (x 1 , x 1 , x 2 , x 2 , . . . ) , (1.12) 
where x 1 > x 2 > • • • denote the ranked points of the Poisson point process on (0, ∞) with intensity measure α x -α-1 dx. Moreover, the same convergence holds for α = 1 provided the sequence κ n is replaced by na -1 n w n , with w n as in (1.9). Theorem 1.8 is proved in Section 5. These results will be derived from the statistics of the ranked values of the weights U i,j , i < j, on the scale a n(n+1)/2 (diagonal weights U i,i are easily seen to give negligible contributions). The duplication in the sequences in (1.12) and (1.11) then comes from the fact that each of the largest weights belongs to two distinct rows and determines alone the limiting value of the associated row sum. Theorem 1.8 is another indication that the random walk with transition matrix K shares the features of a trap model. Loosely speaking, instead of being trapped at a vertex, as in the usual mean field trap models (see [START_REF] Bouchaud | Weak ergodicity breaking and aging in disordered systems[END_REF][START_REF] Ben Arous | The arcsine law as a universal aging scheme for trap models[END_REF]16,[START_REF] Fontes | K-processes, scaling limit and aging for the trap model in the complete graph[END_REF]) here the walker is trapped at an edge.

Large edge weights are responsible for the large eigenvalues of K. This phenomenon is well understood in the case of symmetric random matrices with i.i.d. entries, where it is known that, for α ∈ (0, 4), the edge of the spectrum gives rise to a Poisson statistics, see [26,[START_REF] Auffinger | Poisson convergence for the largest eigenvalues of heavy tailed random matrices[END_REF]. The behavior of the extremal eigenvalues of K when L has finite fourth moment has been studied in [START_REF] Ch | Spectrum of large random reversible Markov chains: two examples[END_REF]. In particular, it is shown there that the spectral gap 1 -λ 2 is 1 -O(n -1/2 ). In the present case of heavy-tailed weights, in contrast, by localization on the largest edge-weight it is possible to prove that, a.s. and up to corrections with slow variation at ∞

1 -λ 2 = O(n -1/α ) α ∈ (0, 1) O(n -(2-α)/α ) α ∈ [1, 2) (1.13)
Similarly, for α ∈ (2, 4) one has that λ 2 is bounded below by n -(α-2)/α . Understanding the statistics of the extremal eigenvalues remains an interesting open problem.

Convergence to the Poisson Weighted Infinite Tree

The aim of this section is to prove that the matrices X and K appearing in Theorems 1.2, 1.3 and 1.4, when properly rescaled, converge "locally" to a limiting operator defined on the Poisson weighted infinite tree (PWIT). The concept of local convergence of operators is defined below. We first recall the standard construction of the PWIT.

2.1. The PWIT. Given a Radon measure ν on R, PWIT(ν) is the random rooted tree defined as follows. The vertex set of the tree is identified with N f := ∪ k∈N N k by indexing the root as N 0 = ∅, the offsprings of the root as N and, more generally, the offsprings of some v ∈ N k as (v1), (v2), • • • ∈ N k+1 (for short notation, we write (v1) in place of (v, 1)). In this way the set of v ∈ N n identifies the n th generation.

We now assign marks to the edges of the tree according to a collection {Ξ v } v∈N f of independent realizations of the Poisson point process with intensity measure ν on R. Namely, starting from the root ∅, let Ξ ∅ = {y 1 , y 2 , . . . } be ordered in such a way that |y 1 | |y 2 | • • • , and assign the mark y i to the offspring of the root labeled i. Now, recursively, at each vertex v of generation k, assign the mark y vi to the offspring labeled vi, where Ξ v = {y v1 , y v2 , . . . } satisfy |y v1 | |y v2 | • • • Note that Ξ v has in average ν(R) ∈ (0, ∞] elements. As a convention, if ν(R) < ∞, one sets the remaining marks equal to ∞. For example, if ν = λδ 1 is proportional to a Dirac mass, then, neglecting infinite marks, PWIT(ν) is the tree obtained from a Yule Process (with all marks equal to 1). In the sequel we shall only consider cases where ν is not finite and each vertex has a.s. an infinite number of offsprings with finite and distinct marks. If ν is the Lebesgue measure on [0, ∞) we obtain the original PWIT in [START_REF] Aldous | Asymptotics in the random assignment problem[END_REF].

2.2.

Local operator convergence. We give a general formulation and later specialize to our setting. Let V be a countable set, and let L 2 (V ) denote the Hilbert space defined by the scalar product φ, ψ :=

u∈V φu ψ u , φ u = δ u , φ
where φ, ψ ∈ C V and δ u denotes the unit vector with support u. Let D denote the dense subset of L 2 (V ) of vectors with finite support.

Definition 2.1 (Local convergence). Suppose S n is a sequence of bounded operators on L 2 (V ) and S is a closed linear operator on L 2 (V ) with dense domain D(S) ⊃ D. Suppose further that D is a core for S (i.e. the closure of S restricted to D equals S). For any u, v ∈ V we say that (S n , u) converges locally to (S, v), and write

(S n , u) → (S, v) ,
if there exists a sequence of bijections σ n : V → V such that σ n (v) = u and, for all φ ∈ D,

σ -1 n S n σ n φ → Sφ , in L 2 (V ), as n → ∞.
In other words, this is the standard strong convergence of operators up to a re-indexing of V which preserves a distinguished element. With a slight abuse of notation we have used the same symbol σ n for the linear isometry σ n : L 2 (V ) → L 2 (V ) induced in the obvious way, i.e. such that σ n δ v = δ σn(v) for all v ∈ V . The point for introducing Definition 2.1 lies in the following theorem on strong resolvent convergence. Recall that if S is a self-adjoint operator its spectrum is real and for all z ∈ C + := {z ∈ C : ℑz > 0}, the operator S -zI is invertible with bounded inverse. The operator-valued function z → (S -zI) -1 is the resolvent of S. Theorem 2.2 (From local convergence to resolvents). If S n and S are self-adjoint operators that satisfy the conditions of Definition 2.1 and (S n , u) → (S, v) for some u, v ∈ V , then, for all z ∈ C + ,

δ u , (S n -zI) -1 δ u → δ v , (S -zI) -1 δ v .
(2.1)

Proof of Theorem 2.2. It is a special case of [START_REF] Reed | Methods of modern mathematical physics[END_REF]Theorem VIII.25(a)]. Indeed, if we define S n = σ -1 n S n σ n , then S n φ → Sφ for all φ in a common core of the self-adjoint operators S n , S. This implies the strong resolvent convergence, i.e. ( S n -zI) -1 ψ → (S -zI) -1 ψ for any z ∈ C + , ψ ∈ L 2 (V ). The conclusion follows by taking the scalar product

δ v , ( S n -zI) -1 δ v = δ u , (S n -zI) -1 δ u .
We shall apply the above theorem in cases where the operators S n and S are random operators on L 2 (V ), which satisfy with probability one the conditions of Definition 2.1. In this cases we say that (S n , u) → (S, v) in distribution if there exists a random bijection σ n as in Definition 2.1 such that σ -1 n S n σ n φ converges in distribution to Sφ, for all φ ∈ D (where a random vector

ψ n ∈ L 2 (V ) converges in distribution to ψ if lim n→∞ Ef (ψ n ) = Ef (ψ)
for all bounded continuous functions f : L 2 (V ) → R). Under these assumptions then (2.1) becomes convergence in distribution of (bounded) complex random variables. In our setting the Hilbert space will be L 2 (V ), with V = N f , the vertex set of the PWIT, the operator S n will be a rescaled version of the matrix X defined by (1.6) or the matrix K defined by (1.1). The operator S will be the corresponding limiting operator defined below.

2.3. Limiting operators. Let θ be as in Theorem 1.2, and let ℓ θ be the positive Borel measure on the real line defined by dℓ θ (x) = θ1 {x>0} dx+ (1 -θ)1 {x<0} dx. Consider a realization of PWIT(ℓ θ ).

As before the mark from vertex v ∈ N k to vk ∈ N k+1 is denoted by y vk . We note that almost surely

k |y vk | -2/α < ∞, (2.2) 
since a.s. lim k |y vk |/k = 1 and k k -2/α converges for α ∈ (0, 2). Recall that for V = N f , D is the dense set of L 2 (V ) of vectors with finite support. We may a.s. define a linear operator

T : D → L 2 (V ) by letting, for v, w ∈ N f , T(v, w) = δ v , Tδ w =      sign(y w )|y w | -1/α if w = vk for some integer k sign(y v )|y v | -1/α if v = wk for some integer k 0 otherwise.
(2.3) Note that if every edge e in the tree with mark y e is given the "weight" sign(y e )|y e | -1/α then we may look at the operator T as the "adjacency matrix" of the weighted tree. Clearly, T is symmetric, and therefore it has a closed extension with domain D(T) ⊂ L 2 (N f ) such that D ⊂ D(T); see e.g. [START_REF] Reed | Methods of modern mathematical physics[END_REF]VIII.2]. We will prove in Proposition A.2 below that T is essentially self-adjoint, i.e. the closure of T is self-adjoint. With a slight abuse of notation, we identify T with its closed extension. As stated below, T is the weak local limit of the sequence of n × n i.i.d. matrices a -1 n X, where X is defined by (1.6). To this end we view the matrix X as an operator in L 2 (V ) by setting δ i , Xδ j = X i,j , where i, j ∈ N denote the labels of the offsprings of the root (the first generation), with the convention that X i,j = 0 when either i > n or j > n, and by setting δ u , Xδ v = 0 when either u or v does not belong to the first generation.

Similarly, taking now θ = 1, in the case of Markov matrices K defined by (1.1), for α ∈ [1, 2), T is the local limit operator of κ n K. To work directly with symmetric operators we introduce the symmetric matrix

S i,j = U i,j √ ρ i ρ j , (2.4) 
which is easily seen to have the same spectrum of K (see e.g. [START_REF] Ch | Spectrum of large random reversible Markov chains: two examples[END_REF]Lemma 2.1]). Again the matrix S can be embedded in the infinite tree as described above for X.

