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A. Goštauto 12, LT-01108 Vilnius, Lithuania and
Vilnius Pedagogical University, Studentu̧ 39, LT-08106 Vilnius, Lithuania

Stephan Fritzsche
Helmholtzzentrum für Schwerionenforschung (GSI), D-64291 Darmstadt, Germany

Paul Indelicato
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I. INTRODUCTION

A non-zero permanent electric dipole moment (EDM)
of an atom, molecule, or any other composite or ele-
mentary particle is one of the possible manifestations of
parity (P) and time reversal (T) symmetry violations.
In the absence of any external electromagnetic field an
atom can have a permanent EDM either due to an in-
trinsic EDM of one of its constituent particles or due to
P- and T-violating (P-odd and T-odd) interactions be-
tween these particles [1, 2]. When compared with the in-
trinsic EDM of the constituent particles, the net induced

EDM of an atom or molecule is often expected to be
larger by several orders of magnitude due to various nu-
clear and atomic enhancement mechanisms. Therefore,
atoms and molecules are considered to be very attrac-
tive for carrying out EDM experiments and in the search
for ‘new physics’ beyond the standard model, since, in
the latter case, the induced EDM is greatly suppressed,
when compared to the anticipated values from the ‘new’
theories [3]. In atomic physics, in particular, the experi-
mental search for a permanent EDM is gaining momen-
tum due to recent advancements in trapping free neutral
atoms [4, 5, 6], including various radioactive species [7, 8].

During the last decade several atoms were considered
as candidates for such experiments [3, 9]. These in-

volved (i) diamagnetic atoms (i.e., total angular mo-
mentum J = 0) in their respective ground states, (ii)
the alkalis, and (iii) atoms with a single p electron
outside closed shells, which were investigated in laser
traps for their prospectives to perform EDM experi-
ments. Presently, radium appears to be the most promis-
ing candidate, and experiments on this element are under
way at the Argonne National Laboratory [7, 10, 11] as
well as the Kernfysisch Versneller Instituut [12, 13, 14].
The main advantages of radium lay in (i) large nuclear
charge Z, (ii) simple electronic structure and closed-shell
[Kr]4d104f145s25p65d106s26p67s2 1S0 ground state, (iii)
octupole deformations of the radium nuclei for several
isotopes [15, 16], as well as in (iv) coincidental proxim-
ity of two atomic levels of opposite parity, 7s7p 3P1 and
7s6d 3D2, which are separated by a very small energy
interval 5.41 cm−1. In particular, the latter two advan-
tages give rise to a relatively large enhancement factor,
which is one of the largest among the atoms considered
so far [17, 18].

However, extraction of fundamental P- and T-violating
parameters or coupling constants from experimentally
measured atomic EDM requires atomic form factors
which can be provided only by an ab initio atomic the-
ory. Several of these form factors have been previously
calculated by the group of Flambaum [9, 17]. In practice,



2

there are essentially four different form factors, related to
four mechanisms which can induce an atomic EDM. An
atom can acquire a permanent EDM due to P- and T-
odd electron-nucleon interactions, or due to the electro-
magnetic interaction of atomic electrons with nuclear P-
and T-odd moments, of which the leading ones are: the
Schiff moment, the magnetic quadrupole moment, and
the electric octupole moment, respectively. The latter
two moments may exist only in nuclei with spins larger
than I = 1/2, while the Schiff moment may exist also
in isotopes with nuclear spin I = 1/2. Nuclei with spins
larger than I = 1/2 produce electric quadrupole shifts
which are difficult to account for in an EDM measure-
ment. Therefore an EDM induced by the Schiff moment
in I = 1/2 isotopes seems to be the property of choice
among (most of) the experimenters [13, 19, 20]. The
nuclear Schiff moment is a P-odd and T-odd (electric-
dipole) moment that occurs due to P- and T-violating
interactions at the nuclear scale. The Schiff moment
mixes atomic states of opposite parity and may induce
static EDM in atoms if magnetic and finite-size effects are
taken into account in the electron-nucleus interaction [3].

In the present paper, we present calculations for the
atomic EDM in radium, as induced by the Schiff moment.
The atomic wave functions were obtained within the
framework of the multiconfiguration Dirac-Hartree-Fock
(MCDHF) theory. The wave functions were separately
optimized for the 7s6d 3D2 and 7s7p 3P1 states (simi-
lar calculations were carried out recently for the scalar-
pseudoscalar contribution to the EDM in cesium [21]).
The main purpose of this paper is to provide a systematic
evaluation of the effects of electron correlation on the cal-
culated EDM of radium. We demonstrate the saturation
of the core-valence correlations, the dominant electron
correlation effect beyond the Dirac-Fock approximation.

