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Abstract

We address the problem of finding nice labellings for event structures
of degree 3. We develop a minimum theory by which we prove that the
index of an event structure of degree 3 is bounded by a linear function of
the height. The main theorem of the paper states that event structures of
degree 3 whose causality order is a tree have a nice labelling with 3 colors.
We exemplify how to use this theorem to construct upper bounds for the
index of other event structures of degree 3.

1 Introduction

Event structures, introduced in [1], are nowadays a widely recognized model of
true concurrent computation and have found many uses since then. They are
an intermediate abstract model that makes it possible to relate more concrete
models such as Petri Nets or higher dimensional automata [2]. They provide
formal semantics of process calculi [3, 4]. More recently, logicians became inter-
ested in event structures with the aim of constructing models of proof systems
that are invariant under the equalities induced by the cut elimination procedure
[5, 6].

Our interest for event structures stems from the fact that they combine
distinct approaches to the modeling of concurrent computation. On one side,
language theorists have developed the theory of partially commutative monoids
[7] as the basic language to approach concurrency. Classes of automata that
properly model concurrent processes — such as asynchronous automata [8] or
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concurrent automata [9] — have been studied as part of this theory. On the
other hand, the framework of domain theory and, ultimately, order theoretic
ideas have often been proposed as the proper tools to handle concurrency, see
for example [10]. In this paper we pursue a combinatorial problem that lies
at the intersection of these two approaches. It is the problem of finding nice
labellings for event structures of fixed degree. To our knowledge, this problem
has not been investigated any longer since it was posed in [11, 12] and partially
solved in [13].

Let us recall that an event structure is made up of a set of local events E
partially ordered by the causality relation <. Causally independent events may
also be in the conflict relation -. A global state of the computation, compre-
hensive of its history, is modeled as a subset of events, lower closed w.r.t. the
causality relation, which also is an independent set w.r.t. the conflict relation.
These global states may be organized into a poset, the domain of an event struc-
ture, representing all the concurrent non-deterministic executions. The Hasse
diagram of this poset codes the state-transition graph of the event structure as
an abstract process. By labeling the transitions of this graph with letters from
some alphabet, we can enrich the graph with the structure of a deterministic
concurrent automaton. The nice labelling problem asks to find a labelling that
uses an alphabet of minimum size. The size of this alphabet is called the index
of the event structure.

The problem is actually equivalent to a graph coloring problem in that we
can associate to an event structure a graph, of which we are asked to compute the
chromatic number. The degree of an event structure is the maximum out-degree
of a node in the Hasse diagram of the associated domain, that is, the maximum
number of upper covers of some element. Under the graph theoretic translation
of the problem, the degree coincides with the clique number, and therefore it
is a lower bound for the cardinality of a solution. A main contribution in [13]
was to prove that event structures of degree 2 have index 2, i.e. they posses a
nice labelling with 2 letters. On the other hand, it was proved there that event
structures of higher degrees may require strictly more letters than the degree.

The labelling problem may be thought to be a generalization of the problem
of covering a poset by disjoint chains. Dilworth’s Theorem [14] states that
the minimal cardinality of such a cover equals the maximal cardinality of an
antichain. This theorem and the results of [13] constitute the few knowledge
on the problem presently available to us. For example, we cannot state that
there is some fixed k > n for which every event structure of degree n has a nice
labelling with at most k letters. In light of standard graph theoretic results [15],
the above statement should not be taken for granted.

We present here some first results on the nice labelling problem for event
structures of degree 3. We develop a minimum theory that shows that the graph
of a degree 3 event structure, when restricted to an antichain, is almost acyclic
and can be colored with 3 letters. This observation allows to construct an upper
bound to the labelling number of such event structure as a linear function of its
height. We focus then on event structures whose causality order is a tree or a
forest. Intuitively, these tree-like event structures represent concurrent systems



where processes are only allowed to fork or to take local nondeterministic choices.
Our main theorem states that tree-like event structures of degree 3 have a nice
labelling with 3 letters. Finally, we suggest how to use this and other theorems
to construct upper bounds for the index of other event structures of degree 3.
These general upper bounds depend on some parameter. To exemplify the scope
of theory, we prove a constant upper bound on a simple class of degree 3 event
structures.