In the case α ∈ (0, 1) the Markov matrix K has a different limiting object that is defined as follows. Consider a realization of PWIT(ℓ 1 ), where ℓ 1 is the Lebesgue measure on [0, ∞). We define an operator corresponding to the random walk on this tree with conductance equal to the mark to the power -1/α. More precisely, for v ∈ N f , let

ρ(v) = y -1/α v + k∈N y -1/α vk with the convention that y -1/α ∅ = 0. Since a.s. lim k |y vk |/k = 1, ρ(v)
is almost surely finite for α ∈ (0, 1). We define the linear operator K on D, by letting, for v, w ∈ N f ,

K(v, w) = δ v , Kδ w =        y -1/α w ρ(v) if w = vk for some integer k y -1/α v ρ(v) if v = wk for some integer k 0 otherwise. (2.5)
Note that K is not symmetric, but it becomes symmetric in the weighted Hilbert space L 2 (V, ρ) defined by the scalar product

φ, ψ ρ := u∈V ρ(u) φu ψ u . Moreover, on L 2 (V, ρ), K is a bounded self-adjoint operator since Schwarz' inequality implies Kφ, Kφ 2 ρ = u ρ(u) v K(u, v)φ v 2 u ρ(u) v K(u, v)|φ v | 2 = v ρ(v)|φ v | 2 = φ, φ 2
ρ so that the operator norm of K is less than or equal to 1. To work with self-adjoint operators in the unweighted Hilbert space L 2 (V ) we shall actually consider the operator S defined by

S(v, w) := ρ(v) ρ(w) K(v, w) = T(v, w) ρ(v) ρ(w) . (2.6) 
This defines a bounded self-adjoint operator in L 2 (V ). Indeed, the map

δ v → ρ(v)δ v induces a linear isometry D : L 2 (V, ρ) → L 2 (V ) such that φ, Sψ = D -1 φ, KD -1 ψ ρ , (2.7) 
for all φ, ψ ∈ L 2 (V ). In this way, when α ∈ (0, 1), S will be the limiting operator associated to the matrix S defined in (2.4). Note that no rescaling is needed here. The main result of this section is the following Theorem 2.3 (Limiting operators). As n goes to infinity, in distribution,

(i) if α ∈ (0, 2) and θ ∈ [0, 1], then (a -1 n X, 1) → (T, ∅), (ii) if α ∈ (1, 2) and θ = 1 then (κ n S, 1) → (T, ∅), (iii) if α ∈ (0, 1) then (S, 1) → (S, ∅).
From the remark after Theorem 2.2 we see that Theorem 2.3 implies convergence in distribution of the resolvent at the root. As we shall see in Section 3, this in turn gives convergence of the expected values of the Cauchy-Stieltjes transform of the ESD of our matrices. The rest of this section is devoted to the proof of Theorem 2.3.

2.4.

Weak convergence of a single row. In this paragraph, we recall some facts about the order statistics of the first row of the matrix X and K, i.e.

(X 1,1 , . . . , X 1,n ) and (U 1,1 , . . . , U 1,n )/ρ 1 , where U 1,j = |X 1,j | has law H α . Let us denote by V 1 V 2 • • • V n the order statistics of the variables U 1,j , 1 j n. Recall that ρ 1 = n j=1 V j . Let us define ∆ k,n = n j=k+1 V j for k < n and ∆ 2 k,n = n j=k+1 V 2 j . Call A the set of sequences {v j } ∈ [0, ∞) N with v 1 v 2 • • • 0 such that lim j→∞ v j =
0, and let A 1 ⊂ A be the subset of sequences satisfying j v j = 1. We shall view

Y n = V 1 a n , . . . , V n a n and Z n = V 1 ρ 1 , . . . , V n ρ 1
as elements of A and A 1 , respectively, simply by adding zeros to the right of V n /a n and V n /ρ 1 .

Equipped with the standard product metric, A and A 1 are complete separable metric spaces (A 1 is compact) and convergence in distribution for A, A 1 -valued random variables is equivalent to finite dimensional convergence, cf. e.g. Bertoin [9]. Let E 1 , E 2 , . . . denote i.i.d. exponential variables with mean 1 and write

γ k = k j=1 E j . We define the random variable in A Y = γ -1 α 1 , γ -1 α 2 , .
. . The law of Y is the law of the ordered points of a Poisson process on (0, ∞) with intensity measure αx -α-1 dx. For α ∈ (0, 1) we define the variable in Pitman and Yor [22,Proposition 10]. The next result is rather standard but we give a simple proof for convenience.

A 1 Z = γ -1 α 1 ∞ n=1 γ -1 α n , γ -1 α 2 ∞ n=1 γ -1 α n , . . . . For α ∈ (0, 1) the sum n γ -1 α n is a.s. finite. The law of Z in A 1 is called the Poisson-Dirichlet law PD(α, 0), see

Lemma 2.4 (Poisson-Dirichlet laws and Poisson point processes).

(i) For all α > 0, Y n converges in distribution to Y . Moreover, for α ∈ (0, 2), (a -1 n V j ) j 1 is a.s. uniformly square integrable, i.e. a.s.

lim k sup n>k a -2 n ∆ 2 k,n = 0. (ii) If α ∈ (0, 1), Z n converges in distribution to Z. Moreover, (a -1 n V j ) j 1 is a.s. uniformly integrable, i.e. a.s. lim k sup n>k a -1 n ∆ k,n = 0. (iii) If I ⊂ N is a finite set and V I 1 V I 2 • • • denote the order statistics of {U 1,j } j∈{1,...,n}\I then (i) and (ii) hold with Y I n = (V I 1 /a n , V I 2 /a n , . . . ) and Z I n = (V I 1 /ρ 1 , V I 2 /ρ 1 , . . . ).
As an example, from (i), we retrieve the well-known fact that for any α > 0, the random variable a -1 n max(U 1,1 , . . . , U 1,n ) converges weakly as n → ∞ to the law of γ -1 α 1 . This law, known as a Fréchet law, has density αx -α-1 e -x -α on (0, ∞).

Proof of Lemma 2.4. As in LePage, Woodroofe and Zinn [20] we take advantage of the following well known representation for the order statistics of i.i.d. random variables. Let G be the function in (1.4) and write

G -1 (u) = inf{y > 0 : G(y) u} , u ∈ (0, 1). We have that (V 1 , . . . , V n ) equals in distribution the vector G -1 (γ 1 /γ n+1 ) , . . . , G -1 (γ n /γ n+1 ) , (2.8) 
where γ j has been defined above. To prove (i) we start from the distributional identity

Y n d = G -1 (γ 1 /γ n+1 ) a n , . . . , G -1 (γ n /γ n+1 ) a n ,
which follows from (2.8). It suffices to prove that for every k, almost surely the first k terms above converge to the first k terms in Y . Thanks to (1.5), almost surely, for every j:

a -1 n G -1 (γ j /γ n+1 ) → γ -1 α j , (2.9) 
and the convergence in distribution of Y n to Y follows. Moreover, from (1.5), for any δ > 0 we can find n 0 such that a

-1 n V j = a -1 n G -1 (γ j /γ n+1 ) (nγ j /(1 + δ)γ n+1 ) -1
α , for n n 0 , j ∈ N. Since n/γ n+1 → 1, a.s. we see that the expression above is a.s. bounded by

2(1 + δ) 1 α γ -1 α j
, for n sufficiently large, and the second part of (i) follows from a.s. summability of

γ -2 α j . Similarly, if α ∈ (0, 1), ∆ k,n has the same law of n j=k+1 G -1 (γ j /γ n+1 ) ,
and the second part of (ii) follows from a.s. summability of γ -1 α j . To prove the convergence of Z n we use the distributional identity

Z n d = G -1 (γ 1 /γ n+1 ) n j=1 G -1 (γ j /γ n+1 ) , . . . , G -1 (γ n /γ n+1 ) n j=1 G -1 (γ j /γ n+1 )
.

As a consequence of (2.9), we then have almost surely

a -1 n n j=1 G -1 (γ j /γ n+1 ) → ∞ j=1 γ -1 α j
, and (ii) follows. Finally, (iii) is an easy consequence of the exchangeability of the variable (U 1,i ) :

P(V I k = V k ) P(∃j ∈ I : U 1,j V k ) |I|P(U 1,1 V k ) = |I| k n .
The intensity measure αx -α-1 dx on (0, ∞) is not locally finite at 0. It will be more convenient to work with Radon (i.e. locally finite) intensity measures. We refer to [24, Theorem 5.3, p. 138] for a proof of Lemma 2.5. Note that for ξ

(n) j = a n /U 1,j
it is a consequence of Lemma 2.4 (iii). In the case ξ

(n) j = a n /X 1,j
, where X i,j is as in (1.6) and (1.7), the above Lemma yields convergence to PPP(ν α,θ ), where

ν α,θ (dx) = θ1 {x>0} + (1 -θ)1 {x<0} α|x| α-1 dx , (2.11) 
2.5. Local weak convergence to PWIT. In the previous paragraph we have considered the convergence of the first row of the matrix a -1 n X. Here we generalize this by characterizing the limiting local structure of the complete graph with marks a n /X i,j . Our argument is based on a technical generalization of an argument borrowed from Aldous [START_REF] Aldous | Asymptotics in the random assignment problem[END_REF]. This will lead us to Theorems 2.3 and 2.8 below.

Let G n be the complete network on {1, . . . , n} whose mark on edge (i, j) equals ξ n i,j , for some collection (ξ n ij ) 1 i j n of i.i.d. random variables with values in R, with ξ n j,i = ξ n i,j . We consider the rooted network (G n , 1) obtained by distinguishing the vertex labeled 1.

We follow Aldous [1, Section 3]. For every fixed realization of the marks (ξ n ij ), and for any B, H ∈ N, such that (B H+1 -1)/(B -1) n, we define a finite rooted subnetwork (G n , 1) B,H of (G n , 1), whose vertex set coincides with a B-ary tree of depth H with root at 1.

To this end we partially index the vertices of (G n , 1) as elements in J B,H = ∪ H ℓ=0 {1, . . . , B} ℓ ⊂ N f , the indexing being given by an injective map σ n from J B,H to V n := {1, . . . , n}. The map σ n can be extended to a bijection from a subset of N f to V n . We set I ∅ = {1} and the index of the root 1 is σ

-1 n (1) = ∅. The vertex v ∈ V n \I ∅ is given the index (k) = σ -1 n (v), 1 k B, if ξ n (1,v)
has the k th smallest absolute value among {ξ n 1,j , j = 1}, the marks of edges emanating from the root 1. We break ties by using the lexicographic order. This defines the first generation. Now let I 1 be the union of I ∅ and the B vertices that have been selected. If H 2, we repeat the indexing procedure for the vertex indexed by (1) (the first child) on the set V n \I 1 . We obtain a new set {11, . . . , 1B} of vertices sorted by their weights as before (for short notation, we concatenate the vector (1, 1) into 11). Then we define I 2 as the union of I 1 and this new collection. We repeat the procedure for (2) on V n \I 2 and obtain a new set {21, . . . , 2B}, and so on. When we have constructed {B1, • • • , BB}, we have finished the second generation (depth 2) and we have indexed (B 3 -1)/(B -1) vertices. The indexing procedure is then repeated until depth H so that (B H+1 -1)/(B -1) vertices are sorted. Call this set of vertices

V B,H n = σ n J B,H . The subnetwork of G n generated by V B,H n is denoted (G n , 1)
B,H (it can be identified with the original network G n where any edge e touching the complement of V B,H n is given a mark x e = ∞). In (G n , 1) B,H , the set {u1, • • • , uB} is called the set of children or offsprings of the vertex u. Note that while the vertex set has been given a tree structure, (G n , 1) B,H is still a complete network. The next proposition shows that it nevertheless converges to a tree (i.e. all circuits vanish, or equivalently, the extra marks diverge to ∞) if the ξ n i,j satisfy a suitable scaling assumption. Let (T , ∅) denote the infinite random rooted network with distribution PWIT(ν). We call (T , ∅) B,H the finite random network obtained by the sorting procedure described in the previous paragraph. Namely, (T , ∅) B,H consists of the sub-tree with vertices of the form u ∈ J B,H , with the marks inherited from the infinite tree. If an edge is not present in (T , ∅) B,H , we assign to it the mark +∞.