II. THEORY

The Hartree-Fock and Dirac-Hartree-Fock theories,
based either on the finite-grid, basis-set, or some other
numerical methods provide a natural point of depar-
ture in describing the electronic structure of atoms and
molecules. For medium and heavy elements, these
methods are often combined with Breit-Pauli or Dirac-
Coulomb-Breit Hamiltonians in order to account for rel-
ativistic and retardation effects on the wave functions
and the level structure of complex atoms. However, the
main hindrance in applying modern computational tech-
niques arises from the electron-electron correlation, i.e.,
the residual interaction among the electrons beyond the
atomic mean field, and this is especially true for sys-
tems with many electrons. In neutral or nearly-neutral
systems, missing electron-correlation effects are indeed
often the main reason for the discrepancies between the
observed and calculated properties of atoms.

Today, many-body perturbation theory (MBPT) [22,
23, 24, 25] and various variational methods, often referred

to as the multiconfiguration Hartree-Fock (MCHF) the-
ory (or its relativistic counterpart — the Dirac-Hartree-
Fock theory [26, 27, 28]) are the two dominant pillars in
performing atomic structure calculations. These meth-
ods are designed to evaluate the electron correlation ef-
fects in a systematic manner. For MBPT and most re-
lated methods, a nearby closed-shell configuration of the
atom or ion is typically a convenient starting point. Dur-
ing the past decades, therefore, MBPT techniques were
mainly applied to systems with either no or just a single
electron outside closed shells. Systems with several elec-
trons in open shells are, in contrast, much more difficult
to deal with if benefit is to be taken from the theory of
angular momentum and spherical tensor operators, i.e.,
by using a restricted representation of the one-electron
orbitals. Difficulties occur then due to the large depar-
ture from a closed-shell V N potential and the rapid in-
crease in the complexity of all perturbation expansions
with any additional electron outside closed shells. Al-
though in the variational multiconfiguration methods the
algebraic complexity also depends on the shell structure
of the atom, these methods can be applied more easily
to systems with an arbitrary number of electrons outside
closed shells. Apart from the number of open shells, the
accuracy of multiconfiguration Dirac-Hartree-Fock calcu-
lations depends crucially also on the occupation of the
valence shell(s) but this occurs rather indirectly, through
the limiting number of configuration state functions that
can be included in a particular wave function expan-
sion. In this sense, the limitations are less conceptual
but arise from the available computer resources. These
limitations are typically related to the structure of the
valence shell(s), i.e., to the angular properties of the va-
lence electrons and their couplings.

A. MCDHF theory

We used a slightly modified version of the General Rel-
ativistic Atomic Structure Package (GRASP) [28] to gen-
erate the electronic wave functions. In the multiconfigu-
ration Dirac-Hartree-Fock method, the wave function for
a particular atomic state Ψ(γPJMJ) is obtained as a lin-
ear combination of configuration state functions (CSFs)
which are eigenfunctions of the parity P and the total
angular momentum operators J2 and Jz,

Ψ(γPJMJ) =

NCF∑

r

crΦ(γrPJMJ) . (1)

In the present computations, the wave functions were
separately generated for the 7s7p 3P1 and 7s6d 3D2

states of radium. Each wave function was obtained as
self-consistent solution of the Dirac-Hartree-Fock equa-
tions [26] by using a systematically increased multiconfig-
uration bases (of size NCF) of symmetry-adapted config-
uration state functions Φ(γrPJMJ). Configuration mix-
ing coefficients cr were obtained through the diagonali-
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FIG. 1: Nuclear charge density ρ [a.u.] as function of the nu-
clear radius r [fm], using a two-parameter Fermi distribution
for the 225

88Ra nucleus.

sation of the Dirac-Coulomb Hamiltonian

ĤDC =

N∑

j=1

[
cαj · pj + (βj − 1)c2 + V (rj)

]
+

∑

j>k

1/rjk

(2)
where V (r) is the monopole part of the electron-nucleus
interaction. A more detailed description of the the-
ory [27, 29] and method of calculation [30, 31] can be
found elsewhere.

B. Nuclear shape

All self-consistent-field calculations were done with the
nucleus modelled as a spherical ball by applying a two-
parameter Fermi distribution

ρ(r) =
ρ0

1 + exp[(r − c)/a]
(3)

in order to approximate the radial dependence of the
nuclear charge density ρ(r). The parameter ρ0 is de-
rived from the normalization condition

∫
ρ(r)d3r = Ze.

Figure 1 shows the nuclear charge density ρ(r) inside
the 225

88Ra nucleus, calculated with the parameters c =
6.85 fm and a = 0.523 fm (see [32, 33] for details). For
the other two isotopes the ’half-charge-density’ parame-
ter c was set to c = 6.83 fm (22388Ra) and c = 6.73 fm
(21388Ra), with the ’nuclear-skin-thickness’ a value un-
changed. These nuclear charge distributions were also
used in the subsequent calculations of the Schiff moment
expectation values (Eq. 14).

