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Introduction

This paper is concerned with stabilization of wall configurations in a monodimensional model of finite length nanowire. This kind of object can be found in nano electronic devices. The three dimensional model is the following (see [START_REF] Brown | Micromagnetics[END_REF], [START_REF] Halpern | Modélisation et simulation du comportement des matériaux ferromagétiques[END_REF] and [START_REF] Wynled | Ferromagnetism. Encyclopedia of Physics[END_REF]). We denote by m : R + t × Ω x -→ R 3 the magnetic moment, defined on the ferromagnetic domain Ω. We assume that the material is saturated, so that m satisfies the constraint:

for almost every (t, x) ∈ R + × Ω, |m(t, x)| = 1.

The magnetic moment links the magnetic induction B with the magnetic field H by the relation B = H + m, where m is the extension of m by zero outside Ω. The behavior of m is governed by the Landau-Lifschitz equation:

(1) We remark that -H d is the orthogonal projection (for the L 2 inner product) onto the curl free vector fields, so that

                 ∂m ∂t = -m ∧ H e -m ∧ (m ∧ H e ),
H d (m) L 2 (R 3 ) ≤ m L 2 (Ω) .
• H a is an applied magnetic field,

• n is the outward unit normal on ∂Ω.

The effective field is derived from the micromagnetism energy:

H e = -∂ m E mic with E mic (m) = A 2 2 Ω |∇m| 2 dω + 1 2 R 3 |H d (m)| 2 dω - Ω H a • m dω.
Existence of weak solutions for (1) is established in [START_REF] Carbou | Time average in micromagnetism[END_REF], [START_REF] Labbé | Simulation numérique du comportement hyperfréquence des matériaux ferromagnétiques[END_REF] and [START_REF] Visintin | On Landau Lifschitz equation for ferromagnetism[END_REF]. Existence of strong solutions is proved in [START_REF] Carbou | Regular solutions for Landau-Lifschitz equation in a bounded domain[END_REF] and [START_REF] Carbou | Regular solutions for Landau-Lifschitz equation in R 3 . Commun[END_REF]. Numerical simulations are performed in [START_REF] Labbé | Microwave polarisability of ferrite particles with non-uniform magnetization[END_REF]. For thin domains, equivalent 2-d models are justified in [START_REF] Alouges | Néel and cross-tie wall energies for planar micromagnetic configurations[END_REF], [START_REF] Carbou | Thin layers in micromagnetism[END_REF], [START_REF] Rivière | Compactness, kinetic formulation, and entropies for a problem related to micromagnetics[END_REF]. For nanowires, 1-d models are discussed in [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF], [START_REF] Carbou | Control of travelling walls in a ferromagnetic nanowire[END_REF] and [START_REF] Sanchez | Méthodes asymptotiques en ferromagnétisme[END_REF].

In this paper we deal with ferromagnetic nanowires. We assume that the wire is a cylinder of length 2L and radius η. Taking the limit by Gamma convergence arguments when η tends to zero, we obtain an asymptotic one dimensional model (see Section 2).

After renormalization, the one dimensional wire is assimilated to the segment ] - i.e. -h d is the orthogonal projection onto the plane orthogonal to the wire. In addition we assume that we apply a magnetic field in the direction of the wire axis, and we denote by h a its renormalized intensity. Therefore we deal with the following system:

(3)

                             ∂m ∂t = -m ∧ H e -m ∧ (m ∧ H e ), H e = ∂ 2 m ∂x 2 -m 2 e 2 -m 3 e 3 + h a e 1 , ∂m ∂x (t, - L A √ 2 ) = ∂m ∂x (t, L A √ 2 ) = 0, with m : R + t ×] -L A √ 2 , L A √ 2 [-→ R 3 , |m| = 1, associated to the energy E(m) = L/A √ 2 -L/A √ 2 1 2 |∂ x m| 2 + 1 2 (|m 2 | 2 + |m 3 | 2 ) -h a m 1 dx.
In [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF] and [START_REF] Carbou | Control of travelling walls in a ferromagnetic nanowire[END_REF], we studied a similar model of infinite nanowire. After renormalization, the model was the following: the wire is assimilated to the real axis Re 1 , and the one dimensional Landau-Lifschitz equation is in this case:

(4)                  ∂m ∂t = -m ∧ H e -m ∧ (m ∧ H e ), H e = ∂ 2 m ∂x 2 -m 2 e 2 -m 3 e 3 + h a e 1 ,
with m : R + t × R x -→ R 3 , |m| = 1, This system is invariant by translation in the x variable and by rotation around the wire axis, that is, if m is a solution of (4), then for σ and τ in R, (t, x) → ρ τ (m(t, x -σ)) is another solution of (4), where ρ τ is the rotation of angle τ around the e 1 axis:

ρ τ =   1 0 0 0 cos τ -sin τ 0 sin τ cos τ   .
We dealt with wall configurations for this model, that is solutions separating a left hand side domain where the magnetization is closed to -e 1 to a right hand side domain where the magnetization is closed to +e 1 . Such solutions are described by rotations and translations of the canonical profile x → (th x, 1/ch x, 0). In [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF] and [START_REF] Carbou | Control of travelling walls in a ferromagnetic nanowire[END_REF], we proved the asymptotic stability and the controlability for these configurations.

Here, in the case of a finite wire, the situation is quite different.