We say that the sequence of random finite networks (G n , 1) B,H converges in distribution (as n → ∞) to the random finite network (T , ∅) B,H if the joint distributions of the marks converge weakly. To make this precise we have to add the points {±∞} as possible values for each mark, and continuous functions on the space of marks have to be understood as functions such that the limit as any one of the marks diverges to +∞ exists and coincides with the limit as the same mark diverges to -∞. The next proposition generalizes [1, Section 3]. Proposition 2.6 (Local weak convergence to a tree). Let (ξ n i,j ) 1 i j n be a collection of i.i.d. random variables with values in R := R ∪ {±∞} and set ξ n j,i = ξ n i,j . Let ν be a Radon measure on R with no mass at 0 and assume that

nP(ξ n 12 ∈ •) w -→ n→∞ ν as n → ∞. (2.12)
Let G n be the complete network on {1, . . . , n} whose mark on edge (i, j) equals ξ n ij . Then, for all integers B, H, as n goes to infinity, in distribution,

(G n , 1) B,H -→ (T , ∅) B,H . Moreover, if T 1 , T 2 are independent with common law PWIT(ν), then, in distribution, ((G n , 1) B,H , (G n , 2) B,H ) -→ ((T 1 , ∅) B,H , (T 2 , ∅) B,H ).
The second statement is the convergence of the joint law of the finite networks, where (G n , 2) B,H is obtained with the same procedure as for (G n , 1) B,H , by starting from the vertex 2 instead of 1. In particular, the second statement implies the first.

This type of convergence is often referred to as local weak convergence, a notion introduced by Benjamini and Schramm [START_REF] Benjamini | Recurrence of distributional limits of finite planar graphs[END_REF], Aldous and Steele [3], see also Aldous and Lyons [START_REF] Aldous | Processes on unimodular random networks[END_REF]. Let us give some examples of application of this proposition. Consider the case where ξ n ij = 1 with probability λ/n and ξ n i,j = ∞ otherwise. The network G n is an Erdős-Rényi random graph with parameter λ/n. From the proposition, we retrieve the well-known fact that it locally converges to the tree of a Yule process of intensity λ. If ξ n i,j = nY i,j , where Y i,j is any non negative continuous random variable with density 1 at 0+, then the network converges to PWIT(ℓ 1 ), where ℓ 1 is the Lebesgue measure on [0, ∞). The relevant application for our purpose is given by the choice ξ n i,j = (a n /X i,j ), and ν = ν α,θ , where X i,j are such that |X i,j | ∈ H α and (1.7) is satisfied, and ν α,θ is defined by (2.11).

Note that the proposition applies to all α > 0 in this setting.

Proof of Proposition 2.6. We order the elements of J B,H in the lexicographic order, i.e.

∅ ≺ 1 ≺ 2 ≺ • • • ≺ B ≺ 11 ≺ 12 ≺ • • • ≺ B . . . B. For v ∈ J B,H , let O v denote the set of offsprings of v in (G n , 1) B,H
. By construction, we have I ∅ = {1} and I v = σ n (∪ w≺v O w ). At every step of the indexing procedure, we sort the marks of the neighboring edges that have not been explored at an earlier step {1, • • • , n}\I 1 , {1, . . . , n}\I 2 , . . .. Therefore, for all u,

(ξ n σn(u),i ) i / ∈Iu d = (ξ n 1,i ) 1 i n-|Iu| . (2.13)
Thus, from Lemma 2.5 and the independence of the variables ξ n , we infer that the marks from a parent to its offsprings in (G n , 1) B,H converge weakly to those in (T , ∅) B,H . We now check that all other marks diverge to infinity. For v, w ∈ J B,H , we define It remains to prove the second statement. It is an extension of the above argument. We consider the two subnetworks (G n , 1) B,H and (G n , 2) B,H obtained from (G n , 1) and (G n , 2). This gives rise to two increasing sequences of sets of vertices I v,1 and I v,2 with v ∈ J B,H and two injective maps σ n,1 , σ n,2 from J B,H to {?1, • • • , n}. We need to show that in distribution,

x n v,w = ξ n σn(v),
((G n , 1) B,H , (G n , 2) B,H ) → ((T 1 , ∅) B,H , (T 2 , ∅) B,H ).
(2.14)

Let V B,H n,i
= σ n,i (J B,H ) be the vertex set of (G n , i) B,H , i = 1, 2. There are

C := B H+1 -1 B -1 vertices in V B,H n,i
, hence the exchangeability of the variables implies that

P(2 ∈ V B,H n,1 ) C n . Let G n = G n \V B,H n,1 , the subnetwork of G n spanned by the vertex set V \V B,H n,1 . Assuming that 2(B H+1 -1)/(B -1) < n and 2 / ∈ V B,H n,1 , we may then define ( G n , 2) B,H . If 2 ∈ V B,H n,1 , ( G n , 2) B,
H is defined arbitrarily. The above analysis shows that, in distribution,

((G n , 1) B,H , ( G n , 2) B,H ) → ((T 1 , ∅) B,H , (T 2 , ∅) B,H ).
Therefore in order to prove (2.14) it is sufficient to prove that with probability tending to 1,

V B,H n,1 ∩ V B,H n,2 = ∅.
Indeed, on the event

{V B,H n,1 ∩ V B,H n,2 = ∅}, (G n , 2) B,H and ( G n , 2) B,H are equal. For v ∈ J B,H , let O v,2 denote the set of offsprings of v in (G n , 2) B,H . We have I v,2 = {2} ∪ w≺v O w,2 ,
and 

P(V B,H n,1 ∩ V B,H n,2 = ∅) P(2 ∈ V B,H n,1 ) + B...B v=∅ P(O v,2 ∩ V B,H n,1 = ∅ | V B,H n,1 ∩ I v,2 = ∅). For any u, v ∈ J B,H , if V B,H n,1 ∩ I v,2 = ∅, then σ n,2 (v)
P(σ n,1 (u) ∈ O v,2 | V B,H n,1 ∩ I v,2 = ∅) B n -C -|I v,2 | .
Therefore,

P(O v,2 ∩ V B,H n,1 = ∅ | V B,H n,1 ∩ I v,2 = ∅) u∈JB,H P(σ n,1 (u) ∈ O v,2 | V B,H n,1 ∩ I v,2 = ∅) CB n -2C .
Finally,

P(V B,H n,1 ∩ V B,H n,2 = ∅) C n + C 2 B n -2C ,
which converges to 0 as n → ∞.

We have used the following stochastic domination lemma. For any B, H and n let E H,B n denote the (random) set of edges {i, j} of the complete graph on {1, . . . , n}, such that {σ -1 n (i), σ -1 n (j)} is not an edge of the finite tree on J B,H . By construction, any loop {i, i} belongs to E B,H n . Also, for u = ∅ on the finite tree, let g(u) denote the parent of u. 1,2 |. Proof of Lemma 2.7. The censoring process which deletes the edges that belong to the tree on J B,H has the property that at each step the B lowest absolute values are deleted from some fresh (previously unexplored) subset of edge marks. Using this and the fact that the edge marks ξ n i,j are i.i.d. we see that both claims in the lemma are implied by the following simple statement.

Let Y 1 , . . . , Y m denote i.i.d. positive random variables. Suppose m = n 1 + • • • n ℓ , for some positive integers ℓ, n 1 , . . . , n ℓ , and partition the m variables in ℓ blocks I 1 , . . . , I ℓ of n 1 , . . . , n ℓ variables each. Fix some non negative integers k j such that k j n j and call q j 1 , . . . , q j kj , the (random) indexes of the k j lowest values of the variables in the block I j (so that Y q 1 1 is the lowest of the Y 1 , . . . , Y n1 , Y q 1 2 is the second lowest of the Y 1 , . . . , Y n1 and so on). Consider the random index sets of the k j minimal values in the j th block, J j := ∪ kj i=1 {q j i }, and set J = ∪ ℓ j=1 J j . If k j = 0 we set J j = ∅. Finally, let Y denote the vector {Y i , i = 1, . . . , m ; i ∈ J}. Then we claim that Y stochastically dominates m -ℓ j=1 k j i.i.d. copies of Y 1 . Indeed, the coupling can be constructed as follows. We first extract a realization y 1 , . . . , y m of the whole vector. Given this we isolate the index sets J 1 , . . . , J ℓ within each block. We then consider two vectors Z, V obtained as follows. The vector Z 1 = (z 1 1 , . . . , z 1 n1-k1 , z 2 1 , . . . , z 2 n2-k2 , . . . , z ℓ n ℓ -k ℓ ) is obtained by extracting the n 1 -k 1 values z 1 1 , . . . , z 1 n1-k1 uniformly at random (without replacement) from the values y 1 , . . . , y n1 (in the block I 1 ), the n 2 -k 2 variables z 2 1 , . . . , z 2 n2-k2 in the same way from the values y n1+1 , . . . , y n1+n2 (in the block I 2 ), and so on. On the other hand, the vector V = (v 1 1 , . . . , v 1 n1-k1 , v 2 1 , . . . , v 2 n2-k2 , . . . , v ℓ n ℓ -k ℓ ) is obtained as follows. For the first block we take v 1 i , i = 1, . . . , n 1 -k 1 equal to z 1 i whenever an index i ∈ I 1 \ J 1 was picked for the vector z 1 1 , . . . , z 1 n1-k1 and we assign the remaining values (if any) through an independent uniform permutation of those variables y i , i ∈ I 1 \ J 1 which were not picked for the vector z 1 1 , . . . , z 1 n1-k1 . We repeat this procedure for all other blocks to assign all values of V. By construction, V Z coordinate-wise. The conclusion follows from the observation that Z is distributed like a vector of m -ℓ j=1 k j i.i.d. copies of Y 1 , while V is distributed like our vector Y . 2.6. Proof of Theorem 2.3.

Proof of Theorem 2.3(i).

Let ν = ν α,θ be as in (2.11) and let (T α , ∅) be a realization of the PWIT(ν). The mark on edge (v, vk) in T α is denoted by x (v,vk) or simply x vk . By definition, we have x (v,w) = ∞ if v and w are at graph-distance different from 1. In particular, if we set y v = sign(x v )|x v | α , then the point sets Ξ v = {y vk } k 1 are independent Poisson point processes of intensity ℓ θ = θ1 {x>0} dx + (1 -θ)1 {x<0} dx. We may thus build a realization of the operator T on T α , cf. (2.3). Let G n be the complete network on {1, . . . , n} whose mark on edge (i, j) is ξ n i,j := a n /X i,j . Next, we apply Proposition 2.6. For all B, H, (G n , 1) B,H converges weakly to (T α , ∅) B,H . Let σ B,H n be the map σ n associated to the network (G n , 1) B,H (see the construction given before Proposition 2.6). From the Skorokhod Representation Theorem we may assume that (G n , 1) B,H converges a.s. to (T α , ∅) B,H for all B, H. Thus we may find sequences B n , H n tending to infinity, such that (B Hn+1 n -1)/(B n -1)

n and such that for any pair u, v ∈ N f we have ξ n ( σn(u), σn(v)) → x (u,v) a.s. as n → ∞, where σ n := σ Bn,Hn n . The map σ n can be extended to a bijection N f → N f . It follows that a.s.

δ u , σ -1 n (a -1 n X) σ n δ v = 1 ξ n ( σn(u), σn(v)) → 1 x (u,v) = δ u , Tδ v . (2.15) Fix v ∈ N f , and set ψ v n := σ -1 n (a -1 n X) σ n δ v . To prove Theorem 2.3(i) it is sufficient to show that ψ v n → Tδ v in L 2 (N f ) almost surely as n → ∞, i.e. u ( δ u , ψ v n -δ u , Tδ v ) 2 → 0 . (2.16) 
Since from (2.15) we know that δ u , ψ v n → δ u , Tδ v for every u, the claim follows if we have (almost surely) uniform (in n) square-integrability of ( δ u , ψ v n ) u . This in turn follows from Lemma 2.7 and Lemma 2.4(i). The proof of Theorem 2.3(i) is complete.

