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Abstract. In this paper we study a one dimensional model of ferromagnetic

nano-wires of finite length. First we justify the model by Γ-convergence argu-
ments. Furthermore we prove the existence of wall profiles. These walls being

unstable, we stabilize them by the mean of an applied magnetic field.

1. Introduction

This paper is concerned with stabilization of wall configurations in a mono-
dimensional model of finite length nanowire. This kind of object can be found in
nano electronic devices. The three dimensional model is the following (see [2], [11]
and [18]). We denote by m : R+

t × Ωx −→ R3 the magnetic moment, defined on
the ferromagnetic domain Ω. We assume that the material is saturated, so that m
satisfies the constraint:

for almost every (t, x) ∈ R+ × Ω, |m(t, x)| = 1.

The magnetic moment links the magnetic induction B with the magnetic field H
by the relation B = H + m̄, where m̄ is the extension of m by zero outside Ω. The
behavior of m is governed by the Landau-Lifschitz equation:

(1)



∂m

∂t
= −m ∧He −m ∧ (m ∧He),

He = A2∆m+Hd(m) +Ha,

∂m

∂n
= 0 on ∂Ω,

where
• A2 is the exchange constant, depending on the material,
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• the demagnetizing field Hd(m) is characterized by

(2) curl Hd(m) = 0 and div (Hd(m) + m̄) = 0 in R3.

We remark that −Hd is the orthogonal projection (for the L2 inner product)
onto the curl free vector fields, so that

‖Hd(m)‖L2(R3) ≤ ‖m‖L2(Ω).

• Ha is an applied magnetic field,
• n is the outward unit normal on ∂Ω.

The effective field is derived from the micromagnetism energy: He = −∂mEmic
with

Emic(m) =
A2

2

∫
Ω

|∇m|2 dω +
1
2

∫
R3
|Hd(m)|2 dω −

∫
Ω

Ha ·m dω.

Existence of weak solutions for (1) is established in [5], [13] and [17]. Existence
of strong solutions is proved in [6] and [7]. Numerical simulations are performed
in [14]. For thin domains, equivalent 2-d models are justified in [1], [4], [15]. For
nanowires, 1-d models are discussed in [8], [9] and [16].

In this paper we deal with ferromagnetic nanowires. We assume that the wire
is a cylinder of length 2L and radius η. Taking the limit by Gamma convergence
arguments when η tends to zero, we obtain an asymptotic one dimensional model
(see Section 2).

After renormalization, the one dimensional wire is assimilated to the segment
] − L

A
√

2
, L
A
√

2
[e1, where (e1, e2, e3) is the canonical basis of R3. The magnetic

moment m is then defined on R+
t ×] − L

A
√

2
, L
A
√

2
[. The equivalent demagnetizing

field (after renormalization) is given by

hd(m) = −m2e2 −m3e3,

i.e. −hd is the orthogonal projection onto the plane orthogonal to the wire. In
addition we assume that we apply a magnetic field in the direction of the wire
axis, and we denote by ha its renormalized intensity. Therefore we deal with the
following system:

(3)



∂m

∂t
= −m ∧He −m ∧ (m ∧He),

He =
∂2m

∂x2
−m2e2 −m3e3 + hae1,

∂m

∂x
(t,− L

A
√

2
) =

∂m

∂x
(t,

L

A
√

2
) = 0,

with m : R+
t ×]− L

A
√

2
, L
A
√

2
[−→ R3, |m| = 1,

associated to the energy

E(m) =
∫ L/A

√
2

−L/A
√

2

(
1
2
|∂xm|2 +

1
2

(|m2|2 + |m3|2)− ham1

)
dx.
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In [8] and [9], we studied a similar model of infinite nanowire. After renormal-
ization, the model was the following: the wire is assimilated to the real axis Re1,
and the one dimensional Landau-Lifschitz equation is in this case:

(4)



∂m

∂t
= −m ∧He −m ∧ (m ∧He),

He =
∂2m

∂x2
−m2e2 −m3e3 + hae1,

with m : R+
t × Rx −→ R3, |m| = 1,

This system is invariant by translation in the x variable and by rotation around
the wire axis, that is, if m is a solution of (4), then for σ and τ in R, (t, x) 7→
ρτ (m(t, x−σ)) is another solution of (4), where ρτ is the rotation of angle τ around
the e1 axis:

ρτ =

 1 0 0
0 cos τ − sin τ
0 sin τ cos τ

 .

We dealt with wall configurations for this model, that is solutions separating a left
hand side domain where the magnetization is closed to −e1 to a right hand side
domain where the magnetization is closed to +e1. Such solutions are described
by rotations and translations of the canonical profile x 7→ (thx, 1/chx, 0). In
[8] and [9], we proved the asymptotic stability and the controlability for these
configurations.

Here, in the case of a finite wire, the situation is quite different.

Definition 1.1. We call canonical wall profile a static solution for (3) of the form
M0 = (sin θ0, cos θ0, 0) such that θ0 : [− L

A
√

2
, L
A
√

2
] −→ [−π/2, π/2] is a non de-

creasing map satisfying θ0(−π/2) < 0 < θ0(π/2) .