In the GRASP code [28] all electronic (radial) orbitals
are represented on a numerical grid which increases expo-
nentially in order to ensure an accurate representation of

the atomic wave functions near the nucleus. The grid
is generated from the formula ri = ro exp((i − 1)h),
with ro = 2.0 × 10−8 × a0, h = 7.0 × 10−3, and
i = 1, . . . , 4000. With the above parameters, there were
1255 grid points within the ’half-charge-density’ nuclear
radius rnuc = 6.85 fm, while the numerical represen-
tation of the full extent of all radial (core and valence)
electronic orbitals required more than 3000 points. With
the above choice of the radial grid, all necessary one-
and two-particle matrix elements can be calculated with
a (relative) accuracy of the order of ∼ 10−8 or better.
Note however that larger uncertainties may arise from
the radial matrix elements in Eq. (14), due to the ap-
proximate nature of the nuclear charge distribution in
Eq. (3) and due to deviations from radial symmetry of
those isotopes, for which nuclear deformations are signif-
icant (for model dependence see [34]).

C. Atomic EDM

Neglecting the contributions from the off-diagonal hy-
perfine interaction the coupled wave function of the to-
tal system ‘electrons + nucleus’ is given by the Clebsch-
Gordan expansion [35]

Ψ (γνPJIFMF ) =

∑

MJMI

〈JIMJMI |JIFMF 〉 Ψ (γPJMJ) Ψ (νIMI) (4)

where Ψ (νIMI) represents the ground state of the nu-
cleus, and where the standard notation is used for the
Clebsch-Gordan coefficients. For high-Z elements with
closed levels of opposite parity, such as radium in the
3P1 and 3D2 levels, one of the most important parity (P)
and time reversal symmetry (T) violating interactions is
caused by the nuclear Schiff moment S, which gives rise
to the electron-nucleus interaction:

ĤSM = 4π

N∑

j=1

(S · ∇j) ρ (rj) . (5)

In this Hamiltonian, ρ (r) is the normalized to unity nu-
clear density function from Eq. (3), and the Schiff mo-
ment S is directed along the nuclear spin I: S ≡ SI/I.
The interaction in Eq. (5) mixes states of different parity
and may also induce a static electric dipole moment of
the atom. Since the Schiff moment interaction is quite
weak, we can express the wave function of the (mixed-
parity) hyperfine state |F, MF 〉 of the level JP as [21]:
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Ψ̃ (γνJIFMF ) = aΨ (γνPJIFMF ) +

m∑

i=1

bi Ψ (αiν(−P )JiIFMF ) (6)

where the coefficient a of the given hyperfine state can be set to 1. The expansion coefficients of the other (hyperfine)
states of opposite parity can be perturbatively approximated by

bi =

〈
Ψ (αiν(−P )Ji IFMF ) |ĤSM |Ψ (γνPJIFMF )

〉

E (γPJ) − E (αi(−P )Ji)
. (7)

The mixed-parity wave function in Eq. (6) for the hyperfine state |F, MF 〉 of a particular atomic level 2S+1LJ induces
a static EDM of an atom:

DA =
〈
Ψ̃ (γνJIFMF ) |D̂z|Ψ̃ (γνJIFMF )

〉
=

2
m∑

i=1

bi

〈
Ψ (γνPJIFMF ) |D̂z|Ψ (αiν(−P )JiIFMF )

〉
(8)

where D̂z denotes the z projection of the electric-dipole moment operator. For this electric-dipole operator, the matrix
element between (hyperfine) states of different parity can be expressed as:

〈
Ψ (γνPJIFMF ) |D̂z|Ψ (αiν(−P )JiIFMF )

〉
=

(−1)I+J+F+1 (2F + 1)
√

2J + 1

(
F 1 F

−MF 0 MF

)

×
{

J F I
F Ji 1

}[
Ψ (γPJ) ‖D̂1‖Ψ (αi(−P )Ji)

]
(9)

while the matrix element of the (scalar) electron-nucleus interaction in Eq. (5), induced by the Schiff moment, is
written as:

〈
Ψ (γνPJIFMF ) |ĤSM |Ψ (αiν(−P )Ji IFMF )

〉
=

(−1)I+J+F+1
√

2J + 1

√
(I + 1) (2I + 1)

I

{
I I 1
Ji J F

}

× 4π S
[
Ψ (γPJ) ‖∇̂1 ρ (r) ‖Ψ (αi(−P )Ji)

]
(10)

and is independent of MF . In the following, we shall
refer to the last term on the right-hand side of Eq. (10)
as the reduced matrix element of the Schiff operator for
the two (fine-structure) levels J and Ji of different parity,
and shall assume MF = F , in line with optical pumping

schemes of hyperfine levels with circularly polarized light.
For the |F, MF 〉 hyperfine state of the 3D2 level, the
static EDM in Eq. (8), induced by the P-odd and T-odd
nuclear Schiff moment, becomes

DA(3D2, FMF ) =

2

〈
Ψ

(
3D2, FMF

)
|D̂z|Ψ

(
3P1, FMF

)〉 〈
Ψ

(
3P1, FMF

)
|ĤSM |Ψ

(
3D2, FMF

)〉

E (3D2) − E (3P1)
(11)

if the summation over the intermediate states is restricted
to the nearby 3P1 level. This assumption is justified by

the size of the energy denominator which is 500 times
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smaller than the second smallest. Moreover, the electron
nucleus interaction in equation (5) is scalar, therefore
only one of the hyperfine states may occur.