Proof of Theorem 2.3(ii).

We need the following two facts:

lim n→∞ ρ 1 n = 1 in probability , (2.17) 
and there exists δ > 0 such that lim inf n→∞ min

1 i n ρ i n > δ a.s. (2.18)
Clearly, (2.17) is a law of large numbers and holds actually a.s. (recall that for α > 1 we assume the mean of U i,j to be 1). Let us establish the a.s. uniform bound (2.18). For every ǫ > 0, there exists R > 0 such that

E(U i,j 1 {Ui,j <R} ) 1 -ǫ. If we define ρ R i = n j=1 U i,j 1 {Ui,j <R} , then lim inf n→∞ min 1 i n ρ i n lim inf n→∞ min 1 i n ρ R i n .
Therefore Now, observe that if u ∈ N f belongs to generation h, then the set I u contains at most O(B h n ) elements, while n is at least of order B Hn n , where B n , H n are the sequences used in the proof of Theorem 2.3(i). In particular, it follows that |I u | = o(n) and therefore (2.13) and (2.17) imply that lim inf n→∞ ρ σn(u) /n 1 in probability. This proves (2.19).

Thanks to (2.19), from the Slutsky lemma and the Skorokhod Representation Theorem, we may also assume that for each v ∈ N f , ρ σn(v) /n converges a.s. to 1. We need to show that for each v ∈ N f , (2.16) holds with the new vector

ψ v n := σ -1 n (κ n S) σ n δ v , δ w , ψ v n = κ n U σn(w), σn(v) √ ρ σn(v) ρ σn(w) .
Thanks to (2.18), ( δ w , ψ v n ) w is uniformly square-integrable (cf. the proof of (2.16)), and all we have to check is that ( δ w , ψ v n -δ w , Tδ v ) 2 → 0 for fixed w. Here T is the operator appearing in the proof of Theorem 2.3(i) above, now with the choice θ = 1. We have

( δ w , ψ v n -δ w , Tδ v ) 2 2 a -1 n U σn(w), σn(v) 1 -n/ √ ρ σn(v) ρ σn(w) 2 + 2(a -1 n U σn(w), σn(v) -δ w , Tδ v ) 2 .
The second term above converges to zero as in the proof of point (i). For the first term we use ρ σn(v) /n → 1 and ρ σn(w) /n → 1. This proves point (ii).

Proof of Theorem 2.3(iii).

The setting is as in the proof of point (ii) above, but now α ∈ (0, 1). We build the operator S on the tree T α as in (2.6). We need to prove that for any v ∈ N f , a.s.

w ( δ w , ψ v n -δ w , Sδ v ) 2 → 0 , (2.20) 
with

ψ v n := σ -1 n S σ n δ v , i.e. δ w , ψ v n =
U σn(w), σn(v) √ ρ σn(v) ρ σn(w) .

Let us first show that for any v, w ∈ N f we have a.s.

U σn(w), σn(v) √ ρ σn(v) ρ σn(w) → δ w , Tδ v ρ(v)ρ(w) = δ w , Sδ v . (2.21) 
Multiplying and dividing by a n and using (2.15) with θ = 1, we see that (2.21) holds if

a -1 n ρ σn(v) → ρ(v) , (2.22) 
almost surely, for every v ∈ N f . In turn, (2.22) can be proved as follows. Let k ∈ N, and consider the tree with vertex set J k,k , obtained as in Proposition 2.6 with B = H = k. Since J k,k is a finite set, for any v, (2.15) implies that a.s.

a -1 n u∈J k,k U σn(v), σn(u) → u∈J k,k x -1 v,u .
By Lemma 2.7 and Lemma 2.4(ii), u / ∈J k,k a -1 n U σn(v), σn(u) a.s. converges uniformly (in n) to 0 as k goes to infinity. This proves (2.22) and (2.21).

Once we have (2.21), to conclude the proof it is sufficient to show that a.s.

lim k→∞ sup n w / ∈J k,k ( δ w , ψ v n ) 2 = 0 . (2.23)
However, using (2.22) and the simple bound (

δ w , ψ v n ) 2 U σn (v), σn (w) ρ σn (v)
, we have that (2.23) again follows from an application of Lemma 2.7 and Lemma 2.4(ii). This completes the proof of Theorem 2.3(iii). 2.7. Two-points local operator convergence. In the proof of the main theorems, we will need a stronger version of Theorem 2.3. Define the 2n × 2n matrices X ⊕ X and S ⊕ S, where "⊕" denotes the usual direct sum decomposition: X ⊕ X(φ 1 , φ 2 ) = (Xφ 1 , Xφ 2 ), for ndimensional vectors φ 1 , φ 2 . As for the limiting operators, we realize them on the Hilbert space L 2 (V ) ⊕ L 2 (V ) with V = N f . We consider two independent realizations T 1 α , T 2 α of the PWIT(ℓ θ ), and call T 1 , S 1 , T 2 , S 2 the associated operators as in Section 2.3. We may then define

T 1 ⊕ T 2 and S 1 ⊕ S 2 .
By Proposition 2.6, ((G n , 1)) B,H , (G n , 2) B,H ) converges weakly to ((T 1 α , ∅) B,H , (T 2 α , ∅) B,H ). As before we can view the matrices X ⊕ X and S ⊕ S as bounded self-adjoint operators on L 2 (V ) ⊕ L 2 (V ). Therefore, arguing as in the proof of Theorem 2.3, it follows that, in distribution, for all

(φ 1 , φ 2 ) ∈ D × D, σ -1 n a -1 n X ⊕ Xσ n (φ 1 , φ 2 ) → T 1 ⊕ T 2 (φ 1 , φ 2 )
, where, σ n = σ 1 n ⊕ σ 2 n , and, as above, for i ∈ {1, 2}, σ i n is a bijection on N f , extension of the injective indexing map from N f to {1, . . . , n}, such that σ i n (∅) = i. Analogous convergence results hold for the matrix S ⊕ S. We can thus extend the statement of Theorem 2.3 to the following local convergence of operators in L 2 (V ) ⊕ L 2 (V ). To avoid lengthy repetitions we omit the details of the proof.

Theorem 2.8. As n goes to infinity, in distribution, For ℓ ∈ N, set p ℓ := δ ∅ , S ℓ δ ∅ (3.1) Note that p ℓ = 1 ρ(∅) δ ∅ , K ℓ δ ∅ ρ is the probability that the random walk on the PWIT associated to the stochastic operator K comes back to the root (where it started) after ℓ steps. In particular, p ℓ = 0 for ℓ odd. We set p 0 = 1. Let µ ∅ denote the spectral measure of S associated to δ ∅ (see e.g. [START_REF] Reed | Methods of modern mathematical physics[END_REF]Chapter VII]). Equivalently, µ ∅ is the spectral measure of K associated to the L 2 (V, ρ) normalized vector δ∅ := δ ∅ / ρ(∅), cf. (2.7). In particular, µ ∅ is a probability measure supported on [-1, 1] and such that p ℓ = 1 -1 x ℓ µ ∅ (dx), for every ℓ. Since all odd moments vanish µ ∅ is symmetric. Moreover, for any z ∈ C + we have

(i) if α ∈ (0, 2) then (a -1 n X ⊕ a -1 n X, (1, 2)) → (T 1 ⊕ T 2 , (∅, ∅)), (ii) if α ∈ (1, 2) and θ = 1 then (κ n S ⊕ κ n S, (1, 2)) → (T 1 ⊕ T 2 , (∅, ∅)), (iii) if α ∈ (0, 1) then (S ⊕ S, (1, 2)) → (S 1 ⊕ S 2 , (∅, ∅)).

Convergence of the Empirical Spectral Distributions

δ ∅ , R(z)δ ∅ = 1 -1 µ ∅ (dx) x -z , i.e. δ ∅ , R(z)δ ∅ is the Cauchy-Stieltjes transform of µ ∅ .
Recall that the Cauchy-Stieltjes transform of a probability measure µ on R is the analytic function on C + given by

m µ (z) = R µ(dx) x -z .
The function m µ characterizes the measure µ, |m µ (z)| (ℑz) -1 , and weak convergence of µ n to µ is equivalent to the convergence m µn (z) → m µ (z) for all z ∈ C + . By construction

1 n trR (n) (z) = 1 -1 µ K (dx) x -z = m µK (z) ,
where µ K is the ESD of K, which coincides with the ESD of S. Using exchangeability and linearity, we get ER We define

(n) 1,1 (z) = Em µK (z) = m EµK (z). Since R (n) (z)
µ α = Eµ ∅ .
Next, we shall prove that, for all z ∈ C + :

lim n→∞ E m µK (z) -m Eµ∅ (z) = 0. (3.3)
We have

E|m µK (z) -m Eµ∅ (z)| E |m µK (z) -Em µK (z)| + m EµK (z) -m Eµ∅ (z)
On the right hand side, the second term converges to 0 by (3.2). The first term is equal to

E 1 n n k=1 R (n) k,k (z) -ER (n) k,k (z) .
By exchangeability, we note that

E   1 n n k=1 R (n) k,k (z) -ER (n) k,k (z) 2   = 1 n E R (n) 1,1 -ER (n) 1,1 2 + n(n -1) n 2 E R (n) 1,1 -ER (n) 1,1 R (n) 2,2 -ER (n) 2,2 1 n(ℑz) 2 + E R (n) 1,1 -ER (n) 1,1 R (n) 2,2 -ER (n) 2,2 .
Theorem 2.2 and Theorem 2.8 imply that (R 1,1 (z), R 2,2 (z)) are asymptotically independent. Since these variables are bounded, they are also asymptotically uncorrelated, and (3.3) follows.

Finally, observe that the sequence of measures µ K is a.s. tight. Therefore the convergence (3.3) is sufficient to establish a.s. convergence of µ K to µ α . This completes the proof of Theorem 1.4. 

m An (z) = dµ An (x) x -z = 1 n n k=1 R (n) k,k (z) , where R (n) (z) = (A n -zI) -1 ,
is the resolvent of A n . By exchangeability, Em An (z) = ER (n)

1,1 (z). From Proposition A.2 we know that T is self-adjoint. Therefore from Theorem 2.2 and Theorem 2.3 we infer

Em An (z) → Eh(z) , h(z) := δ ∅ , (T -zI) -1 δ ∅ . (3.4)
As in the proof of Theorem 1.4 we may write Eh(z) = Em µ∅ = m Eµ∅ , that is the Cauchy-Stieltjes transform of the expected value of the random spectral measure µ ∅ associated to T at the root vector δ ∅ . From (3.4) we obtain the weak convergence of Eµ An to µ α := Eµ ∅ . To obtain a.s. weak convergence of µ An to µ α , from Lemma B.1 it suffices to prove the L 1 convergence of Cauchy-Stieltjes transforms as in (3.3). This in turn is obtained by repeating word by word the argument in the proof of Theorem 1.4. Thus, we have obtained µ An → µ α almost surely. Since the operator T only depends on the two parameters α and θ, where the latter is defined by (1.7), the LSD µ α might still depend on the parameter θ. However, the fact that µ α is independent of θ follows from Lemma 4.2 below, which implies in particular that the values m µα (it) = E[h(it)], t > 0, are uniquely determined by α, and therefore by analyticity, all values m µα (z), z ∈ C + are uniquely determined by α. This ends the proof of Theorem 1.2.