In the following theorem, we claim that the wall profiles exist if and only if the
wire is long enough compared to the exchange length:

Theorem 1.2. There exists a wall profile if and only if L
A
√

2
> π. This profile is

unique and is centered in the middle of the wire, that is θ0(0) = 0.

Remark 1. In the infinite wire case, the corresponding canonical profiles are ob-
tained taking θ0(x) = Arcsin th (x/2), and all its translation in the x variable (be-
cause of he invariance of (4) by translation). In the finite wire case, we only have
invariance by rotation, and we loose the invariance by translation, so we have only
one canonical profile.

Concerning the stability, we obtained in [8] the stability of the wall profile. In
that case, the invariance by rotation-translation induces that 0 is a double eigen-
value of the linearized version of (4) around the wall profile. In the finite wire
case, the lack of invariance by translation induces that the linearized version of
(3) around the canonical profile has one negative eigenvalue, and therefore we can
prove that the wall profile given by Theorem 1.2 is unstable.

Theorem 1.3. Assume that L
A
√

2
> π. Let θ0 given by Theorem 1.2. The static so-

lution M0 = (sin θ0, cos θ0, 0) in linearly unstable for the Landau-Lifschitz equation
(3) with ha = 0.
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Remark 2. This phenomenon was expected. Let us consider a small translation
of the centered wall. Without energetic cost, the Landau-Lifschitz equation induces
then a displacement of the wall and pushes it outside the wire. Then the magnetic
moment tends to +π/2 or −π/2 (i.e the minimizers of the ferromagnetism energy
E). In the case of an infinite wire, obviously, this translation cannot make the wall
desappear, and we have stability.

We prove now a stabilization result. We control the system by an applied field
parallel to the wire axis.

Theorem 1.4. Let L and A as in Theorem 1.2, and let M0 = (sin θ0, cos θ0, 0) be
the canonical profile given by this theorem. We consider the following control:

h(m(t, .)) =

[
− A√

2L

∫ L
A
√

2

− L
A
√

2

m1(t, s)ds

]
.

Then M0 is stable for the Landau Lifschitz equation controled with the applied field
ha = h(m).

Remark 3. The control given here is quite natural: for example when the wall is
translated to the right hand side, then the average of the profile first component is
negative and our applied field he1 (with h > 0) pushes the wall to the left hand side.

The paper is organized as follows. In Section 2 we justify the one dimensional
model by Gamma convergence arguments. In Section 3 we prove the existence of
a canonical wall profile. We address the unstability of this profile in Section 4 by
linearization of the Landau-Lifschitz equation. The last section is devoted to the
stabilization of the wall by a convenient applied magnetic field.

2. modelization

In this section, we address the justification of the one dimensional model by Γ
convergence arguments.

η

e1

e3

e2

2L

Figure 1. Domain Ωη.

At the beginning we deal with the three-dimensional static case. The finite 3d
wire is the cylinder Ωη =] − L,L[×B2(0, η), where Bd(x, r) is the ball of radius r
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and center x in Rd. We assume that we apply on the wire a magnetic field in the
direction e1: Ha = hae1, where ha ∈ R.

The micromagnetism energy on Ωη is given by

Eη(v) =
A2

2

∫
Ωη

|∇v|2 dω+
1
2

∫
R3
|Hd(v)|2 dω−ha

∫
Ωη

v · e1 dω for v ∈ H1(Ωη;S2).

The static configurations satisfy the minimization problem:
find u in H1(Ωη, S2) such that

Eη(u) = minv∈H1(Ωη,S2) Eη(v),
(5)

In order to work with a fixed domain, we introduce the following rescaling: for
v ∈ H1(Ωη;S2), we define v ∈ H1(Ω1;S2) by

v(x, y, z) = v(x, ηy, ηz).

In addition, for v ∈ H1(Ω1;S2), we denote by Hη
d (v) the rescaled demagnetizing

field:
Hη
d (v)(x, y, z) = Hd(v)(x, ηy, ηz),

where v ∈ H1(Ωη;S2) is deduced from v by v(x, y, z) = v(x, y/η, z/η).

We deal with the rescaled energy defined for v ∈ H1(Ω1;S2) by E(v) = 1
η2 Eη(v):

E(v) =
A2

2

∫
Ω1

(|∂xv|2+
1
η2
|∂yv|2+

1
η2
|∂zv|2) dω+

1
2

∫
R3
|Hη

d (v)|2 dω−ha
∫

Ω1

v·e1 dω.

and the problem (5) is rescaled in the following equivalent problem:
find u in H1(Ω1, S

2) such that

Eη(u) = minv∈H1(Ω1,S2) Eη(v),
(6)

Proposition 1. For all (vη)η∈R+
∗

in H1(Ω1, S
2), sequence of minimizers of (5),

(Eη(vη))η∈R+
∗

is a bounded sequence of R.