When the multiconfiguration expansion from Eq. (1)
is employed for the electronic part of the (total) wave
functions, the reduced matrix elements of general tensor
operator T̂ k

q can be decomposed into (reduced) matrix
elements between configuration state functions

[
Ψ (γPJ) ‖T̂ k‖Ψ (α(−P )Ji)

]
=

∑

r,s

crcs

[
Φ (γrPJ) ‖T̂ k‖Φ (γs(−P )Ji)

]
(12)

and those, in turn, into a sum of single-particle matrix
elements

[
Φ (γrPJ) ‖T̂ k‖Φ (γs(−P )Ji)

]
=

∑

a,b

dk
ab(rs)

[
naκa‖t̂k‖nbκb

]
. (13)

In the latter expansion, the dk
ab(rs) are known as ‘angular

coefficients’ that arise from using Racah’s algebra in the
decomposition of the many-electron matrix elements [27,
36]. The single-particle reduced matrix elements in the
expansion (13) can be factorized into reduced angular
matrix elements and radial integrals which, for the Schiff
moment interaction, read

[
naκa‖∇̂1 ρ (r) ‖nbκb

]
=

[
κa‖C1‖κb

] ∫
∞

0

(PaPb + QaQb)
dρ

dr
dr , (14)

while for the electric-dipole moment operator (k = 1)
it is

[
naκa‖d̂1‖nbκb

]
=

−
[
κa‖C1‖κb

] ∫
∞

0

(PaPb + QaQb) r dr. (15)

For the calculations of the matrix elements we extended
the GRASP [28] and mdfgme [37] relativistic atomic
structure packages. The extension, presented in this
work, includes programs for both Schiff moment inter-
action and electric-dipole moment matrix elements. Ex-
perimental energy differences were used in the calcula-
tions of all expectation values. The energy values for the
two levels of interest (E7s6d 3D2

= 13993.97cm−1 and
E7s7p 3P1

= 13999.38cm−1) were taken from the tables
of Moore [38]. The nuclear spin and magnetic moment
data were taken from the tables of Raghavan [39].

D. Handling non-orthogonalities

The electronic wave functions were optimised sepa-
rately for the two levels of interest. All expectation values

were evaluated with the biorthogonal technique devel-
oped by Malmquist [40]. For two atomic state functions

Ψ(γPJ) =
∑

r

crΦ(γrPJ) (16)

and

Ψ(α(−P )Ji) =
∑

s

csΦ(γs(−P )Ji) (17)

the reduction of a general matrix element
[
Ψ (γPJ) ‖T̂ k‖Ψ (α(−P )Ji)

]
(18)

into a sum of radial integral × angular coefficient terms
is based on tensor algebra techniques. In the decomposi-
tion (13), it is usually assumed that the (many-electron)
configuration states on both sides of the matrix element
are built from a common set of spin-orbitals. This is
a very severe restriction since a high-quality wave func-
tion demands orbitals optimized for the specific electronic
state. Instead of the standard decomposition (13) based
on tensor algebra techniques, Malmquist has shown [40]
that for very general expansions, where the two atomic
states are described by different orbital sets, it is possi-
ble to transform the wave function representations of the
two states in such a way that standard techniques can be
used for the reduction of the matrix elements in the new
representation. This procedure has been implemented in
the modules that compute Schiff moments and it can be
summarized as follows

1. Perform MCDHF or CI calculations for the two
states where the orbital sets of the two wave func-
tions are not required to be identical.

2. Change the wave function representations by trans-
forming the two orbital sets to a biorthogonal basis.
This is followed by a counter-transformation of the
expansion coefficients cr and cs so as to leave the
resultant wave functions invariant.

3. Calculate the matrix elements with the trans-
formed wave functions for which now standard
techniques can be used [27].

The transformation of wave functions is very fast, since
it relies only on angular coefficients for a one-electron
operator of rank zero which appears in the evaluation of
the kinetic energy term in the MCDHF or CI step. The
details of the transformations are discussed in [41].

III. METHOD OF CALCULATION

To generate the atomic states of interest, the method
described as systematic expansion of configuration set
[30, 31] has been employed, in which symmetry-adapted
CSF of a given parity and total angular momentum
are generated by substitutions from reference configura-
tions to an active set of orbitals. The active set should
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hereby comprise (at least) all valence shells, several ‘near-
valence’ core shells, as well as certain number of virtual
shells. The active set and multiconfiguration expansions
are then systematically increased until the expectation
value (of interest) is converged. In practice, we divided
the computations into three phases to generate (i) the
spectroscopic orbitals, (ii) the virtual orbitals, and (iii)
to perform large configuration interaction calculations,
once the set of orbitals is fixed.