The general question we address, whether there exists a finite common upper
bound to the indexes of event structures of degree 3, remains open. Conscious
that this question might be difficult to answer in its full generality — as usual
for graph coloring problems — we felt worth to present these partial results and
to encourage other researchers to pursue this and other combinatorial problems
that arise from concurrency. Let us mention why these problems deserve an in-
depth investigation. The theory of event structures is presently being applied to
automated verification of systems. Some model checkers — see for example [16]
and [17] — make explicit use of trace theory and of the theory of partially ordered
sets to represent the state space of a concurrent system. The combinatorics of
posets is then exploited to achieve an efficient exploration of the global states of
concurrent systems [18, 19, 20]. Thus, having a solid theoretical understanding
of such combinatorics is a prerequisite and a complement for designing efficient
algorithms for these kind of tools.

The paper is structured as follows. After recalling the order theoretic con-
cepts we shall use, we introduce event structures and the nice labelling problem
in section 2. In section 3 we develop the first properties of event structures of
degree 3. As a result, we devise an upper bound for the labelling number of
such event structures as a linear function of the height. In section 4 we present
our main result stating that event structures whose underlying order is a tree
may be labeled with 3 colors. In section 5 we develop a general approach to
construct upper bounds to the labelling number of event structures of degree
3. Using this approach and the results of the previous section, we compute a
constant upper bound for a class of degree 3 event structures that have some
simplifying properties, that consequently we call simple.

Acknowledgement. We would like to thank Rémi Morin for introducing and
guiding us to and through the theory of concurrency.

Order Theoretic Preliminaries.

Let us anticipate that part of an event structure is a set E of events which is
partially ordered by the causality relation <. As in this paper we shall heavily
rely on order theoretic concepts, we introduce them here together with the
notation we shall use. All these concepts will apply to the poset (E,<) of an
event structure.

A finite poset is a pair (P, <) where P is a finite set and < is a reflexive,
transitive and antisymmetric relation on P. A subset X ¢ P is a lower set if
y<xeX implies y € X. If Y ¢ P, then we denote by Y the least lower set
containing Y. Explicitly, |Y ={z e P|3yeYs.t.x <y}. Two elements x,y € P



are comparable if and only if either x <y or y < z. We write z ~ y to mean that
x,y are comparable. A chain is sequence xg,..., T, of elements of P such that
Zo < 1 < ...< xy. The integer n is the length of the chain. The height of an
element x € P, noted h(xz), is the length of the longest chain in |{ z }. The height
of P is max{h(z) |z € P}. Let us write z <y if x <y but = # y. An antichain
is a subset X ¢ P such that x ¢ y for each pair of distinct z,y € X. The width
of (P, <), noted w(P,<), is the integer max{ card(A) | A is an antichain }. If the
interval {z € P |z <z <y} is the two elements set {z,y }, then we say that x
is a lower cover of y or that y is an upper cover of x. We denote this relation
by x < y. The Hasse diagram of (P, <) is the directed graph (P,<). For x € P,
the degree of x, noted w(z), is the number of upper covers of z. That is, the
degree of z is the outdegree of z in the Hasse diagram. The degree of (P, <),
noted w(P,<), is the integer max{w(z) | z € P}. We shall denote by f(z) the
number of lower covers of = (i.e. the indegree of x in the Hasse diagram). The
poset (P, <) is graded if x <y implies h(y) =h(z) + 1.

2 Event Structures and the Nice Labelling Prob-
lem

Event structures are a basic model of concurrency introduced in [1]. The defi-
nition we present here is from [2].

Definition 2.1. An event structure is a triple £ = (E, <,C) such that
1. (E,<) is a poset, such that for each x € E the lower set |{ x } is finite,
2. C is a collection of subsets of E such that:

o {zx}eCforeach x € E,
e X cY eC implies X €C,
e X €(C implies | X €C.