Proof. Let (vη)η∈R+
∗

, be a sequence of minimizers of (5) in H1(Ω1, S
2). We denote

by vη the rescaled of vη: vη(x, y, z) = vη(x, y/η, z/η).
In order to exhibit an upper bound for Eη(vη), we write:

∀η ∈ R+
∗ , Eη(vη) ≤ Eη(e1),

then
Eη(vη) ≤ −2haη2πL+

1
2

∫
R3
|Hd(e1)|2 dω

≤ 2η2Lπ(1− ha).
Then, the lower bound is obtained by canceling the positive contributions of the
energy and maximizing the external contribution:

−η22haπL ≤ Eη(vη).

So, we can conclude

−2haπL ≤ Eη(vη) ≤ 2Lπ(1− ha).

�
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We introduce the limit energy : we define H1(Ω1;S2) by

H1(Ω1;S2) = {u ∈ H1(Ω1;S2), ∂yu = ∂zu = 0}.

For v ∈ H1(Ω1;S2), we set:

E(v) =
A2

2

∫
Ω1

|∂xv|2 dω +
1
4

∫
Ω1

(
|v2|2 + |v3|2

)
dω − ha

∫
Ω1

v · e1 dω

=
A2π

2

∫
]−L,L[

|∂xv|2dx+
π

4

∫
]−L,L[

(
|v2|2 + |v3|2

)
dx− πha

∫
]−L,L[

v · e1dx.

The limit minimization problem is given by: find u in H1(Ω1, S
2) such that

E(u) = minv∈H1(Ω1,S2) E(v),
(7)

The main result of this section is the following:

Theorem 2.1. Eη gamma-converges to E in sense of H1(Ω1,R3), it is to say:

(i) (lower semi continuity) for all sequence (vη)η∈R+
∗

of H1(Ωε,1, S2) such that

lim
η→0

vη = v0 and (Eη(vη))η∈R+
∗

bounded,

the limit v0 is an element of H1(Ω1, S
2) such that:

lim inf
η→0

Eη(vη) ≥ E(v0),

(ii) (construction) for all u0 ∈ H
1(Ω1, S

2), there exists (vη)η∈R+
∗

, sequence of
H1(Ω1, S

2), such that:

lim
η→0

vη = u0,

and
lim sup
η→0

Eη(vη) ≤ E(u0).

Proof. (i) Lower semi-continuity: let (vη)η be a sequence in H1(Ω1;S2) such
that vη tends to v in H1(Ω1) and such that there exists c such that for all η

(8) Eη(vη) ≤ c.
Extracting a subsequence, we can assume that vη tends to v almost everywhere, so
|v| = 1 a.e.

Using (8), we remark that since
∣∣∣∫Ω1

vηe1

∣∣∣ ≤ meas(Ω1),

‖∂yvη‖2L2(Ω1) + ‖∂zvη‖2L2(Ω1) ≤ Cη
2,

so ∂yv = ∂zv = 0, that is
v ∈ H1(Ω1;S2).

From straightforward arguments,

A2

2

∫
Ω1

|∂xv|2 dω − h
∫

Ω1

v · e1 dω

≤ lim inf
(
A2

2

∫
Ω1

(|∂xvη|2 +
1
η2
|∂yvη|2 +

1
η2
|∂zvη|2) dω − ha

∫
Ω1

vη · e1 dω

)
.
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Concerning the demagnetizing field, the sequence (Hη
d (vη))η is bounded in L2(R3).

Indeed, we denote by vη the rescalled of vη: vη(x, y, z) = vη(x, y/η, z/η). We have

‖Hη
d (vη)‖L2(R3) =

1
η
‖Hd(vη)‖L2(R3) (by change of variable in the integral)

≤ 1
η
‖vη‖L2(R3) (since −Hd is an orthogonal projection in L2)

≤ 1
η

(Lπη2)
1
2 (since |vη| = 1)

≤
√

2π L.

So, up to the extraction of a subsequence, we can assume that Hη
d (vη) ⇀ H for the

weak topology in L2(R3).
We denote the coordinates of Hη

d (vη) and those of H by:

Hη
d (vη) =


h1
η

h2
η

h3
η

 and H =


h1

h2

h3

 .

Writting (2) in the rescalled coordinates, we obtain first that

η∂x(h1
η + v1

η) + ∂y(h2
η + v2

η) + ∂z(h3
η + v3

η) = 0,

so taking the weak limit, we have:

(9) ∂y(h2 + v2) + ∂z(h3 + v3) = 0.

