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Abstract— In this paper, we propose a powerful bit allocation
that optimizes the quantization of the normal mesh geometry. This
bit allocation aims to minimize the surface-to-surface distance [1]
between the original irregular mesh and the quantized normal
one, according to a target bitrate. Moreover, to provide a fast
bit allocation, we approximate this surface-to-surface distance
with a simple criterion depending on the wavelet coefficient
distributions, and we use theoretical models. This provides a
fast and low-complex model-based bit allocation yielding results
better than the recent state-of-the-art methods like [2].

I. INTRODUCTION

B IT allocation is an essential tool to provide a powerful
coding of signals when a multiresolution analysis is

performed. This process generally aims to optimize the
trade-off between bitrate and quality, by minimizing a
distortion due to the signal quantization for a specific bitrate.
Among the prior works in 3D mesh compression, King and
Rossignac proposed for instance a bit allocation based on
relationships between the number of vertices, the bitrate per
coordinate, a desired approximation error, and the bitstream
size [3]. More recently, Karni and Gotsman [4] proposed to
truncate their spectral coefficients according to a given RMS
value. We also proposed in [5] a model-based bit allocation
controlling the quantization error energy to dispatch the bits
across wavelet subbands of meshes obtained with MAPS
[6]. Recently, an estimation-quantization algorithm has been
proposed to encode the normal mesh geometry [7].
In this paper, we propose a model-based bit allocation for a
wavelet coder of normal meshes [8]. We focus on these meshes
because of their compact multiresolution representation based
on subdivision connectivity. The particularity of these meshes
is that most of details are in the normal direction to the
surface and are expressed through a single scalar (see Fig. 1).
The allocation proposed for these normal meshes optimizes
the rate-distortion trade-off during the encoding of the normal
mesh geometry. Precisely, we aim to find the best quantization
for each wavelet subband such that the global reconstruction
error is minimized under a constraint on the global bitrate.
A distortion measure is consequently needed to evaluate the
reconstructed error of the decoded mesh.
Several distortion measures have been exploited for 3D
mesh compression of irregular meshes [4], [3]. In order to
measure the loss related to quantization, the authors of [4]
introduce for instance a metric which captures the visual

difference between the original mesh and its approximation:
to this purpose, they use a criterion depending on the
geometric distance and the laplacian difference between
models. Unfortunately, this kind of vertex-to-vertex measures
cannot be applied in our case since the proposed coder uses
a remeshing technique modifying the topology of the input
mesh. In that case, the most frequently quality criterion used
is the so-called surface-to-surface (S2S) distance [1]. Based
on the Hausdorff distance, this distance does not depend
on the mesh sampling. Unfortunately, the S2S distance is a
computationally intensive process which does not permit real
time computation during process, particularly from wavelet
coefficients.
The main contribution of this paper is to show how the S2S
distance can be approximated in function of the quantization
error of wavelet coefficients, and then theoretically modeled
according to the wavelet coefficient distributions. This permits
to design a fast and low-complex model-based bit allocation.

This paper is organized as follows. Section II introduces the
normal meshes and the proposed coder. Section III deals with
the approximation of the S2S distance across a wavelet coder.
Section IV introduces the model-based bit allocation. Finally,
we show results and conclude in section V.

II. BACKGROUNDS

A. Normal meshes

A normal mesh
���������
	�������������

, where
	����

and
�����

are
respectively the set of vertices and the set of triangular faces,
can also be defined by a coarse mesh

���
and several sets

of details ������� �� , i being the resolution level (see Fig. 1).
Computed in function of the normal at the surface, most of
the geometry information is concentrated in the coordinates �
of the details (normal components), the coordinates � and  
(tangential components) being infinitesimal [8].

