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Abstract

We consider the random reversible Markov kernel K on the complete graph with
n vertices obtained by putting i.i.d. positive weights of law £ on the n(n+1)/2 edges
of the graph and normalizing each weight by the corresponding row sum. We have
already shown in a previous work that if £ has finite second moment then, as n goes to
infinity, the limiting spectral distribution of n'/2K is Wigner’s semi-circle law. In the
present work, we consider the case where £ belongs to the domain of attraction of an a—
stable law, @ € (0,2). When 1 < a < 2, we show that for a suitable regularly varying
sequence K, of index 1 — 1/«, the limiting spectral distribution of x, K coincides
with the one of the random symmetric matrix of the un-normalized weights (i.i.d.
entries). In contrast, when 0 < a < 1, we show that the empirical spectral distribution
of K converges, without any rescaling, to a non—trivial law supported on [—1,1],
whose moments are the return probabilities of the random walk on a suitable Poisson
weighted infinite tree of Aldous. The limiting operator is naturally linked with the
Poisson—Dirichlet distribution PD(«, 0). The “critical” cases a = 1 and o = 2 are not
solved here.

Keywords: random matrices; random walks; reversible Markov chains; random graphs; random

environment; spectral analysis of operators; heavy—tailed distributions; a-stable laws; Poisson—Dirichlet

laws.
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1 Introduction

Following [I1], we consider a finite connected undirected graph G = (V, E) with vertex
set V and edge set E. On each edge {i,j} € E we put a positive random weight (or
conductance) U; ; = U;;. We assume that the weights U = {U; ;;{i,j} € E} are ii.d.
with common law £. The weighted graph (G, U) is called a network. On this network
we consider the random walk in random environment with state space V' and transition
probabilities

Ui ;i }
Ki,j = ZT] with p; = Z Ui,j- (1)
& j:{igyer

The Markov kernel K is reversible with respect to the measure p = ., p;d; in that
pilkij = pjKj;

for all 4,5 € V. Positivity of the weights implies that K is irreducible and p is its unique
invariant distribution, up to normalization. When the weights are all equal this is just the
standard random walk on G, and K — I is the associated Laplacian. If n = |V| then K can
be identified to a square n x n random Markov matrix by putting K; ; = 0 if {i,j} &€ E.
In general, the random matrix K has non—independent entries due the normalizing sums
pi- This matrix is in general non-symmetric, but by reversibility it is self-adjoint in L?(p)
and its spectrum o (K) is real. Moreover, o(K) C [-1,41], and 1 € o(K). We denote by

1< M (K) < < M(K) =1

the eigenvalues of K in ascending order. Since K is irreducible, the eigenspace of the
largest eigenvalue 1 is one-dimensional and thus A2 (K) < 1. It is also known [24] that K
has period 1 or 2 and that this last case is equivalent to A\,(K) = —1 (the spectrum is
then symmetric).

In Random Matrix Theory, the global behavior of the spectrum o(M) of a square
n x n matrix M with eigenvalues A\ (M),..., A, (M) is studied via the Empirical Spectral

Distribution (ESD)
1 n
T Z O (M)
j=1

Since K is Markov, its ESD ux encodes a global pathwise information on the random
walk on the network (G, U). Namely, for any ¢ € N, if p,(i) denotes the probability that
the random walk on (G, U) started at i returns to 4 after £ steps, then the /" moment of
i satisfies

+1
[ tutde) = S = £ S i) (2)

-1 ZEV

It the present work, we shall restrict to the simple case where G is the complete graph on

the vertex set V. From now we set V = {1,...,n} and F = {{i,j}, 1 <1i,7 < n}. Note

that we have a self-loop with weight U;; at every vertex 4. It is merely for convenience:

all results presented here hold if instead U; ; = 0 at every vertex i. The law L is supported
n (0,00) (with no atom at 0) and does not depend on n.



Our aim is to show that there exists a non—random probability distribution p which
may depend on L, called the Limiting Spectral Distribution (LSD), such that ux — p
as n — oo for some notion of convergence. As in the case of matrices with i.i.d. entries,
the asymptotic behavior of ux as n — oo depends mostly on the tail of £ at infinity.
When £ has finite mean [z £(dz) = m we set m = 1. This is no loss of generality since
K is invariant under the dilation ¢ — tU; ;. If £ has a finite second moment we write
o? = [z —1)* L(dx).

The following result, from [I1], states that if 0 < 6> < oo then the bulk of the spectrum
of /nK behaves, when n — oo, as if we had truly i.i.d. entries (Wigner matrix). Without
loss of generality, we assume that the weights U come from the truncation of a unique
infinite table (U; ;)i j>1 of i.i.d. random variables of law £. This gives a meaning to the
almost sure (a.s.) convergence of . /.

Theorem 1.1 (Wigner-like behavior). If £ has finite positive variance 0 < o? < 0o then
a.s.

1 @ w
=~ ) o W (3)
k=1

where “5” denotes weak convergence of measures and Wy stands for the Wigner semi—
circle law on [—20,+20] with Lebesque density

T 1 Vido? — 22 1[_g5 490 (2). (4)

2mo?

Note that A\ (y/nK) = /n — oo. Moreover, it is shown in [11] that if £ has finite fourth
moment, then the remaining extremal eigenvalues \a(y/nK) and A\, (y/nK) converge a.s. to
the edge of the limiting support [—20, +20]. This allows to reinforce the weak convergence
of u mk into a convergence of all moments (after removal of the leading eigenvalue Vn).

The Wigner—like scenario can be dramatically altered if we allow £ to have a heavy
tail at infinity. For any a € (0, 00), we say that £ belongs to the class H,, if £ is supported
in (0,00) and has a regularly varying tail of index «, i.e. for all ¢t > 0,

G(t) == L((t,00)) = L(t)t™ (5)
where L is a function with slow variation at oo, i.e. for any = > 0,

. L(zt)
eo L(1)

Let a, = inf{a >0 : nG(a) < 1}. Then nG(ay,) = nL(ay)a,* — 1 as n — oo, and
nGapt) = t™% as n—oo forallt>0. (6)
It is well known that a, has regular variation at oo with index 1/, i.e.
an = n'/%0(n)

for some function ¢ with slow variation at oo, see for instance Feller [14, VIIL.8 and XVIL.5]
or Resnick [23] Section 2.2.1]. As an example, if V' is uniformly distributed on the interval
[0, 1] then for every a € (0,00), the law of Ve supported in [1,00), belongs to H,. In
this case, L(t) =1 for t > 1, and a,, = n'/®.

Remarkable works have been devoted recently to random symmetric matrices with
i.i.d. heavy—tailed (not necessarily positive) entries. The analysis of the LSD for o € (0, 2]



can be considerably harder than the finite second moment case a > 2 (Wigner matrices).
The LSD is usually non—explicit and the available results are weaker (in terms of the
nature of the convergence). Theorem below has been investigated by the physicists
Bouchaud and Cizeau [12] and rigorously proved by Ben Arous and Guionnet [7], see also
Zakharevich [28] for a different method. Recent work of Belinschi, Dembo, and Guionnet
[5] proves a.s. convergence of the LSD.

Theorem 1.2 (Symmetric i.i.d. matrix, o € (0,2)). Let X = (X;;)i<ij<n be the sym-
metric matriz such that (X; j)i1<i<j<n are i.i.d. random variables, U; ; := |X; ;| has law
in Hy with a € (0,2), and

P(X; > 1
0= lim i > D)

A p(x, 0 <01 )

If a, is as in (@), let
1 n
D Z‘SAi(a,:lX)'
=1

Then there exists a symmetric law ps on R depending only on o such that, in probability,

w
— Ha-
n—oo

'u’afllX

The “weak convergence in probability” of -1y O po means that for every bounded
continuous function f : R — R, in probability (or in law since the limit is deterministic),

[ 1@ ) = [ (@) o)

It is well known that, for a € (0,2), a random variable X is in the domain of attraction
of an a-stable law iff the law of | X| is in H, and the limit (7)) exists, cf. [I4, Theorem
IX.8.1a]. In Section B2l we give a new independent proof of Theorem and we connect
the works of [7] and [28]. The key idea of the proof is to exhibit a limiting (self-adjoint)
operator T for the sequence of matrices a,, ' X on a suitable Hilbert space, and then use
well-known spectral convergence theorems of operators. The limiting operator will be
defined as the “adjacency matrix” of an infinite rooted tree with random edge—weights,
the so called Poisson weighted infinite tree (PWIT) introduced by Aldous [I], see also
[3]. In this setting the measure p, arises as the expected value of the (random) spectral
measure of T at the root. The PWIT and the limiting operator are defined in Section 2
Our method of proof can be seen as a new variant of the resolvent method, based on local
convergence of operators.

Back to our random reversible Markov kernels on the complete graph, constructed via
(@) from weights with law £ € H,, we obtain very different limiting behavior in the two
regimes « € (0,1) and « € (1,2). The case a > 2 corresponds to a Wigner—type behavior
and is a special case of Theorem [[LTI We define the sequence

-1

Kp = na, .

Theorem 1.3 (Reversible Markov matrix, o € (1,2)). Suppose that £ € H, with o €
(1,2). If pw, i is the ESD of kK, then, as n — oo, in probability,

w
/’[/l‘@nK Ma )
n—oo

where pq s the LSD which appears in the symmetric i.i.d. case (Theorem [1.2).



Theorem 1.4 (Reversible Markov matrix, o € (0,1)). Suppose that £ € H, with o €
(0,1). If ug is the ESD of K then, as n — oo, in probability,

w ~
UK — Hay
n—oo
where [iy, 18 a non-random symmetric law supported on [—1,1] depending only on «.

The proof of Theorem [[L3] and Theorem [[4]is given in Sections B3 and Bl respectively.
Again the idea is to exploit convergence of our matrices to suitable operators defined on
the PWIT. To understand the scaling in Theorem [[.3, we recall that if o > 1, then by
the strong law of large numbers, we have n=1p; — 1 a.s. for every row sum p;, and this is
shown to remove, in the limit n — oo, all dependencies in the matrix na, 'K, so that we
obtain the same behavior of the i.i.d. matrix of Theorem [[L2l On the other hand, when

€ (0,1), both the sum p; and the maximum of its elements are on scale a,. Indeed, the
proof of Theorem [[L4] shows that the matrix K converges (without rescaling) to a random
stochastic self-adjoint operator K defined on the PWIT. The operator K can be described
as the transition matrix of the simple random walk on the PWIT and is naturally linked to
Poisson—Dirichlet random variables. This is best understood by observing that the order
statistics of any given row of the matrix K converges weakly to the Poisson—Dirichlet law
PD(«,0), see Lemma 2.4 below for the details. Since the support of ux is included in
[—1, 1], Theorem [[.4] implies that for all £ > 1, in probability,

%;W(“ = /Rxgmdw) - /R o fia(dz) =: 0.

The LSD 1, is obtained in the sequel as the expectation of the (random) spectral measure
of K at the root of the PWIT. It will follow that 7, (the £** moment of Ji,) is the expected
value of the (random) probability that the random walk in random environment returns
to the root in f-steps. In particular, the symmetry of (i, follows from the bipartite nature
of the PWIT. Further properties of the measures u, and i, are discussed below.