We remark that in the proof of Theorem 1.2 one can avoid establishing (3.3) plus almost sure tightness (Lemma B.1(i)) as we do above. Namely, the convergence of expected values Eµ a -1 n X → µ α is sufficient. This follows from an apriori concentration estimate; see [START_REF]Spectrum of non-Hermitian heavy tailed random matrices[END_REF]. However, we did that piece of extra work here since we need it anyway in the case of Markov matrices, where the mentioned concentration estimate is not available.

3.3. Markov matrix, α ∈ (1, 2): Proof of Theorem 1.3. The proof given above for the matrix A n = a -1 n X applies without modifications to the new matrix A n := κ n S, where S i,j = Ui,j √ ρiρj . In particular, we use Theorem 2.3(ii), Theorem 2.8(ii) and Lemma B.1(ii) to obtain the a.s. weak convergence of µ An to µ α = Eµ ∅ , where µ ∅ is the random spectral measure of T at the root. This ends the proof of Theorem 1.3. 3.4. Markov matrix, α = 1: Proof of Theorem 1.5. Suppose now that α = 1 and set w n = an 0 xL(dx) and κ n = na -1 n w n . A close inspection of the proof of Theorem 2.3(ii) and Theorem 1.3 reveals that all arguments used for α ∈ (1, 2) can be applied to the case α = 1 without modifications except for the two estimates (2.17) and (2.18), which have to be replaced by (3.5) and (3.6) below respectively. For (3.6) we shall use the hypothesis (1.10) on w n . Let us start by proving that, in probability

lim n→∞ ρ 1 nw n = 1. (3.5) 
We recall that, for fixed i, a -1 n (ρ i -nw n ) converges in distribution to a 1-stable law, see for instance [20, Theorem 1]. Therefore it suffices to show that κ n = a -1 n nw n → ∞. To see this we may argue as follows. Observe that, for any ε > 0

κ n = E n i=1 a -1 n V i 1 {a -1 n Vi 1} E n i=1 a -1 n V i 1 {ε a -1 n Vi 1} where V 1 V 2 • • • are the ranked values of U 1,j , j = 1, . . . , n.
From Lemma 2.4(i) the right hand side above, for any ε > 0, converges to E i x i 1 {ε xi 1} , where the x i are distributed according to the PPP with intensity x -2 dx on (0, ∞). While this sum is finite for every ε > 0 it is easily seen to diverge (logarithmically) for ε → 0. This achieves the proof of (3.5).

Next, we claim that if w n satisfies (1.10), then there exists δ > 0 such that, a.s.

lim inf n→∞ min 1 i n ρ i nw n δ. (3.6) 
To establish (3.6), let us define b n = a ⌊n ε ⌋ so that E(U 1,i 1 {U1,i bn} ) = w ⌊n ε ⌋ and

ρ 1 S n := n i=1 U 1,i 1 {U1,i bn} .
From the union bound, P min

1 i n ρ i nw n < δ n P ρ 1 nw n < δ .
From Borel-Cantelli Lemma, it is thus sufficient to prove that for some δ > 0

n 1 nP (S n < δnw n ) < ∞ (3.7)
By assumption, there exists δ > 0 such that for all n large enough, w ⌊n ε ⌋ 2δw n . We define

V i = U i,1 1 {U1,i bn} -w ⌊n ε ⌋ and S n = n i=1 V i .
Note that EV i = ES n = 0. We get for all n large enough

P (S n < δnw n ) = P S n < δnw n -nw ⌊n ε ⌋ P S n < -δnw n . (3.8) 
By construction, w n is slowly varying and a n = L(n)n where L(n) is slowly varying. Hence

|V i | max(w ⌊n ε ⌋ , b n ) = L(n)n ε
where L(n) is another slowly varying sequence. By the Hoeffding inequality, we get from (3.8)

P S n < -δnw n exp - δ 2 n 2 w 2 n nL(n) 2 n 2ε = exp -L(n)n 1-2ε .
where L(n) is a slowly varying sequence. Since ε < 1/2 we obtain (3.7) and thus (3.6).

Properties of the Limiting Spectral Distributions

Recall that µ α is characterized by the Cauchy-Stieltjes transform m µα (z) = Eh(z), z ∈ C + , where h(z) is the random variable h(z) = δ ∅ , (T -zI) -1 δ ∅ , cf. (3.4). The main novelty in our analysis of the LSD µ α with respect to previous works [7,[START_REF] Belinschi | Spectral measure of heavy tailed band and covariance random matrices[END_REF] is that we can work here with the distribution of h(z) rather than only with its expectation. Theorem 4.1 (Recursive Distributional Equation). For all z ∈ C + , the random variable

h(z) = δ ∅ , (T -zI) -1 δ ∅ satisfies to h(-z) = -h(z) and h(z) d = -z + k∈N ξ k h k (z) -1 , (4.1) 
where (h k ) k∈N (z) are i.i.d. with the same law of h(z), and {ξ k } k∈N is an independent Poisson point process with intensity α 2 x -α 2 -1 dx on (0, ∞).

Proof. Since the PWIT is bipartite, the property h(-z) = -h(z) is a consequence of Lemma A.1. We are left with the RDE (4.1). This can be interpreted as an operator version of Schur complement formula (see e.g. Proposition 2.1 in Klein [START_REF] Klein | Extended states in the Anderson model on the Bethe lattice[END_REF] for a similar argument). Denote, as usual, by k ∈ N the descendants of the root ∅ and let T (k) denote the subtree rooted at k (the set of vertices of T (k) is then kN f ). We have the direct sum decomposition N f = {∅} ∪ k kN f . We define T (k) as the projection of T on kN f . Its skeleton is thus T (k) . Finally, define the operator U on D by its matrix elements

u k := δ ∅ , Uδ k = δ k , Uδ ∅ = δ ∅ , Tδ k
for all k ∈ N (offsprings of ∅) and δ u , Uδ v = 0 otherwise. In this way we have

T = U + T with T = k∈N T (k) .
As T, each T (k) can be extended to a self-adjoint operator, which we denote again by T (k) . Therefore T is self-adjoint. We shall write R(z) = (T -zI) -1 and R(z) = ( T -zI) -1 for the associated resolvents, z ∈ C + . These operators satisfy the resolvent identity

R(z)(T -T)R(z) = R(z) -R(z) . (4.2) Set R u,v (z) := δ u , R(z)δ v and R u,v (z) := δ u , R(z)δ v . Observe that R ∅,∅ (z) = -z -1 and that the direct sum decomposition N f = {∅} ∪ k kN f implies R k,l (z) = 0 for k = l. Similarly we have that R ∅,k (z) = 0 = R k,∅ (z) 
for every k ∈ N. From (4.2) we then obtain, for k ∈ N:

R k,k (z)u k R ∅,∅ (z) = -R k,∅ (z) . It follows that δ ∅ , R(z)(T -T)R(z)δ ∅ = k∈N R ∅,∅ (z)u k R k,∅ (z) = - k∈N R ∅,∅ (z) R k,k (z)u 2 k R ∅,∅ (z) .
From (4.2) we then conclude that

R ∅,∅ (z) = R ∅,∅ (z) 1 -R ∅,∅ (z) k∈N R k,k (z)u 2 k . Or, using R ∅,∅ (z) = -z -1 : R ∅,∅ (z) = -z + k∈N R k,k (z)u 2 k -1
.

Then (4.1) follows from the recursive construction of the PWIT: T (k) are i.i.d. with distribution T and therefore R k,k (z) are i.i.d. with the same law of R ∅,∅ (z), for every z ∈ C + .

Concerning the uniqueness of the solution to the RDE (4.1) we can establish the following useful result. For z = it, with t > 0, the identity, h(-z) = -h(z) reads ℜh(it) = 0. Thus, the equation satisfied by g(it) = ℑh(it) 0 is

g(it) d = t + k∈N ξ k g k (it) -1
.

(4.3) Lemma 4.2 (Uniqueness of solution for the RDE). For each t > 0, there exists a unique probability measure L it on R + , solution of (4.3).

Proof of Lemma 4.2.

Set β = α/2. If (Y k ) is an i.i.d. sequence of non negative random variables, independent of {ξ k } k∈N , such that E[Y β 1 ] < ∞ then it is well known that k ξ k Y k d = k ξ k (E[Y β 1 ]) 1/β
(see for example [27, Lemma 6.5.1] or (4.5) below). This implies the unicity for Equation (4.3) provided that the equation satisfied by E[g(it) β ] has a unique solution. Recall the formulas of Laplace transforms, for y 0, η > 0 and 0 < η < 1 respectively,

y -η = Γ(η) -1 ∞ 0 x η-1 e -xy dx and y η = Γ(1 -η) -1 η ∞ 0 x -η-1 (1 -e -xy )dx. ( 4.4) 
From the exponential formula we deduce that, with s 0,

E exp -s k ξ k Y k = exp E ∞ 0 (e -xsY1 -1)βx -β-1 dx = exp -Γ(1 -β)s β E[Y β 1 ] . (4.5) 
From Equation (4.3), E[g(it) β ] is solution of the equation in y:

y = 1 Γ(β) ∞ 0 x β-1 e -tx e -x β Γ(1-β)y dx.
The last equation has a unique solution for any t 0. Indeed, the function from

R + to R + ϕ : y → 1 Γ(β) ∞ 0
x β-1 e -tx e -x β Γ(1-β)y dx tends to 0 as y → ∞ and it is decreasing since

ϕ ′ (y) = - Γ(1 -β) Γ(β) ∞ 0 x 2β-1 e -tx e -x β Γ(1-β)y dx.
Thus ϕ has a unique fixed point.

Before going into the proof of Theorem 1.6, we introduce some notation. Let β = α/2 as above and let K α denote the set of probability measures on (0, ∞) with finite β moment. We define the map Ψ on probability measures on R + ∪ {∞}, where Ψ(Q) is the law of

Z = k∈N ξ k Y k -1 , (4.6) 
with (Y k , k ∈ N) i.i.d. with law Q independent of Ξ = {ξ k } k∈N a Poisson point process on R + of intensity βx -β-1 dx.