In this paper we shall consider finite event structures only, so that that |{z }
is always finite. The order < of an event structure £ is known as the causality
relation between events. The collection C is known as the set of configurations
of £. A configuration X € C of causally unrelated events — that is, an antichain
w.r.t. < —is a sort of snapshot of the global state of some distributed computa-
tion. A snapshot X may be transformed into a description of the computation
that takes into account its history. This is done by adding to X the events that
causally have determined events in X. That is, the history-aware description
is the lower set | X generated by X. We shall be particularly interested in the
collection of history-aware configurations, defined as

H={YeC|lY =Y},

Observe that X e C if and only if | X € H, so that we do not loose information
if we focus on history-aware configurations.



Two events z,y € E are said to be concurrent if x ¢ y and there exists X € C
such that xz,y € X. We shall write x ~ y to mean that z,y are concurrent. It
is useful to introduce a weakened version of the concurrency relation where we
allow events to be comparable: =2y if and only if  ~ y or z ~ y. Equivalently,
xRy if and only if there exists X € C such that z,y € X. The set of configu-
rations that arise from many concrete models is completely determined by the
concurrency relation. For example, this is the case for event structures that
code the behavior of 1-safe Petri-nets.

Definition 2.2. An event structure & is coherent if C is the set of cliques of
the weak concurrency relation: X € C if and only if =y for every pair of events
r,yeX.

Coherent event structures are also known as event structures with binary
conflict. To understand this name, let us explicitely introduce the conflict rela-
tion and two other derived relations:

1. Conflict: x ~y if and only if x ¢ y and = £ y.

2. Minimal conflict: z =y if and only (i) = vy, (ii) 2’ < x implies ' 2y, and
(iii) ¢’ <y implies z2y'.

3. Orthogonality: x =y if and only if z =y or z ~ y.

A coherent event structure is completely described by the triple (E, <,~) where
the conflict relation is symmetric and irreflexive, and moreover is such that x - z
whenever x vy and y < z.

The concurrency relation, being the restriction to uncomparable elements of
the complement of the conflict relation, satisfies the following conditions:

1. z ~y implies z ¢ y,
2. x ~y and z <z implies z ~y or z < y.

In this paper we deal mainly with coherent event structures and, unless explicitly
stated, event structure will be a synonym for coherent event structure.

Coloring the Graph of an Event Structure

The orthogonality relation clearly is symmetric. Thus, by identifying an ordered
pair (z,y) such that x = y with the unordered pair {x,y}, we shall focus on the
undirected graph induced by the orthogonality® relation. This graph, formally
defined by

G(&)=(E,=),

1Let us observe that two orthogonal events are called independent in [13]. An independent
set in the complement undirected graph (V, E€) is a clique of the graph (V, E), thus explaining
terminology used in [13]. In this paper we shall focus on the structural properties of the graph
G(€) = (E,=) and not of its complement, and therefore we prefer to deviate from the existing
terminology.




will be called the graph of £. Let us list some properties of the orthogonality
relation:

1. y if and only if (i) = ¢y, (ii) 2’ < z implies x’' 2y, (iii) y’ < y implies
4
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~

2. ifxr =y and z <z then z =y or z < y.
Together with the following property:
3. if x « y then there exists ' < x and y’ <y such that 2’ =y,

which ties up the conflict relation with the orthogonality through the minimal
conflict, these properties shall be our main working tool. We leave the proof of
them as an exercise for the reader.

Definition 2.3. A nice labelling of an event structure £ is a coloring of the
graph G(€). That is, it is a pair (A, X) with ¥ is a finite alphabet and A : E — X
such that A(z) # A(y) whenever z = y.

For a graph G, let x(G) denote its chromatic number and let w(G) be its
clique number, i.e. the size of the largest clique of G.

Definition 2.4. The degree of £, w(€), is the clique number of G(£), i.e. the
number w(G(£)). The index of £, x(€), is the chromatic number of G(£), i.e.
the number x(G(€)).

The nice labelling problem asks to compute x(&) for a given event struc-
ture £. It was shown to be an NP-complete problem in [13]. The graph theoretic
definition of the index and of the degree makes it clear that w(€) < x(€). More
generally, given a class I of event structures, the nice labelling problem for
the class K asks to compute the index of K, defined as

X(K) =max{x(€) | K} .