A. Orbital set

In the first phase of the computations, all spectro-
scopic orbitals required to form a reference wave func-
tion were obtained with a minimal configuration expan-
sion, with full relaxation. These orbitals were determined
from a symmetry-adapted Dirac-Fock calculation with
only those configurations which arise in j-j coupling for
a particular state of interest. The spectroscopic orbitals
were kept frozen in all later steps.

In the second phase the virtual orbitals were gener-
ated in five consecutive steps. At each step the virtual
set has been extended by one layer of virtual orbitals. A
layer is defined as a set of virtual orbitals with different
angular symmetries. In the present paper five layers of
virtual orbitals were generated, each layer comprising or-
bitals with symmetries s,p,d,f,g, and h. At each step the
configuration expansions were limited to single and dou-
ble substitutions from valence shells to all new orbitals
as well as to all (virtual) orbitals of the previously gen-
erated layers. These substitutions were augmented by a
small subset of dominant single and double substitutions
from core and valence shells, with the further restric-
tion that at most one electron may be promoted from
the core shells (i.e. in a double substitution at least one
electron is promoted from a valence shell). All configu-
rations from earlier steps were retained, with all previ-
ously generated orbitals fixed, and all new orbitals made
orthogonal to all others of the same symmetry. The ini-
tial shapes of radial orbitals were obtained by means of
a Thomas-Fermi potential, and then driven to conver-
gence with the self-consistency threshold set to 10−10 for
spectroscopic orbitals and 10−8 for virtual orbitals, re-
spectively. All radial orbitals were separately optimized
for each atomic state. The Optimal Level form of the
variational expression [32] was applied in all variational
calculations.

B. Configuration-interaction calculations

In the third phase of the computations, the confi-
guration-interaction calculations (i.e. without changing
the radial shapes of the one-electron spin-orbitals) were
performed, with multiconfiguration expansions tailored
in such a way, as to capture the dominant electron corre-
lation contributions to the expectation values. All single

TABLE I: The values of the reduced matrix element
of the Schiff operator 4

√
3π

h

3P1

‚

‚

‚

∇̂1 ρ (r)
‚

‚

‚

3D2

i

from

Eq. (10) [a.u.]. Electron substitutions from different sets
of spectroscopic orbitals: 6p[7s6d|7s7p] (second column),
6sp[7s6d|7s7p] (third column), ... , 5spd6sp[7s6d|7s7p] (sixth
column). Electron substitutions to different sets of virtual
orbitals: (1v) one layer of virtual orbitals, (2v) two layers of
virtual orbitals, ... , (5v) five layers of virtual orbitals. ’DF’
= uncorrelated Dirac-Fock value.

DF 674

virtual shells opened for substitutions
set 6p 6sp 5d6sp 5pd6sp 5spd6sp

1v 1931 1892 1862 1749 1647
2v 4597 7544 7553 7598 7754
3v 5141 8073 8112 8125 8327
4v 4760 7936 7947 7889 8117
5v 4642 7834 7818 7743 8217

and double substitutions were allowed from several core
shells and from both valence subshells (i.e. 7s7p, or 7s6d,
depending on the state) to all virtual shells, with the
same restriction as above, i.e. that at most one electron
may be promoted from core shells. The virtual set was
systematically increased from one to five layers. In a sim-
ilar manner, several core subshells were systematically
opened for electron substitutions — from the outermost
6p up to the 5s5p5d6s6p subshells.

The convergence of the calculations can be observed
by monitoring the dependence of the matrix elements on
the size of the virtual set as well as on the number of core
subshells that are opened for electron substitutions. The
effects of substitutions from 4s4p4d4f and still deeper
shells were estimated in our previous papers and turned
out to be below 1 percent in the case of hyperfine struc-
tures [42, 43] and a fraction of a percent in the case of
transition rates [44, 45].

IV. RESULTS

Table I shows the values of the reduced matrix element

of the Schiff operators 4
√

3 π
[
3P1

∥∥∥∇̂1 ρ (r)
∥∥∥ 3D2

]
from

Eq. (10). The expectation values were calculated for the
multiconfiguration expansions obtained from all possible
combinations of virtual sets, and from opening sequen-
tially the core subshells, as described in section III B.

Table II presents the values of the reduced matrix el-
ement of the EDM operator

√
3

[
3P1 ‖−er‖ 3D2

]
from

Eq. (9). As in Table I, the EDM matrix elements were
calculated for the multiconfiguration expansions result-
ing from all possible combinations of virtual sets and from
opening up the core subshells, cf. section III B.

The data from Tables I and II are collected also in
Figure 2, where they are presented as functions of the
size NCF (see Eq. 1) of the multiconfiguration expan-
sion. Figure 2(a) shows the reduced matrix element of
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FIG. 2: The values of the reduced matrix elements of the (a) Schiff and (b) EDM operators as functions of the size of the
multiconfiguration expansion

TABLE II: The values of the reduced matrix element of the
EDM operator

√
3

ˆ

3P1 ‖−er‖ 3D2

˜

from Eq. (9) [a.u.]. The
notations are the same as in Table I.