We believe that the weak convergence in probability provided by theorems [[L3] and 4]
can be upgraded to an almost sure weak convergence, but this would require some extra
input. In the simpler i.i.d. case, the almost sure version of Theorem was obtained by
Belinschi, Dembo, and Guionnet [5]. Additionally, we believe that Theorem [[.3] remains
valid for o« = 1 (with k, replaced by na,! [{"2L(dz)) and for o = 2, and that sy is
Wigner’s semi—circle law. It was proved by Ben Arous and Guionnet [7, Remark 1.5] that
a € (0,2) — pg is continuous with respect to weak convergence, and by Belinschi, Dembo,
and Guionnet [5, Remark 1.2 and Lemma 5.2] that u, tends to Wigner’s semi—circle law
as a 2.

Properties of the LSD
In Section Ml we give some properties of the LSDs i, and fi,.-
Theorem 1.5 (Properties of ). Let po be the symmetric LSD in Theorems [L2{I3.

(i) e is absolutely continuous on R with bounded density.

)

(i) The density of o at 0 is equal to

Q=

- (2) (e



(iii) o is heavy—tailed, and ast goes to +oo,
1 —a
pa((1,+00)) ~ 517

Statements (i)-(ii) answer some questions raised in [7) [5]. Statement (iii) is already
contained in [5, Theorem 1.7], but our proof is new and is based on a Tauberian theorem
for the Cauchy—Stieltjes transform that may be of independent interest.

Theorem 1.6 (Properties of fi,). Let fi be the symmetric LSD in Theorem [1.3)

(i) For a € (0,1), there exists 6 > 0 such that the moments of Ji, satisfy
Yo = 0n~ % forall n>1.
Moreover, liminf, - v2 > 0 (in particular, fio /> 6o as o /" 1).

(ii) For the topology of the weak convergence, the mapping o — [iq 1S continuous in

(0,1).

(iii) For the topology of the weak convergence,

1 1 1
lim i, = =6_1 + = ~61.
o 45 1+250+451

It is delicate to provide liable numerical simulations of the ESDs due to the underlying
heavy tails. Nevertheless, Figure Bl provides histograms for various values of o and a large
value of n, illustrating theorems [[.3] and [[.4]

Invariant measure and edge—behavior

The invariant probability distribution p of K is obtained by normalizing the row sums p:

p=(p1+-+pn) (o1, pn).

Following [11, Lemma 2.2], if a > 2 then nmaxi <<, |pi —n '] — 0 as n — oo a.s. This
uniform strong law of large numbers does not hold in the heavy—tailed case o € (0,2]: the
large n behavior of p is then dictated by the largest weights in the system. Note that if
a > 1 then by the strong law of large numbers, for every fixed i we have n|p; —n~!| — 0 as
n — oo a.s. but this almost sure convergence is not uniform over 1 < i < n when a < 2,
and one has to consider a weaker notion of convergence in order to identify the nature of
p as n — oo.

Below we use the notation p = (pi, ..., py) for the ranked values of p1,. .., pn, so that
p1 = p2 = --- and their sum is 1. The symbol 4, denotes convergence in distribution.

We refer to Subsection 2.4] for more details on weak convergence in the space of ranked
sequences and for the definition of the Poisson-Dirichlet law PD(c,0).

Theorem 1.7 (Behavior of the invariant probability measure of K). Suppose that £ € H,,.

(i) If a € (0,1), then
_ 1
- s (L Ve Ve, (8)

n—oo 2

where Vi > Vo > -+ stands for a Poisson—Dirichlet PD(«,0) random vector.



(ii) If a € (1,2), then
1

~ d
Fn(n+1)/2 P —2 5(3:1,3:1,3:2,:62,...) , (9)
where x1 > x9 > - -+ denote the ranked points of the Poisson point process on (0,00)

with intensity measure o x~ " Ldax.

Theorem [ 7is proved in Section Bl These results will be derived from the statistics of
the ranked values of the weights U; ;, i < j. The duplication in the sequences in (@) and
([®) comes from the fact that each of the largest weights, on the scale An(n+1)/2, Delongs to
two distinct rows and determines alone the limiting value of the associated row sum.

Theorem [[7] is another indication that the random walk with transition matrix K
shares the features of a trap model. Loosely speaking, instead of being trapped at a
vertex, as in the mean—field trap model introduced by Bouchaud [16], see also [6], 13} [15],
here the particle is trapped at an edge.

Large edge—weights are responsible for the large eigenvalues of K. This phenomenon
is well understood in the case of symmetric random matrices with i.i.d. entries, where it is
known that, for a € (0,4), the edge of the spectrum gives rise to a Poisson statistics, see
[26], [4]. The behavior of the extremal eigenvalues of K when £ has finite fourth moment
has been studied in [IT]. In particular, it is shown there that the spectral gap 1 — Ag is
1—O(n*1/ 2). In the case of heavy-tailed weights, in contrast, by localization on the largest
edge—weight it is possible to prove that, a.s. and up to corrections with slow variation at

o {O(n—l/a) a€(0,1)

O(n--/%) e [1,2) 1o

Similarly, for a € (2,4) one has that A9 is bounded below by n—(@=2)/a Understanding
the statistics of the extremal eigenvalues seems to be an interesting open problem and we
hope to come back to this question in future work.

2 Convergence to the Poisson Weighted Infinite Tree

The aim of this section is to prove that the matrices X and K appearing in theorems [[.2],
[[3l and L4l when properly rescaled, converge “locally” to a limiting operator defined on
the Poisson weighted infinite tree (PWIT). The concept of local convergence of operators
is defined below. We first recall the standard construction of the PWIT.

2.1 The PWIT

Given a positive Radon measure v on R, PWIT(v) is the random rooted tree defined as
follows. The vertex set of the tree is identified with N := U,cnNF by indexing the root as
NO = &, the offsprings of the root as N and, more generally, the offsprings of some v € N*
as (v1),(v2),--- € N¥+1 (for short notation, we write (v1) in place of (v, 1)). In this way
the set of v € N” identifies the n'" generation.

We now assign marks to the edges of the tree according to a collection {Zy},cns
of independent realizations of the Poisson point process with intensity measure v on R.
Namely, starting from the root &, let 2 = {y1,¥2,...} be ordered in such a way that
ly1] < |yo| < -+, and assign the mark y; to the offspring of the root labeled i. Now,
recursively, at each vertex v of generation k, assign the mark y,; to the offspring labeled

vi, where Zy = {yv1, vz, . - } satisfy |yu1] < [yva| < -



Note that =y has in average v(R) € (0, 0] elements. As a convention, if ¥(R) < oo,
one sets the remaining marks equal to co. For example, if v = Ad; is proportional to a
Dirac mass, then, neglecting infinite marks, PWIT(v) is the tree obtained from a Yule
Process (with all marks equal to 1). In the sequel we shall only consider cases where v is
not finite and each vertex has a.s. an infinite number of offsprings with finite and distinct
marks. If v is Lebesgue’s measure on [0, 00) we obtain the original PWIT in [1].

2.2 Local operator convergence

We give a general formulation and later specialize to our setting. Let V' be a countable
set, and let L?(V) denote the Hilbert space defined by the scalar product

<¢7 1/}> = Z éuwzm u = <5ua ¢>

ueV

where ¢,7 € CV and §, denotes the unit vector with support u. Let D denote the dense
subset of L?(V') of vectors with finite support.

Definition 2.1 (Local convergence). Suppose S,, is a sequence of bounded operators on
L2(V) and S is a closed linear operator on L*(V') with dense domain D(S) D D. Suppose
further that D is a core for S (i.e. the closure of S restricted to D equals S). For any
u,v € V we say that (S,,u) converges locally to (S,v), and write

(Sn, u) = (8,0),

if there exists a sequence of bijections oy, : V- — V' such that o,,(v) = w and, for all ¢ € D,
0, 'Snond — Sé,

in L*(V), as n — oo.

In other words, this is the standard strong convergence of operators up to a re-indexing
of V' which preserves a distinguished element. With a slight abuse of notation we have
used the same symbol o,, for the linear isometry o, : L*(V) — L?(V) induced in the
obvious way. The point for introducing Definition 2] lies in the following theorem on
strong resolvent convergence. Recall that if S is a self-adjoint operator its spectrum is
real and for all z € C; := {z € C: Sz > 0}, the operator S —zI is invertible with bounded
inverse. The operator-valued function z — (S — zI)~! is the resolvent of S.

Theorem 2.2 (From local convergence to resolvents). If S,, and S are self-adjoint oper-
ators that satisfy the conditions of Definition[21] and (S,,u) — (S,v) for some u,v € V,
then, for all z € C,,

(60, (Sp — 2zI)718,) — (8, (S — 21)7145,). (11)

Proof of Theorem[22. 1t is a special case of Reed and Simon [22] Theorem VIII.25(a)].
Indeed, if we define §n =0, 'S,0,, then §n¢ — S¢ for all ¢ in a common core of the self—
adjoint operators gn, S. This implies the strong resolvent convergence, i.e. (gn —2D)7lyp —
(S — zI)~ 14 for any z € Cy, v € L*(V). The conclusion follows by taking the scalar
product (8, (Sp, — 2I)728,) = (8u, (Sp — 2I)716,). O

We shall apply the above theorem in cases where the operators S,, and S are random
operators on L2(V'), which satisfy with probability one the conditions of Definition 211



In this cases we say that (S,,u) — (S,v) in distribution if there exists a random bijection
0p, as in Definition 2] such that o, 'S, 0,,¢ converges in distribution to S¢, for all ¢ € D
(where a random vector v, € L?(V) converges in distribution to 9 if lim, . Ef(¢,) =
Ef(2)) for all bounded continuous functions f : L?(V) — R). Under these assumptions
then (III) becomes convergence in distribution of (bounded) complex random variables. In
our setting the Hilbert space will be L?(V), with V' = N7, the vertex set of the PWIT, the
operator S,, will be our matrix X or K, the operator S will be the corresponding limiting
operator defined below.

2.3 Limiting operators

Let 6 be as in Theorem [[.2], and let £y be the positive Borel measure on the real line
defined by dl(v) = 01 5~ 0ydx + (1 —0)1(y<oydz. Consider a realization of PWIT({y). As
before the mark from vertex v € N¥ to vk € NF*t! is denoted by 3. We note that almost
surely

Z |yvk|_2/a < 00, (12)
k

since a.s. limg, [yyr|/k = 1 and 3, k=% converges for a € (0,2). Recall that for V = N/,
D is the dense set of L%(V) of vectors with finite support. We may a.s. define a linear
operator T : D — L2(V) by letting, for v,w € N/,

sigh (yw)|[yw| ™/ if w = vk for some integer k
T(v,w) = (dy, Tdw) = { sign(yy)|yv| /¢  if v = wk for some integer k (13)

0 otherwise.

Note that if every edge e in the tree with mark y, is given the “weight” sign(ye)|ye| ="/ then
we may look at the operator T as the “adjacency matrix” of the weighted tree. Clearly, T
is symmetric, and therefore it has a closed extension with domain D ¢ D(T) c L?*(N/),
see for example Reed and Simon [22, VIII.2]). With a slight abuse of notation, we identify
T with its closed extension. As stated below, T is the natural local limit of the sequence of
i.i.d. n x n matrices a,, ' X. To this end we view the matrix X as an operator in L?(V') by
setting (0;, Xd;) = X; j, where i, j € N denote the labels of the offsprings of the root, with
the convention that X; ; = 0 when either ¢ > n or j > n, and by setting (dy, Xdy) = 0
when either u or v does not belong to the first generation.