Of course, x(K) might not be a finite number. A necessary condition for the
relation x(XC) < oo to hold is the existence of a finite upper bound on the size
of cliques of the graphs G(€) with £ € K. Thus, of particular interest are the
classes of event structures /C,, defined by

Kn={E|w(E)<n}.

It is time to recall the known results on the nice labelling problem for classes of
event structures. The first one is the celebrated Dilworth’s theorem.

Theorem 2.5 (Dilworth [14]). If the conflict relation of £ is empty, then x (&) =
w(€).



As a matter of fact, if the conflict relation is empty, then x = y if and only
if z,y are not comparable, so that nice labellings of £ are in bijection with
coverings of the poset (F,<) by disjoint chains. Notice next that the conflict
relation of £ is empty if and only if there is no pair of events x,y € E such that
z = y, i.e. that are in minimal conflict. Dilworth’s Theorem, as a statement
about event structures with a limited number of minimal conflicts, has the
following generalization:

Theorem 2.6 (Assous et al. [13]). If
Knm ={EeKpn|card{(z,y) [z =y} <m},
then x(KCpn,m) < oo.

Dilworth’s theorem, as a particular case of the previous theorem, states that
Kn,o =n. The next result, dealing with event structures of degree 2, has been
our motivating staring point.

Theorem 2.7 (Assous et al. [13]). x(K2) =2 and w(K,) >n for n>2.

Computational Interpretation of the Nice Labelling Problem

The rest of this section is meant to clarify the role of the orthogonality relation
and of the graph G(&). The computational interpretation we shall give is part of
the folklore in concurrency theory, see for example [21], but it is worth recalling.
Let us first review the definition of the domain of an event structure.

Definition 2.8. The domain D(£) of an event structure £ = (E,<,C) is the
poset {H, <), where H is the collection of history-aware configurations of £.

Following a standard axiomatization in theoretical computer science D(E)
is a stable L-domain, see [2, 22]. This property roughly means that D(£) al-
most is a distributive lattice. Let us stress this point, as most of the following
considerations are elementary observations of the theory of distributive lattices.

The collection H being closed under binary intersections, the poset D(€) is
a finite meet semilattice — or a chopped lattice as defined in [23, Chapter 4]. It
is distributive in the following sense:> the equation zA (zvy) = (zAz) Vv (2Vy) is
satisfied whenever z v y, the least upper bound of { z,y }, exists. The following
Lemma asserts that finite distributive meet semilattices are essentially the same
structures as the domains of (possibly not coherent) event structures.

Lemma 2.9. FEvery finite distributive meet semilattice is isomorphic to the
domain of an event structure.

Proof. Since the ideas on which the proof relies are well known, we only sketch
it. Let L be a finite distributive meet semilattice, say that z € L is prime if it
has a unique lower cover and denote by J(L) the set of prime elements of L. As

2Usually, a meet semilattice is said to be distributive if its filter completion is a distributive
lattice, see for example [24].



usual from lattice theory, argue that x < z vy implies z < z or x <y whenever
z € J(L) and the least upper bound z vy exists. For X ¢ J(L) say that X €C
if the least upper bound of X exists in L. Let then £ = (J(L),<,C), it is a
standard exercise to prove that D(€) is order isomorphic to L. O

A lower set in ‘H represents a state of the global computation, comprehensive
of its history. For I,.J € H, I ¢ J intuitively means that the global state J may
take place after the global state I. The Hasse diagram of D(&) therefore repre-
sents the state-transition graph of £ as a process. We obtain a representation
of the process £ as an automaton if we color the edges of the Hasse diagram
by letters of some alphabet. It is quite natural, however, to ask this coloring to
satisfy the following conditions.

Determinism: transitions outgoing from the same state have different colors.

Concurrency: every square of the diagram has to be colored according to the
following pattern, suggesting that actions o,7 may take place in parallel:

J() @] Jl
Jo Ji
1

Let us analyze what it means for an edge-coloring to be concurrent. Consider
that if I < J is an edge of the Hasse diagram of D(£), then J = Tu{z } for some
x € E NI such that y € E whenever y < x. Thus, if we start from a labelling
A:E — % and define \( < Tu{z}) = A(z), then condition (1) is fulfilled:

MI<J)=0=XJo<JoulJy). (1)

5\(I<J0):5\(I<IU{.’L‘0 }):)\(.’Ifo)
=MNIu{z}<Tu{zoz })=A(Jy <JoU.Jy).

