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ON THE EXISTENCE OF ZERO-SUM SUBSEQUENCES OF DISTINCT LENGTHS by

In this paper, we obtain a characterization of short normal sequences over a finite Abelian p-group, thus answering positively a conjecture of Gao for a variety of such groups. Our main result is deduced from a theorem of Alon, Friedland and Kalai, originally proved so as to study the existence of regular subgraphs in almost regular graphs. In the special case of elementary p-groups, Gao's conjecture is solved using Alon's Combinatorial Nullstellensatz. To conclude, we show that, assuming every integer satisfies Property B, this conjecture holds in the case of finite Abelian groups of rank two.

Introduction

Let P be the set of prime numbers and let G be a finite Abelian group, written additively. By exp(G) we denote the exponent of G. If G is cyclic of order n, it will be denoted by C n . In the general case, we can decompose G as a direct product of cyclic groups C n 1 ⊕ • • • ⊕ C nr where 1 < n 1 | . . . | n r ∈ N. For each g in G, we denote by ord(g) its order in G, and by g the subgroup it generates.

By a sequence over G of length ℓ, we mean a finite sequence of ℓ elements from G, where repetitions are allowed and the order of elements is disregarded. We use multiplicative notation for sequences. Let

S = g 1 • . . . • g ℓ = g∈G g vg(S)
be a sequence over G, where, for all g ∈ G, v g (S) ∈ N is called the multiplicity of g in S. We call Supp(S) = {g ∈ G | v g (S) > 0} the support of S, and σ(S) = ℓ i=1 g i = g∈G gv g (S) the sum of S. In addition, we say that s ∈ G is a subsum of S when s = i∈I g i for some ∅ I ⊆ {1, . . . , ℓ}.

If 0 is not a subsum of S, we say that S is a zero-sumfree sequence. If σ(S) = 0, then S is said to be a zero-sum sequence. If, moreover, one has σ(T ) = 0 for all proper subsequences T | S, then S is called a minimal zero-sum sequence.

By D(G) we denote the smallest integer t ∈ N * such that every sequence S over G of length |S| ≥ t contains a non-empty zero-sum subsequence. The number D(G) is called the Mathematics Subject Classification (2010): 11R27, 11B75, 11P99, 20D60, 20K01, 05E99, 13F05.

Davenport constant of the group G. Even though its definition is purely combinatorial, the invariant D(G) found many applications in number theory (see for instance the book [START_REF] Geroldinger | Halter-Koch Non-unique factorizations. Algebraic, combinatorial and analytic theory[END_REF] which presents the various aspects of non-unique factorization theory and [START_REF]Geroldinger Additive group theory and non-unique factorizations[END_REF] for a recent survey). Thus, many direct and inverse problems related to D(G) have been studied during last decades, and even if numerous results were proved (see [START_REF] Geroldinger | Halter-Koch Non-unique factorizations. Algebraic, combinatorial and analytic theory[END_REF]Chapter 5] and [START_REF] Gao | Geroldinger Zero-sum problems in finite abelian groups : a survey[END_REF] for a survey), its exact value is known for very special types of groups only.

A sequence S over a finite Abelian group G is said to be dispersive if it contains two nonempty zero-sum subsequences S 1 and S 2 of distinct length, and non-dispersive otherwise, that is, when all non-empty zero-sum subsequences of S have same length. One can readily notice, using the very definition of the Davenport constant, that every sequence S over G with |S| ≥ 2D(G) is dispersive, since S has to contain at least two disjoint non-empty zero-sum subsequences. So, one can ask for the smallest integer t ∈ N * such that every sequence S over G with |S| ≥ t is dispersive. The associated inverse problem is then to make explicit the structure of non-dispersive sequences over a finite Abelian group. Concerning this problem, Gao, Hamidoune and Wang recently proved [START_REF] Gao | Distinct lengths modular zero-sum subsequences : a proof of Graham's conjecture[END_REF] that every non-dispersive sequence of n elements in C n has at most two distinct values, solving a conjecture of Graham reported in a paper of Erdős and Szemerédi [4]. This result was then generalized by Grynkiewicz in [START_REF] Grynkiewicz | Note on a conjecture of Graham[END_REF].