In addition, from the curl free condition, we obtain that
∂yh

3
η − ∂zh2

η = 0

η∂xh
2
η − ∂yh1

η = 0

η∂xh
3
η − ∂zh1

η = 0,

so, taking the weak limit we get

∂yh
1 = ∂zh

1 = 0 so h1 = 0,

and
∂yh

3 − ∂zh2 = 0.
So H is deduced from v by the relations:

∂y(h2 + v2) + ∂z(h3 + v3) = 0,

∂yh
3 − ∂zh2 = 0

h1 = 0,

that is for a fixed x, H(x, ·) is defined from v(x, ·) by the 2-d demagnetizing field.
In the following lemma we calculate the 2-d demagnetizing field induced by a con-
stantly magnetized 2-d disk.
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Lemma 2.2. Let ξ = (ξ2, ξ3) ∈ R2 be a fixed vector. Let V = (V 2, V 3) ∈
L2(R2; R2) such that{

curl 2DV := ∂yV
3 − ∂zV 2 = 0,

div 2D(V + ξ) := ∂y(V 2 + ξ2) + ∂z(V 3 + ξ3) = 0,

where ξ(y, z) = ξχB(0,1)(y, z) (we denote by χB(0,1) the indicatrix function of
B(0, 1)). Then

(10) V (y, z) =


−1

2
ξ if (y, z) ∈ B2(0, 1),

1
2

1
(y2 + z2)2

 ξ2(y2 − z2)− 2ξ3yz

−ξ3(y2 − z2)− 2ξ2yz

 if (y, z) /∈ B2(0, 1),

and ∫
R2
|V |2 dydz =

π

2
|ξ|2.

Proof. We have (see [3] or [13]), for X = (y, z) ∈ R2:

V (X) =
1

2π

∫
Y ∈∂B2(0,1)

X − Y
|X − Y |2

ξ · ν(Y )dσ(Y ),

where ν is the unit normal on ∂B2(0, 1).
Using complex notations, we write V (X) = V 2(X) + iV 3(X), X = y + iz,

ξ = ξ2 + iξ3 and we have:

V (X) =
1

2iπ

∫
z∈C(0,1)

ξ + w2ξ

2Xw(w − 1
X

)
dw.

If |X| < 1, the only pole is 0, and by the residu formula, V (X) = − 1
2ξ. If |X| > 1,

there are two poles, 0 and 1/X̄, and we obtain V (X) = 1
2
ξ̄
X̄2 which is equivalent to

(10).
In addition, by a direct calculation, we obtain that:∫

R2
|V (X)|2 dydz =

π

2
|ξ|2.

�

We apply the previous lemma to calculate the weak limit H:

H(x, y, z) =



−1
2

 0
v2(x)
v3(x)

 if (y, z) ∈ B2(0, 1),

1
2

1
(y2 + z2)2


0

v2(x)(y2 − z2)− 2v3(x)yz

−v3(y2 − z2)− 2v2yz

 if (y, z) /∈ B2(0, 1),

and by a direct calculation,∫
R3
|H(x, y, z)|2dxdydz =

π

2

∫
R

(|v2(x)|2 + |v3(x)|2)dx.



STABILIZATION OF WALLS FOR NANO-WIRES 9

We remark now that since −Hd is an orthogonal projection for the L2 inner product,∫
R3
|Hη

d (vη)|2 dω = −
∫

Ω1

Hη
d (vη) · vη dω.

Thus we can take the limit in this integral, and we obtain that:∫
R3
|Hη

d (vη)|2 dω −→ −
∫

Ω1

H · v dω =
∫

R3
|H|2 dω.

So, in fact, Hη
d (vη) tends to H strongly in L2(R3), and we obtain that

π

4

∫
R

(|v2(x)|2 + |v3(x)|2)dx = lim inf
1
2

∫
R3
|Hη

d (vη)|2 dω.

Therefore,
E(v) ≤ lim inf Eη(vη).

(ii) Reconstruction. Let u0 ∈ H1(Ω1;S2). For η > 0, we define uη = u0.
Then,

Eη(uη) =
A2

2

∫
Ω1

|∂xu0|2 dω +
1
2

∫
R3
|Hη

d (u0)|2 dω − ha
∫

Ω1

u0 · e1 dω.

As in the previous step, we have:∫
R3
|Hη

d (u0)|2 dω −→ 1
4

∫
Ω1

(|u2
0|2 + |u3

0|2) dω,

that is
Eη(uη) −→ E(u0).

�

This theorem gives the behavior of minimizers for the one dimensional limit case:
the limit energy, for u ∈ H1(]− L,L[;S2) is then E(u) = E(u · χB2(0,1)):

E(u) =
πA2

2

∫
]−L,L[

|du
dx
|2 dx+

π

4

∫
]−L,L[

(|u2|2 + |u3|2) dx− hπ
∫

]−L,L[

v · e1 dx,

then, in order to find out the effective field, we write (see [11]):

He = −dE
du
,

it is to say

He = πA2 ∂
2u

∂x2
− π

2
(u2 e2 + u3 e3) + πh e1.

The boundary conditions for the minimizers are:

∂u

∂x
= 0 at x = −L and x = L,

since we minimize the energy without Dirichlet boundary conditions.
Then, the limit dynamic system is obtain using the Landau Lifchitz combined

with the new effective field He.