Definition 1.1. We call canonical wall profile a static solution for (3) of the form

M 0 = (sin θ 0 , cos θ 0 , 0) such that θ 0 : [-L A √ 2 , L A √ 2 ] -→ [-π/2, π/2
] is a non decreasing map satisfying θ 0 (-π/2) < 0 < θ 0 (π/2) .

In the following theorem, we claim that the wall profiles exist if and only if the wire is long enough compared to the exchange length: Theorem 1.2. There exists a wall profile if and only if L A √ 2 > π. This profile is unique and is centered in the middle of the wire, that is θ 0 (0) = 0. Remark 1. In the infinite wire case, the corresponding canonical profiles are obtained taking θ 0 (x) = Arcsin th (x/2), and all its translation in the x variable (because of he invariance of (4) by translation). In the finite wire case, we only have invariance by rotation, and we loose the invariance by translation, so we have only one canonical profile.

Concerning the stability, we obtained in [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF] the stability of the wall profile. In that case, the invariance by rotation-translation induces that 0 is a double eigenvalue of the linearized version of (4) around the wall profile. In the finite wire case, the lack of invariance by translation induces that the linearized version of (3) around the canonical profile has one negative eigenvalue, and therefore we can prove that the wall profile given by Theorem 1.2 is unstable.

Theorem 1.3. Assume that L A √ 2 > π.
Let θ 0 given by Theorem 1.2. The static solution M 0 = (sin θ 0 , cos θ 0 , 0) in linearly unstable for the Landau-Lifschitz equation (3) with h a = 0.

Remark 2. This phenomenon was expected. Let us consider a small translation of the centered wall. Without energetic cost, the Landau-Lifschitz equation induces then a displacement of the wall and pushes it outside the wire. Then the magnetic moment tends to +π/2 or -π/2 (i.e the minimizers of the ferromagnetism energy E). In the case of an infinite wire, obviously, this translation cannot make the wall desappear, and we have stability.

We prove now a stabilization result. We control the system by an applied field parallel to the wire axis.

Theorem 1.4. Let L and A as in Theorem 1.2, and let M 0 = (sin θ 0 , cos θ 0 , 0) be the canonical profile given by this theorem. We consider the following control:

h(m(t, .)) = - A √ 2L L A √ 2 -L A √ 2 m 1 (t, s)ds .
Then M 0 is stable for the Landau Lifschitz equation controled with the applied field h a = h(m).

Remark 3. The control given here is quite natural: for example when the wall is translated to the right hand side, then the average of the profile first component is negative and our applied field he 1 (with h > 0) pushes the wall to the left hand side.

The paper is organized as follows. In Section 2 we justify the one dimensional model by Gamma convergence arguments. In Section 3 we prove the existence of a canonical wall profile. We address the unstability of this profile in Section 4 by linearization of the Landau-Lifschitz equation. The last section is devoted to the stabilization of the wall by a convenient applied magnetic field.

modelization

In this section, we address the justification of the one dimensional model by Γ convergence arguments. At the beginning we deal with the three-dimensional static case. The finite 3d wire is the cylinder Ω η =] -L, L[×B 2 (0, η), where B d (x, r) is the ball of radius r and center x in R d . We assume that we apply on the wire a magnetic field in the direction e 1 : H a = h a e 1 , where h a ∈ R.

The micromagnetism energy on Ω η is given by

E η (v) = A 2 2 Ωη |∇v| 2 dω + 1 2 R 3 |H d (v)| 2 dω -h a Ωη v • e 1 dω for v ∈ H 1 (Ω η ; S 2 ).
The static configurations satisfy the minimization problem:

   find u in H 1 (Ω η , S 2 ) such that E η (u) = min v∈H 1 (Ωη,S 2 ) E η (v), (5) 
In order to work with a fixed domain, we introduce the following rescaling: for

v ∈ H 1 (Ω η ; S 2 ), we define v ∈ H 1 (Ω 1 ; S 2 ) by v(x, y, z) = v(x, ηy, ηz).
In addition, for v ∈ H 1 (Ω 1 ; S 2 ), we denote by H η d (v) the rescaled demagnetizing field:

H η d (v)(x, y, z) = H d (v)(x, ηy, ηz), where v ∈ H 1 (Ω η ; S 2 ) is deduced from v by v(x, y, z) = v(x, y/η, z/η).
We deal with the rescaled energy defined for v ∈ H

1 (Ω 1 ; S 2 ) by E(v) = 1 η 2 E η (v): E(v) = A 2 2 Ω1 (|∂ x v| 2 + 1 η 2 |∂ y v| 2 + 1 η 2 |∂ z v| 2 ) dω+ 1 2 R 3 |H η d (v)| 2 dω-h a Ω1 v•e 1 dω.
and the problem ( 5) is rescaled in the following equivalent problem:

   find u in H 1 (Ω 1 , S 2 ) such that E η (u) = min v∈H 1 (Ω1,S 2 ) E η (v), (6) 
Proposition 1. For all (v η ) η∈R + * in H 1 (Ω 1 , S 2
), sequence of minimizers of ( 5),

(E η (v η )) η∈R + * is a bounded sequence of R. Proof. Let (v η ) η∈R +
* , be a sequence of minimizers of ( 5) in H 1 (Ω 1 , S 2 ). We denote by v η the rescaled of v η : v η (x, y, z) = v η (x, y/η, z/η).