Similarly, in the case of Markov matrices K, for a € [1,2), T (now with § = 1) is the
local limit operator of x, K. To work directly with symmetric operators we introduce the
symmetric matrix

Sij = Ui , (14)
which is easily seen to have the same spectrum of K (see e.g. [11, Lemma 2.1]). Again the
matrix S can be embedded in the infinite tree as described above for X.

In the case a € (0,1) the Markov matrix K has a different limiting object that is
defined as follows. Consider a realization of PWIT(¢;), where ¢; is Lebesgue’s measure
on [0,00). We define an operator corresponding to the random walk on this tree with
conductance equal to the marks to the power —1/a. More precisely, for v € N/, let

-1 —1
pv) = S e
keN



with the convention that y;/a = 0. Since a.s. limy |yyvx|/k = 1, p(v) is almost surely
finite for o € (0,1). We define the linear operator K on D, by letting, for v, w € N/,

-1/
y;”(v if w = vk for some integer k
K(v,w) = (bv, Kéw) = y;)j(v)" if v.= wk for some integer k (15)
0 otherwise.

Note that K is not symmetric, but it becomes symmetric in the weighted Hilbert space
L?(V, p) defined by the scalar product

<¢a 7/}>p = Z p(ua) éuwu .

ucV
Moreover, on L%(V,p), K is a bounded self-adjoint operator since Schwarz’ inequality
implies
2
(Ko, Kg)2 Zp )Y K(u,v)ey|
A\

3o S Kl i = Dol = (6.0}

so that the operator norm of K is less than or equal to 1. To work with self-adjoint
operators in the unweighted Hilbert space L?(V') we shall actually consider the operator
S defined by

S(v,w) := % K(v,w) = % .

This defines a bounded self-adjoint operator in L?(V). Indeed, the map &y — +/p(v)dy
induces a linear isometry D : L?(V, p) — L?(V') such that

(16)

(¢,S¢) = (D¢, KD '9),, (17)

for all ¢, € L2(V). In this way, when o € (0, 1), S will be the limiting operator associated
to the matrix S defined in (I4]). Note that no rescaling is needed here. The main result
of this section is the following

Theorem 2.3 (Limiting operators). As n goes to infinity, in distribution,
(i) if a € (0,2) then (a,'X,1) — (T, 2),
(ii) if « € (1,2) and 6 =1 then (k,S,1) — (T, 9),

(iii) if o € (0,1) then (S,1) — (S, 2).

From the remark after Theorem we see that Theorem [2.3] implies convergence in
distribution of the resolvent at the root. As we shall see, this in turn gives convergence
of the expected values of the Stieltjes transform of the ESD of our matrices. To obtain
convergence in probability we will need a little more than the above local convergence, see
Theorem 2.8 below. The rest of this section is devoted to the proof of Theorem 2.3l
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2.4 Image of a single vector

In this paragraph, we recall some facts about the ordered statistics of the entries of the
vector
X€1 = (Xl,la e aXl,n) and K61 == (Ul,la ey Ul,n)/pl

where {e;}1<i<n is the canonical basis of R". Let us denote by Vi > V5 > --- > V,, the
order statistics of the variables Uy ; = | X1, ;| where 1 < j < n. Recall that p; = 27:1 Vj.
Let us define Ay, = Y37 ;. V; for k < n and Aim = >k ij. Call A the set of
sequences {v;} € [0,00)N with v; > vy > -+ > 0 such that lim; o, v; = 0, and let A; C A
be the subset of sequences satisfying > ;v = 1. We shall view

Yn:<ﬁ,...,ﬁ> and Zn:<ﬁ,...,ﬁ>
Gn an, P1 P1

as element of A and Aj, respectively, simply by adding zeros to the right of V,,/a,, and
Vn/p1. Equipped with the standard product metric, A4 and .4; are complete separable
metric spaces (A; is compact) and convergence in distribution for A, .4;—valued random
variables is equivalent to finite dimensional convergence, cf. e.g. Bertoin [9, §2.1.3].

Let Eq, Eo, ... denote i.i.d. exponential variables with mean 1 and write 'y, = 25:1 E;.
We define the random variable in A

1 1
Y = (Fla,FQa,...>

The law of Y is the law of the ordered points of a Poisson process on (0, c0) with intensity
measure oz~ 'dr. For a € (0,1) we define the variable in A;

_1 _1
[e3 [e3
F1 F2
s T 9 -

1 I
Do e 30 e

7 =

_1
For a € (0,1) the sum ) I, is a.s. finite. The law of Z in A, is called the Poisson—
Dirichlet law PD(c, 0), see Pitman and Yor |20, Proposition 10]. The next result is rather
standard but we give a simple proof for convenience.

Lemma 2.4 (Poisson—Dirichlet laws and Poisson point processes).

(i) For alla > 0,Y,, converges in distribution to'Y'. Moreover, for a € (0,2), (a;,'V;)j>1
is a.s. uniformly square integrable, i.e. limy sup,~; a 2 A% =0.

(i) If a € (0,1), Z, converges in distribution to Z. Moreover, (a,'V;)j>1 is a.s. uni-

n
formly integrable, i.e. limg sup,,~, a, ' Ak, = 0.

(iii) If I C N is a finite set and V! > V4 > -+ denote the order statistics of {U1;}jeq1,.. .y
then (i) and (i) hold with Y,I = (Vi Jan, Vi Jan,...) and ZL = (VI /p1, Vi /p1,...).

As an example, from (i), we retrieve the well-known fact that for any a > 0, the
1

1

random variable a;, ' max(Uy 1,...,U; ) converges weakly as n — oo to the law of I‘l_a.

a—1,—x~¢

This law, known as a Fréchet law on (0, 00), has density az™% ‘e

11



Proof of Lemma[24] As in LePage, Woodroofe and Zinn [18] we take advantage of the
following well known representation for the order statistics of i.i.d. random variables. Let
G be the function in (Bl) and write

G l(u) =inf{y > 0: G(y) < u},
€ (0,1). We have that (V1,...,V},) equals in distribution the vector
(GH(T1/Thg1), .o, G (T /Thy1)) (18)
where I'; has been defined above. To prove (i) we start from the distributional identity

Y, i (Gl (Fl/rn-i-l) G! (Fn/rn-i-l)) :

sy
Qn an

which follows from (I8). It suffices to prove that for every k, almost surely the first k
terms above converge to the first k£ terms in Y. Thanks to (@), almost surely, for every j:

_1
a,' G (T/Trg1) — Ly, (19)

and the convergence in distribution of Y;, to Y follows. Moreover, from (@), for any 6 > 0
we can find ng such that

_1
a,'Vj=a,' G7H(0j/Tps1) < (nj/(1+6)Tnga) =
for n > ng, 7 € N. Since n/T',,11 — 1, a.s. we see that the expression above is a.s.
_1
bounded by 2(1 + 5)511 ; @ for n sufficiently large, and the second part of (i) follows from
2

a.s. summability of Fj_a.
Similarly, if & € (0,1), A, has the same law of Z?:kﬂ G (T'j/Th11), and the
1

second part of (ii) follows from a.s. summability of I‘;E. To prove the convergence of Z,
we use the distributional identity

an( G (I1/Tyi1) G (Tn/Tns1) )

2= GG/ Tngn) 7 25 G710/ Tnga)
As a consequence of (I9]), we then have almost surely

1

a," Y G Tpg) = > T, 7,

j=1 j=1
and (ii) follows. Finally, (iii) is an easy consequence of the exchangeability of the variable
(Ul,i) : P(Vkl 7& Vk) < IP(Hj el: ULj = Vk) < ‘I‘IP(ULl = Vk) = ]I]k/n O

The intensity measure az~*"!dz on (0,00) is not locally finite at 0. It will be more
convenient to work with Radon (i.e. locally finite) intensity measures.

Lemma 2.5 (Poisson Point Processes with Radon intensity measures). Let £7,&5, ... be
sequences of i.i.d. random variables such that
nPEle) — v, (20)
n—0o0

where v is a Radon measure on R. Then, for any finite set I C N the random measure
D ic{l,..ap\1 Oer converges weakly as n — oo to PPP(v), the Poisson Point Process on R
with intensity law v, for the usual vague topology on Radon measures.

We refer to Resnick [23, Theorem 5.3, p. 138] for a proof of Lemma [Z5l Note that for
= a, /Uy it is a consequence of Lemma [24] (iii).

g™
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2.5 Local weak convergence

In the above paragraph, we have considered the convergence of the vectors (Xi 1, -+, X1,)/an
and (U1, ,U1n)/p1. In this paragraph, we generalize this by characterizing the limit-
ing local structure of the complete graph with marks a,/X; ;. Our argument is based on
a technical generalization of an argument borrowed from Aldous [I]. This will lead us to
theorems 2.3] and 2.8 below. The reader may skip this part and jump directly to Section
Bl

Let G,, be the complete network on {1,...,n} whose mark on edge (i,7) equals &
for some collection (S?j)lgigjgn of i.i.d. random variables with values in R, with & =&
We consider the rooted network (G,,,1) obtained by distinguishing the vertex labeled 1.

We follow Aldous [Il, Section 3]. For every fixed realization of the marks (£7%), and for
any B, H € N, such that (Bf+! —1)/(B — 1) < n, we define a finite rooted subnetwork
(G, 1)BH of (G, 1), whose vertex set coincides with a B-ary tree of depth H with root
at 1.

To this end we partially index the vertices of (G, 1) as elements in

JB,H = Ufzo{l,--- ,B}z C Nf,

the indexing being given by an injective map o, from Jp g to V,, :={1,...,n}. The map
oy, can be extended to a bijection from a subset of N/ to V,. We set Iy = {1} and the
index of the root 1is o,,1(1) = @. The vertex v € V,,\Iy is given the index (k) = o, 1(v),
1<k<B,if 5("17? has the k™ smallest absolute value among {fﬁj, j # 1}, the marks of
edges emanating from the root 1. We break ties by using the lexicographic order. This
defines the first generation. Now let I; be the union of Iy and the B vertices that have
been selected. If H > 2, we repeat the indexing procedure for the vertex indexed by (1)
(the first child) on the set V,\I;. We obtain a new set {11,--- 1B} of vertices sorted
by their weights as before (for short notation, we concatenate the vector (1,1) into 11).
Then we define I5 as the union of I; and this new collection. We repeat the procedure for
(2) on V;,\I2 and obtain a new set {21,---,2B}, and so on. When we have constructed
{B1,--- ,BB}, we have finished the second generation (depth 2) and we have indexed
(B3 —1)/(B —1) vertices. The indexing procedure is then repeated until depth H so that
(BH+1 —1)/(B — 1) vertices are sorted. Call this set of vertices V;>'"' = 0,,Jp . The
subnetwork of G,, generated by V;>*" is denoted (Gp,1)B# (it can be identified with the
original network G,, where any edge e touching the complement of VB i given a mark
Te = 00). In (G, 1)BH  the set {ul,--- ,uB} is called the set of children or offsprings of
the vertex u. Note that while the vertex set has been given a tree structure, (G, 1)%
is still a complete network with all the self loops. The next proposition shows that it
nevertheless converges to a tree (i.e. all circuits vanish, or equivalently, the extra marks
diverge to oo) if the & satisfy a suitable scaling assumption.