In this article, we study a still widely open conjecture, proposed by Gao in [START_REF] Gao | Zhuang Sequences not containing long zero-sum subsequences[END_REF], on the structure of the so-called normal sequences over a finite Abelian group G. A sequence S over G with |S| ≥ D(G) is said to be normal if all its zero-sum subsequences S ′ satisfy |S ′ | ≤ |S| -D(G) + 1. Gao's conjecture is the following (see also [START_REF] Gao | Geroldinger Zero-sum problems in finite abelian groups : a survey[END_REF]Conjecture 4.9]).

Conjecture 1. -Let G ≃ C n 1 ⊕ • • • ⊕ C nr , with 1 < n 1 | . . . | n r ∈ N,
be a finite Abelian group. Let also S be a normal sequence over G of length |S| = D(G) + i -1, where i ∈ 1, n 1 -1 . Then S is of the form S = 0 i T , where T is a zero-sumfree sequence.

This notion of a normal sequence, first introduced in [START_REF] Gao | Zhuang Sequences not containing long zero-sum subsequences[END_REF], happens to be crucial in the characterization of sequences S over G with |S| = D(G) + |G| -2 and which do not contain any zero-sum subsequence S ′ satisfying |S ′ | = |G| (see [START_REF] Gao | Zhuang Sequences not containing long zero-sum subsequences[END_REF]Theorem 1.7]). The following two theorems, due to Gao (see [START_REF] Gao | Zhuang Sequences not containing long zero-sum subsequences[END_REF]Theorems 1.5 and 1.6]), are the only results known concerning the structure of normal sequences over a finite Abelian group. Before stating these two results on Conjecture 1, we recall that an integer n ≥ 2 is said to satisfy Property B if every minimal zero-sum sequence over C 2 n with |S| = 2n -1 contains some element repeated n -1 times (see [START_REF] Geroldinger | Halter-Koch Non-unique factorizations. Algebraic, combinatorial and analytic theory[END_REF]Section 5.8], and [START_REF] Gao | Grynkiewicz Inverse zero-sum problems III[END_REF][START_REF] Gao | Inverse zero-sum problems[END_REF][START_REF] Schmid | Inverse zero-sum problems II[END_REF] for recent progress). It is conjectured that every n ≥ 2 satisfies Property B. 

(i) G is a finite cyclic group. (ii) G ≃ C 2 n ,

New results and plan of the paper

In this paper, we use the notion of a dispersive sequence to obtain a characterization of short normal sequences over a finite Abelian p-group, thus improving both Gao's results on this problem. The main theorem (Theorem 2.3) is proved in Section 3 yet, before giving this general result, we would like to emphasize its consequences.

Theorem 2.1. -Let G be a finite Abelian p-group, and let S be a normal sequence over G with |S| = D(G) + i -1, where i ∈ 1, p -1 . Then S is of the form S = 0 i T , where T is a zero-sumfree sequence. The main result of this paper is deduced from a theorem of Alon, Friedland and Kalai (see [START_REF] Alon | Regular subgraphs of almost regular graphs[END_REF]Theorem A.1]), originally proved so as to study the existence of regular subgraphs in almost regular graphs. Our result is the following.

Theorem 2.3. -Let G be a finite Abelian p-group, and let S be a sequence over G with

|S| = D(G) + i -1, where i ∈ 1, p . Let also A be any (i -1)-subset of 1, p -1 . Then S contains a non-empty zero-sum subsequence S ′ such that |S ′ | ≡ b (mod p), for all b ∈ A.
Consequently, Theorem 2.3 gives the existence of non-empty zero-sum subsequences whose length avoids certain remainders modulo p. In addition, this result applies to 'short' sequences, the length of which is close to D(G), thus allowing one to tackle Gao's conjecture, whereas other existing results with a similar flavor (see for instance [19, Theorem 1.2]) hold for longer sequences only. In particular, Theorem 2.3 provides the following insight into dispersive sequences. (i

) If i ≥ 2 and S contains a zero-sum subsequence S ′ with p ∤ |S ′ |, then S is dispersive. (ii) If S contains no non-empty zero-sum subsequence S ′ with p | |S ′ |, then i ≤ p-1
, and S has to contain at least i non-empty zero-sum subsequences with pairwise distinct lengths.

In Section 4, we give a proof of Theorem 2.3, in the special case of elementary p-groups, using the polynomial method. Since this proof is short and may be relevant in its own right, we will present it in full.