DF 5.849

virtual shells opened for substitutions
set 6p 6sp 5d6sp 5pd6sp 5spd6sp

1v 4.818 4.811 4.810 4.810 4.810
2v 4.514 4.467 4.460 4.460 4.460
3v 4.270 4.192 4.157 4.155 4.155
4v 4.251 4.168 4.114 4.109 4.108
5v 4.240 4.153 4.083 4.076 4.075

the Schiff operator, while Figure 2(b) shows the value of
reduced matrix element of EDM operator. The resultant
EDM, induced by the nuclear Schiff moment in the 3D2

state of the isotope Ra-223 is presented in Table III.

TABLE III: The atomic EDM DA [109S/I ] of the |F, MF 〉 =
|3/2, 3/2〉 hyperfine state of the 3D2 level, induced by the
nuclear Schiff moment in the isotope 223

88Ra (I = 3

2
) [a.u.].

The notations are the same as in Table I.

DF 0.0512

virtual shells opened for substitutions
set 6p 6sp 5d6sp 5pd6sp 5spd6sp

1v 0.1812 0.1181 0.1163 0.1092 0.1028
2v 0.2694 0.4378 0.4374 0.4399 0.4489
3v 0.2850 0.4393 0.4378 0.4383 0.4492
4v 0.2627 0.4293 0.4244 0.4208 0.4329
5v 0.2555 0.4224 0.4144 0.4097 0.4346

A. Electron correlation effects

The calculations appear to be converged within
the multiconfiguration approximation employed in the
present paper. A comparison of the ’DF’ value with
the final result in Table III shows, that correlation ef-
fects are dominant in these calculations. An inspection
of Tables I and II reveals that the Schiff moment matrix
element is mainly responsible for the correlation correc-
tion to the atomic EDM. Overall, the correlated Schiff
value is more than an order of magnitude larger than
the uncorrelated one. On the other hand, the correlated
value of the EDM matrix element is about 30% smaller
than the uncorrelated one. Together, they result in the
atomic EDM, which is 8.5 times larger than the uncorre-
lated value. There are several factors, which have to be
taken into consideration in these calculations in order to
capture the bulk of the electron correlation effects:

1. Schiff interaction is localised inside nucleus
(see Eq. 14), therefore only the (one-electron)

matrix elements
[
s1/2‖∇̂1 ρ (r) ‖p1/2

]
and

[
s1/2‖∇̂1 ρ (r) ‖p3/2

]
contribute appreciably

in Eq. (13) (see also Table II in ref. [17]). All other
spin-orbitals may contribute through the indirect
electron correlation effects [46].

2. Only the inner regions of the spin-orbitals con-
tribute to the Schiff moment matrix elements.
Therefore it is essential to accurately represent core
polarisation in the atomic wave functions.

3. For the electric dipole interaction, the outer parts
of the spin-orbitals are important. Therefore the
valence correlation effects have to be accounted
for. The Babushkin and Coulomb gauge values dif-
fer by 5 orders of magnitude in the calculation of
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the very weak 3P1 − 3D2 transition [45]. This re-
sults from the fact, that the transition energy is
very small. Transition energy is difficult to repro-
duce accurately in variational calculations, when
the wave functions for the two levels are generated
separately and when their one-electron orbitals are
optimised independently. It is necessary to obtain a
balanced description of both states [47], which can
only be achieved if all two-body (double substitu-
tions) and possibly also three- and four-body (triple
and quadruple substitutions) correlation effects are
fully taken into account. In general, the two gauges
exhibit different energy dependence: the Coulomb
gauge is strongly energy dependent, therefore the
Babushkin gauge value is usually adopted in un-
saturated calculations, since it is less dependent
on calculated transition energy value. The calcu-
lations of energy level differences require well bal-
anced orbital sets and typically demand highly ex-
tensive multiconfiguration expansions. The results
are usually in better agreement with experiment if
a common set of orbitals is used for both states.

4. On the other hand, the wave functions for the two
levels have to be generated separately, if the ef-
fects of non-orthogonality are to be taken into ac-
count correctly. Non-orthogonality between the
spin-orbitals is essential in the evaluation of non-
diagonal matrix elements (see Ref. [45].

B. Breit and QED corrections

The calculations descibed in the previous sections as
well as the data in Tables I, II, and III were obtained
with only the Coulomb interaction included in the differ-
ential equations which are iteratively solved during the
self-consistent field process (SCF). The effects of mag-
netic and retardation corrections can be evaluated by in-
troducing the full Breit operator in the self-consistent
field process. Such modified differential equations lead
to change of the final wavefunction shape, which in turn
modifies the matrix elements evaluated in the calculation
of the Schiff moment. Quantum electrodynamics (QED)
correction is dominated by two contributions. The self-
energy (SE) part cannot be easily evaluated. Its con-
tribution to the Cs parity violation amplitude has been
calculated in Ref. [48] and turned out to be of the order
of -0.7 %. On the other hand, the vacuum polarization
can be easily calculated by introducing the Uelhing po-
tential into the SCF, as was done, for example, in calcu-
lations of Li-like ions hyperfine matrix elements [49] or
in Cs parity-violation amplitude [50]. In the latter case,
it leads to a 0.4 % increase of the amplitude. If both
are evaluated, the SE and VP contributions partly com-
pensate. We have used the mdfgme code [37] in its 2008
version, which now includes a Schiff moment option, to
evaluate the effect of the Breit interaction and vacuum
polarization on the Schiff moment. The results are pre-