Let (7,9) denote the infinite random rooted network with distribution PWIT(v).
We call (7,@)5" the finite random network obtained by the same sorting procedure.
Namely, (7, @)5H consists of the sub-tree with vertices of the form u € JB,u, with the
marks inherited from the infinite tree. If an edge is not present in (7, @)% we assign
to it the mark +oo.

We say that the sequence of random finite networks (G,,, 1)%# converges in distribution
(as n — 00) to the random finite network (7, @)% if the joint distributions of the marks
converge weakly. To make this precise we have to add the points {£o00} as possible values
for each mark, and continuous functions on the space of marks have to be understood as
functions such that the limit as any one of the marks diverges to +o00 exists and coincides
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with the limit as the same mark diverges to —oo. The next proposition generalizes [I]
Section 3].

Proposition 2.6 (Local weak convergence to a tree). Let (§;)1<igj<n be a collection of

i.%.d. random variables with values in R and set &', = &';. Let v be a Radon measure on
R with no mass at 0 and assume that
nP(EL ) -5 v oas n— oo. (21)
n—oo

Let G, be the complete network on {1,...,n} whose mark on edge (i, j) equals &. Then,
for all integers B, H, as n goes to infinity, in distribution,

(Gn, 1)BH — (T, 2)BH,
Moreover, if Ty, To are independent with common law PWIT(v), then, in distribution,
((Gn, )P (G, 2)P ) — (T, 2) P (T2, 2) 27,

The second statement is the convergence of the joint law of the finite networks, where
(Gy,2)PH is obtained with the same procedure as for (G,, 1) by starting from the
vertex 2 instead of 1. In particular, the second statement implies the first.

This type of convergence is often referred to as local weak convergence, a notion intro-
duced by Benjamini and Schramm [§], Aldous and Steele [3], see also Aldous and Lyons
[2]. Let us give some examples of application of this proposition. Consider the case where

=1 with probability A/n and £y =00 otherwise. The network G,, is an Erdos-Rényi
random graph with parameter A/n. From the proposition, we retrieve the well-known
result that it converges to the tree of a Yule process of intensity A. If {'; = nY; ;, where
Y; ; is a non-negative continuous random variable with density 1 at 0+, then the net-
work converges to PWIT(¢;), where ¢; is the Lebesgue measure on [0,00). The relevant
application for our purpose is given by the choice

fz‘rfj = (an/Xi,j) ) Va(dw) = [‘9]1{3[:>0} + (1 - 9)]1{x<0}] a’x‘a_ldw7 (22)
where |X; ;| € H,. Note that the proposition applies to all & > 0, provided () holds.

Proof of Proposition [Z.6. We order the elements of Jp g in the lexicographic order, i.e.
G<1<2<--<B=<11<12<---<B...B. For v € Jgp, let Oy denote the set of
offsprings of v in (G,,,1)%#. By construction, we have I = {1} and I, = 0, (Uw<vOuw).
At every step of the indexing procedure, we sort the marks of the neighboring edges that
have not been explored at an earlier step {1,--- ,n}\I1, {1,--- ,n}\Iz, - - -. Therefore, for
all u,

n d n

Thus, from Lemma and the independence of the variables £", we infer that the marks
from a parent to its offsprings in (G, 1)%# converge weakly to those in (7,2)%H. We
now check that all other marks diverge to infinity. For v,w € Jp p, we define

2?37“, = ggn (v),on(w)"

Also, let {yyw , v, W € Jp n} denote independent variables with common law |£7,]. Let

EBH denote the set of edges {u,v} € Jpu x Jpu that do not belong to the finite
tree (i.e. there is no k € {1,...,B} such that u = vk or v = uk). Lemma 27 below
implies that the vector {|zy [, {v, W} € EB-HY stochastically dominates the vector )" :=

14



{2 w, {v,w} € EBH} ie. there exists a coupling of the two vectors such that almost
surely |27 | > yo ., for all {v,w} € EBH . Since Y™ contains a finite (independent of n)
number of variables, (2I]) implies that the probability of the event {ming, wycps.u |27 4| <
t} goes to 0 as n — oo, for any ¢ > 0. Therefore it is now standard to obtain that if z.
denote the mark of edge e in 75 | the finite collection of marks (T8 )ecp pxJpy CONVErges
in distribution to (xe)eeJByHXJB’H as n — oo. In other words, (G,,1)%¥ converges in
distribution to (7, @)5H.

It remains to prove the second statement. It is an extension of the above argument.
We consider the two subnetworks (G, 1) and (G,,2)?" obtained from (G,,1) and
(Gr,2). This gives rise to two increasing sequences of sets of vertices I, ; and Iy 2 with
v € Jp, i and two injective mappings 0, 1, 0y,2 from Jp i to {1,--- ,n}. We need to show
that in distribution,

(Gu, )P (G, 2)P 1) — (T1,2)P0, (T2, 2)51). (24)

Let Vni’H = 0y,i(Jp. 1) be the vertex set of (Gy,1)? i =1,2. There are C := (BHF! —

1)/(B — 1) vertices in Vfi’H, hence the exchangeability of the variables implies that
P2e Vi <o/

Let C~¥n = Gn\Vf{H, the subnetwork of GG,, spanned by the vertex set V\anfl’H. Assuming
that 2(Bf+1 —1)/(B—1) < n and 2 ¢ V,fl’H, we may then define (G,,,2)%H. 1f 2 € Vfl’H,
(én, 2)BH is defined arbitrarily. The above analysis shows that, in distribution,

(G, )P (G, 2)P) — (T, 2) 21, (T2, 2)P 7).

Therefore in order to prove (24)) it is sufficient to prove that with probability tending to
1,
B,H B,H _
Vol NV,5" =a.

Indeed, on the event {VnBl’H N VfQ’H = 2}, (Gn,2)P and (G,,2)5H are equal. For
v € Jpu, let Oy denote the set of offsprings of v in (Gp,2)PH . We have Iyo =
{2} U Uw-<VOw,27 and
B..B
PWVAETAVET o) <Pe V) + Y PO NV £ oV 0L, =0).
v=g

For any u,v € Jp g, if anfl’H NIy 2 = @, then o, 2(v) is neither the ancestor of oy, 1(u),
nor an offspring of oy,,1(u). From Lemma 2.7 below we deduce that {7 (). 2(V)| given

V]‘?I’Hﬂfvg = @ dominates stochastically [£]' 5|, and is independent of (|

n
n Son a2k ket,n\(VEH UL )

an i.i.d. vector with law [£]'5]. It follows that
B,H
P(op,1(u) € Ove |V, 7 Nlve=9) < B/(n—C — |Lz]).
Therefore,

P(Ova NV £ 2|V N La=2) < > Poai(u) € 0va| Vi N o = 2)
uEJB,H
CB
< .
n—2C
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Finally, . o
B
B.H ~ ,BH
P(V,i" NV, 5" #9) < P Yok

which converges to 0 as n — oo. U

We have used the following stochastic domination lemma. For any B, H and n let gMB
denote the (random) set of edges {4, j} of the complete graph on {1,...,n}, including self-
loops, such that {0, 1(i),0,1(j)} is not an edge of the finite tree on Jp g. Clearly, any
self-loop {i,i} belongs to 7. Also, for u # @ on the finite tree, let g(u) denote the
parent of u.

Lemma 2.7 (Stochastic domination). For any n € N, and B, H € N such that (BH+! —
1)/(B — 1) < n, the random variables

{‘517?]‘7 {27]} € 57?7[—[}7

stochastically dominate i.i.d. random variables with the same law as law |£ﬁ2|. Moreover,
for every @ #u e Jgp:

{1€5, il > i €41, n} \on(g(u))},
stochastically dominate i.i.d. random variables with the same law as law |£7 5]

Proof of Lemma[2.7] The censoring process which deletes the edges that belong to the
tree on Jp g has the property that at each step the B lowest absolute values are deleted
from some fresh (previously unexplored) subset of edge marks. Using this and the fact
that the edge marks ¢/'; are 1.i.d. we see that both claims in the lemma are implied by the
following simple statement.

Let Y7,...,Y,, denote i.i.d. positive random variables. Suppose m = nq + ---ny, for
some positive integers ¢, ni,...,ny, and partition the m variables in ¢ blocks I, ..., I¢ of
ni,...,ne variables each. Fix some non-negative integers k; such that k; < n; and call
q{, e ,qij, the (random) indexes of the k; lowest values of the variables in the block I
(so that Yq} is the lowest of the Yi,...,Y,,, Yq% is the second lowest of the Yi,...,Y,,
and so on). Consider the random index sets of the k; minimal values in the 4™ block,
JI = Uizl{qg}, and set J = Uﬁzlﬂ. If k; = 0 we set J7 = &. Finally, let Y denote
the vector {Y;, i = 1,...,m; i ¢ J}. Then we claim that Y stochastically dominates
m — Z§:1 k;j ii.d. copies of Y;.

Indeed, the coupling can be constructed as follows. We first extract a realization

Y1, .., Ym of the whole vector. Given this we isolate the index sets J', ..., J¢ within each

: : _ (1 1 2 2 ¢ ;
block. We then consider two vectors Z,V obtained as follows. 21 = (z7,..., 2otk P10 Png—ka ) Prg—ky,
is obtained by extracting the ny —k values 21, ..., z}lr ), uniformly at random (without re-
placement) from the values 1, ..., yn, (in the block I'), the ny— ko variables z%, e 222_ ko
in the same way from the values ¥, 11, - -, ¥n,+n, (in the block I?), and so on. On the

1 1 2 2 ¢ : :

other hand, the vector V = (vq,... s Uny ey Vs 0 Uy s - - - 7%[—19[) is obtained as fol-
lows. For the first block we take vl-l, i =1,...,n1 — k1 equal to zzl whenever an index
i € I''\ J! was picked for the vector z{,... ’Zrlu—kl and we assign the remaining values (if

any) through an independent uniform permutation of those variables y;, i € I'\ J! which
were not picked for the vector 21, ..., zrlll_ k- We repeat this procedure for all other blocks
to assign all values of V. By construction, V > Z coordinate-wise. The conclusion follows
from the observation that Z is distributed like a vector of m — Z§:1 k; ii.d. copies of Y7,
while V is distributed like our vector Y. O
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2.6 Proof of Theorem 2.3

Proof of Theorem [2.3(i). Let v, be as in (22) and let (7,,2) be a realization of the
PWIT(v,). The mark on edge (v,vk) in 7, is denoted by z(y yk) or simply zyx. By
definition, z(y w) = oo if v and w are at graph-distance different from 1. In particular,
if we set y, = sign(zy)|zy|*, then the point sets =, = {yyi}r>1 are independent Pois-
son point process of intensity €y = 01, 0ydr + (1 — 0)1,0ydr. We may thus build a
realization of the operator T on 7, cf. (I3]). Next, we apply Proposition with the
setting described in ([22). For all B, H, (G, 1) converges weakly to (7, @)% . Let
o™ be the map o, associated to the network (Gn,1)B# (see the construction given
before Proposition 2.6]). From Skorokhod Representation Theorem we may assume that
(G, 1)BH converges a.s. to (7o, D)2 for all B, H. Thus we may find sequences B,,, H,,

tending to infinity, such that (BZ»*'—1)/(B, —1) < n and such that for any pair u,v € Nf
Bn,Hn

we have f&n(u) Gn(v)) — Llv,w) 88, a8 N — 00, where o, 1= op, . The map 7,, can be
extended to a bijection N/ — N7 . Tt follows that a.s.
1 ] o~ 1 1
(0w, 0, (a,, " X)opdy) — = (0u, Ty) . (25)

B {Enan(v)  Tluv)

For any v, set Y := 7, (a;'X)5,0y. To prove Theorem 2.3(i) it is sufficient to show
that for any v € N/ ¢V — T6, in L?(N/) almost surely as n — oo, i.e.
Z((émwr‘” — (Ou, T5V>)2 —0. (26)
u

Since from (28) we know that (dy,¢y) — (du, Tdy) for every u, the claim follows if we
have (almost surely) uniform (in n) square-integrability of ((dy, 1Y ))u. This in turn follows
from Lemma 2.7 and Lemma [2.4{i). The proof of Theorem 2.3(i) is complete. O

Proof of Theorem [23(ii). Next, we claim that, for all u € N/, a.s.

lim 27 _ (27)
n—oo n
To prove this we first observe that by Lemma 2.7 and the strong law of large numbers, we

have a.s.