In order to exhibit an upper bound for E η (v η ), we write:

∀η ∈ R + * , E η (v η ) ≤ E η (e 1 ), then E η (v η ) ≤ -2h a η 2 πL + 1 2 R 3 |H d (e 1 )| 2 dω ≤ 2η 2 Lπ(1 -h a )
. Then, the lower bound is obtained by canceling the positive contributions of the energy and maximizing the external contribution:

-η 2 2h a πL ≤ E η (v η ). So, we can conclude -2h a πL ≤ E η (v η ) ≤ 2Lπ(1 -h a ).
We introduce the limit energy : we define H 1 (Ω 1 ; S 2 ) by

H 1 (Ω 1 ; S 2 ) = {u ∈ H 1 (Ω 1 ; S 2 ), ∂ y u = ∂ z u = 0}.
For v ∈ H 1 (Ω 1 ; S 2 ), we set:

E(v) = A 2 2 Ω1 |∂ x v| 2 dω + 1 4 Ω1 |v 2 | 2 + |v 3 | 2 dω -h a Ω1 v • e 1 dω = A 2 π 2 ]-L,L[ |∂ x v| 2 dx + π 4 ]-L,L[ |v 2 | 2 + |v 3 | 2 dx -πh a ]-L,L[ v • e 1 dx.
The limit minimization problem is given by:

   find u in H 1 (Ω 1 , S 2 ) such that E(u) = min v∈H 1 (Ω1,S 2 ) E(v), (7) 
The main result of this section is the following:

Theorem 2.1. E η gamma-converges to E in sense of H 1 (Ω 1 , R 3 )
, it is to say:

(i) (lower semi continuity) for all sequence (v η ) η∈R + * of H 1 (Ω ε,1 , S 2 ) such that lim η→0 v η = v 0 and (E η (v η )) η∈R + * bounded, the limit v 0 is an element of H 1 (Ω 1 , S 2
) such that:

lim inf η→0 E η (v η ) ≥ E(v 0 ), (ii) (construction) for all u 0 ∈ H 1 (Ω 1 , S 2
), there exists (v η ) η∈R + * , sequence of H 1 (Ω 1 , S 2 ), such that:

lim η→0 v η = u 0 , and lim sup η→0 E η (v η ) ≤ E(u 0 ).
Proof. (i) Lower semi-continuity: let (v η ) η be a sequence in H 1 (Ω 1 ; S 2 ) such that v η tends to v in H 1 (Ω 1 ) and such that there exists c such that for all η

(8) E η (v η ) ≤ c.
Extracting a subsequence, we can assume that v η tends to v almost everywhere, so |v| = 1 a.e.

Using (8), we remark that since Ω1 v η e 1 ≤ meas(Ω 1 ),

∂ y v η 2 L 2 (Ω1) + ∂ z v η 2 L 2 (Ω1) ≤ Cη 2 , so ∂ y v = ∂ z v = 0, that is v ∈ H 1 (Ω 1 ; S 2 ). From straightforward arguments, A 2 2 Ω1 |∂ x v| 2 dω -h Ω1 v • e 1 dω ≤ lim inf A 2 2 Ω1 (|∂ x v η | 2 + 1 η 2 |∂ y v η | 2 + 1 η 2 |∂ z v η | 2 ) dω -h a Ω1 v η • e 1 dω .
Concerning the demagnetizing field, the sequence (

H η d (v η )) η is bounded in L 2 (R 3
). Indeed, we denote by v η the rescalled of v η : v η (x, y, z) = v η (x, y/η, z/η). We have

H η d (v η ) L 2 (R 3 ) = 1 η H d (v η ) L 2 (R 3 ) (by change of variable in the integral) ≤ 1 η v η L 2 (R 3 ) (since -H d is an orthogonal projection in L 2 ) ≤ 1 η (Lπη 2 ) 1 2 (since |v η | = 1) ≤ √ 2π L.
So, up to the extraction of a subsequence, we can assume that H η d (v η ) H for the weak topology in L 2 (R 3 ).

We denote the coordinates of H η d (v η ) and those of H by:

H η d (v η ) =       h 1 η h 2 η h 3 η       and H =       h 1 h 2 h 3       .
Writting (2) in the rescalled coordinates, we obtain first that

η∂ x (h 1 η + v 1 η ) + ∂ y (h 2 η + v 2 η ) + ∂ z (h 3 η + v 3 η ) =
0, so taking the weak limit, we have:

(9) ∂ y (h 2 + v 2 ) + ∂ z (h 3 + v 3 ) = 0.
In addition, from the curl free condition, we obtain that

           ∂ y h 3 η -∂ z h 2 η = 0 η∂ x h 2 η -∂ y h 1 η = 0 η∂ x h 3 η -∂ z h 1 η = 0,
so, taking the weak limit we get

∂ y h 1 = ∂ z h 1 = 0 so h 1 = 0,
and

∂ y h 3 -∂ z h 2 = 0. So H is deduced from v by the relations:            ∂ y (h 2 + v 2 ) + ∂ z (h 3 + v 3 ) = 0, ∂ y h 3 -∂ z h 2 = 0 h 1 = 0,
that is for a fixed x, H(x, •) is defined from v(x, •) by the 2-d demagnetizing field.