B. Overall coding scheme

Fig. 2 presents the proposed coder. The normal remesher
provides a normal mesh

�����
, from the irregular input one� � � . A ! -level unlifted butterfly wavelet transform is then

applied to obtain the subbands of wavelet coefficients. This
scheme corresponds to the optimal wavelet transform for
the normal meshes [2]. The sets of tangential and normal
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Fig. 1. A normal mesh is obtained by successive connectivity subdivision
of a coarse mesh, and some details depending on the normals at the surface.
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Fig. 2. Overall scheme of the proposed coder.

components are now encoded with an uniform scalar quantizer
depending on the allocation process, and an entropy coder
adapted to the multiresolution mesh [5]. In parallel, the con-
nectivity of the coarse mesh is encoded with the lossless coder
of Touma and Gotsman [9]. Hence, we obtain the quantized
normal mesh 0�����1�2� 0	������������� , with 0	���� the set of quantized
vertices.

III. CHOICE OF THE DISTORTION MEASURE

Since a remeshing technique is included in the proposed
coder, we choose as distortion measure 354 the energy of the
S2S distance between the irregular input mesh

� � � and the
quantized normal mesh 0����� :364 � �87 �
� � �9� 0�����/�;: (1)

where �87 �;< �/< � represents the S2S distance.

A. Definition of the surface-to-surface distance

The S2S distance between
� � � and 0����� is defined by�87 �
� � �� 0�������=�?>A@CBEDGF� �
� � �� 0�������IHJF� � 0�������� � ���-K-� (2)

where
F� �
�L���NMO�

is the unilateral distance between two
meshes, given byF� �
�L��� M �P�NQSRT � T9U=UVCW9X � � Y���� M � : � �[Z]\^ < (3)T � T

is the area of
�

, and � � Y�����M_� is the distance between
a point

Y
belonging to a surface represented by a mesh

�

TABLE I
MEAN DIFFERENCE BETWEEN `(Ca "&*-,�bdc"&*-,Ge AND `(�a c"&*-,�b�"&*-,Ge

ACCORDING TO THE BITRATE PER IRREGULAR VERTEX (B/IV), COMPUTED

FOR 5 TYPICAL MODELS (HORSE, RABBIT, VENUS, SKULL AND FELINE).

Bitrate (b/iv) f]g 1-2 2-6 6-10 h]gji`(�a "&*-,�b c"&*-,Ie 1.07e-1 1.30e-2 5.34e-3 1.72e-3 1.43e-3`(�a c"&*-,�b
"&*-,Ie 1.02e-1 1.28e-2 5.34e-3 1.72e-3 1.43e-3

Difference (%) 3.680 1.890 0.291 0.261 0.074

and the surface represented by a mesh
��M

. This distance is
defined by� � Y���� M �=�k>6l mV/n_W9Xon T T Y5pqY M T T : � T T YAp Proj

Xon � Yr� T T : (4)

with
T T < T T : the s : -norm, and Proj

X n � Yr�
the orthogonal projec-

tion of
Y

over
�NM

. To avoid a real computation of the S2S
distance during the bit allocation, which is a computationally
intensive process, we propose to approximate this distortion
measure.

B. Proposed approximation of the surface-to-surface distance

First, the normal remesher provides that the irregular mesh� � � and the normal mesh
�����

are visually very similar. The
S2S distance between them is thus negligible, and (1) can be
approximated by364utv�87 �
������ 0�����/� :t >A@CBJD F� �
������ 0������� : H F� � 0������������/� : K (5)

Let us study the difference of ”symmetry” between the dis-
tances

F� �
������ 0������� and
F� � 0�������������� . Table I presents a

mean of the relative errors between these two distances, com-
puted on 5 typical models, and according to different bitrate
ranges. The difference being very low ( wyx{z ) for each bitrate
range, we can assume that

F� �
������ 0������� t F� � 0�������������� ,
and we can approximate (5) by364ut F� � 0�������������� :t RT 0����� T U|UVCW~}X~�
� � � Y���������� : ��0�����< (6)