In order to see that every concurrent edge-coloring arise in this way, observe
that by translating down colors along opposite side of concurrent squares as
in (1), a concurrent edge-coloring is determined by the ideals in D(€) with a
unique lower covers; these are of the form |{z }. Thus we have observed:

Lemma 2.10. There is a bijection between concurrent edge-colorings of the
Hasse diagram of D(E) and functions A\: E — X.

We analyze next how the condition on determism of a concurrent edge-
coloring transfers to a function A : E — X. The following is the key Lemma to
understand the role of the orthogonality relation.

Lemma 2.11. A set {x1,...,2, } s a clique of G(E) if and only if there exists
an history-aware configuration I susch that I <ITu{xz;},i=1,...,n, are distinct
edges of the Hasse diagram of D(E).



Proof. Suppose that Ju{x; } and Tu{z; } are distinct upper covers of some I in
D(E). Then {z;,x; } is an antichain since x; < z; implies that Tu{x; } ¢ Tu{z; }.
If ' < x; then 2’ e I ¢ Tu{x;}. Since I u{z;} is a clique for the weak
concurrency relation, then ' 2 z;. Similarly y’ < z; implies z; 2y’ and therefore
x; = z;. In particular, distinct upper covers of some I give rise to a clique in
g().

Conversely, let us suppose that a; = £; whenever ¢ # j and recall that z; = z;
implies ' 2y’ for 2’ < x and y’' <y. Thus, if we let [ = UL, {2 |2’ < z;}, then
IeD(E) and Tu{x; } e D(E) as well, for i =1,...,n. If i # j, then z;,z; are
not comparable and therefore Ju {x; } and I u{z; } are distinct upper covers
of I. O

Let us remark that the Lemma strongly depends on £ being a coherent event
structure. The Lemma also implies that the degree of £, that is maximum size
of a clique in G(&), coincides with the the maximum out-degree a configuration
in the Hasse diagram of D(£). The degree of £ is nothing else but the degree
of the poset D(£) as defined on page 3. Considering the case n = 2 in the
statement of Lemma 2.11, we deduce the following Proposition:

Proposition 2.12. There is a bijection between concurrent deterministic edge-
colorings of the Hasse diagram of D(E) and colorings the graph of G(E).

Consequently, the size of a minimal alphabet by which we can transform
the Hasse diagram of D(&) into a deterministic concurrent automaton coincides
with the chromatic number of G(£), what we called the index of £.

3 Cycles and Antichains

From now on, in this and the following sections, £ = (E, <,C) will be a fixed co-
herent event structure of degree at most 3. We begin our investigation of the nice
labelling problem for £ by studying the restriction to an antichain of the graph
G(€). The main tool we shall use is the following Lemma, a straightforward
generalization of [13, Lemma 2.2] to degree 3. In [25] we proposed generaliza-
tions of this Lemma to higher degrees and pointed out the geometrical flavor of
the resulting statements.

Lemma 3.1. Let {xo,z1,22 },{21,%2,23 } be two size 3 cliques in the graph
G(&) sharing the same face {x1,25 }. Then xo,x3 are comparable.

Proof. Let us suppose that xg,z3 are not comparable. It is not possible that
Zo = T3, since then we have a size 4 clique in the graph G(€). Thus z¢ ~ 23 and
we can find z{ < zg and z§ < x3 such that zj = z5. We claim that { z{, 21,22, 25 }
is a size 4 clique in G(&), thus reaching a contradiction. If z{, # x1, then z{ < z1.
However, x|, < 21 = x3 implies x|, 2 x3, and henceforth z( 2 2. The latter relation

contradicts zf, = x5. Similalry, xj = T2, T4 = 21, x5 = Ta. O

We are going to improve the previous Lemma. To this goal, let us say that a
sequence Loy ...Tn_1Ty 1S a straight cycle if x,, = xg, x; = T;41 fori=0,...,n-1,