~ — U~ _
lim sup (pa"(u) (’"(u)vffn(g(u)))

n—00 n

<1

On the other hand Uz, (4) 5, (g(u)) 18 stochastically dominated by the maximum of n i.i.d.
variables with law U; ;. The latter converges in distribution on the scale a,, (cf. Lemma
2.4(i)) and we know that a,/n — 0. It follows that a.s. limsup,,_, p5,w)/n < 1. Next,

we can estimate
P&, (u) = Z Us,(u)i -
Z6{17,n}\lu

Now, observe that if u € N/ belongs to generation h, then the set I, contains at most
O(B") elements, while n is at least of order BXn, where B,,, H,, are the sequences used in
the proof of Theorem 2.3|(7). In particular, it follows that |I| = o(n) and therefore (23]
and the strong law of large numbers imply, a.s. liminf,, . pz,u)/n = 1. This proves ([21).
We need to show that for each v € N/, (28) holds with the new vector ¢y :=

G (K S)Tnby,
(Burs Y = i Uz, (w)Fn(v)

P (v)Po (W)
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Now,
((5W7¢Z> - <5W7T5V>)2
2
—1 —1 2
<2 <an Uz, (w),5 (v) <1 - n/\/Pan(v)Pan(w)» +2(ay, Uz, (w),5a(v) — (0w, Tdy))" .

The sum of the second term above converges to zero as in the proof of point (7). Moreover,
as in that proof, the first term above is uniformly integrable so that from (27)), the sum
converges to zero. This proves point (ii). O

Proof of Theorem [2Z.3(iii). The setting is as in the proof of (ii) above, but now « € (0, 1).
We build the operator S on the tree 7, as in (I6). We need to prove that for any v € N/,
a.s.

D (s thy) = (6w, S0v))* — 0, (28)

w
with Y := 5, 155,0y, i.e.

Ugn w),on (Vv
Ny —————2
Pan(v)/)an(w)

Let us first show that for any v,w € N/ we have a.s.

Usnwign(v) (0w, Tdy)

= (84, S6y) . (29)
P& (v) P (w) p(v)p(w)

Multiplying and dividing by a,, and using ([25]) with 6 = 1, we see that (29) holds if
Do) = P(V), (30)

almost surely, for every v € N/. In turn, ([B0) can be proved as follows. Let k € N, and
consider the tree with vertex set Jj ;, obtained as in Proposition with B = H = k.
Since Jj i, is a finite set, for any v, (25) implies that a.s.

a,’ Z Us,(v),5n(w) — Z Ty

uGJk’k uEJkyk

By Lemma 2.7 and Lemma R2.A(ii), >_ ¢, , a;?! Uz, (v),a(u) @8- converges uniformly (in
n) to 0 as k goes to infinity. This proves ([B0) and (29)).
Once we have (29)), to conclude the proof it is sufficient to show that a.s.

lim sup D (0w, ¥))* = 0. (31)

However, using ([B0) and the simple bound ({w,Y))? < Ua"p{#’f’;(w), we have that (3TI)

again follows from an application of Lemma 2.7] and Lemma [2:4{(ii). This completes the
proof of Theorem [23|iii). O

2.7 Two points local operator convergence

In the proof of the main theorems, we will need a stronger version of Theorem 2.3l Define
the 2n x 2n matrices
X®X and S&58S,

18



where “@” denotes the usual direct sum decomposition: X @ X (¢1, ¢2) = (X1, X p2), for
n-dimensional vectors ¢1, ¢3. As for the limiting operators, we realize them on the Hilbert
space L*(V) @ L?(V) with V = N/. We consider two independent realizations 7, 7.2 of
the PWIT(v,,), and call T1, Sy, T2, S the associated operators as in Section 2.3l We may
then define

Ti®Ty and S;1PSs.

By PropositionZ6, ((Gy,1))2H, (G,,, 2)P1) converges weakly to (7.}, @)1 (T2, @)BH).
As before we can view the matrices X & X and S @ S as bounded self-adjoint operators
on L?(V) @ L?(V). Therefore, arguing as in the proof of Theorem 3] it follows that, in
distribution, for all (¢1,¢2) € D x D,

o tan ' X @ Xop (1, ¢2) — T1® Ta(1, d2)

2 and, as above, for i € {1,2}, ¢! is a bijection on N/, extension of

the injective indexing mapping from N/ to {1,...,n}, such that ¢! (@) = i. Analogous
convergence results hold for the matrix S @ S. We can thus extend the statement of
Theorem (23] to the following local convergence of operators in L?(V) @ L?(V). To avoid
lengthy repetitions we omit the details of the proof.

where, 0, = 0} ® o

Theorem 2.8. As n goes to infinity, in distribution,

(i) if a € (0,2) then (a,'X @ X, (1,2)) — (T1 ® To, (2,9)),

(i1) if a € (1,2) and 0 =1 then (k,S @ S, (1,2)) — (T1 @ To, (2,9)),
(i1i) if « € (0,1) then (S & S, (1,2)) — (S1 @ S, (2,9)).

3 Convergence of the Empirical Spectral Distributions

3.1 Proof of Theorem [I.4: Markov matrices with a € (0,1)

Recall that S is a bounded self-adjoint operator on L?(V), whose spectrum is contained
in [—1,1], cf. (I7)). The resolvents of S and S are the functions on Cy = {z € C: Iz > 0}:

R'(2)=(S—=20)"" and R(z)=(S—z2)"".

For ¢ € N, set
Yo = (0z,8%) (32)

Note that v, = ﬁ (62, K"0g), is the probability that the random walk on the PWIT
associated to the stochastic operator K comes back to the root (where it started) after ¢
steps. In particular, vy = 0 for £ odd. We set 79 = 1. Let pg denote the spectral measure
of S associated to 0 (see e.g. [22, Chapter VII]). Equivalently, pg is the spectral measure
of K associated to the L2(V, p) normalized vector dg := 8¢ /+/p(@), cf. (7). In particular,
lg is a probability measure supported on [—1,1] and such that v, = fjl 2 pg(da), for
every £. Since all odd moments vanish pg is symmetric. Moreover, for any z € C, we

have

! x
<5@aR(Z)(Sg>:/ M’

-1 T—=Zz

i.e. (g, R(2)dz) is the Stieltjes transform of pg. Recall that the Stieltjes transform of a
probability measure p on R is the analytic function on C, given by

m(z) = /R p(d)

r—z
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The function m,, characterizes the measure p and |m,(z)| < (Sz)~! and weak convergence
of py, to p is equivalent to the convergence my,, (2) — my(z) for all z € C. By construction

1 X
L) = [ ),

where pg is the ESD of K, which coincides with the ESD of S. Using exchangeability
and linearity, we get
ER?J(Z) = Emy,, (2) = MEp (2).

Since R™(2)11 < (32)7! is bounded, we may apply Theorem and Theorem 23] and
obtain, for all z € C,,
lim g (2) = Mg, (2). (33)

n—0o0

We define
/704 = E,U'Q .
The proof of Theorem [[L4] will be complete if we prove that, for all z € C:

lim E |[my, (2) — mgy, (z)| = 0. (34)

n—oo

We write
Elmy (2) = Mg, (2)] < B myue (2) = Emy (2)] + [misg (2) = mig, (2)]

On the right hand side, the second term converges to 0 by ([B3). The first term is equal to

I " Z [ rk(2) = ERIZ,k(Z)} :

k=1

1 ‘

By exchangeability, we note that

n

2
E (% > [Rislz) - ER};M)

k=1

1 -1
= 2w (np, - Ba) + "V (B, - BRL) (RS - BRL)

1
< —=—5 +E[(R!; —ER},) (R5, — ER3,)].

= n(Sz2)2

Finally, Theorem and Theorem 28 imply that (R;;(z), Re2(2)) are asymptotically
independent. Since these variables are bounded, they are also asymptotically uncorrelated,
and (B34)) follows.

3.2 Proof of Theorem [1.2: i.i.d. symmetric matrices with « € (0,2)

Theorem [[2] is a corollary of Theorem Bl below. As in [7], we will define the LSD
ta by an expression for its Stietljes transform m,,(z). Let H be the set of analytic
functions h from C; to C, such that |h(z)| < (3z)~!. We define the distance on H,
d(f,9) = [o|f(2) — g(2)|dz where Q is a non-empty bounded open set in C+. With
this distance, H is a compact separable metric space (compactness follows from Vitali’s

convergence Theorem). The symbol 2 stands for equality in distribution.
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Theorem 3.1 (Recursive Distributional Equation). With the assumption of Theorem .2
(i) There exists a probability distribution L on H such that L-a.s. for all z € C,,
h(=2) = —h(z)

and

hz) L - ( + Zm(z)) , (35)

keN
where h and (hy)gen are i.i.d. with law L, independent of {&x}ren, a Poisson point
process of Ry with intensity %x_%_ldm. Moreover, for all z € CL, the law of h(z)
depends only on «.

(ii) Forallz € C, , Ho-1x converges in probability to a deterministic probability measure
[a whose Stieltjes transform is given by my,, (2) = Eh(z).

Statement (ii) is equivalent to the main result of Ben Arous and Guionnet [7]. The
Recursive Distributional Equation (RDE) (3] is new. The random variable h appears has
the fixed point of a nice cascade. The analysis of the RDE (B1]) is performed in Section Ml
We conjecture that the law L in (i) is unique but we cannot prove it. In any case, since
the marginal law h(z) depends only on «, Eh(z) is the same for all probability measures
solving the RDE (B3]). The key idea of the proof is the same as in the proof of Theorem [L.4t
apply Theorem in conjunction with Theorems 2.3 and 2.8 Unfortunately, this direct
approach will fail since we could not manage to prove that T is a self-adjoint operator,
and we cannot apply directly Theorem We will instead use a truncation argument to
overcome this difficulty which makes the problem more interesting per se.