Schiff Stark EDM correction
DF 674 5.849 0.0512
Breit SCF 664 5.835 0.0503 −1.7 %
Breit SCF + VP SCF 668 5.837 0.0507 −1.1 %

TABLE IV: Effect of the Breit and vacuum polarization on
the reduced matrix element of the Schiff operator (Schiff),
reduced matrix element of the EDM operator (Stark), and
the atomic EDM (DA [109S/I ]) of the |F, MF 〉 = |3/2, 3/2〉
hyperfine state of the 3D2 level, induced by the nuclear Schiff
moment in the isotope 223

88Ra (I = 3

2
) [a.u.]. VP — vacuum

polarization. DF — Coulomb interaction only.

sented in Table IV. The inclusion of the Breit interaction
in the SCF reduced the value of the Schiff moment by a
factor of 1.7 %, while the vacuum polarization increased
it by roughly 0.6 %. The total correction is a reduction
of the order of 1.1 %. From Ref. [48] one should expect a
partial, mutual compensation of the VP and SE contri-
butions. The total correction would then be dominated
by the Breit contribution.

The results presented in Table IV were obtained in
single configuration approximation, i.e., without electron
correlation effects. Our experience indicates, that a fully
correlated calculation, i.e., with the multiconfiguration
expansion (1) described in section III B, and with the
self-consistent Breit interaction would lead to a larger
(absolute value of) total correction. However, the in-
crease of the number of extra integrals involved (roughly
by 2 orders of magnitude) and substantial convergence
difficulties render such a calculation virtually impossible
with today’s computers.

The final correction from Table IV (i.e., the reduction
by a factor of 0.989 %) has been carried over to the final
summary of our results, which is presented in Table V.

C. Accuracy

Although we have full control of the core polarisation
effects, the overall accuracy of these results depends pri-
marily on the electron-correlation effects which were not
included in the calculations, i.e. unrestricted double sub-
stitutions and triple substitutions. These unrestricted
substitutions had to be omitted due to software and
hardware limitations. A similar approximation, based on
single and restricted double substitutions, was employed
also in our previous papers on radium [42, 43, 44, 45].
The accuracy of the present calculations can be indi-
rectly inferred from a comparison of the previously cal-
culated transition rates and hyperfine constants with ex-
periment. Reference [43] showed hyperfine constants cal-
culated in an approach similar to that employed in the
present paper. As discussed there, the overall accuracy of
the calculated magnetic dipole constants was 6 %, while
for the electric quadrupole constants the estimated ac-
curacy was 3 %. The interaction responsible for the hy-
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perfine shifts takes place in the vicinity of the nucleus.
The bulk of the hyperfine integral/matrix elements come
from the first oscillation of the one-electron wave func-
tion [51, 52]. Therefore, the calculated hyperfine con-
stants depend heavily on the inner regions of the one-
electron wave functions. The interaction of the electronic
cloud with the nuclear Schiff moment also takes place in
the vicinity of the nucleus. In fact, the bulk of the Schiff
integral/matrix element comes from the nuclear skin (see
Eq. 14). Therefore we might expect that the accuracy of
the calculated Schiff moment matrix elements is compa-
rable to the accuracy of the calculated hyperfine con-
stants. In conclusion, we might expect the accuracy of
the calculated Schiff moment matrix elements of the or-
der of 10 % or better.

The electric-dipole moment matrix ele-
ment (see Eq. 15) has similar radial dependence as
the electric-dipole transition elements, therefore their
accuracy might also be expected to be of the same
order. The calculated rate for the strong transition
1P1 — 1S0 showed excellent agreement between the val-
ues calculated in Babushkin and Coulomb gauges [44],
which is an indication (but not a proof) of convergence.
The accuracy of the calculated rate for the 3P1 — 1S0

transition was also reasonably good [45]. Although there
was a 20 % difference between the values calculated in
the two gauges, the Babushkin gauge value fell within
the experimental limit [53]. The gauge difference was
somewhat larger (35 %) for the calculated rate for the
3D2 — 1S0 electric quadrupole transition [44] which is
the only significant decay channel of the metastable
state 3D2. However, the calculated rates of other
weak transitions were less accurate. In particular, the
calculated rate for the 3P1 — 3D2 transition showed very
large gauge dependence, which seems to indicate that
the core-core correlation effects (which were omitted
in present calculations) are important (see e.g. [54]).
These correlation contributions are currently beyond
the capacity of the computer resources available to us.
We were unable to include, or even to estimate the
contributions of the omitted electron correlation effects,
i.e., the unrestricted double substitutions and triple sub-
stitutions, to the atomic EDM. Such calculation would
require a multiprocessor cluster in excess of a hundred
processors [55]. In order to estimate the uncertainty
of the electric dipole moment calculation, we had to
resort to an upper limit resulting from the hierarchy of
electron-electron interactions. Table II demonstrates
the saturation of the core-valence correlation correction,
which is the dominant electron correlation effect beyond
the Dirac-Fock approximation. Therefore we might
expect that the entire (core-valence) electron correlation
contribution would be a rather conservative estimate of
the uncertainty of the electric dipole moment calcula-
tions. In conclusion, we may assume the accuracy of the
calculated electric dipole moment matrix elements of the
order of 30 %.