We perform the following rescaling in time t′ = π
2 t and in space x′ = x/A

√
2,

we denote by h′a = 2ha the rescaled applied field. The resulting rescaled system is
then given by (3) as we expected.
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3. Existence of particular equilibrium states: the walls

In this section we are interested in characterizing equilibrium states of the mag-
netization in a finite nano-wire when h = 0, it is to say when there is no external
magnetic field. In this case, we look for solutions which can be written as follows:

M0(x) =

sin θ0

cos θ0

0

 , ∀x ∈]− L

A
√

2
,
L

A
√

2
[,

where θ0 is a non decreasing map from ]− L
A
√

2
, L
A
√

2
[ into R satisfying θ0(− L

A
√

2
) <

0 < θ0( L
A
√

2
), and such that M0 is a stationary solution to (3). In fact, we want

M0 to verify:

−M0 ∧He −M0 ∧ (M0 ∧He) = 0, ∀x ∈]− L

A
√

2
,
L

A
√

2
[,

with

He =
∂2M0

∂x2
− cos θ0 e2,

then, one has the following relation

−θ′′0 − sin θ0 cos θ0 = 0, ∀x ∈]− L

A
√

2
,
L

A
√

2
[,(11)

with, on the boundary

θ′0(− L

A
√

2
) = θ′0(

L

A
√

2
) = 0.(12)

Setting γ0 = θ0( L
A
√

2
) (γ0 is supposed to be non negative, that is we look for a

non decreasing solution θ0), we have, integrating the equation (11) and using (12):

(θ′0)2 + sin2 θ0 = sin2 γ0.(13)

The length of the nano-wire has to be such that the function θ0 goes from −γ0 to
γ0. From formula (13), we deduce the length:

`(γ0) =
∫ γ0

−γ0

dθ√
sin2 γ0 − sin2 θ

,

Using the length expression computed above, we Prove now Theorem 1.2:

Proof. In order to ensure the existence of an equilibrium state as defined above, we

must verify that there exists γ0 > 0 such that `(γ0) = 2
L

A
√

2
. First of all, one has

`(γ0) =
∫ 1

−1

γ0

sin γ0

dθ√
1− sin2 θ

sin2 γ0

,

we then see that
lim
γ0→π

2

`(γ0) = +∞.

The first remark is that γ0 is in the interval ]0, π2 [. Now, computing the derivative
of `(γ0) with respect to γ0, we conclude that ` is strictly increasing on ]0, π2 ]. Then,
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the comparison could be done at the limit γ0 = 0 :

lim
γ0→0

`(γ0) = lim
γ0→0

∫ 1

−1

γ0

sin γ0

du√
1− sin2(u γ0)

sin2 γ0

=
∫ 1

−1

du√
1− u2

= 2π,

then, we require that 2
L

A
√

2
> 2π.

�

4. Unstability of walls without applied field

Let us consider L, A and γ0 > 0 given by Theorem 1.2. We denote by M0 the
wall profile

M0(x) =

sin θ0(x)
cos θ0(x)

0

 .

This profile is a static solution to (3) with ha = 0. We aim to calculate the
linearized equation of (3) around M0. In order to calculate this linearization taking
into account that we are only interested in the perturbations of M0 satisfying the
constraint |m| = 1, we describe the small perturbations of M0 as follows:

m(t, x) = r1 M1 + r2 M2 +
√

1− r2
1 − r2

2 M0,

where the mobile frame (M0(x),M1(x),M2) is given by

(14) M0(x) =

sin θ0(x)
cos θ0(x)

0

 , M1(x) =

− cos θ0(x)
sin θ0(x)

0

 , M2(x) =

0
0
1

 ,

for x ∈]− L
A
√

2
, L
A
√

2
[.

The new unknown is now r = (r1, r2) taking its values into R2. The profile M0

corresponds to r = 0, so the linearized of (3) around M0 in the variable r is the
following equation:

∂tr = J

(
(L − cos2 γ0)r1

Lr2

)
,

with

• J =
(
−1 −1
1 −1

)
,

• γ0 = θ0(L/A
√

2),
• Lr = −∂xxr2 + g0r2, where g0(x) = sin2 θ0 − (θ′0)2.

The linear unstability of the wall structure computed in the previous section is
given by the study of the operator L.

Proposition 2. L is a linear, positive operator. Its first eigenvalue, 0, is associ-
ated to the eigenfunction cos θ0 and its second eigenvalue, 1, is associated to the
eigenfunction sin θ0.



12 GILLES CARBOU AND STÉPHANE LABBÉ

Proof. We set: f = θ′0 tan θ0, then

L = `∗`, where ` = ∂x + f,

then, we can conclude that L is a positive operator and that cos θ0 is in the kernel
of L. Thus 0 is the first eigenvalue of L2.
Furthermore, we have:

L(sin θ0) = sin θ0,

it is to say that 1 is an eigenvalue of L associated to the eigenfunction sin θ0. In
addition we remark that sin θ0 vanishes once in the domain, so by Sturm-Louville
theorem, 1 is the second eigenvalue of L2. �

We can now prove Theorem 1.3.

Proof. From the previous proposition, since − cos2 γ0 < 0, we conclude that L −
cos2 γ0 has one strictly negative eigenvalue, then, zero is unstable for the linearized
of (3) around M0. �

5. Stabilization of walls

Now, we discuss the stabilization of M0 by the command Ha (the applied field).
We recall that we introduced the following command:

ha = ha(m) =
−A√

2L

∫ L
A
√

2

− L
A
√

2

m1(t, s) ds.