In the following lemma we calculate the 2-d demagnetizing field induced by a constantly magnetized 2-d disk.

Lemma 2.2. Let ξ = (ξ 2 , ξ 3 ) ∈ R 2 be a fixed vector. Let V = (V 2 , V 3 ) ∈ L 2 (R 2 ; R 2 ) such that curl 2D V := ∂ y V 3 -∂ z V 2 = 0, div 2D (V + ξ) := ∂ y (V 2 + ξ 2 ) + ∂ z (V 3 + ξ 3 ) = 0,
where ξ(y, z) = ξχ B(0,1) (y, z) (we denote by χ B(0,1) the indicatrix function of B(0, 1)). Then

(10) V (y, z) =              - 1 2 ξ if (y, z) ∈ B 2 (0, 1), 1 2 
1 (y 2 + z 2 ) 2   ξ 2 (y 2 -z 2 ) -2ξ 3 yz -ξ 3 (y 2 -z 2 ) -2ξ 2 yz   if (y, z) / ∈ B 2 (0, 1),
and

R 2 |V | 2 dydz = π 2 |ξ| 2 .
Proof. We have (see [START_REF] Carbou | Regularity for critical points of a nonlocal energy[END_REF] or [START_REF] Labbé | Simulation numérique du comportement hyperfréquence des matériaux ferromagnétiques[END_REF]), for X = (y, z) ∈ R 2 :

V (X) = 1 2π Y ∈∂B2(0,1) X -Y |X -Y | 2 ξ • ν(Y )dσ(Y ),
where ν is the unit normal on ∂B 2 (0, 1).

Using complex notations, we write V (X) = V 2 (X) + iV 3 (X), X = y + iz, ξ = ξ 2 + iξ 3 and we have:

V (X) = 1 2iπ z∈C(0,1) ξ + w 2 ξ 2Xw(w -1 X )
dw.

If |X| < 1, the only pole is 0, and by the residu formula, V (X) = -1 2 ξ. If |X| > 1, there are two poles, 0 and 1/ X, and we obtain V (X) = 1 2 ξ X2 which is equivalent to [START_REF] Desimone | Magnetic microstructures -a paradigm of multiscale problems[END_REF].

In addition, by a direct calculation, we obtain that:

R 2 |V (X)| 2 dydz = π 2 |ξ| 2 .
We apply the previous lemma to calculate the weak limit H:

H(x, y, z) =                        - 1 2   0 v 2 (x) v 3 (x)   if (y, z) ∈ B 2 (0, 1), 1 2 1 (y 2 + z 2 ) 2     0 v 2 (x)(y 2 -z 2 ) -2v 3 (x)yz -v 3 (y 2 -z 2 ) -2v 2 yz     if (y, z) / ∈ B 2 (0, 1),
and by a direct calculation,

R 3 |H(x, y, z)| 2 dxdydz = π 2 R (|v 2 (x)| 2 + |v 3 (x)| 2 )dx.
We remark now that since -H d is an orthogonal projection for the L 2 inner product,

R 3 |H η d (v η )| 2 dω = - Ω1 H η d (v η ) • v η dω.
Thus we can take the limit in this integral, and we obtain that:

R 3 |H η d (v η )| 2 dω -→ - Ω1 H • v dω = R 3 |H| 2 dω. So, in fact, H η d (v η ) tends to H strongly in L 2 (R 3
), and we obtain that

π 4 R (|v 2 (x)| 2 + |v 3 (x)| 2 )dx = lim inf 1 2 R 3 |H η d (v η )| 2 dω.
Therefore,

E(v) ≤ lim inf E η (v η ).
(ii) Reconstruction. Let u 0 ∈ H 1 (Ω 1 ; S 2 ). For η > 0, we define u η = u 0 . Then,

E η (u η ) = A 2 2 Ω1 |∂ x u 0 | 2 dω + 1 2 R 3 |H η d (u 0 )| 2 dω -h a Ω1 u 0 • e 1 dω.
As in the previous step, we have:

R 3 |H η d (u 0 )| 2 dω -→ 1 4 Ω1 (|u 2 0 | 2 + |u 3 0 | 2 ) dω, that is E η (u η ) -→ E(u 0 ).
This theorem gives the behavior of minimizers for the one dimensional limit case: the limit energy, for u ∈ H 1 (] -L, L[; S 2 ) is then E(u) = E(u • χ B 2 (0,1) ):

E(u) = πA 2 2 ]-L,L[ | du dx | 2 dx + π 4 ]-L,L[ (|u 2 | 2 + |u 3 | 2 ) dx -hπ ]-L,L[ v • e 1 dx,
then, in order to find out the effective field, we write (see [START_REF] Halpern | Modélisation et simulation du comportement des matériaux ferromagétiques[END_REF]):

H e = - dE du ,
it is to say

H e = πA 2 ∂ 2 u ∂x 2 - π 2 (u 2 e 2 + u 3 e 3 ) + πh e 1 .
The boundary conditions for the minimizers are:

∂u ∂x = 0 at x = -L and x = L,
since we minimize the energy without Dirichlet boundary conditions. Then, the limit dynamic system is obtain using the Landau Lifchitz combined with the new effective field H e .

We perform the following rescaling in time t = π 2 t and in space x = x/A √ 2, we denote by h a = 2h a the rescaled applied field. The resulting rescaled system is then given by (3) as we expected.