Proof of Theorem [31)(i). To simplify notation, we set A, = a,'X and = a/2. Let
h be a random variable in H satisfying Equation @B5). For z = it, with ¢ > 0, the identity,
h(—%) = —h(z) reads Rh(it) = 0. Thus, the equation satisfied by g(it) = Sh(it) > 0 is

-1
glit) £ (t + nggmt)) : (36)

keN

Lemma 3.2 (Existence and Uniqueness of solution for the Random Distributional Equa-
tion). For each t > 0, there ewists a unique probability measure L** on R, solution of

@5).

Proof of Lemmal3ZZ If (Y}) is an ii.d. sequence of non—negative random variables, in-

dependent of {{}ren, such that E[Ylﬁ] < oo then it is well known that ), ;Y% 4

>k Sk(E[Yf])l/ﬁ (see for example Lemma 6.5.15 in Talagrand [27] or (38)) below). This
implies the unicity for Equation (38) provided that the equation satisfied by E[g(it)?]
has a unique solution. Recall the formulas of Laplace transforms, for y > 0, n > 0 and
0 < n < 1 respectively,

y = F(n)_l/ 2" e ™dr and y" =T(1 — 77)_177/ 71N — e ™) dx.  (37)
0 0

From the exponential formula we deduce that, with s > 0,

Eexp (—8251&%) = exp <E /Oo(e_g;sY1 _ 1)61'_6_1611')
k 0

= exp <—r(1 - ﬁ)sﬁE[YfD . (38)
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From Equation (B8)), E[g(it)?] is solution of the equation in y:

1 /oo B-1_—tx _—2PT(1-0F)y
Y= —=—= " e e dx.
I'(8) Jo

The last equation has a unique solution for any ¢ > 0. Indeed, the function from R to
Ry

1 /oo 8—1_—tx _—zPT(1-PB)y
QY= — x’ e e dx
I'(8) Jo
L(1-p)

tends to 0 as y — oo and it is decreasing since ¢/ (y) = — 3) foo a2 le—tz e T(1=B)y gy

0
Thus ¢ has a unique fixed point. O

We shall need the following observations. If S is a self-adjoint operator on D(S) C
L?(V) with V countable, the skeleton of S is the graph on V obtained by putting an edge
between two vertices (v, w) if (dy,Sd0w) # 0. The next lemma is classical.

Lemma 3.3 (Resolvent of self-adjoint operators on bipartite graphs). Let S be a self-
adjoint operator on D(S) C L*(V) with V countable. If the skeleton is a bipartite graph
then for v € V, h(z) = {0y, (S — zI)716,) satisfies for all z € Cy, h(—2) = —h(z).

Proof of Lemmal33. Assume first that S is bounded: for all w € V., ||Séw|| < C. For
|z| > C, the series expansion of the resolvent gives

¢
h(z) = _ZM

A1
20

However since the skeleton is a bipartite graph, all cycles have an even length, and for /¢
odd (dy,S%y) = 0. We deduce that for |z| > C, h(—%2) = —h(z). We may then extend to
C. this last identity by analyticity.

If S is not bounded, then S is limit of a sequence of bounded operators and we conclude
by invoking Theorem VIII.25(a) in [22]. O

For z € C4, we define the Stieltjes transform

ma ) = [ LS )
k=1

r—z

where

RY(2) = (A, — zI)7!

is the resolvent of A,. Note that, by exchangeability, IEma4, (z) = ER};(z). The main
part of the proof of Theorem B is devoted to the convergence of Emy, (z) as n goes to
infinity. To this end, we will use truncation arguments and exhibit the limiting self-adjoint
operator for the truncated versions of A,,.

Recall how the operator T was build on (7, @), a realization of the PWIT(4y), cf.
Section 23l For k > 0, we define the truncated operator T, on D, for v,w € Nf,

(Ov, Tow) = {0y, Tow) 1(|(0y, Tow)| < k).

The operator T, is symmetric and as usual, we identify T, with its closed extension. with
domain D(Ty). By construction, D is a core for T,.

Proposition 3.4.
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(i) With probability one, T\, is self-adjoint.

(ii) If h*(2) = (0g, (Tx — 2I)"10g) then with probability one, for all z € C4,

and .
K d K
RE(z) & — <z + ng]l{gmﬁz}hk(z)) , (39)
keN
where (hf)gen are i.i.d. with law h", independent of {k }ken, a Poisson point process

of Ry with intensity %x_%_ldx.

(iii) Theorem [31(i) holds true, and as k goes to infinity, any accumulation point of h"
satisfies Theorem [31(7).

Proof of Proposition [3.4)(i). We shall see in a moment that the proofs of Theorem 2 and
Proposition 10 in Zakharevich [28] gives precisely that

E<5@a Tin5®> < R™"n™ R (40)
for some constant R depending on x. Recall that T is symmetric, hence
ITR0]° = (5o, (T)*"d).

Then, by the Markov inequality we get P(||T%04||? > (2R)"n™) < 27" and it follows from
the Borel-Cantelli Lemma that a.s.

ITkél* < (2R)"n"

A similar estimate holds for | T?,||, for every v € N/. We may then conclude (i) by
applying Nelson’s analytic vector theorem, see e.g. Reed and Simon [21, Theorem X.39].
The bound (0] comes from a combinatoric computation which follows from [2§8]. By
definition, (T?"64, §z) is the sum, on all paths of length 2n from @ to @, of the products of
the weights w1/ on the path. Let II,, denote the set of equivalence classes of such paths
(for the equivalence relation obtained from isomorphisms on the vertices that preserve the
root @). Since 7 is a tree, the graph formed by the edges along a path in 7 € II, is a
rooted tree on [+ 1 vertices. A given edge e in this graph is visited 2b,. times by the path

and
l
Z be, = n.
i=1
Recall the Campbell formula for a Poisson point process = = {( }ren of intensity measure

d\(z): if f1,..., f; non—negative functions and Z** is the set of I-tuples of distinct elements
in =, we have

! ! !
DI | EIORS | JRZCECES IS DI | F(5)
=1

(C1yenGr)eE 1=1 C1€EL,...,¢ €5 i=1
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where 21, ..., Z; are independent copies of Z. In our present case, Z = {]wklfl/a]l{|w_1/a|<n}}ng
k

is a Poisson point process of intensity measure ax_l_a]l{0<x<ﬁ}dx. Expanding all coeffi-
cients, we get easily that

I(m)

E(Se, To"z) = > ] / 2bei (™ =1y

mwelly, i=1

U(m) 2be, (T)—

- X 5w

welly, i=1 el

n
< /<;2"max<1, a > |IL,,|.
2—-a

In the proof of Theorem 2 in [28], Zakharevich finds a bijection from II,, to a set of on
rooted colored trees, then her Proposition 10 gives precisely (@0]). O

Proof of Proposition [3.)(ii). With probability one, T is self-adjoint, so the property
h"*(—Z) = —h#(2) is a consequence of Lemma B3] (indeed trees are bipartite graphs).
The recursive distributional equation (39]) follows now from a classical operator version of
Schur complement formula (see e.g. Proposition 2.1 in Klein [I7] for a similar argument).
Denote, as usual, by k € N the descendants of the root @ and let 7 denote the subtree
rooted at k (the set of vertices of 7(*) is then kN7). We have the direct sum decomposition

N/ = {@} | JUrEN/. We define T as the projection of T, on kN/. Its skeleton is thus
7). Finally define the operator U on D by its matrix elements

U — <6g, U6k> <6k;, U(Sg> <(5g, T (Sk>
for all k£ € N (offsprings of @) and (dy, Udy) = 0 otherwise. In this way we have

T,=U+T, with T,=PTH
keN

As Ty, each T,(f) can be extended to a self-adjoint operator, which we denote again by
T~,(f). Therefore T, is self-adjoint. We shall write R(z) = (T, — 2I)~! and R(z) =
(T, — zI)~! for the associated resolvents, z € C,. These operators satisfy

R(2)(T, — T.)R(z) = R(z) — R(2) . (41)

Set fiu,v(z) .= (84, R(2)dy) and Ry v(2) := (du, R(2)dy). Observe that Eg7g(2) =—z!
and that the direct sum decomposition N/ = {@} | JUpkN/ implies ﬁkl(z) =0 for k # 1.
Similarly we have that Eg’k(Z) =0= Ehg(Z) for every k € N. From (41]) we then obtain,
for k e N: N

Rk7k(z)ukRg7g(z) = —Rk,g(z) .

It follows that

(0, R(2)(T,, — T,)R(2)6 ZRzz Jup Ry, (2 ZRQQ ) Ry k(Ui Re (2).
keN keN

From (AI]) we then conclude that

R o(2) _ -
1- Rz 2(2) ZkeN Rkk(z)ui

R o(2) =
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Or, using ﬁg7g(2) =—z7L

-1
Ry () = — <z +y° Ek,k(z)ui> :

Then (ii) follows from the recursive construction of the PWIT: T®*) are i.i.d. with distribu-
tion 7 and therefore Ry, ;(z) are i.i.d. with the same law of Ry o(2), for every z € C;.. O

Proof of Proposition [3.)(iii). We consider the sequence of random analytic functions (h").>0.
Since H is compact, (h"),>0 is tight, and any accumulation point, say h, is a random vari-
able in H satisfying with probability one, for all z € C,, h(—2) = —h(z). Let D = i[a, ]
be a non—empty interval of iRy C Cy. By continuity, for each z € D, h(z) satisfies
Equation (35]) which has a unique pure imaginary solution by Lemma Therefore, for
each z € D, the law of h(z) is unique and does not depend on the accumulation point. By
analyticity we may extend this result to all C,. U

This proves Theorem B.I1(i).
O

Proof of Theorem [31)(ii). We shall use the next lemma, which is in fact a consequence of
Lidskii’s rank difference inequality.

Lemma 3.5 (Rank inequality on Stieltjes transforms). Let m4 and mp be the Stieltjes
transform of the spectral measure of A and B, two n X n hermitian matrices. Then for all

Z€C+,

Ima(z) — mp(2)| < ngzrank(A ~B)

Proof of Lemmal33. Let Fa(x) and Fg(z) be the partition functions of the spectral mea-
sures of A and B. From Lidskii’s rank difference inequality we have

|Fa — Fg|| = sup |Fa(z) — Fg(z)| < n”'rank(A — B).
zeR

On the other hand, since ma(z) = [ Fa(z)/(z — 2z)*dx, we get

|[Fa(z) — Fp(z)| / dx
de < ||Fa— F —_—.
/ |z — 2|2 v < |Fa = Fi 2 + (Sz)?

N

[ma(z) —mp(2)|

O

We define the n x n matrix A with entries (A%);; = (Ay)ij1(|(An)ij| < k). Since
rank(An — A7) < 32001 L{((An)irs(An)int 7 (AR)its - -5 (A7 )in)), we get

(An)1,15 -5 (An)in) # ((AR)11, - -+ (AR)1n))
31 <i<n: U, > kay)
— (1 = G(ank)".