Another contribution that affects the overall accuracy

TABLE V: The atomic EDM induced by the nuclear Schiff
moment in the 3D2 electronic state for three isotopes of ra-
dium: 213

88Ra (I = 1

2
, F = 3

2
), 223

88Ra (I = 3

2
, F = 3

2
), and

225

88Ra (I = 1

2
, F = 3

2
), respectively. Results are shown as

functions of the size of the virtual orbital set, including elec-
tron substitutions from the spectroscopic 5spd6sp[7s6d|7s7p]
orbitals to: (1v) one layer of virtual orbitals, (2v) two lay-
ers of virtual orbitals, ... , (5v) five layers of virtual orbitals.
’DF’ = uncorrelated Dirac-Fock value. Our values include
the ’Breit SCF + VP SCF’ correction from Table IV. The
RHF+CI results in the last line are quoted from Ref. [17].

EDM [109S/I ] [a.u.]

layer 213

88Ra 223

88Ra 225

88Ra

DF 0.0159 0.0507 0.0158
1v 0.0320 0.1017 0.0318
2v 0.1393 0.4441 0.1387
3v 0.1394 0.4444 0.1388
4v 0.1344 0.4283 0.1338
5v 0.1349 0.4300 0.1343

final 0.13(4) 0.43(14) 0.13(4)

RHF+CI 0.094 0.30 0.094

of the results arises from the nuclear-density dependence
of radial matrix elements in Eq. (14), i.e. from the distri-
bution of the nuclear charge, as discussed in section II B.
However, the error of the calculated value of atomic EDM
is dominated by the electric dipole moment calculation.
Therefore we assumed 30 % accuracy of the final calcu-
lated value of the Schiff moment enhancement factor, as
shown in Table V.

A more stringent accuracy assessment for the present
calculations would require more experimental data to
compare with. Hereby, we would like to encourage the
experimenters to provide them. In particular, hyperfine
constants for other levels, as well as lifetime and tran-
sition rate measurements for weak transitions would be
very valuable.

The results presented in the second and in the last col-
umn of Table V illustrate the isotope-dependence of the
atomic EDM. The two isotopes in question, 213

88Ra and
225
88Ra, have the same nuclear spin (I = 1/2), but they

have slightly different nuclear shapes (see Eq. (3) and the
subsequent discussion in section II B). The abovemen-
tioned isotope-dependence, of the order of 0.4 %, arises
primarily through the derivative dρ/dr in Eq. (14). The
isotope-dependence of the atomic wave functions (1) has
been neglected in the present calculations.

V. CONCLUSIONS

Radium is well suited for EDM experiments because
of its large nuclear charge Z and the two low-lying levels
3P1 and 3D2 of opposite parity, which are separated in
energy by only 5 cm−1 ≈ 2 × 10−5 a.u. The 3D2 level
is metastable with a very long lifetime of the order of
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4 seconds [45] and therefore suitable for laser-ion traps.
For radium, moreover, there are several isotopes with
mass ranging from 209 up to 229, of which 213

88Ra and
225
88Ra have nuclear spin I = 1/2. For EDM experiments

the I = 1/2 isotopes are preferable since these isotopes
cannot be disturbed by higher order electromagnetic mo-
ments.

The paper presents systematic computations of the
static EDM of atomic radium in the 3D2 level, induced
by the nuclear Schiff moment. Table V shows the atomic
EDM induced by the nuclear Schiff moment in the 3D2

electronic state for three isotopes of radium:
213
88Ra (I = 1

2
, F = 3

2
, µ = 0.6133),

223
88Ra (I = 3

2
, F = 3

2
, µ = 0.2705), and

225
88Ra (I = 1

2
, F = 3

2
, µ = −0.7338).

The wave functions for the two levels, 3P1 and 3D2, were
generated separately, in order to correctly reproduce the
effects of non-orthogonality between one-electron spinor-
bitals. We demonstrate that core-valence electron cor-
relation, which is the dominant electron correlation ef-
fect beyond the Dirac-Fock approximation, contributes
almost 90% of the total EDM value. Our final value is
about 30% larger than the RHF+CI result from Ref. [17].
The difference can be atributed to different methods em-
ployed to account for core-valence electron correlation

effects. Neither of these two calculations included the
core-core correlation effects, which we believe to be the
dominant source of uncertainty in our calculated value of
the Schiff moment enhancement factor.
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