We want to prove that the profile M0 is a stable stationary solution for the following
system:

(15)



∂m

∂t
= −m ∧He −m ∧ (m ∧He),

∂m

∂x
(− L

A
√

2
) =

∂m

∂x
(
L

A
√

2
) = 0,

He =
∂2m

∂x2
−m2 e2 −m3 e3 + ha(m) e1.

Proof. To start with, let us introduce M0 = (sin θ0, cos θ0, 0) given in Theorem 1.2.
We recall that

θ′′0 + sin θ0 cos θ0 = 0,

θ′(− L
A
√

2
) = θ′( L

A
√

2
) = 0,

Furthermore, on [− L
A
√

2
, L
A
√

2
],

cos2 θ0 − (θ′0)2 = cos2 γ0,

where γ0 = θ0( L
A
√

2
).

Since ha(M0) = 0, we remark that M0 is a stationary solution of (15).
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5.1. First step: moving frame. As in the previous section, in the spirit of [8],
we will describe the problem in the moving frame

(M0(x),M1(x),M2),

given by (14).
We write the solutions to (15) as:

m(t, x) = M0(x) + r1(t, x)M1(x) + r2(t, x)M2 + ν(r(t, x))M0(x)

where ν(r) =
√

1− r2
1 − r2

2 − 1. In this moving frame, we get

He = (g0 + a0)M0 + (a1 + ã1)M1 + a2M2

with

g0 = sin2 θ0 − (θ′0)2

a0 = 2θ′0∂xr1 + r1θ
′′
0 − cos θ0 sin θ0 r1 + ∂xxν − ν(θ′0)2 + ν sin2 θ0 + h(r) sin θ0,

a1 = ∂xxr1 + cos2 γ0r1 − S(r1) cos θ0,

ã1 = −2∂xνθ′0 − ϕ(r) cos θ0,

a2 = ∂xxr2.

where

S(r1) =
A√
2L

∫ L
A
√

2

− L
A
√

2

r1 cos θ0 ds, ϕ(r) = − A√
2L

∫ L
A
√

2

− L
A
√

2

ν(r) sin θ0 ds,

and h(r) = S(r1) + ϕ(r).

Using these coordinates in the Landau-Lifchitz equation (12) and projecting on
M1 and M2 yield:

(16) ∂tr = Λr + F (x, r, ∂xr, ∂xxr),

where

Λr =
(
−1 −1
1 −1

)(
L̃1(r1)
L(r2)

)
with

L = −∂xx + g0,

L̃1 = L − cos2 γ0 + cos θ0S,

and where the non linear part F is given by

F (x, r, ∂xr, ∂xxr) = F1(r)∂xxr + F2(r)(∂xr, ∂xr) + F3(x, r)∂xr + F4(r) + F5(r),

with
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• F1 ∈ C∞(R2;M2(R)):

F1(r) =

 (r2)2 + (ν(r))2 + 2ν(r) ν(r)− r1r2

r1r2 − ν(r) (r1)2 + (ν(r))2 + 2ν(r)



+

 −r1 − r2 − ν(r)r1

r1 − r2 − ν(r)r2

 ν′(r),

• F2 ∈ C∞(R2;L2(R2; R2)):

F2(r)(∂xr, ∂xr) =

 −r1 − r2 − ν(r)r1

r1 − r2 − ν(r)r2

 ν′′(r)(∂xr, ∂xr),

• F3 ∈ C∞([− L
A
√

2
, L
A
√

2
]× R2;L(R2; R2)):

F3(x, r)∂xr = 2θ′0(x)

 −r1 − r2 − ν(r)r1

r1 − r2 − ν(r)r2

 ∂xr1

−2θ′0(x)

 (r2)2 + (ν(r))2 + 2ν(r) + 1

r1r2 − ν(r)− 1

 ν′(r)(∂xr),

• F4(r) ∈ C∞([− L
A
√

2
, L
A
√

2
]× R2; R2):

F4(r) = (cos2 γ0 r1)

 (r2)2 + (ν(r))2 + 2ν(r)

r1r2 − ν(r)

− g0ν(r)

 r1

r2



+((θ′′0 − cos θ0 sin θ0)r1 + g0ν(r))

 −r1 − r2 − ν(r)r1

r1 − r2 − ν(r)r2

 .

• F5 is given by

F5(r) = −h(r) cos θ0

 (r2)2 + (ν(r))2 + 2ν(r)

r1r2 − ν(r)

− ϕ(r) cos θ0

 1

−1



+h(r) sin θ0

 −r1 − r2 − ν(r)r1

r1 − r2 − ν(r)r2

 .