In Section 5, we then prove the following theorem, which extends Statement (ii) of Theorem 1.1 to every finite Abelian group of rank two. The proof of this theorem relies on a structural result obtained by Schmid [START_REF] Schmid | Inverse zero-sum problems II[END_REF], which is a characterization of long minimal zero-sum sequences over these groups, provided that a suitable divisor of their exponent satisfies Property B. Finally, in Section 6, we propose two general conjectures suggested by the results proved in this paper.

The case of finite Abelian p-groups

As stated in Section 2, we prove our Theorem 2.3 by using the following theorem of Alon, Friedland and Kalai (see [START_REF] Alon | Regular subgraphs of almost regular graphs[END_REF]Theorem A.1]). Before stating this result, we need to introduce the following notation. Let Z be the set of integers. For S ⊆ Z and m ∈ Z, we denote by card m (S) the number of distinct elements in S modulo m. Theorem 3.1. -Let p be a prime, and let

1 ≤ d 1 ≤ • • • ≤ d n be n integers. For 1 ≤ j ≤ n, let S j ⊆ Z be a set of integers containing 0. For 1 ≤ i ≤ m, let (a i,1 , . . . , a i,n ) be a vector with integer coordinates. If m ≥ n j=1 p d j -card p (S j ) + 1,
then a subset ∅ I ⊆ {1, . . . , m} and numbers s j ∈ S j (1 ≤ j ≤ n) exist such that i∈I a i,j ≡ s j (mod p d j ), for all 1 ≤ j ≤ n.

For instance, it may be observed that Theorem 3.1 provides the exact value for the Davenport constant of a finite Abelian p-group, which was originally obtained by van Emde Boas, Kruyswijk and Olson (see [START_REF] Van Emde Boas | Kruyswijk A combinatorial problem on finite abelian groups[END_REF][START_REF] Olson | A combinatorial problem on finite abelian groups, I[END_REF]).

Indeed, let G ≃ C p d 1 ⊕ • • • ⊕ C p dr , where 1 ≤ d 1 ≤ • • • ≤ d r ∈ N,
be a finite Abelian p-group, and let us set D * (G) = r i=1 p d i -1 + 1. On the one hand, an elementary construction (see [START_REF] Geroldinger | Halter-Koch Non-unique factorizations. Algebraic, combinatorial and analytic theory[END_REF]Proposition 5.1.8]) implies that D(G) ≥ D * (G). On the other hand, let (e 1 , . . . , e r ) be a basis of G, where ord(e i ) = p d i for all i ∈ 1, r , and let Using Theorem 3.1, we can now prove the main theorem of this paper. Let also A be a (i -1)-subset of 1, p -1 , and Ā = 0, p -1 \A. For all j ∈ 1, n , we set

S = g 1 • . . . • g m be a sequence over G of length m = D * (G). Setting g i = a i,1 e 1 + • • • + a i,
Proof of Theorem 2.3. -Let G ≃ C p d 1 ⊕ • • • ⊕ C p dr , where 1 ≤ d 1 ≤ • • • ≤ d r ∈ N,
S j = Ā if j = n, {0} otherwise. Since p dn -card p (S n ) = p -Ā = |A| = i -1, one obtains n j=1 p d j -card p (S j ) + 1 = D(G) + i -1 = m.
Therefore, using Theorem 3.1, there exists a subset ∅ I ⊆ {1, . . . , m} such that

       i∈I a i,j ≡ 0 (mod p d j ) for all 1 ≤ j ≤ r, i∈I 1 = |I| ≡ s (mod p) for some s ∈ Ā.
Consequently, the sequence S ′ = i∈I g i is a non-empty zero-sum subsequence of S such that |S ′ | = |I| ≡ b (mod p) for all b ∈ A, which is the desired result.