Lemma 4.3. Ψ satisfies the following (i) Ψ is a map from K α to K α . Let (P n ) n∈N and P in K α , if lim n→∞ x β dP n = x β dP then Ψ(P n ) converges weakly to Ψ(P ) and lim n→∞ x β dΨ(P n ) = x β dΨ(P ). (ii) The unique fixed point of Ψ in K α is the law of 1/S where S is the one-sided β-stable law with Laplace transform E exp(-tS) = exp -

t β Γ(1 + β)/Γ(1 -β) , t 0. (iii) ES -β = (Γ(β + 1)Γ(1 -β))) -1/2 .
Proof of Lemma 4.3. As in the proof of Lemma 4.2, we get

EZ β = E k ξ k Y k -β = E 1 Γ(β) ∞ 0 x β-1 e -x k ξ k Y k dx = 1 Γ(β) ∞ 0 x β-1 e -x β Γ(1-β)EY β 1 dx = 1 βΓ(β) ∞ 0 e -sΓ(1-β)EY β 1 ds = (Γ(β + 1)Γ(1 -β)EY β 1 ) -1
, (in the last line we have used the identity zΓ(z) = Γ(z + 1)). Therefore, Ψ is a map from K α to K α . Also as a consequence of (4.5):

E exp(-tZ -1 ) = exp(-t β Γ(1 -β)EY β 1 )
. Statement (i) follows from the continuity of the map x → 1/x in (0, ∞). If Z is a fixed point of Ψ then from the computation above EZ β = (Γ(β + 1)Γ(1 -β))) -1/2 . Finally, from (4.5) we obtain for all t 0,

E exp(-tZ -1 ) = exp(-t β Γ(1 -β)EZ β ) = exp -t β Γ(1 + β) Γ(1 -β) . 4.2. Proof of Theorem 1.6(i). From Theorem 4.1, for z ∈ C + , m µα (z) = Eh(z),
where h solves RDE (4.1). Set f (z) = ℜh(z) and g(z) = ℑh(z). For z = u + iv ∈ C + , f and g satisfy the RDE

f (z) d = - u + k ξ k f k (z) (u + k ξ k f k (z)) 2 + (v + k ξ k g k (z)) 2 ,
and

g(z) d = v + k ξ k g k (z) (u + k ξ k f k (z)) 2 + (v + k ξ k g k (z)) 2 .
By construction, 0 g(z) 1/v, thus the law of g(z) is in K α . If the stochastic domination of P by Q is denoted by P st Q, we have

g(z) st v + k ξ k g k (z) -1 st k ξ k g k (z) -1 . (4.7) 
(In fact, we also have |h(z)| st ( k ξ k g k (z)) -1 ). Using the computation in Lemma 4.3, we obtain

Eg(z) β (Γ(β + 1)Γ(1 -β)Eg(z) β ) -1 . Thus Eg(z) β 1 Γ(β + 1)Γ(1 -β)) . (4.8)
Again, the formula y -η = Γ(η) -1 ∞ 0 x η-1 e -xy dx, for y 0, η > 0, gives

E   k ξ k g k (z) -η   = 1 Γ(η) ∞ 0 x η-1 e -x β Γ(1-β)Eg(z) β dx .
(4.9)

We now study the weak limit of g(u + iv) when v ↓ 0, u ∈ R. Equation (4.8) implies tightness, so let g(u + i0) be a weak limit. If this limit is non zero then Eg β (u + i0) > 0, and Equations (4.7)-(4.9) imply for all η > 0 and u ∈ R, lim sup u+iv:v↓0

Eg η (u + iv) < ∞.

Since Eh(z) is the Cauchy-Stieltjes transform of µ α , taking η = 1, we deduce that µ α is absolutely continuous with bounded density, see for example [START_REF] Simon | Trace ideals and their applications[END_REF]Theorem 11.6].

4.3. Proof of Theorem 1.6(ii). In view of [START_REF] Simon | Trace ideals and their applications[END_REF]Theorem 11.6], it is sufficient to show that

lim t↓0 Eg(it) = Γ 1 + 1 β Γ(1 + β) Γ(1 -β) 1 2β
.

(4.10)

As above, (4.8) implies the tightness of (g(it), t > 0). So let g(i0) be a weak limit. It is in K α and, by continuity, g(i0) is solution of the RDE

g(i0) d = k ξ k g k (i0) -1
.

By Lemma 4.3, g(i0) d = 1/S, and (4.9) gives

Eg(i0) = ∞ 0 e -x β Γ(1-β) Γ(1+β) dx = 1 β Γ 1 β Γ(1 + β) Γ(1 -β) 1 2β
.

Using the identity zΓ(z) = Γ(z + 1), we get (4.10).

4.4. Proof of Theorem 1.6(iii). We start with a Tauberian-type theorem for the Cauchy-Stieltjes transform of symmetric probability measures. As usual, let m µ denote the Cauchy-Stieltjes transform of a symmetric probability measure µ on R. Then, for all t > 0, m µ (it) ∈ iR + and 

ℑm µ (it) = ∞ -∞ t t 2 + x 2 µ(dx) = 2 ∞ 0 t t 2 + x 2 µ(dx).
Sµ : t → ∞ 0 2x 2 t 2 + x 2 µ(dx).
Note that Sµ(t) = 1 -tℑm µ (it) = 1 + itm µ (it). Recall that the Cauchy-Stieltjes transform characterizes the measure. Thus if for all t > 0, (Sµ n (t)) n∈N converges to Sµ then (µ n ) n∈N converges to µ over all bounded continuous function with 0 outside the support. Now, assume that (4.12) holds, namely

Sµ(t) ∼ ∆(α)L(t)t -α . (4.13)
Since lim x→∞ L(tx)/L(t) = 1, we deduce that for all t > 0, as

x → ∞ Sµ(xt) L(x)x -α → ∆(α)t -α .
The left hand side is the S transform of the measure µ x (dy) = µ(xdy)/(L(x)x -α ) while the right hand side is the S transform of µ ∞ (dy) = α|y| -α-1 dy, thus

µ((x, ∞)) L(x)x -α = µ x ((1, ∞)) → µ ∞ (1, ∞) = 1.
We get precisely (4.11). The reciprocal implication can be proved similarly, see [10, pages 37-38] (it is straightforward for L(t) = c, the case that we will actually use).

We 

k ξ k g k (it) d = Q(t) 1/β k ξ k .
We deduce, with C(t) = (tQ(t) 1/β ) -1/2 , that

ℑm µα (it) = Eg(it) = E t t 2 + tQ(t) 1/β k ξ k = C(t)E tC(t) (tC(t)) 2 + k ξ k = C(t)ℑm L(Y ) (iC(t)t), (4.15) 
where L(Y ) is the law of

Y = ε k ξ k ,
and ε is independent of {ξ k } k , P(ε = 1) = P(ε = -1) = 1/2. We have

P(Y > t) = 1 2 P k ξ k > t 2 .
By (4.5), as s ↓ 0, E exp(- 

s k ξ k ) = exp(-s β Γ(1 -β)) ∼ 1 -s β Γ(1 -β).
Q(t) = 1 Γ(β) ∞ 0 x β-1 e -tx e -x β Γ(1-β)Q(t) dx = f β (t, Q(t)).
We could push further our investigation at t = 0 and compute the derivative of Q at t = 0:

Q ′ (0) = -f β+1 (0, Q(0)) -Γ(1 -β)f 2β (0, Q(0))Q ′ (0), with Q(0) = (Γ(β + 1)Γ(1 -β))) -1/2 .
There should be no obstacle for computing by recursion the successive derivatives of Q(t) at t = 0. We would then obtain a series expansion of the partition function µ α ((-∞, t)) in a neighborhood of 0. 4.5. Proof of Theorem 1.7: µ α , α ∈ (0, 1). As in (3.1), let p ℓ denote the return probability after ℓ steps starting from the root ∅, for the random walk on the PWIT with transition kernel K given by (2.5). In particular, γ ℓ = Ep ℓ is the ℓ-th moment of the LSD µ α .

Proof of Theorem 1.7 (i). For the first part, we shall show that there exists δ > 0 such that for any ε ∈ (0, 1/2] and any n:

γ 2n δ ε α (1 -ε) 2n . ( 4 
.16) Theorem 1.7 (i) follows by choosing ε = 1/2n. To prove (4.16) we use the simple bound p 2n (K(∅, 1)K(1, ∅)) n , which states that to come back to the root in 2n steps the walk can move to the child with the highest weight, with probability K(∅, 1), go back to the root, with probability K(1, ∅), and repeat this n times. Taking expectation, it follows that

γ 2n E [(K(∅, 1)K(1, ∅)) n ] . ( 4 
.17) Therefore (4.16) holds if the event

A ε = {K(∅, 1) (1 -ε) and K(1, ∅) (1 -ε)}
has probability at least δ ε α , for some δ > 0 and for any ε ∈ (0, 1/2]. Let (x i ) i denote the realization of the PPP at the root ∅, i.e. x 1 > x 2 > . . . are the points of a PPP on (0, ∞) with intensity measure αx -α-1 dx. We set φ := ∞ i=1 x i and let φ ′ denote an independent copy of φ. We can use the representation K(∅, 1) = x 1 /φ and K(1, ∅) = x 1 /(x 1 + φ ′ ). Therefore,

P(A ε ) = P (x 1 (1 -ε)φ , x 1 (1 -ε)(x 1 + φ ′ )) = P x 1 (1 -ε)φ , φ ′ ε x 1 (1 -ε) P x 1 (1 -ε)φ , x 1 ε -1 , φ ′ 1 .
Let δ 1 := P(φ 1) = 1 0 f (t) dt > 0, where f (t) denotes the density of φ. The function f (t) can be obtained from its Laplace transform, which is given by the known identity E[e -uφ ] = e -Γ(1-α)u α , u > 0 (see [22, Proposition 10], or (4.5) with β replaced by α and Y k = 1). Since φ ′ is independent of (x i ) we obtain

P(A ε ) δ 1 P x 1 (1 -ε)φ , x 1 ε -1 .
To estimate the last quantity we observe that if x is a size-biased pick from (x i ) then x 1 x. We recall that x is a random variable such that, given the sequence (x i ) the probability that x equals x i is x i /φ. It is not hard to check (see e.g. [21, Lemma 2.2]) that the random variable x has a probability density on (0, ∞) given by

α x -α-1 ∞ 0 f (t) x x + t dt , (4.18) 
where f (t) is the density of the variable φ. Therefore,

P x 1 (1 -ε)φ , x 1 ε -1 P x (1 -ε)φ , x ε -1 = α ∞ 0 dt f (t) ∞ 0 dx x -α-1 x x + t 1 {x (1-ε)(x+t)} 1 {x ε -1 } α 1 0 dt f (t) ∞ 0 dx x -α-1 (1 -ε) 1 {x ε -1 } = δ 1 (1 -ε) ε α .
In conclusion, P(A ε ) δ 2 1 (1 -ε) ε α 1 2 δ 2 1 ε α , and the claim (4.16) follows. It remains to show that lim inf αր1 γ 2 > 0. If (x i ), x, and φ are as above and if φ ′ is independent of the sequence (x i ) and identical in law to the random variable φ then

γ 2 = E i x i φ x i x i + φ ′ = E x x + φ ′ = ∞ 0 αx 1-α ∞ 0 f (t) x + t dt 2 dx
Now, from the Laplace transform E[e -uφ ] = e -Γ(1-α)u α we have the identity

∞ 0 f (t) x + t dt = ∞ 0 e -Γ(1-α)u α -ux du .
This gives

γ 2 = αΓ(2 -α) ∞ 0 ∞ 0 e -Γ(1-α)(u α +v α ) (u + v) -2+α du dv = αΓ(2 -α) Γ(1 -α) ∞ 0 ∞ 0 e -t α -s α (t + s) -2+α ds dt .
Finally, the desired result follows from the bounds (for absolute constants

c 1 , c 2 > 0) ∞ 0 ∞ 0 e -t α -s α (t + s) -2+α ds dt e -2 1 0 1 0 (t + s) -2+α dsdt c 1 1 -α . and Γ(1 -α) = ∞ 0 t -α e -t dt 1 0 t -α dt + ∞ 1 e -t dt c 2 1 -α .
Proof of Theorem 1.7 (ii). It is convenient to make here the dependence over α explicit in all the notations. In particular, for every α ∈ (0, 1), we denote by S α the operator S given by (2.6). These operators are defined on a common probability space, and are self-adjoint in L 2 (V ). Moreover, it follows from Subsection 3.1 that μα = Eµ α,∅ , where µ α,∅ is the spectral measure of S α at the vector δ ∅ . By the dominated convergence Theorem, in order to prove that α → μα is continuous in (0, 1), it is sufficient to show that a.s. α → µ α,∅ is continuous. From [23, Theorem VIII.25(a)], it is in turn sufficient to prove that for all v ∈ V , α → S α δ v is a continuous map from (0, 1) to L 2 (V ). From (2.6), for all u ∈ V , the map α → S α (u, v) is continuous. It thus remains to check the uniform square integrability of (S α (v, u)) u∈V . We start with the upper bound

(S α (v, vk)) 2 = y -1/α vk ρ α (v) y -1/α vk ρ α (vk) y -1/α vk ρ α (v) . 
Then, notice that for all α ∈ (0, 1 -ε), one has y

-1/α vk max(1, y -1/(1-ε) vk
), and ρ α (v) min(1, y

-1/(1-ε) v1
). We may conclude by recalling that a.s. lim k y vk /k = 1 and y v1 > 0.