x; # x; whenever i,5 € {0,...,n -1} and ¢ # j. As usual, the integer n is the
length of the cycle. Observe that a straight cycle is simple, i.e., a part from the
endpoints of the cycle, it does not visit twice the same vertex . The height of a
straight cycle C = xzgx; ...z, is the integer

h+(C):' Z 1h+($i)7

1=0,...,n—

where 1 (z) = h(x) + 1 is the augmented height of an event. By assigning
to each element of the cycle a non zero weight, we can ensure that if C is
another straight cycle visiting a proper subset of the vertexes visited by C, then
H(C")y < H(C). This will apply for example when C’ is obtained from C as a
shortcut through a chord.

Proposition 3.2. The graph G(E) does not contain a straight cycle of length
strictly greater than 3.

Proof. Let SC4 be the collection of straight cycles in G(€) whose length is at
least 4. We shall show that if C' € SC4, then there exists C’ € SC4 such that
H(C") < K (C). If 8C4 #+ @, then we construct an infinite descending chain of
positive integers.

Let C be the straight cycle xg = 1 = 3 ... Tp-1 = Tn = g Where n > 4. Let
us suppose that this cycle has a chord. Such a chord cut the cycle into two
cycles of length mg +1 and m; + 1, with mg +m; =n. By Lemma 3.1, we cannot
have mgo = my = 2, and therefore m; > 3 for some i € {0,1}. That is, the chord
divides the cycle into two straight cycles, one of which still has length at least
4. Moreover its height is strictly less than the height of C', since it contains a
smaller number of vertices.

Otherwise C has no chord and xg # z2. This means that either there exists
xy < xo such that z{ £ x2, or there exists xj < zo such that xzy £ z,. By
symmetry, we can assume the first case holds. As in the proof of Lemma 3.1
{xy, 21,22, 23 } form an antichain, and x{z 2223 is a path. Let C’ be the set
{z{z1,... xp12) ). If C' is an antichain, then C' is a straight cycle such that
B (C") < (C). Otherwise the set {j € {4,...,n-1}|x; > z{ } is not empty; let
i be the minimum in this set. Observe that ;-1 = z; and z( < z; but x| £ 2,21
implies x;—1 = (. Thus C = TOT1TaT3 ... Ti—1 XY 18 a straight cycle of lenght at
least 4 such that I (C) < 1 (C). O

Corollary 3.3. Any subgraph of G(E) induced by an antichain can be colored
with 3 colors.

Proof. Since the only cycles have length at most 3, such an induced graph is
chordal and its clique number is 3. It is well known that the chromatic number
of chordal graphs equals their clique number [26]. O

In the rest of this section we exploit the previous observations to construct
upper bounds for the index of £. We remark that these upper bounds might
appear either too abstract or trivial. On the other hand, they well illustrate
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the obstacles that might arise when trying to build complex event structures of
index greater than 4.

A stratifying function for £ is a function h : E — N such that, for each
n > 0, the set {z € E | h(z) = n} is an antichain. The height function is a
stratifying function. Also ¢(z) = card{y € E | y < z } is a stratifying function.
With respect to a stratifying function h the h-skewness of £ is defined by

skewy, (€) = max{|h(z) - h(y)[ |z =y}.
More generally, the skewness of £ is defined by

skew (£) = min{ skew, (&) | h is a stratifying function }.
Proposition 3.4. If skew (&) <n then x(G(€)) < 3n.

Proof. Let h be a stratifying function such that |h(z)—-h(y)| < n whenever z = y.
For each k > 0, let A\, : {z e E| h(z) =k} — {a,b,c} be a coloring of the
graph induced by {z € E | h(z) = k}. Define A\: E — {a,b,c} x{0,...,n-1}
as follows:

A(x) = (An(e) (@), h(xz) modn) .

Let us suppose that = y and h(z) > h(y), so that 0 < h(z) - h(y) < n. If
h(x) = h(y), then by construction Ap(;)(2) = Ap(y) (%) # Ap(y)(y). Otherwise
h(z) > h(y) and 0 < h(z) - h(y) < n implies h(z) modn # h(y)modn. In both
cases we obtain A(z) + A(y). O

An immediate consequence of Proposition 3.4 is the following upper bound
for the index of &:

X(E) <3(h(€) +1).