We can now prove Theorem 2.1 and Corollary 2. 

| ≤ k = i -|S ′ |,
that is, T is also a normal sequence. Therefore, the induction hypothesis applied to T implies that S is of the form S = 0 k U. One has |U| = D(G) + ℓ -1, where 1 ≤ ℓ = ik ≤ i -1, and since S is a normal sequence, every non-empty zero-sum subsequence U ′ | U has to satisfy |U ′ | ≤ ℓ = ik, that is, U is also a normal sequence. Finally, the induction hypothesis applied to U implies that S is of the form S = 0 k 0 i-k V = 0 i V , where V is a zero-sumfree sequence over G, which completes the proof. which contradicts the assumption made on S. Now, we can prove the second part of the assertion, by induction on k ∈ 1, i . If k = 1, then since |S| ≥ D(G), S has to contain a zero-sum subsequence S 1 such that p ∤ |S 1 |, and we are done. Now, let k ∈ 2, i , and let us assume the assertion is true for k -1, that is, S contains at least k -1 non-empty zero-sum subsequences S 1 , . . . , S k-1 with pairwise distinct lengths. By hypothesis, one has p ∤ |S j | for all j ∈ 1, k -1 , and we can write |S j | = q j p + r j , where q j ≥ 0 and r j ∈ 1, p -1 . Now, let A be a (i -1)-subset satisfying {r 1 , . . . , r k-1 } ⊆ A ⊆ 1, p -1 . Then, by Theorem 2.3, we obtain the existence of a non-empty zero-sum subsequence

S k | S such that |S k | ≡ b (mod p) for all b ∈ A. In particular, |S k | = |S j | for all j ∈ 1, k -1 ,
and consequently, S contains at least k non-empty zero-sum subsequences S 1 , . . . , S k with pairwise distinct lengths, and the proof is complete.

The special case of elementary p-groups

In this section, we propose an alternative proof of Theorem 2.3, in the special case of elementary p-groups, which uses an algebraic tool introduced by Alon and called the Combinatorial Nullstellensatz (see [START_REF] Alon | Combinatorial Nullstellensatz[END_REF] for a survey on this method). This polynomial method uses the fact that a non-zero multivariate polynomial over a field cannot vanish on 'large' Cartesian products so as to derive a variety of results in combinatorics, additive number theory and graph theory. This method relies on the following theorem. -Let F be a field and let f be a polynomial in F[x 1 , . . . , x n ] of total degree deg(f ), admitting a monomial of the following form:

x α 1 1 x α 2 2 • • • x αn n of degree n i=1 α i = deg(f ).
Then, for any choice of n subsets S 1 , . . . , S n ⊆ F such that |S i | > α i for all i ∈ 1, n , there exists an element (s 1 , . . . ,

s n ) ∈ S 1 × • • • × S n such that one has f (s 1 , . . . , s n ) = 0.
Proof of Theorem 2.3 in the special case of elementary p-groups.

Let p be a prime, and let G ≃ C r p be an elementary p-group of rank r. Let also (e 1 , . . . , e r ) be a basis of G, and let S = g 1 • . . . • g m be a sequence over G of length m = D(G) + k -1, where k ∈ 1, p . The elements of S can be written in the following way:

g 1 = a 1,1 e 1 + . . . + a 1,r e r , . . . . . . . . . g m = a m,1 e 1 + . . . + a m,r e r .
Let A be a (k -1)-subset of 1, p -1 , and let also P ∈ F p [x 1 , . . . , x m ] be the following polynomial over the finite field F p of order p,

P (x 1 , . . . , x m ) = r h=1 p-1 j=1 m i=1 a i,h x p-1 i -j j∈A m i=1 x p-1 i -j -δ m i=1 x p-1 i -1 ,
where δ ∈ F p is chosen such that P (0, . . . , 0) = 0. In particular, since no element of A is a multiple of p, one has δ = 0. Moreover, the total degree of

r h=1 p-1 j=1 m i=1 a i,h x p-1 i -j j∈A m i=1 x p-1 i -j being (r(p -1) + (k -1)) (p -1) = (D(G) + k -2) (p -1) < m(p -1)
, we deduce that deg(P ) = m(p-1). Now, since the coefficient of m i=1 x p-1 i is -δ = 0, Theorem 4.1 implies that there exists a non-zero element x = (x 1 , . . . , x m ) ∈ F m p such that P (x 1 , . . . , x m ) = 0. Consequently, setting I = {i ∈ 1, m | x i = 0}, we obtain that S ′ = i∈I g i is a nonempty zero-sum subsequence of S satisfying |S ′ | = |I| ≡ b (mod p) for all b ∈ A, which completes the proof.