Existence of particular equilibrium states: the walls

In this section we are interested in characterizing equilibrium states of the magnetization in a finite nano-wire when h = 0, it is to say when there is no external magnetic field. In this case, we look for solutions which can be written as follows:

M 0 (x) =   sin θ 0 cos θ 0 0   , ∀x ∈] - L A √ 2 , L A √ 2 [, where θ 0 is a non decreasing map from ] -L A √ 2 , L A √ 2 [ into R satisfying θ 0 (-L A √ 2 ) < 0 < θ 0 ( L A √
2 ), and such that M 0 is a stationary solution to (3). In fact, we want M 0 to verify:

-M 0 ∧ H e -M 0 ∧ (M 0 ∧ H e ) = 0, ∀x ∈] - L A √ 2 , L A √ 2 [,
with

H e = ∂ 2 M 0 ∂x 2 -cos θ 0 e 2 ,
then, one has the following relation

-θ 0 -sin θ 0 cos θ 0 = 0, ∀x ∈] - L A √ 2 , L A √ 2 [, (11) 
with, on the boundary

θ 0 (- L A √ 2 ) = θ 0 ( L A √ 2 ) = 0. ( 12 
)
Setting γ 0 = θ 0 ( L A √ 2 ) (γ 0 is supposed to be non negative, that is we look for a non decreasing solution θ 0 ), we have, integrating the equation [START_REF] Halpern | Modélisation et simulation du comportement des matériaux ferromagétiques[END_REF] and using [START_REF] Kapitula | Multidimensional stability of planar travelling waves[END_REF]:

(θ 0 ) 2 + sin 2 θ 0 = sin 2 γ 0 . ( 13 
)
The length of the nano-wire has to be such that the function θ 0 goes from -γ 0 to γ 0 . From formula (13), we deduce the length:

(γ 0 ) = γ0 -γ0 dθ sin 2 γ 0 -sin 2 θ
, Using the length expression computed above, we Prove now Theorem 1.2:

Proof. In order to ensure the existence of an equilibrium state as defined above, we must verify that there exists

γ 0 > 0 such that (γ 0 ) = 2 L A √ 2 .
First of all, one has

(γ 0 ) = 1 -1 γ 0 sin γ 0 dθ 1 -sin 2 θ sin 2 γ0
, we then see that lim

γ0→ π 2 (γ 0 ) = +∞.
The first remark is that γ 0 is in the interval ]0, π 2 [. Now, computing the derivative of (γ 0 ) with respect to γ 0 , we conclude that is strictly increasing on ]0, π 2 ]. Then, the comparison could be done at the limit γ 0 = 0 :

lim γ0→0 (γ 0 ) = lim γ0→0 1 -1 γ 0 sin γ 0 du 1 -sin 2 (u γ0) sin 2 γ0 = 1 -1 du √ 1 -u 2 = 2π, then, we require that 2 L A √ 2 > 2π.

Unstability of walls without applied field

Let us consider L, A and γ 0 > 0 given by Theorem 1.2. We denote by M 0 the wall profile

M 0 (x) =   sin θ 0 (x) cos θ 0 (x) 0   .
This profile is a static solution to (3) with h a = 0. We aim to calculate the linearized equation of ( 3) around M 0 . In order to calculate this linearization taking into account that we are only interested in the perturbations of M 0 satisfying the constraint |m| = 1, we describe the small perturbations of M 0 as follows:

m(t, x) = r 1 M 1 + r 2 M 2 + 1 -r 2 1 -r 2 2 M 0 ,
where the mobile frame (M 0 (x), M 1 (x), M 2 ) is given by ( 14)

M 0 (x) =   sin θ 0 (x) cos θ 0 (x) 0   , M 1 (x) =   -cos θ 0 (x) sin θ 0 (x) 0   , M 2 (x) =   0 0 1   , for x ∈] -L A √ 2 , L A √ 2 [
. The new unknown is now r = (r 1 , r 2 ) taking its values into R 2 . The profile M 0 corresponds to r = 0, so the linearized of (3) around M 0 in the variable r is the following equation:

∂ t r = J (L -cos 2 γ 0 )r 1 Lr 2 , with • J = -1 -1 1 -1 , • γ 0 = θ 0 (L/A √ 2), • Lr = -∂ xx r 2 + g 0 r 2 , where g 0 (x) = sin 2 θ 0 -(θ 0 ) 2 .
The linear unstability of the wall structure computed in the previous section is given by the study of the operator L.

Proposition 2. L is a linear, positive operator. Its first eigenvalue, 0, is associated to the eigenfunction cos θ 0 and its second eigenvalue, 1, is associated to the eigenfunction sin θ 0 .

Proof. We set: f = θ 0 tan θ 0 , then L = * , where = ∂ x + f, then, we can conclude that L is a positive operator and that cos θ 0 is in the kernel of L. Thus 0 is the first eigenvalue of L 2 . Furthermore, we have:

L(sin θ 0 ) = sin θ 0 ,
it is to say that 1 is an eigenvalue of L associated to the eigenfunction sin θ 0 . In addition we remark that sin θ 0 vanishes once in the domain, so by Sturm-Louville theorem, 1 is the second eigenvalue of L 2 .

We can now prove Theorem 1.3.