Proof of Theorem 1.7 (iii). As in the proof of Theorem 1.7 (ii), we make here the dependence over α explicit in all the notations. It follows from Subsection 3.1

x 2ℓ μα (dx) = E x 2ℓ µ α,∅ (dx) = Ep α,2ℓ ,
where the expectation is over the randomness of the PWIT. We introduce for v ∈ V ,

V α (v) = y -1/α v1 k 1 y -1/α vk , y -1/α v2 k 1 y -1/α vk , • • • .
By construction V α (v) is a PD(α, 0) random variable. Thus, by [22, Corollary 18], as α ↓ 0, V α (v) converge weakly to the deterministic vector (1, 0, • • • ). We may thus write,

K α (1, ∅) = y -1/α 1 y -1/α 1 + y -1/α 11 (1 + ε α ) ,
where as α goes to 0, ε α goes in probability to 0. We define U = 1 {y11>y1} , so that U is a symmetric Bernoulli i.e. P(U = 0) = P(U = 1) = 1/2. We have proved that in probability, lim α↓0 K α (∅, 1) = 1 and lim

α↓0 K α (1, ∅) = U.
In particular, lim α↓0

x 2ℓ µ α,∅ (dx) = U. Since µ α,∅ is symmetric, lim α↓0 µ α,∅ = U 2 δ -1 + (1 -U )δ 0 + U 2 δ 1 .
Taking expectation, we obtain the claimed statement on μα .

5. Invariant Measure: Proof of Theorem 1.8

We start with a lemma. Let (X 1 , . . . , X n ), X 1 • • • X n , denote the ranked values of ρ 1 , . . . , ρ n and recall the notion of convergence in the space A, cf. Section 2.4. We use the notation b n := a mn , where m n = n(n + 1)/2. Lemma 5.1. For any α ∈ (0, 2), the sequence b -1 n (X 1 , X 2 , . . . ) converges in distribution to (x 1 , x 1 , x 2 , x 2 , . . . ), where x 1 > x 2 > • • • denote the ranked points of the Poisson point process on (0, ∞) with intensity α x -α-1 dx.

Proof of Lemma 5.1. There are m n = n(n + 1)/2 edges, including self-loops. Let us denote by U e the weight of edge e ∈ {1, . . . , m n }. The row sums are given by ρ i = e: e∋i U e . We write O n for the set of off-diagonal edges e, i.e. edges of the form e = {i, j} with i = j. Let U e1 U e2 • • • denote the ranked values of the i.i.d. random vector (U e ) e∈On . Since there are m n -n edges in O n , an application of Lemma 2.4(i) yields convergence in distribution

b -1 n (U e1 , U e2 , . . . ) d -→ n→∞ (x 1 , x 2 , . . . ) .
(5.1) Each e i = {u i , v i } ∈ O n identifies two row sums ρ ui and ρ vi . Set ∆ i = max{ρ ui -U ei , ρ vi -U ei }.

Then, for every k ∈ N and ε > 0:

lim n→∞ P max 1 ℓ k ∆ ℓ ε b n = 0 . (5.2) 
To prove this we use an estimate due to Soshnikov [26]. Let B n denote the event that there exists no i ∈ {1, . . . , n} such that {ρ i > b which has vanishing probability in the limit by (5.1). This proves (5.2).

For simplicity, we introduce the notation R 2ℓ-1 = max{ρ u ℓ , ρ v ℓ }, R 2ℓ = min{ρ u ℓ , ρ v ℓ }. Therefore (5.2) and ( 5 (5.4)

It remains to show that for every fixed k:

lim n→∞ P (∪ 1 i 2k {R i = X i }) = 0 . (5.5) 
By construction, we have X i R i for i = 1, 2. On the event B n described above, to have X 1 > R 1 or X 2 > R 2 implies that there exists an edge e = e 1 such that U e U e1 -b 3 4 + α 8 n . However, this event has vanishing probability by (5.1) and the fact that b δ-1 n max i U i,i → 0 in probability for all sufficiently small δ > 0 (indeed by Lemma 2.4, a -1 n max i U i,i converges weakly to the Fréchet distribution, see first comment after Lemma 2.4). Thanks to (5.3) this shows that P(X 1 > R 1 or X 2 > R 2 ) → 0. Recursively, the probability of X 2i+1 > R 2i+1 or X 2i+2 > R 2i+2 on the event B n ∩ {X j = R j , ∀j = 1, . . . , 2i} vanishes as n → ∞. Indeed, at each step we have removed a row and a column corresponding to the largest off-diagonal weight and we may repeat the same reasoning as above. This proves (5.5) as required.

Proof of Theorem 1.8(ii) Since lim n S n = V , as n grows, the right hand side goes to 0, while the left hand side goes to ϕ 2 2 . We obtain ϕ = 0.

Next, we need a technical lemma.

Lemma A.4. Let κ > 0, 0 < α < 2 and let 0 < x 1 < x 2 < • • • be a Poisson process of intensity 1 on R + . Define τ κ = inf{t ∈ N : ∞ k=t+1 x -2/α k κ}. Then Eτ κ is finite and goes to 0 as κ goes to infinity.

Proof. First of all, the fact that τ κ is a.s. finite follows from the a.s. summability of ∞ k=1 x -2/α k . We deduce also that a.s. there exists κ > 0 such that τ κ = 0. From monotone convergence, it remains to check that Eτ κ < ∞. Let n 1 and S n = Hence, taking θ = (2/α -1)n 2/α-1 , we deduce from Chernov bound, that for any integer n n 0 , P (S n > κ) e -θκ E exp(θS n ) 3e -cn 2/α-1 ,

where n 0 1 and c = (2/α -1)κ. Also recall (from Chernov bound) that if N is a Poisson random variable with mean n then for all t > 0, P(N t) exp -t log t ne .

Proof of (ii). Recall that for any α ∈ [1, 2), κ n = w n na -1 n . Then, by using (B.1) we get for any 0 r 2, Hence for all n large enough,

Z ′ n c n n i=1
Y n,i , and we conclude by using the same argument as in the proof of (i). Here n = 5000 and L is the law of V -1/α where V is a uniform random variable on (0, 1). The first three plots are the histogram of the spectrum of a single realization of K. The fourth plot corresponds to α = 1 and is a histogram of the spectrum of a single realization of log(n)K. The four last plots are the histogram of the spectrum of a single realization of κ n K. In order to avoid scaling problems, an asymptotically negligible portion of the spectrum edge was discarded: only λ ⌊log(n)⌋ , . . . , λ ⌊n-log(n)⌋ were used. The liability of these simulations is questionable due to the lack of numerical precision for heavy tails. 

Lemma 2 . 5 (

 25 Poisson Point Processes with Radon intensity measures). Let ξ n 1 , ξ n 2 , . . . be sequences of i.i.d. random variables on R := R ∪ {±∞} such that n P(ξ n 1 ∈ •) where ν is a Radon measure on R. Then, for any finite set I ⊂ N the random measure i∈{1,...,n}\I δ ξ n i converges weakly as n → ∞ to PPP(ν), the Poisson Point Process on R with intensity law ν, for the usual vague topology on Radon measures.

Lemma 2 . 7 (

 27 Stochastic domination).For any n ∈ N, and B, H ∈ N such thatB H+1 -1 B -1 n, the random variables {|ξ n i,j | , {i, j} ∈ E B,H n } stochastically dominate i.i.d. random variables with the same law as law |ξ n 1,2 |. Moreover, for every ∅ = u ∈ J B,H , the random variables {|ξ n σn(u),i | , i ∈ {1, . . . , n} \ σ n (g(u))} , stochastically dominate i.i.d. random variables with the same law as law |ξ n

3. 1 .

 1 Markov matrix, α ∈ (0, 1): Proof of Theorem 1.4. Recall that S is a bounded selfadjoint operator on L 2 (V ), whose spectrum is contained in [-1, 1], cf. (2.7). The resolvents of S and S are the functions on C + = {z ∈ C : ℑz > 0}: R (n) (z) = (S -zI) -1 and R(z) = (S -zI) -1 .

3. 2 .

 2 I.i.d. matrix, α ∈ (0, 2): Proof of Theorem 1.2. Set A n = a -1 n X. For z ∈ C + , we define the Cauchy-Stieltjes transform

4. 1 .

 1 Recursive distributional equation. The symbol d = stands for equality in distribution. The following result is at the heart of our analysis of the LSD µ α .

Lemma 4 . 4 ( 1 (1+x 2

 4412 Tauberian-like lemma). If L is slowly varying and 0 < α < 2, the following are equivalent: as t goes to +∞µ((t, ∞)) ∼ L(t)t -α (4.11) ℑm µ (it) -t -1 ∼ -∆(α)L(t)t -α-dx. Sketch of Proof ofLemma 4.4. The proof is an adaptation of the proof of the Karamata Tauberian Theorem in [10, pages 37-38]. Let M denote the set of symmetric measures on R such that ∞ 0 min(1, x 2 )µ(dx) < +∞. On M, define the transform

4 + α 8 n

 48 Then, from[26] and [4, Lemma 3], one haslim n→∞ P(B n ) → 1 .(5.3)Clearly, on the eventB n , if max 1 ℓ k ∆ ℓ ε b n , then U e k b 3

  .1) prove that b -1 n (R 1 , R 2 , R 3 , R 4 . . . ) d -→ n→∞ (x 1 , x 1 , x 2 , x 2 , . . . ) .