The case of finite Abelian groups of rank two

In this section, we prove a result extending Statement (ii) of Theorem 1.1 to every finite Abelian group of rank two. The proof of this theorem relies on the following result of Schmid [START_REF] Schmid | Inverse zero-sum problems II[END_REF], which gives a structural characterization of minimal zero-sum sequences of length D(G) = m + mn -1 over the group G ≃ C m ⊕ C mn , where m, n ∈ N * and m ≥ 2, under the hypothesis that m satisfies Property B. x i ≡ -1 (mod ord(e j )).

(ii) S = g sm-1

1 (n+1-s)m i=1 (-x i g 1 + g 2 ) where s ∈ 1, n , {g 1 , g 2 } is a generating set of
G with ord(g 2 ) = mn and such that s = 1 or mg 1 = mg 2 , and

x i ∈ N with (n+1-s)m i=1 x i = m -1.
In addition, if m satisfies Property B, then all minimal zero-sum sequences of maximal length over G are of this form.

Moreover, Gao and Zhuang proved a useful structural result on normal sequences (see [START_REF] Gao | Zhuang Sequences not containing long zero-sum subsequences[END_REF]Theorem 1.2]). In this section, we will use the following corollary of this theorem.

Theorem 5.2. -Let G be a finite Abelian group, and let S be a normal sequence over G. Then S is of the form S = 0 k T U, where T is a zero-sumfree sequence with |T | = D(G)-1, and U is a sequence over G such that Supp(U) ⊆ Supp(T ).

Using the above two results, we can now prove the following theorem. 

S = g ℓ 1 1 ℓ 2 i=1 (-x i g 1 + g 2 ) ,
where {g 1 , g 2 } is a generating set of G with ord(g 2 ) = mn, and ℓ 1 , ℓ 2 ∈ N are such that ℓ 1 + ℓ 2 = |S|. In particular, one has mg 1 ∈ mg 2 , and ag 1 ∈ g 2 if and only if m | a. Since |S| ≥ D(G), it has to contain a non-empty zero-sum subsequence S ′ . Now, let us write S ′ = V W where V | g ℓ 1 1 and W = i∈I (-x i g 1 + g 2 ), for some I ⊆ 1, ℓ 2 . We obtain where i ∈ 1, m -1 . By Theorem 5.2, S is of the form S = 0 k T U, where T is a zero-sumfree sequence with |T | = D(G) -1, and U is a sequence over G such that Supp(U) ⊆ Supp(T ). Since m > i, S does not contain any zero-sum subsequence S ′ with |S ′ | ≥ m. So, it follows from Theorem 5.3 that U is empty, which implies k = i and completes the proof.

σ(S ′ ) = |V | g 1 - i∈I x i g 1 + |W | g 2 = 0. Since σ(S ′ ) = 0 ∈ g 2 ,

Two concluding remarks

In this section, we would like to present two conjectures suggested by the results proved in this paper. The first one may be interpreted as a more general version of Theorem 2.3, and would imply Conjecture 1 in the same way as Theorem 2.3 implies Theorem 2.1. Let G be a finite Abelian group of exponent m. By s mN (G) we denote the smallest t ∈ N * such that every sequence S over G with |S| ≥ t contains a non-empty zerosum subsequence S ′ with |S ′ | ≡ 0 (mod m). The exact value of the invariant s mN (G) is currently known for finite Abelian groups of rank r ≤ 2, and finite Abelian p-groups only (see [START_REF] Gao | Geroldinger Zero-sum problems in finite abelian groups : a survey[END_REF]Theorem 6.7]). For instance, Conjecture 2 implies that for all integers n, r ≥ 1, one has s nN (C r n ) = (r + 1)(n -1) + 1. This conjecture would also help to tackle the inverse problem associated to s mN (G), by giving an account of the variety of zero-sum subsequences contained in a long sequence without any non-empty zero-sum subsequence of length congruent to 0 modulo m. Finally, any progress on this conjecture would provide a new insight into the structure of sequences over C n without any zero-sum subsequence of length n (see [START_REF] Gao | Geroldinger Zero-sum problems in finite abelian groups : a survey[END_REF]Theorem 7.5 and Conjecture 7.6], as well as [START_REF] Savchev | Long n-zero-free sequences in finite cyclic groups[END_REF]).