Proof. From the previous proposition, since -cos 2 γ 0 < 0, we conclude that Lcos 2 γ 0 has one strictly negative eigenvalue, then, zero is unstable for the linearized of (3) around M 0 .

Stabilization of walls

Now, we discuss the stabilization of M 0 by the command H a (the applied field). We recall that we introduced the following command:

h a = h a (m) = -A √ 2L L A √ 2 -L A √ 2 m 1 (t, s) ds.
We want to prove that the profile M 0 is a stable stationary solution for the following system:

                     ∂m ∂t = -m ∧ H e -m ∧ (m ∧ H e ), ∂m ∂x (- L A √ 2 ) = ∂m ∂x ( L A √ 2 ) = 0, H e = ∂ 2 m ∂x 2 -m 2 e 2 -m 3 e 3 + h a (m) e 1 . (15) 
Proof. To start with, let us introduce M 0 = (sin θ 0 , cos θ 0 , 0) given in Theorem 1.2. We recall that θ 0 + sin θ 0 cos θ 0 = 0,

θ (-L A √ 2 ) = θ ( L A √ 2 ) = 0, Furthermore, on [-L A √ 2 , L A √ 2 ], cos 2 θ 0 -(θ 0 ) 2 = cos 2 γ 0 , where γ 0 = θ 0 ( L A √ 2 ).
Since h a (M 0 ) = 0, we remark that M 0 is a stationary solution of (15). 5.1. First step: moving frame. As in the previous section, in the spirit of [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF], we will describe the problem in the moving frame

(M 0 (x), M 1 (x), M 2 ),
given by [START_REF] Labbé | Microwave polarisability of ferrite particles with non-uniform magnetization[END_REF].

We write the solutions to [START_REF] Rivière | Compactness, kinetic formulation, and entropies for a problem related to micromagnetics[END_REF] as:

m(t, x) = M 0 (x) + r 1 (t, x)M 1 (x) + r 2 (t, x)M 2 + ν(r(t, x))M 0 (x)
where

ν(r) = 1 -r 2 1 -r 2 2 -1.
In this moving frame, we get

H e = (g 0 + a 0 )M 0 + (a 1 + ã1 )M 1 + a 2 M 2 with g 0 = sin 2 θ 0 -(θ 0 ) 2 a 0 = 2θ 0 ∂ x r 1 + r 1 θ 0 -cos θ 0 sin θ 0 r 1 + ∂ xx ν -ν(θ 0 ) 2 + ν sin 2 θ 0 + h(r) sin θ 0 , a 1 = ∂ xx r 1 + cos 2 γ 0 r 1 -S(r 1 ) cos θ 0 , ã1 = -2∂ x νθ 0 -ϕ(r) cos θ 0 , a 2 = ∂ xx r 2 .
where

S(r 1 ) = A √ 2L L A √ 2 -L A √ 2 r 1 cos θ 0 ds, ϕ(r) = - A √ 2L L A √ 2 -L A √ 2
ν(r) sin θ 0 ds, and h(r) = S(r 1 ) + ϕ(r).

Using these coordinates in the Landau-Lifchitz equation [START_REF] Kapitula | Multidimensional stability of planar travelling waves[END_REF] and projecting on M 1 and M 2 yield:

(16) ∂ t r = Λr + F (x, r, ∂ x r, ∂ xx r),
where

Λr = -1 -1 1 -1 L1 (r 1 ) L(r 2 ) with L = -∂ xx + g 0 , L1 = L -cos 2 γ 0 + cos θ 0 S,
and where the non linear part F is given by

F (x, r, ∂ x r, ∂ xx r) = F 1 (r)∂ xx r + F 2 (r)(∂ x r, ∂ x r) + F 3 (x, r)∂ x r + F 4 (r) + F 5 (r), with • F 1 ∈ C ∞ (R 2 ; M 2 (R)): F 1 (r) =   (r 2 ) 2 + (ν(r)) 2 + 2ν(r) ν(r) -r 1 r 2 r 1 r 2 -ν(r) (r 1 ) 2 + (ν(r)) 2 + 2ν(r)   +   -r 1 -r 2 -ν(r)r 1 r 1 -r 2 -ν(r)r 2   ν (r), • F 2 ∈ C ∞ (R 2 ; L 2 (R 2 ; R 2 )): F 2 (r)(∂ x r, ∂ x r) =   -r 1 -r 2 -ν(r)r 1 r 1 -r 2 -ν(r)r 2   ν (r)(∂ x r, ∂ x r), • F 3 ∈ C ∞ ([-L A √ 2 , L A √ 2 ] × R 2 ; L(R 2 ; R 2 )): F 3 (x, r)∂ x r = 2θ 0 (x)   -r 1 -r 2 -ν(r)r 1 r 1 -r 2 -ν(r)r 2   ∂ x r 1 -2θ 0 (x)   (r 2 ) 2 + (ν(r)) 2 + 2ν(r) + 1 r 1 r 2 -ν(r) -1   ν (r)(∂ x r), • F 4 (r) ∈ C ∞ ([-L A √ 2 , L A √ 2 ] × R 2 ; R 2 ): F 4 (r) = (cos 2 γ 0 r 1 )   (r 2 ) 2 + (ν(r)) 2 + 2ν(r) r 1 r 2 -ν(r)   -g 0 ν(r)   r 1 r 2   +((θ 0 -cos θ 0 sin θ 0 )r 1 + g 0 ν(r))   -r 1 -r 2 -ν(r)r 1 r 1 -r 2 -ν(r)r 2   .
• F 5 is given by