A normal mesh being densely sampled, the integral in (6) can
be numerically approximated by a discrete sum [10], and (6)
becomes 364�t RT 0	���� T]�}� W=}� �
� � � 0� ��������� : < (7)

with
T 0	���� T the number of vertices of

�����
. Now, we have

to approximate � � 0� ���������$� T T 0� p Proj
X~�
�9� 0� � T T : . Let us

introduce the quantization error vector �� � � � between a vertex� and its quantized version 0� . Asymptotically, i.e, for optimal
high bitrate coding, this error vector is mostly colinear to the
normal at the surface

�����
in � , since most of tangential

components of a normal mesh are infinitesimal [8]. Also,



Proj
X~�
��� 0� � being the orthogonal projection of 0� over

�����
,

we can make the approximation: Proj
X~�
�9� 0� � t � [11]. Finally,

we can state that
T T 0� p Proj

X~�
��� 0� � T T : t T T 0� p � T T : � T T �� � � � T T : ,
and (7) becomes364ut RT 	���� T �� W � �
� T T �� � � � T T :: < (8)

The right part of (8) is the MSE � :� ��� related to the normal
mesh vertices. Finally, in case of densely sampled meshes, the
energy of the S2S distance between the input mesh and the
quantized normal one can be approximated by the MSE related
to the quantization of the normal mesh geometry:364 � �87 �
� � �� 0�����/� : t&� :� ��� < (9)

To design a fast and low-complexity bit allocation for a
wavelet coder, this approximation has to be expressed in
function of the wavelet coefficient subbands.

C. MSE across a wavelet coder

In [12], we have shown that the MSE on a 3D mesh encoded
across a wavelet coder can be written as� :� ��� �k�� � � ��� ��� :� � (10)

with � :� � the MSE related to the subband � , and � � the
weight due to the biorthogonality of the wavelet transform. To
distinguish the tangential information from the normal one in
the wavelet coefficient of a normal mesh [8], each subband of
high frequency coefficients is treated as 2 independent subsets:
the tangential set, defined by the set of coordinates � and  
of the wavelet coefficients, and the normal set defined by the
set of � -coefficients [12], [11], [7]. On the other hand, the
low frequency wavelet coefficients are splitted in three scalar
sets and encoded thanks to a differential coding [13]. Hence,
the MSE � :� ��� related to the normal mesh geometry across a! -level wavelet coder can be rewritten as� :� ��� � �� � � ��� � �� W��G� � :� ��� � (11)

where ��� ( ����?� ) is the index set of a high frequency subband
i defined by ��� � � R ��� � , and � � the index set of the low
frequency subband defined by � �+� � R ���{��� � . For �?����

,� :� ��� � and � :� ��� : are respectively the MSE of the tangential
and normal sets of the ���
� wavelet subband, and � :� � � � is the
MSE due to quantization of the ���
� coordinate set of the low
frequency coefficients.

IV. MODEL-BASED BIT ALLOCATION

A. Problem statement and solutions

The idea of the bit allocation across the wavelet coefficient
subbands is to perform the best quantization of the coefficients

optimizing the rate-distortion trade-off. The general purpose of
the bit allocation process is precisely to determine the best set
of quantization steps �� ���� �� that minimizes the reconstruction
error 364 , at a given rate ¡ �
¢ �j£G¤ � . This can be formulated by
the following problem:�_¥¦�¨§ minimize 364 � �� /��� �C� �

under constraint ¡�4 � �� /��� �� �=� ¡ �
¢ �j£G¤ �
By using a lagrangian criterion and the distortion measure
(11), this constrained allocation problem can be written as

�8© � �� /��� �� �=�k�� � � ��� � �� W��G� � :� �_ª « �  /��� � �¬yy®¯ �� � � � �� W��G�° ��� ��¡±��� � �  /��� � ��p ¡ �
¢ �j£G¤ ��²³ � (12)

with  the lagrangian operator, ¡���� � �  /��� � � the bitrate related
to the � � � �
� component set. The coefficients ° ��� � depend on
the subsampling and correspond to ° ��� � ��´ ����µ � ���¶��� �C� ��·{�
�A¸T 	���� T �

. The only way to allocate the bits in different subbands
without pre-quantizing each subband is to perform a model-
based bit allocation. This model-based bit allocation takes into
account theoretical models for distortion and bitrate, depend-
ing on quantization steps and probability density functions
of each data set. We have shown in [11] that distributions
of tangential and normal component sets can be modeled
by a Generalized Gaussian Distribution (GGD) [11]. Hence,
according to [14], distortion and bitrate can be written as� :� ��� � � � :��� � 3 �/¹ /��� � ��º ��� � � and ¡±��� � �  /��� � �»� ¡ �/¹ /��� � ��º ��� � � , with� :��� � and

º ��� � respectively the variance and the GGD parameter
of the � � � �
� set,

¹ /��� � �N¼ �_ª «½ �_ª « . 3 �/¹ /��� � ��º ��� � � and ¡ �/¹ /��� � ��º ��� � � are
simple functions also given by [14].
The solution of this constrained allocation problem is obtained
by computing the derivatives of (12) with respect to the
normalized quantization steps � ¹ ���� �� and  :� �P� :��� �r¾ 3 �/¹ /��� � ��º ��� � �¾ ¹ /��� � ¬y ° ��� � ¾ ¡ �/¹ /��� � ��º ��� � �¾ ¹ /��� � �¿�

�� � � � �� W��G�C° ��� ��¡ �/¹ /��� � ��º ��� � �k� ¡ �
¢ �j£G¤ � <
Finally, we have to solve the following system of

��� ! ¬ x �
equations with

��� ! ¬ x � unknowns:À �/¹ /��� � �P�ÂÁ�ÃÅÄ�Æ¼ �_ª « � Ç �_ª «jÈÁ{Æ¼ �_ª «Á�É¨Ä�Æ¼ �_ª « � Ç �_ª «jÈÁ{Æ¼ �_ª «
�Êp  ° ��� �� ��� :��� � (13a)

�� � � � �� W��G� ° ��� ��¡ �/¹ /��� � ��º ��� � �Ë� ¡ �
¢ �j£G¤ � < (13b)

B. Model-based Algorithm

In order to solve the system (13) and to speed the bit
allocation process up, Parisot et al. propose to use, in case



of GGD, two precomputed tabulations of parametric curvesD ¡ HÍÌ�Î=�;p À �-K and
D   HÍÌ�Î=�;p À �-K , with h given by [14]. The first

one permits to verify the constraint on the bitrate (13b), and the
second one permits to compute the quantization step verifying
(13a). In that case, the algorithm becomes:

1)  is given. For each set � � � , compute the corre-
sponding bitrate ¡���� � with precomputed tabulations ofD ¡ HÍÌ�Î=�;p À �-K ;

2) While (13b) is not verified, calculate a new  by
dichotomy and return to step R ;

3) For each set � � � , compute the optimal quantization step /��� � with precomputed tabulations of
D   HÍÌ�Î=�;p À �-K , and 

found in step R ;
The convergence of this algorithm is reached after few itera-
tions, involving a fast and low-complexity process.

V. RESULTS AND CONCLUSION

We compare the performances of the proposed coder with
state-of-the-art coders: the multiresolution coders NMC of
Normal Mesh Compression [2], PGC of Progressive Geometry
Compression [15], the coder of [5] for ”meshes from MAPS”,
and the single rate coder TG of Touma and Gotsman [9]. Fig.
3 and 4 show the resulting bitrate-PSNR curves for the models
RABBIT and HORSE. The PSNR is related to the S2S distance
between the irregular input mesh and the quantized normal
one, normalized by the bounding box diagonal of the input
mesh (computed with MESH [16]). The given bitrate is the
number of bits per irregular vertex.

We observe that the proposed coder provides better results
than all the state-of-the-art coders: our method provides
slightly better results than NMC (up to +1.2 dB). As
expected, the MSE is a good way to approximate the S2S
distance between the input mesh and the reconstructed one
when a normal remesher is used to obtain the semiregular
mesh. Finally, we design an efficient wavelet coder for
3D meshes including a bit allocation that optimize the
quantization of the wavelet coefficients according to a target
bitrate.
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