From (@), G(a,k) is equivalent to (nx®)~!

to e™*

as n — oo. Now, since (1 — x/n)" converges
, we deduce that for all € > 0, there exists k¢ and n., such that for all K > k. and
n > n. we have

n 'K [rank(A,, — A%)] < e, (42)

(note that Lemma 2.4(1) in [7], is a refinement of this bound).
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The operator T, is the weak local limit of the sequence of matrices (A%) as n goes to
infinity. Indeed, we may restate Theorems 23] [2.8(i) as: for all £ > 0, in distribution,

(Afwl) - (Tﬁ’g) and (AZGBAZ?(LQ)) - (Tn,l ®TH,25(®’®))? (43)

where T 1 and T, 2 are two independent copies of T,. Since T, and Af are self adjoint
operators with probability one, we can apply Theorem If hi(z) = ((A% — 2I)7 1)1,
then for all z € C,, in distribution,

hn(2) — B"(2) (44)

where h" was defined in Proposition B3.4]
By exchangeability, we have Emax(2) = n~t Zlgkgn ER,; = Ehf(z), with R™" =
((Af — 2I)~1). Hence, by Lemma [3.5]

|Ema, (z) — Eh(z)| < E ‘mAn(z) — mAg(zﬂ + |EAL(2) — ER"(2)| + |EA"(2) — Eh(z)|
T Erank(A,, — AY) + |ER(2) — ER"(2)| + |ER"(2) — Eh(2)]| .

nSz

<

By Equation (44), EAf(z) converges to Eh*(z) while PropositionB.4lstates that lim, EA"(z) =
Eh(z). Thus (@2) implies that for all z € C,,

lim Emg, (z2) = Eh(z)

n—oo

The proof of Theorem [B.II(ii) will be complete if we manage to check

lim E|ma, (z) — Eh(z)| = 0.

n—oo
As above we write

E|ma,(z) —Eh(z)] < E |mAn(z) — mAg(Z)‘ +E |mA:;(Z) — ]Ehﬁ(zﬂ
+ |ERE(z) — ER"(2)| 4+ |ER"(2) — Eh(2)]

On the right hand side, the only term that we have not treated yet is

1 n
=3 | - ER]
k=1

E|max(z) — Ehyi(2)| = E

The proof of the Theorem will be complete if we show that all k > 0,
n

> Rur —ER;

k=1

1
lim E—

n—oo N

~0. (45)

As in the proof of Theorem [L.4 we get

n

2
E (3 > Rk - ERZ:Z]) <o +B((m - R (m5 - ERYY))

n
k=1

and we conclude the proof by using (43]). This ends the proof of Theorem B.II(ii). O

26



3.3 Proof of Theorem [I.3: Markov matrices with a € (1,2)
Ui,j

we may restate Theorem 2.3)(ii) and Theorem 2.8[(iii) as in (43)), using the same notation,

with the truncated matrix now given by

The proof given above applies to the matrix A, := k,S, where S; ; = . In particular,

Kn UZ,] ]l{Ui,j<:‘*€}

(A5 =

o VPiPj
The proof of Theorem [B.1] works verbatim. Note, in particular, that the rank inequality
leads exactly to the same inequality as in (42]). O

4 Properties of the Limiting Spectral Distributions

4.1 Proof of Theorem [L.5k p,, o € (0,2).

Before going into the proof of Theorem [[L5] we introduce some notation. Let 5 = /2 and
let K, denote the set of probability measures on (0,00) with finite § moment. We define
the mapping ¥ on probability measures on Ry U {oo}, where ¥(Q) is the law of

—1
Z = <Z éﬁ@) ; (46)

keN
with (Y, k € N) i.i.d. with law @ independent of Z = {&x }xen a Poisson point process on
R of intensity Sz 1dz.
Lemma 4.1. V satisfies the following
(i) ¥ is a mapping from Ky to K. Let (Pp)nen and P in Ky, if lim, o0 fdePn =
[ 2PdP then U (P,) converges weakly to ¥(P) andlim,,_.«, [2?d¥(P,) = [ 2°d¥(P).
(ii) The unique fized point of U in K, is the law of 1/S where S is the one-sided [3-stable

law with Laplace transform Eexp(—tS) = exp <—t5 gﬁfgg), t>0.

(iti) ES™% = (D(5+ 1)L (1 - B))) /2.
Proof of Lemma[{.1l As in the proof of Lemma [3.2] we get

-3
EZ° = E(ngYk>
k

1 [e.e]
0

IN(6))
1 /Oo B-1_—aPT(1-B)EY”
= — " e 1 dx
L'(B) Jo
1 % sr(1-B)EY/
= — e 1 ds
BT(B)/O

= (D(B+1)T(1 - BEY) ™,

(in the last line we have used the identity 2I'(z) = I'(z + 1)). Therefore, ¥ is a mapping
from K, to KCp. Also as a consequence of (38)):

Eexp(—tZ~') = exp(—t°T(1 — B)]EYlﬁ).
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Statement (i) follows from the continuity of the mapping = — 1/z in (0,00). If Z is a
fixed point of ¥ then from the computation above EZ? = (I'(8+1)I'(1—£)))~'/2. Finally
from (B8) we obtain for all ¢ > 0,

Eexp(—tZ ") = exp(—t°T(1 — B)EZ’) = exp (_tﬁ w> .

Proof of Theorem [LA(i). From Theorem B.1] for z € C,

My (Z) = Eh(z)’

where h solves RDE ([B]). Set f(z) = Rh(z) and g(z) = Sh(z). For z =u+iv € Cq, f
and g satisfy the RDE

F2) 2= u+ > &efu(z)
(4 Yk & fu(2)” + (0 + Xy &ror(2)?
and
o(z) & v+ D Ekgr(2)

(u+ 3 &efr(2)? + (0 + X4 &rgr(2))?

By construction, 0 < g(z) < 1/v, thus the law of g(z) is in K. If the stochastic domination
of P by @ is denoted by P <4 @, we have

~1 ~1
z) <st <v +) 5k9k(2)> st <Z £kgk(2)> : (47)
k k

(In fact, we also have |h(z)| <q (O, &kgr(2))” 1). sing the computation in Lemma [.T],
we obtain Eg(z)? < (I'(8 + 1)I'(1 — B)Eg(2)?)~!. Thus

28 < ! .
AR YTy v sy

Again, the formula y=7 = I'(n)~! [ 2" e Ydz, for y > 0, n > 0, gives
0

—n -
<Z fkgk(2)> ] = W/O g1 Lo TA=PE(2)’ g (49)
k

We now study the weak limit of g(u + iv) when v | 0, u € R. Equation (@8] implies
tightness, so let g(u + i0) be a weak limit. If this limit is non-zero then Eg®(u + i0) > 0,
and Equations (A7)-(3) imply for all n > 0 and u € R,

(48)

lim sup Eg"(u + iv) < 0.
u+iv:v |0

Since Eh(z) is the Stieltjes transform of u,, taking n = 1, we deduce that p, is absolutely
continuous with bounded density, see for example [25, Theorem 11.6]. O
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Proof of Theorem [LA(%i). In view of [25] Theorem 11.6], it is sufficient to show that

st = (144) (FLE) P 0

As above, (8)) implies the tightness of (g(it),t > 0). So let g(i0) be a weak limit. It is in
Ko and, by continuity, g(i0) is solution of the RDE

i0) £ <Z 5k9k(i0)>
K

By Lemma [A.1] ¢(i0) 4 1/, and (49) gives

0y [ g Ly (1) (20 P
Eg“o)‘/o ¢ W““‘f(ﬁ) (T(1—6)> |

Using the identity 2I'(z) = I'(z + 1), we get (B0). O

-1

Proof of Theorem (7i). We start with a Tauberian-type theorem for the Stieltjes trans-
form of symmetric probability measures. As usual, let m, denote the Stieltjes transform
of a symmetric probability measure 1 on R. Then, for all ¢ > 0, m,(it) € iRy and

. &0 t & t
Sm(it) :/_ mﬂ(dﬂc) = 2/0 mﬂ(dﬂc)-

Lemma 4.2 (Tauberian-like lemma). If L is slowly varying and 0 < o < 2, the following
are equivalent: ast goes to 400

p((t,00)) ~ L(t)t™" (51)
Smy(it) — ™ ~ —A()L(t)t ! (52)
with Aa) = 2af 1+ z__d

Sketch of Proof of Lemmal[4.2 The proof is an adaptation of the proof of Karamata’s
Tauberian Theorem in Bingham, Goldie and Teugels [10, p. 37-38]. Let M denote the
set of symmetric measures on R such that fooo min(1,2?)u(dz) < +oco. On M, define the

transform
Sp:t
poit / xQ S H(dz).

Note that Su(t) = 1 — tQmy(it) = 1 4 itm,(it). Recall that the Stieltjes transform
characterizes the measure. Thus if for all t > 0, (S (t))nen converges to Sp then (fin)nen
converges to p over all bounded continuous function with 0 outside the support. Now,
assume that (52]) holds, namely

Su(t) ~ A(a)L(t)t™. (53)

Since lim, o L(tz)/L(t) = 1, we deduce that for all t > 0, as x — o
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The left hand side is the S transform of the measure p.(dy) = p(zdy)/(L(z)x~%) while
the right hand side is the S transform of yi.(dy) = aly|~*'dy, thus

p((, 0))

Tiryea = Hal(1,00)) = po(l,00) =1,

We get precisely (51I). The reciprocal implication can be proved similarly, see [10, p. 37-38]
(it is straightforward for L(t) = ¢, the case that we will actually use). O

We now come back to the RDE (38) and define Q(t) = E[g(it)”]. From (B8], we have
a.s. tg(it) < 1. Note also, from a.s. >, &egr(it) <713, &, that a.s. limy, o0 tg(it) = 1.
The dominated convergence Theorem leads to

lim t#Q(t) = 1. (54)

t—00

Moreover, as already pointed in Lemma [3.2]
.y d
> Gan(it) £ QWYY &
k k

We deduce, with C(t) = (tQ(t)"/?)~1/2, that

t
Eﬁ—+ﬂ%wVﬁZ;£k
- (C(t)
= (O T
= C(t)%mﬁ(y)(iC(t)t), (55)

Y=c > &,
k

and ¢ is independent of {{;}r, P(e =1) = P(e = —1) = 1/2. We have
1 2
P(Y > 1) = ;P (Zk:gk>t>.

By B8), as s | 0, Eexp(—sY., &) = exp(—s’T(1 — B)) ~ 1 — s°T'(1 — B). Using [10)
Corollary 8.7.1], we obtain P(}", & > t) ~t~% and

Smy, (it) = Eg(it) =

where L(Y') is the law of

tfa

a—1

We get by Lemma 2] Sm vy (it) — t~! ~ —t=—A(a). Thus by (54)-(5), we have

tfafl
Sy, (it) =t~ — 5 A(a)
The conclusion follows by a reverse application of Lemma O



Remark 4.3. In the proof of Lemma[3.3, we have seen that the distribution of g(it) =
Sh(it) was function of Q(t) = E[¢°(it)] which satisfies the equation
1

Q(t) = W/o B —tw —a T(=-B)Q(t) g, — fa(t, Q(t)).

We could push further our investigation at t = 0 and compute the derivative of Q att = 0:
Q'(0) = —f5+1(0,Q(0)) =T (1~ B) f25(0, Q(0))Q'(0), with Q(0) = (L(B+1)I'(1~)))~"/2.
There should be no obstacle for computing by recursion the successive derivatives of Q(t)
at t = 0. We would then obtain a series expansion of the partition function pua((—oo,t))

in a neighborhood of 0.

4.2 Proof of Theorem [L.6t i, o € (0,1)

We denote by po, (&) the return probability after 2n steps starting from the root &, for
the random walk on the PWIT with transition kernel K given by (I3]).