F 5 (r) = -h(r) cos θ 0   (r 2 ) 2 + (ν(r)) 2 + 2ν(r) r 1 r 2 -ν(r)   -ϕ(r) cos θ 0   1 -1   +h(r) sin θ 0   -r 1 -r 2 -ν(r)r 1 r 1 -r 2 -ν(r)r 2   .
Remark 4. The command h makes the linear part of ( 16) positive. Indeed, on one hand, we know that L ≥ 0 with Ker L = R cos θ 0 . On the other hand, L1 = L + cos θ 0 S -cos 2 γ 0 . On R cos θ 0 , L1 cos θ 0 = α 0 cos θ 0 with (17)

α 0 = A √ 2L L A √ 2 -L A √ 2 cos 2 θ 0 (x)dx -cos 2 γ 0 > 0 since for x ∈] -L A √ 2 , L A √
2 [, cos 2 θ 0 (x) > cos 2 γ 0 , and on (cos θ 0 ) ⊥ , L1 | (cos θ0) ⊥ = L -cos 2 θ 0 ≥ 1 -cos 2 θ 0 since L ≥ 1 on (cos θ 0 ) ⊥ (see Proposition 2). 5.2. Second step. 5.2.1. New unknown. The Landau Lifschitz equation ( 3) is invariant by rotation around the wire axis, so we can build a one parameter family of static solutions for [START_REF] Sanchez | Méthodes asymptotiques en ferromagnétisme[END_REF].

For τ ∈ R let us introduce the rotation around the x-axis given by

ρ τ =   1 0 0 0 cos τ -sin τ 0 sin τ cos τ   .
We denote M τ (x) = ρ τ M 0 (x), and R τ its projection on the moving frame:

R τ (x) = M τ (x).M 1 (x) M τ (x).M 2 (x) = cos θ 0 (x) sin θ 0 (x)(cos τ -1) cos θ 0 (x) sin τ .
Since M τ is solution to [START_REF] Rivière | Compactness, kinetic formulation, and entropies for a problem related to micromagnetics[END_REF], R τ is a static solution of ( 16), that is

(18) ΛR θ + F (x, R θ , ∂ x R θ , ∂ xx R θ ) = 0.
Now in order to avoid the problems due to the zero eigenvalue of Λ, we describe r in the new coordinates (τ, σ, W ) defined by

(19) r(t, x) = R τ (t) (x) + σ(t) cos θ 0 (x) 0 + W (t, x),
where (τ, σ) ∈ C 1 (R + ; R 2 ) and W ∈ C 1 (R + ; H 2 ) such that both coordinates of W are in (cos θ 0 ) ⊥ . Indeed, as in [START_REF] Kapitula | Multidimensional stability of planar travelling waves[END_REF], we can prove that for a given r ∈ H

2 (-L A √ 2 , L A √
2 ) in a neighbourhood of 0, there exists a unique (τ, σ, W

) ∈ R × R × W such that ρ = R θ + σ cos θ 0 0 + W, where W is the set of the W = W 1 W 2 ∈ H 2 satisfying the homogeneous Neu- man Boundary condition ∂W ∂x (- L A √ 2 ) = ∂W ∂x ( L A √ 2 
) = 0 and the orthogonality condition:

L A √ 2 -L A √ 2 W 1 (x) cos θ 0 (x)dx = L A √ 2 -L A √ 2 W 2 (x) cos θ 0 (x)dx = 0.
Remark 5. On (cos θ 0 ) ⊥ , the operators L and L -cos 2 θ 0 are non negative, so we introduce the following norms on W, respectively equivalent to the H 2 and the H 3 norms:

W H 2 = L 1 2 (L -cos 2 γ 0 ) 1 2 W 1 2 L 2 + LW 2 2 L 2 1 2 , W H 3 = L 1 2 (L -cos 2 γ 0 )W 1 2 L 2 + L 3 2 W 2 2 L 2 1 2 .
5.2.2. Equation ( 16) with these unknowns. Plugging the decomposition (19) in ( 16) and using ( 18) yield the following equivalent form for the Landau-Lifschitz equation in the coordinates (τ, σ, W ), valid for small perturbations of M 0 : (20)

dτ dt R τ + dσ dt cos θ 0 0 + ∂ t W = σ -α 0 cos θ 0 α 0 cos θ 0 + ΛW + G(x, τ, σ, W, ∂ x W, ∂ xx W ).
Let us describe the different terms in this equation: Concerning the time derivatives, we have

∂ t r = dτ dt R τ (x) + dσ dt cos θ 0 0 + ∂ t W, where R τ (x) = -sin τ cos θ 0 sin θ 0 cos τ cos θ 0 .
Concerning the linear part, we have Λr = ΛR τ + -α 0 cos θ 0 α 0 cos θ 0 σ + Λ(W ) (see Remark 2 for the definition of α 0 ), Concerning the non linear part, we have

F (x, r, ∂ x r, ∂ xx r) = F (x, R τ , ∂ x R τ , ∂ xx R τ ) + G(x, τ, σ, W, ∂ x W, ∂ xx W ).
The last term G is obtained from F with the Taylor formula around R τ :