Remark 4. The command h makes the linear part of (16) positive. Indeed, on
one hand, we know that L ≥ 0 with Ker L = R cos θ0. On the other hand, L̃1 =
L+ cos θ0S − cos2 γ0. On R cos θ0, L̃1 cos θ0 = α0 cos θ0 with

(17) α0 =
A√
2L

∫ L
A
√

2

− L
A
√

2

cos2 θ0(x)dx− cos2 γ0 > 0
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since for x ∈]− L
A
√

2
, L
A
√

2
[, cos2 θ0(x) > cos2 γ0, and on (cos θ0)⊥,

L̃1|(cos θ0)⊥ = L − cos2 θ0 ≥ 1− cos2 θ0

since L ≥ 1 on (cos θ0)⊥ (see Proposition 2).

5.2. Second step.

5.2.1. New unknown. The Landau Lifschitz equation (3) is invariant by rotation
around the wire axis, so we can build a one parameter family of static solutions for
(16).

For τ ∈ R let us introduce the rotation around the x-axis given by

ρτ =

 1 0 0
0 cos τ − sin τ
0 sin τ cos τ

 .

We denote Mτ (x) = ρτM0(x), and Rτ its projection on the moving frame:

Rτ (x) =
(
Mτ (x).M1(x)
Mτ (x).M2(x)

)
=
(

cos θ0(x) sin θ0(x)(cos τ − 1)
cos θ0(x) sin τ

)
.

Since Mτ is solution to (15), Rτ is a static solution of (16), that is

(18) ΛRθ + F (x,Rθ, ∂xRθ, ∂xxRθ) = 0.

Now in order to avoid the problems due to the zero eigenvalue of Λ, we describe
r in the new coordinates (τ, σ,W ) defined by

(19) r(t, x) = Rτ(t)(x) + σ(t)
(

cos θ0(x)
0

)
+W (t, x),

where (τ, σ) ∈ C1(R+; R2) and W ∈ C1(R+;H2) such that both coordinates of W
are in (cos θ0)⊥.

Indeed, as in [12], we can prove that for a given r ∈ H2(− L
A
√

2
, L
A
√

2
) in a

neighbourhood of 0, there exists a unique (τ, σ,W ) ∈ R× R×W such that

ρ = Rθ + σ

(
cos θ0

0

)
+W,

where W is the set of the W =
(
W1

W2

)
∈ H2 satisfying the homogeneous Neu-

man Boundary condition
∂W

∂x
(− L

A
√

2
) =

∂W

∂x
(
L

A
√

2
) = 0 and the orthogonality

condition: ∫ L
A
√

2

− L
A
√

2

W1(x) cos θ0(x)dx =
∫ L

A
√

2

− L
A
√

2

W2(x) cos θ0(x)dx = 0.

Remark 5. On (cos θ0)⊥, the operators L and L− cos2 θ0 are non negative, so we
introduce the following norms on W, respectively equivalent to the H2 and the H3
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norms:

‖W‖H2 =
(
‖L 1

2 (L − cos2 γ0)
1
2W1‖2L2 + ‖LW2‖2L2

) 1
2
,

‖W‖H3 =
(
‖L 1

2 (L − cos2 γ0)W1‖2L2 + ‖L 3
2W2‖2L2

) 1
2
.

5.2.2. Equation (16) with these unknowns. Plugging the decomposition (19) in (16)
and using (18) yield the following equivalent form for the Landau-Lifschitz equation
in the coordinates (τ, σ,W ), valid for small perturbations of M0:
(20)
dτ

dt
R′τ +

dσ

dt

(
cos θ0

0

)
+ ∂tW = σ

(
−α0 cos θ0

α0 cos θ0

)
+ ΛW +G(x, τ, σ,W, ∂xW,∂xxW ).

Let us describe the different terms in this equation:
Concerning the time derivatives, we have

∂tr =
dτ

dt
R′τ (x) +

dσ

dt

(
cos θ0

0

)
+ ∂tW,

where

R′τ (x) =
(
− sin τ cos θ0 sin θ0

cos τ cos θ0

)
.

Concerning the linear part, we have

Λr = ΛRτ +
(
−α0 cos θ0

α0 cos θ0

)
σ + Λ(W )

(see Remark 2 for the definition of α0),

Concerning the non linear part, we have

F (x, r, ∂xr, ∂xxr) = F (x,Rτ , ∂xRτ , ∂xxRτ ) +G(x, τ, σ,W, ∂xW,∂xxW ).

The last term G is obtained from F with the Taylor formula around Rτ :

G(x, τ, σ,W, ∂xW,∂xxW ) = F1(r)(∂xxw) + F̃1(r)(w)(∂xxRτ )

+2F2(r)(∂xw, ∂xRτ ) + F2(r)(∂xw, ∂xw)

+F̃2(r)(w)(∂xRτ , ∂xRτ )

+F3(x, r)(∂xw) + F̃3(x, r)(w)∂xRτ ) + F̃4(r)(w)

+F5(r),

where

• w = W +
(

cos θ0

0

)
σ,

• for i = 1..4, F̃i(r) ∈ L(R2; R2) is given by

F̃i(r) =
∫ 1

0

F ′i (Rτ + sw)ds.
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From straightforward calculations, we see that:

F1(r) = O(|r|2), F̃1(r) = O(|r|2)

F2(r) = O(|r|), F̃2(r) = O(1)

F3(x, r) = O(|r|), F̃3(x, r) = O(1)

F̃4(r)O(|r|).
• Concerning F5, on one hand we remark that

S(r1) = S(W1) + σS(cos θ0)

(since S(Rτ ) = 0.)
On the other hand, ϕ(Rτ ) = 0 and

ϕ(r) = − ε

2L

∫ L
A
√

2

− L
A
√

2

ν̃(r)(w) sin θ0,

where

ν̃(r) =
∫ 1

0

ν′(Rτ + sw)ds = O(|r|).