Proof of Theorem[L6 (i). For the first part, we shall show that there exists 6 > 0 such
that for any € € (0,1/2] and any n:

Yo = 0% (1 — ). (56)

Theorem (i) follows by choosing ¢ = 1/2n. From (B2) we have v, = E[p2,(2)]. To
prove (B6) we use the simple bound po,(2) > (K(2,1)K(1,2))", which states that to
come back to the root in 2n steps the walk can move to the child with the highest weight,
with probability K(&, 1), go back to the root, with probability K(1,2), and repeat this
n times. It follows that

Yon > B [(K(2, DK(1,2))"] (57)

Therefore () holds if the event
A ={K(@,1) > (1—¢) and K(1,2) > (1 —¢)}

has probability at least § €%, for some 6 > 0 and for any ¢ € (0,1/2].

Let (z;); denote the realization of the PPP at the root @, i.e. x1 > z9 > ... are the
points of a PPP on (0, 00) with intensity measure az=*"1dx. We set ¢ := > x; and let
¢’ denote an independent copy of ¢. We can use the representation K(&,1) = x1/¢ and
K(1,2) = x1/(x1 + ¢'). Therefore,

P(A.) =P (wl >(1—-¢e)p, xz1 =21 —¢)(x1 + qﬁ’))
_p (m >(1-¢e)p, ¢ < (fflg))

>P(z1>(1-e)p, z12e !, ¢ <1).

Let 61 :=P(¢p < 1) = folf(t) dt > 0, where f(t) denotes the density of ¢. The function
f(t) can be obtained from its Laplace transform, which is given by the known identity
Ele %] = ¢ T1=2)u® "4y > 0 (see [20, Proposition 10], or ([B8) with 8 replaced by a and
Y; = 1). Since ¢’ is independent of (z;) we obtain

P(A:) =6 P (wl >(1—¢e)p, x1 > 571) .

To estimate the last quantity we observe that if = is a size-biased pick from (z;) then
x1 > z. We recall that z is a random variable such that, given the sequence (x;) the
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probability that = equals z; is ;/¢. It is not hard to check (see e.g. [19, Lemma 2.2]) that
the random variable T has a probability density on (0,00) given by

g1 /O F) = at, (58)

where f(t) is the density of the variable ¢. Therefore,

P(zi1>(1-e)gp,z12e ) 2P@>1—-e)p, 2=c")
00 0 o T
=a /0 dt f(t) /0 dra="! 711 Hez-9)@n) Laze1y
1 o)
> a/ dtf(t)/ drz " (1—e) Lz
0 0
=01 (1—¢)e”

In conclusion, P(A.) > 6f (1 — )& > 1 67, and the claim (56) follows.
It remains to show that liminf, »; 72 > 0. Actually, if (2;), Z, and ¢ are as above and
if ¢’ is independent of the sequence (x;) and identical in law to the random variable ¢

then ,
_ E _ > 11—« Oof(t)
e[S ] e[ - [ ([ L)

Now the identity
> f(t) dt = /Ooe—f‘(l—a)ua—ux du
o T +1 0

gives
72—041“2—04/ / D= +0%) (4 4 ) 7249 du do

re2- o
:0‘ O‘// TS (4 s) T ds dt

1—a

Finally the desired result follows by using the bounds (for some absolute constants ¢, co >

0)
/ / B (S 2+O‘dsdt>e_2// (t+s) 2T dsdt > 101 .
—
00 1 00 o
F(l—a):/ taetdtg/thH/ e tdt < ——.
0 0 1 I-a

Proof of Theorem (ii). It is convenient to make here the dependence over « explicit in
all the notations. In particular, for every a € (0, 1), we denote by S, the operator S given
by (I6]). These operators are defined on a common probability space, and are self-adjoint
in L2(V). Moreover, it follows from Subsection 1] that

and

O

o = Eﬂa,@a

where p, o is the spectral measure of S, at vector 0z. By the dominated convergence
Theorem, in order to prove that o — fi, is continuous in (0, 1), it is sufficient to show
that a.s. a — fi4, o is continuous. From Theorem VIII.25(a) in Reed and Simon [22], it
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is in turn sufficient to prove that for all v € V, a — S,dy is a continuous mapping from
(0,1) to L?(V). From (I6), for all u € V, the mapping a — S, (u,v) is continuous. It
thus remains to check the uniform square integrability of (Sq(v,u)),cy- We start with

the upper bound
yfl/a yfl/a -1/«
Sa V,Vk‘ 2 _ vk vk < vk .
BV v = ) a8 S pul¥)

Then notice that for all « € (0,1—¢), y;kl/a < max(1, y‘jkl/(l_a)) and pq(v) > min(1, y;ll/(l_s)).
We may conclude on the uniform square integrability by recalling that a.s. limg yyr/k =1
and Yvi > 0. |

Proof of Theorem (iii). As in the proof of Theorem (ii), we make here the depen-
dence over « explicit in all the notations. It follows from Subsection B.1]

/ 2 fio(dr) = E / 2% o, (dx) = Epa,00(2),

where the expectation is over the randomness of the PWIT. We introduce for v € V,

-1/« —1/a
Vv (V) — ( Yv1 Yv2 )
« -1/’ —1/a’ ’
Zk>1 yvk/ Zk21 yvk/

By construction V,(v) is a PD(a,0) random variable. Thus, by Corollary 18 in Pitman
and Yor [20], as « | 0, V,,(v) converge weakly to the deterministic vector (1,0,---). We
may thus write,

-1/
%

) 1 ;
Y1 oy Y11 /a(l + €a)

where as a goes to 0, &, goes in probability to 0. We define U = 1y, 5,1, so that U
is a symmetric Bernoulli i.e. P(U = 0) = P(U = 1) = 1/2. We have proved that in
probability,

K.(1,9) =

IimK,(@,1)=1 and IlmK,(1,2)="U.
al0 al0

In particular, we get
1im/x2£,ua7g(dx) =U.
al0

Since fiq o is symmetric, we finally have

. U U
g?ol,ua,z = 55—1 +(1—-U)d + 551-

Taking expectation, we obtain the claimed statement on fi,. O

5 Invariant Measure: Proof of Theorem 1.7

We start with a lemma. Let (Xi,...,X,), X1 > --- > X,,, denote the ranked values of
P1,-- -, pn and recall the notion of convergence in the space A, cf. Section 2.4l We use the
notation b, := a,,, where m,, =n(n +1)/2.

Lemma 5.1. For any o € (0,2), the sequence b, (X1, Xa,...) converges in distribution
to (z1, 1,2, 22,...), where x1 > x9 > -+ denote the ranked points of the Poisson point
process on (0,00) with intensity ax=* ldx.
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Proof of Lemma[51l There are m,, = n(n+1)/2 edges, including self-loops. Let us denote
by U, the weight of edge e € {1,...,m,}. The row sums are given by p; = >__. -, Ue.
We write O,, for the set of off-diagonal edges e, i.e. edges of the form e = {i,j} with
i # j. Let Ugy = Ue, > - -+ denote the ranked values of the i.i.d. random vector (Ue)cco,, -
Since there are m,, —n edges in Oy, an application of Lemma [2.4](i) yields convergence in
distribution

b (Ue,, Usy,...) n%; (1,7a,...). (59)

Each e; = {u;,v;} € Oy, identifies two row sums p,,; and p,,. Set A; = max{p,, —Ue,, pv, —
Ue,}. Then, for every k € N and € > 0:

lim P <maX AV 6bn> =0. (60)

n—o00 1<l<k

To prove this we use an estimate due to Soshnikov [26]. Let B,, denote the event that

3 34a
there exists no ¢ € {1,...,n} such that {p; > bi"S and pi — max; U j > bits }. Then,
see [26] and [4, Lemma 3], one has

lim P(B,) — 1. (61)

n—~0o0

3, a
Clearly, on the event B,, if maxigicr A¢ = €by, then U, < b;fLS
probability in the limit by (59]). This proves (60).

For simplicity, we introduce the notation Rgy—1 = max{py,, pv, }, Ro¢ = min{py,, py, }

Therefore ([60) and ([B9) prove that

which has vanishing

b;l(Rl,RQ,R3,R4...) i> ($1,$1,CE2,$2,...). (62)

n—oo

It remains to show that for every fixed k:
Jim P (Urgicor{Ri # Xi}) = 0. (63)

By construction, we have X; > R; for ¢ = 1,2. On the event B,, described above, to have

X1 > Ry or X3 > Ry implies that there exists an edge e # e; such that U, > U, — b;%ﬁ%.
However, this event has vanishing probability by (59) and the fact that bf{l max; U;; — 0
in probability for all sufficiently small § > 0 (indeed by Lemma[Z4] a,, ' max; U; ; converges
weakly to the Fréchet distribution, see first comment after Lemmal[2.4]). Thanks to (61]) this
shows that P(X; > R; or X3 > Rs) — 0. Recursively, the probability of Xg;11 > Rojt1
or Xoito > Roiyo on the event B, N {X; = R;, Vj = 1,...,2i} vanishes as n — oo.
Indeed, at each step we have removed a row and a column corresponding to the largest
off-diagonal weight and we may repeat the same reasoning as above. This proves (G3)) as
required. ]

Proof of Theorem [1.7(i). Let us define m,, = n(n + 1)/2. Observe that

n n
> pi=28,+ D, where S,:= Y U, and Dn:=Y Uy. (64)
=1 e€O0n i=1

Here, as in the previous proof O,, denotes the set of off-diagonal edges. For o € (1,2),
we have by the weak law of large numbers S, /m,, — 1 and D,,/n — 1 in probability.
Therefore

1 . "
111er010 o ;pi =2 in probability. (65)
Theorem [[7|(i) follows directly from Lemma [5.1] and (G5)). O
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Proof of Theorem [1.7(i). 1f Us, > U, > --- are the ranked values of the ii.d. random
vector (Ug)eco, and S, is their sum as in (64) then by Lemma [2.4((ii), replacing n with

My, We have
Uel U€2 > d < X1 X2 )
] — , e 66
( Sn" Sp n—oo \ D2 Dl (66)

where 1 > x9 > -+ denote the ranked points of the Poisson point process on (0, 00) with
intensity oz~ L.
Write X1, Xs,... for the ranked values of row sums as in Lemma [B.1], so that p; =

X,/(2S, + D,,), where D,, S,, are as in ([©4]). Let

Xoy—1 Ue, Xoy U,

Yoy | = 271 ey, o e
#1798, 1D, 25, * 25,+D, 25,

Thanks to (66) it is sufficient to prove that IP(max;<i<or |Yi| > €) — 0, as n — oo, for
any fixed € > 0 and k£ € N. This follows from the argument used in the proof of (60) and

(G3). ]
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Figure 1: Histograms of scaled ESDs illustrating the convergence stated by theorems [3]
and [[4], for eight different values of «, namely 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00.
Here n = 5000 and £ is the law of V~/® where V is a uniform random variable on the
interval (0,1). The first three plots are the histogram of the spectrum of a single realization
of K. The fourth plot, which corresponds to o = 1, is a histogram of the spectrum of a
single realization of log(n)K. The four last plots are the histogram of the spectrum of a
single realization of x, K. In order to avoid scaling problems, an asymptotically negligible
portion of the spectrum edge was discarded: only the eigenvalues A|jog(n)|s -+ » Aln—log(n)]
were used.
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