→ n→∞ x 1 ∞ i=1 x i , x 2 ∞2 1 / 2 . 2 κ

 12122 Let us define m n = n(n + 1)/2. Observe that n i=1 ρ i = 2S n + D n where S n := e∈On U e and D n := n i=1 U i,i .(5.6)Here, as in the previous proof O n denotes the set of off-diagonal edges. For α ∈ (1, 2), we have by the weak law of large numbers S n /m n → 1 and D n /n → 1 in probability. Therefore lim ii) thus follows directly from Lemma 5.1 and (5.7). The same reasoning applies in the case α = 1 replacing the law of large numbers by the statement (3.5) which now gives (5.7) with m n replaced by m n w mn .Proof of Theorem 1.8(i). If U e1U e2 • • • are the ranked values of the i.i.d. random vector (U e ) e∈On and S n is their sum as in (5.6) then by Lemma 2.4(ii), replacing n with m n , we haveU e1 S n , U e2 S n , . . . d -i=1 x i , . . . (5.8)For any finite set S ⊂ V , we deducei v∈S |ϕ(v)| 2 = v∈S ϕ(v)(A * ϕ)(v) |w v,u ||ϕ(u)| v∈S |ϕ(v)| 2 1/2 v∈S u∼v: u / ∈S |w v,u ||ϕ(u)|Now take S = S n . From the assumption of the lemma, using again Cauchy-Schwarz inequality,u∼v: u / ∈Sn |w v,u ||ϕ(u)| u∼v: u / ∈Sn |ϕ(u)| 2 .Since S n is connected and the graph is a tree, if u / ∈ S n and u ∼ v then for any v ′ ∈ S n \v, then u ∼ v ′ . It followsv∈Sn |ϕ(v)| 2 √ κ

k 1

 1 {x k n} . From Lévy-Khinchin formula, for θ > 0,E exp(θS n ) = exp ∞ n (e θx -2/α -1)dx As n goes to infinity, if θ = o(n 2/α ), ∞ n (e θx -2/α -1)dx ∼ θ 2/α -1 n -2/α+1 .

2 .From ( 2 .

 22 18) (for 1 < α < 2) and (3.6) (for α = 1), there exists c > 0 such that a.s.,

Figure 1 .

 1 Figure 1. Histograms of scaled ESDs illustrating the convergence stated by Theorems 1.3 and 1.4, for the following values of α: 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00.Here n = 5000 and L is the law of V -1/α where V is a uniform random variable on (0, 1). The first three plots are the histogram of the spectrum of a single realization of K. The fourth plot corresponds to α = 1 and is a histogram of the spectrum of a single realization of log(n)K. The four last plots are the histogram of the spectrum of a single realization of κ n K. In order to avoid scaling problems, an asymptotically negligible portion of the spectrum edge was discarded: only λ ⌊log(n)⌋ , . . . , λ ⌊n-log(n)⌋ were used. The liability of these simulations is questionable due to the lack of numerical precision for heavy tails.

  σn(w) . Also, let {y n v,w , v, w ∈ J B,H } denote independent variables distributed as |ξ n 1,2 |. Let E B,H denote the set of edges {u, v} ∈ J B,H × J B,H that do not belong to the finite tree (i.e. there is no k ∈ {1, . . . , B} such that u = vk or v = uk). Lemma 2.7 below implies that the vector {|x n v,w | , {v, w} ∈ E B,H } stochastically dominates the vector Y n := {y n v,w , {v, w} ∈ E B,H }, i.e. there exists a coupling of the two vectors such that almost surely |x n v,w | y n v,w , for all {v, w} ∈ E B,H . Since J B,H is finite (independent of n), Y n contains a finite number of variables, and (2.12) implies that the probability of the event {min {v,w}∈E B,H |x n v,w | t} goes to 0 as n → ∞, for any t > 0. Therefore it is now standard to obtain that if x e denote the mark of edge e in T B,H , the finite collection of marks (x n e ) e∈JB,H ×JB,H converges in distribution to (x e ) e∈JB,H ×JB,H as n → ∞. In other words, (G n , 1) B,H converges in distribution to (T , ∅) B,H .

  is neither the ancestor of σ n,1 (u), nor an offspring of σ n,1 (u). From Lemma 2.7 below we deduce that |ξ n σn,1(u),σn,2(v) | given V B,H n,1 ∩ I v,2 = ∅ dominates stochastically |ξ n 1,2 |, and is independent of the i.i.d. vector (|ξ n σn,2(v),k |) k∈{1,...,n}\(V B,H n,1 ∪Iv,2) , with law |ξ n 1,2 |. It follows that

  (2.18) is implied by the uniform law of large numbers in [11, Lemma 2.2], applied to the bounded variables U i,j 1 {Ui,j <R} . It follows that in probability lim sup n→∞ ρ σn(u) /n 1. Next, we can estimate

	ρ σn(u)	U σn(u),i .	
	i∈{1,...,n}\Iu	
	Next, we claim that for all u ∈ N f , in probability lim n→∞ ρ σn(u) n	= 1.	(2.19)
	To prove this we first observe that by Lemma 2.7 and (2.17) we have in probability	
	lim sup		

n→∞ ρ σn(u) -U σn(u), σn(g(u)) n 1.

On the other hand U σn(u), σn(g(u)) is stochastically dominated by the maximum of n i.i.d. variables with law U i,j . The latter converges in distribution on the scale a n (cf. Lemma 2.4(i)) and we know that a n /n → 0.

  1,1 (ℑz) -1 is bounded, we may apply Theorem 2.2 and Theorem 2.3, and obtain, for all z ∈ C + , lim

	n→∞	m EµK (z) = m Eµ∅ (z).	(3.2)

  now come back to the RDE (4.3) and define Q(t) = E[g(it) β ]. From (4.3), we have a.s. tg(it) 1. Note also, from a.s. k ξ k g k (it) t -1 k ξ k , that a.s. lim t→+∞ tg(it) = 1. The dominated convergence Theorem leads to

	lim t→∞	t β Q(t) = 1.	(4.14)
	Moreover, as already pointed in Lemma 4.2,	

  Using [10, Corollary 8.7.1], we obtain P( k ξ k > t) ∼ t -β and

	P(Y > t) ∼	t -α 2	.
	2 ∆(α). Thus by (4.14)-(4.15), By Lemma 4.4, ℑm L(Y ) (it) -t -1 ∼ -t -α-1 ℑm µα (it) -t -1 ∼ -t -α-1 2 ∆(α).
	Theorem 1.6(iii) now follows from Lemma 4.4.		
	Remark 4.5. In the proof of Lemma 4.2, we have seen that the distribution of g(it) = ℑh(it) was function of Q(t) = E[g β (it)] which satisfies the equation
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where x 1 > x 2 > • • • denote the ranked points of the Poisson point process on (0, ∞) with intensity α x -α-1 .

Write X 1 , X 2 , . . . for the ranked values of row sums as in Lemma 5.1, so that ρ i = X i /(2S n +D n ), where D n , S n are as in (5.6). Let

Thanks to (5.8) it is sufficient to prove that P(max 1 i 2k |Y i | > ε) → 0 , as n → ∞, for any fixed ε > 0 and k ∈ N. This follows from the argument used in the proof of (5.2) and (5.5).

Appendix A. Self-adjoint operators on PWIT

The following classical lemma was used in Section 3. If S is a self-adjoint operator on D(S) ⊂ L 2 (V ) with V countable, the skeleton of S is the graph on V obtained by putting an edge between two vertices (v, w) iff δ v , Sδ w = 0.

Lemma A.1 (Resolvent of self-adjoint operators on bipartite graphs). Let S be a self-adjoint operator on

Proof of Lemma A.1. Assume first that S is bounded: for all w ∈ V , Sδ w C. For |z| > C, the series expansion of the resolvent gives

However since the skeleton is a bipartite graph, all cycles have an even length, and for ℓ odd δ v , S ℓ δ v = 0. We deduce that for |z| > C, h(-z) = -h(z). We may then extend to C + this last identity by analyticity. If S is not bounded, then S is limit of a sequence of bounded operators and we conclude by invoking Theorem VIII.25(a) in [START_REF] Reed | Methods of modern mathematical physics[END_REF].

The arguments of Section 3 were crucially based on the following fact.

Proposition A.2. The operator T defined by (2.3) is essentially self-adjoint.

To prove the proposition, we start with a deterministic lemma. Let V = N f denote the vertex set of the PWIT and let D be the space of finitely supported vectors. We write u ∼ v if u = vk or v = uk for some k ∈ N (i.e. if u, v are neighbors) and u ∼ v otherwise. Let A : D → L 2 (V ) denote the symmetric linear operator defined by

and such that w u,v = 0 whenever u ∼ v.

Lemma A.3 (Criterion of self-adjointness). Suppose that there exists a constant κ > 0 and a sequence of connected finite subsets

Then the operator A defined by (A.1) is essentially self-adjoint.

Proof. It is sufficient to check that the only function

Here we use the notation ϕ(u) = δ u , ϕ . Taking conjugate, we also have for all

Now if the event {τ κ > t} holds then either the number of points of the Poisson process (x k ) k 1 in [0, n] is larger than t or S n > κ. We get for any integer n n 0 , P(τ > t) e -t ln t ne + 3e -cn 2/α-1 . We conclude by taking n = max(n 0 , t/(2e)).

Proof of Proposition A.2. We apply Lemma A.3 with A given by T, the operator defined by (2.3). For κ > 0 and v ∈ N f , we define the integer

The variables (τ κ (v)) v are iid and by Lemma A.4, there exists κ > 0 such that Eτ κ (v) < 1. We fix such κ. Next, we give a green color to all vertices v such that τ κ (v) 1 and a red color otherwise. We consider an exploration procedure starting from the root which stops at red vertices and goes on at green vertices. More formally, define the sub-forest T g of the PWIT where we put an edge between green vertices v and vk iff 1 k τ κ (v).

The sets S n appearing in Lemma A.3 are defined as follows. If the root ∅ is red, we set S 1 = {∅}. If the root is green, we consider T g ∅ , the maximal subtree of T g that contains the root. It is a Galton-Watson tree with offspring distribution τ κ (v). Thanks to our choice of κ, T g ∅ is almost surely finite. Let V g ∅ denote the set of vertices of T g ∅ , and consider the set L g ∅ of the leaves of T g ∅ . Note that L g ∅ is the set of vertices v ∈ V g ∅ such that for all 1 k τ κ (v), vk is red. Thus, when the root is green, we set

. By construction, the set S 1 satisfies the condition of Lemma A.3.

Next, define the outer boundary of the root as

For a finite connected set S, its outer boundary is defined by

To define the set S 2 , suppose that ∂S 1 = {u 1 , • • • , u n }. The above procedure defining S 1 for the PWIT rooted at ∅ can be now repeated for the subtrees rooted at u 1 , . . . , u n to obtain sets S 1 (u 1 ), . . . , S 1 (u n ). We can then define S 2 = S 1 ∪ 1 i n S 1 (u i ). Iterating this procedure, we may thus almost surely define an increasing connected sequence (S n ) of vertices with the properties required in Lemma A.3.

Appendix B. Tightness estimates

Let X and K be the matrices defined by (1.6) and (1.1) respectively. Recall that, when α 1 we set κ n = nw n a -1 n , where w n = 1 if α > 1 and

We first recall a classical lemma on truncated moments and a lemma on the eigenvalues. Lemma B.2 (Truncated moments [17, Theorem VIII.9.2]). For every p > α,

Proof of (i). Let us fix r > 0. By definition of µ X we have

By using (B.1) we get for any 0 r 2,

.

We need to show that (Z n ) n 1 is a.s. bounded. Assume for the moment that sup

for some choice of r. Since Y n,1 , . . . , Y n,n are i.i.d. for every n 1, we get from (B.2) that

Therefore, by the monotone convergence theorem, we get To deal with the second term of the right hand side of (B.3), we define From the Hölder inequality, if 1/p + 1/q = 1, we have 

In particular for any η > 0, sup n EN η n < ∞. Similarly, since L is slowly varying, for large enough n and all t 1, P(M n t) nP(|X 1,2 | > ta n ) = na -α n t -α L(a n t) 2t -α . It follows that if γ < α, sup n EM γ n < ∞. Taking p and q so that 4rq < α, we thus conclude from (B.4) that sup n E(S 2r n,1,∞ ) < ∞.