Conjecture 2. -Let G ≃ C n 1 ⊕ • • • ⊕ C nr , with 1 < n 1 | . . . | n r ∈ N,
Let G be a finite Abelian group of exponent m, and let ℓ ≥ 1 be an integer. By η ℓm (G) we denote the smallest t ∈ N * such that every sequence S over G with |S| ≥ t contains a non-empty zero-sum subsequence S ′ with |S ′ | ≤ ℓm. It may be observed that, for every ℓ ≥ ⌈D(G)/m⌉, one has the equality η ℓm (G) = D(G). Now, our second conjecture is the following. Let G be a finite Abelian group of order n and exponent m. For instance, if ℓ = 1 in Conjecture 3, one obtains a generalization of Conjecture 6.5 in [START_REF] Gao | Geroldinger Zero-sum problems in finite abelian groups : a survey[END_REF], due to Gao. If ℓ = n/m, then, since it is known that D(G) ≤ n = ℓm, we obtain η ℓm (G) = D(G). Therefore, Conjecture 3 implies that every sequence S over G such that |S| = D(G) + i -1, where i ∈ 1, n , has to contain a zero-sum subsequence S ′ with i ≤ |S ′ | ≤ n, which can be seen as a generalization of Gao's theorem (see [START_REF] Gao | A combinatorial problem on finite abelian groups[END_REF]Theorem 1]). Finally, if ℓ = ⌈D(G)/m⌉ and i = ℓm, then Conjecture 3 implies that every sequence S over G with |S| = D(G) + ℓm -1 has to contain a zero-sum subsequence S ′ with |S ′ | = ℓm, which would provide an answer to a problem of Gao (see [START_REF] Gao | On zero-sum subsequences of restricted size II[END_REF]Section 3] and [START_REF] Gao | Geroldinger Zero-sum problems in finite abelian groups : a survey[END_REF]Theorem 6.12]).

Note added in proof

Shortly after this paper was accepted for publication, Reiher [START_REF] Reiher | A proof of the theorem according to which every prime number possesses Property B[END_REF] proved that Property B holds for all primes. It follows from the results of [START_REF] Gao | Grynkiewicz Inverse zero-sum problems III[END_REF] that all integers n ≥ 2 satisfy Property B. Thus, our Theorem 2.5 holds unconditionally, which gives a positive answer to Conjecture 1 for all Abelian groups of rank two. Further progress has since been made on this conjecture [START_REF] Guan | Normal sequences over finite abelian groups[END_REF].
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  we have m | |V | -i∈I x i which implies that, for some a ∈ N, one has |V | -i∈I x i = amg 2 . Thus, σ(S ′ ) = (am + |W |) g 2 = 0, which gives m | ord(g 2 ) | am + |W |. Consequently, m | |W |. If |W | ≥ m, then we are done. Otherwise, one has |W | = |I| = 0, and σ(S ′ ) = |V | g 1 = 0 ∈ g 2 . Thus, m | |V | = |S ′ |, and since S ′ is a non-empty zero-sum subsequence of S, we obtain |S ′ | ≥ m, which is the desired result. Theorem 2.5 is now an easy corollary of Theorem 5.3. Proof of Theorem 2.5. -Let G ≃ C m ⊕ C mn , where m, n ∈ N * and m ≥ 2, be a finite Abelian group of rank two. Let also S be a normal sequence over G with |S| = D(G)+i-1,

  be a finite Abelian group, and let S be a sequence over G with |S| = D(G) + i -1, where i ∈ 1, n 1 . Let also A be any (i -1)-subset of 1, n 1 -1 . Then S contains a non-empty zero-sum subsequence S ′ such that |S ′ | ≡ b (mod n 1 ), for all b ∈ A.

Conjecture 3 .

 3 -Let G be a finite Abelian group of exponent m, and let S be a sequence over G with |S| = η ℓm (G) + i -1, where i ∈ 1, ℓm . Then S contains a zero-sum subsequence S ′ of length i ≤ |S ′ | ≤ ℓm.

  Firstly, Theorem 2.1 improves Theorem 1.2, by showing that the assumption i ≤ 6 is unnecessary for finite Abelian p-groups. Secondly, it improves Statement (iii) of Theorem 1.1, by settling Conjecture 1 for every elementary p-group. More generally, we can derive immediately from Theorem 2.1 the following corollary on Gao's conjecture. Corollary 2.2. -Conjecture 1 holds for all groups of the form G ≃ C p ⊕ H, where H is any finite Abelian p-group.
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