G(x, τ, σ, W, ∂ x W, ∂ xx W ) = F 1 (r)(∂ xx w) + F1 (r)(w)(∂ xx R τ ) +2F 2 (r)(∂ x w, ∂ x R τ ) + F 2 (r)(∂ x w, ∂ x w) + F2 (r)(w)(∂ x R τ , ∂ x R τ ) +F 3 (x, r)(∂ x w) + F3 (x, r)(w)∂ x R τ ) + F4 (r)(w) +F 5 (r),
where

• w = W + cos θ 0 0 σ, • for i = 1..4, Fi (r) ∈ L(R 2 ; R 2 ) is given by Fi (r) = 1 0 F i (R τ + sw)ds.
From straightforward calculations, we see that: Therefore with all these estimates, if r H 2 is sufficiently small, we have (21)

F 1 (r) = O(|r| 2 ), F1 (r) = O(|r| 2 ) F 2 (r) = O(|r|), F2 (r) = O(1)
G L 2 ≤ K r L ∞ [|σ| + W H 2 ], ∂ x G L 2 ≤ K r L ∞ [|σ| + W H 3 ]
(see Remark 5.) 5.2.3. Separation of the unknowns. In order to separate the unknowns τ , σ and W , we first take the inner product of (20) with cos θ 0 0 and with 0 cos θ 0 . We remark that both ∂ t W and ΛW are orthogonal to these vectors, so that we obtain:

ρ 0 σ = -α 0 ρ 0 σ + G 1 , g τ τ = α 0 ρ 0 σ + G 2 ,
where

ρ 0 = L A √ 2 -L A √ 2 cos 2 θ 0 , G 1 = L A √ 2 -L A √ 2 G(x, τ, σ, W, ∂ x W, ∂ xx W ) • cos θ 0 0 dx, g τ = L A √ 2 -L A √ 2 R τ (x) • 0 cos θ 0 dx, G 2 = L A √ 2 -L A √ 2 G(x, τ, σ, W, ∂ x W, ∂ xx W ) • 0 cos θ 0 dx.
By subtraction, we have:

∂ t W = ΛW + G with G = G - G 2 g τ R τ - G 1 ρ 0 cos θ 0 0 + α 0 σ 0 cos θ 0 - ρ 0 g τ R τ .
5.2.4. equivalent formulation. We are then led to study the following equation

(22) τ = α 0 ρ 0 g τ σ + 1 g τ G 2 ,
together with the system coupling:

(23) σ = -α 0 σ + 1 ρ 0 G 1 , with (24) 
∂ t W = -(L -cos 2 γ 0 )W 1 -LW 2 (L -cos 2 γ 0 )W 1 -LW 2 + G.
From (21), with Remark 5 we have

(25) 1 ρ 0 G 1 (t) ≤ K r L ∞ |σ(t)| + W (t) H 3 .
In addition, since g τ = ρ 0 + O(τ 2 ), since R τ = 0 cos θ 0 + O(τ ), we get:

(26) G H 1 ≤ K r L ∞ |σ(t)| + W (t) H 3 .

5.3.

Last step: Variational estimates. Taking the inner product of (24) with L(L -cos 2 γ 0 )W 1 L 2 W 2 , we obtain using (26) that

d dt W 2 H 2 + W 2 H 3 ≤ K r L ∞ |σ(t)| + W (t) H 3 .
Remark 6. In order to avoid the boundary terms when we integrate by part, we perform the previous estimates on the Galerkin approximation of (24) built on the eigenvectors of L with the homogeneous Neumann boundary condition.

Multiplying (23) by σ, (25) yields:

d dt σ 2 + α 0 σ 2 ≤ K r L ∞ |σ(t)| 2 + W (t) 2 H 3 .
Summing up the previous estimates, we have:

d dt |σ(t)| 2 + W (t) 2 H 2 + α 0 |σ(t)| 2 + W (t) 2 H 3 (1 -K r L ∞ ) ≤ 0.
So there exists δ > 0 such that while r L ∞ ≤ 

H e = A 2

 2 ∆m + H d (m) + H a , ∂m ∂n = 0 on ∂Ω, where • A 2 is the exchange constant, depending on the material, • the demagnetizing field H d (m) is characterized by (2) curl H d (m) = 0 and div (H d (m) + m) = 0 in R 3 .

2 [

 2 [START_REF] Alouges | Néel and cross-tie wall energies for planar micromagnetic configurations[END_REF] , where (e 1 , e 2 , e 3 ) is the canonical basis of R 3 . The magnetic moment m is then defined on R +t ×] -. The equivalent demagnetizing field (after renormalization) is given byh d (m) = -m 2 e 2 -m 3 e 3 ,
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 21 Figure 1. Domain Ω η .

F 3 (

 3 x, r) = O(|r|), F3 (x, r) = O(1)F4 (r)O(|r|).• Concerning F 5 , on one hand we remark thatS(r 1 ) = S(W 1 ) + σS(cos θ 0 ) (since S(R τ ) = 0.)On the other hand, ϕ(R τ ) = 0 andϕ(r) = -ε 2L τ + sw)ds = O(|r|).
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Now, with equation ( 22), we have

Therefore, if τ 0 , σ 0 and W 0 H 2 are small enough, we remain in the domain { r L ∞ ≤ 1 2K } and all the previous estimates remain valid for all times. This concludes the proof of Theorem 1.4.