Therefore with all these estimates, if ‖r‖H2 is sufficiently small, we have

(21)
‖G‖L2 ≤ K‖r‖L∞ [|σ|+ ‖W‖H2 ],

‖∂xG‖L2 ≤ K‖r‖L∞ [|σ|+ ‖W‖H3 ]

(see Remark 5.)

5.2.3. Separation of the unknowns. In order to separate the unknowns τ , σ and

W , we first take the inner product of (20) with
(

cos θ0

0

)
and with

(
0

cos θ0

)
. We

remark that both ∂tW and ΛW are orthogonal to these vectors, so that we obtain:

ρ0σ
′ = −α0ρ0σ +G1,

gττ
′ = α0ρ0σ +G2,

where

ρ0 =
∫ L

A
√

2

− L
A
√

2

cos2 θ0,

G1 =
∫ L

A
√

2

− L
A
√

2

G(x, τ, σ,W, ∂xW,∂xxW ) ·
(

cos θ0

0

)
dx,

gτ =
∫ L

A
√

2

− L
A
√

2

R′τ (x) ·
(

0
cos θ0

)
dx,

G2 =
∫ L

A
√

2

− L
A
√

2

G(x, τ, σ,W, ∂xW,∂xxW ) ·
(

0
cos θ0

)
dx.
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By subtraction, we have:
∂tW = ΛW + G̃

with

G̃ = G− G2

gτ
R′τ −

G1

ρ0

(
cos θ0

0

)
+ α0σ

[(
0

cos θ0

)
− ρ0

gτ
R′τ

]
.

5.2.4. equivalent formulation. We are then led to study the following equation

(22) τ ′ = α0
ρ0

gτ
σ +

1
gτ
G2,

together with the system coupling:

(23) σ′ = −α0σ +
1
ρ0
G1,

with

(24) ∂tW =
(
−(L − cos2 γ0)W1 − LW2

(L − cos2 γ0)W1 − LW2

)
+ G̃.

From (21), with Remark 5 we have

(25)
∣∣∣∣ 1
ρ0
G1

∣∣∣∣ (t) ≤ K‖r‖L∞ [|σ(t)|+ ‖W (t)‖H3

]
.

In addition, since gτ = ρ0 +O(τ2), since R′τ =
(

0
cos θ0

)
+O(τ), we get:

(26) ‖G̃‖H1 ≤ K‖r‖L∞
[
|σ(t)|+ ‖W (t)‖H3

]
.

5.3. Last step: Variational estimates. Taking the inner product of (24) with(
L(L − cos2 γ0)W1

L2W2

)
, we obtain using (26) that

d

dt

(
‖W‖2H2

)
+ ‖W‖2H3 ≤ K‖r‖L∞

[
|σ(t)|+ ‖W (t)‖H3

]
.

Remark 6. In order to avoid the boundary terms when we integrate by part, we
perform the previous estimates on the Galerkin approximation of (24) built on the
eigenvectors of L with the homogeneous Neumann boundary condition.

Multiplying (23) by σ, (25) yields:

d

dt
σ2 + α0σ

2 ≤ K‖r‖L∞
[
|σ(t)|2 + ‖W (t)‖2H3

]
.

Summing up the previous estimates, we have:

d

dt

[
|σ(t)|2 + ‖W (t)‖2H2

]
+ α0

[
|σ(t)|2 + ‖W (t)‖2H3

]
(1−K‖r‖L∞) ≤ 0.

So there exists δ > 0 such that while ‖r‖L∞ ≤ 1
2K ,

d

dt

[
|σ(t)|2 + ‖W (t)‖2H2

]
+ δ

[
|σ(t)|2 + ‖W (t)‖2H2

]
≤ 0,

that is [
|σ(t)|2 + ‖W (t)‖2H2

]
≤
[
|σ0|2 + ‖W0‖2H2

]
e−δt.
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Now, with equation (22), we have

|τ ′| ≤ K|σ|+K
[
|σ(t)| + ‖W (t)‖H2

]
so while ‖r‖L∞ ≤ 1

2K ,

|τ | ≤ |τ0|+K
[
|σ0|+ ‖W0‖H2

]
e−δt/2.

Therefore, if τ0, σ0 and ‖W0‖H2 are small enough, we remain in the domain
{‖r‖L∞ ≤ 1

2K } and all the previous estimates remain valid for all times. This
concludes the proof of Theorem 1.4.

�
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