To appreciate the upper bound, consider that another approximation to the
index of £ is provided by Dilworth’s Theorem [14], stating that v(G(£)) < w(&).
To compare the two bounds, consider that there exist event structures of degree
3 whose width is an exponential function of the height.

Finally, we observe that in order to obtain a constant upper bound on some
class of event structures, we can simply define the class

Kp ={€ €Ky | max |h(z) ~h(y)| <k},
z,yel
so that Proposition 3.4 ensures that x(K%) < 3k. For n > 3, it can still be shown

that x(K%) < oo, even if the upper bounds available are not so tight as for n = 3.
Let us observe that the condition

max |[h(z) -h(y)| <k
z,yeFE
appears to be quite natural for an event structure £. An interpretation of this

condition in terms of concurrent processes appears in the work [27] whose main
purpose is to study the logical theories of infinite regular event structures.
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4 An Optimal Nice Labelling for Trees and Forests

We prove in this section the main contributions of this paper, Theorems 4.12
and 4.14. Assuming (FE, <) is a tree or a forest, we shall define a labelling with
3 colors and prove it is a nice labelling. Since clearly we can construct a tree
which needs at least three colors, such a labelling is optimal.

Before defining the labelling, we shall develop some observations about
events having the same lower covers. These observations hold under the as-
sumption that the degree of £ is at most 3.

Definition 4.1. We say that two distinct events are brothers if they have the
same set of lower covers.

Clearly if z,y are brothers, then z < z if and only if z < y. More important,
if =,y are brothers, then the relation x = y holds. As a matter of fact, if 2’ < z
then z’ <y, hence 2’ 2y. Similarly, if y’ <y then y’2z. It follows that a set of
events having the same lower covers form a clique in G(£), hence it has at most
the degree of an event structure, 3 in the present case. To introduce the next
Lemmas, if x € E, define

F,={z¢FE|z=zandy < z, for some brother y of = },
Sy ={zeFE|z=zandy ¢ z, for every brother y of x }.

That is, we are splitting the neighborhood of z into its Family, those events that
are descendant of a brother of x, and its Society, those events that are related
to z but have no immediate connection with z. Intuitively, events in the family
of x are at least as old as z, and this will limit our interest in the family. We
shall instead engage in studying properties of the societies.

Lemma 4.2. If x has two brothers, then S, = @.

Proof. Let y,z be the two brothers of x. Let us suppose that w € S,. If w =y,
then w ~ z by Lemma 3.1. Since z £ w, then w < z. However this implies w < z,
contradicting w = . Hence w # y and we can find w’ < w, y’ < y such that
w’ =y’. Tt cannot be the case that y’ < y, otherwise y’ < x and the pair (w’,y’),
properly covered by the pair (w,z), cannot be a minimal conflict. Thus w’ < w,
and 3’ equals to y. We claim that w’ € S,. As a matter of fact, w’ cannot be
above any of z,y,z, otherwise w would have the same property. From w = =
and w’ < w, we deduce that w’ = x or w’ < z. If w’' < z, then w’ < x, so that
w’ <y, contradicting w’ = y: therefore w’ = x and w’ € S,. Observe now that
{w',z,y},{x,y,2z} are two 3-cliques sharing the same face {z,y }. As before,
w' = z, leading to a contradiction. O

Lemma 4.3. If y is the only brother of x, then S,,S, are comparable w.r.t.
subset inclusion and the least of them, S,NS,, is linearly ordered by the causality
relation.

Proof. We observe first that if z € S, and w € S, then z ~ w. An immediate
consequence of this observation is that S, NS, is linearly ordered.

12



Let us suppose that there exists z € S, and w € S,, such that z # w. Note that
{z,z,y,w} is an antichain: y £ 2z, and z < y implies z < x, which is not the case
due to z = . Thus z ¢ y and, similarly, w # x.

Since z = x = y = w and there cannot be a length 4 straight cycle, we deduce
z #w. Let 2’ < 2z and w’ < w be such that 2z’ = w’. We claim first that 2’ = z.
Otherwise, 2’ < z and 2’ < z, since 2’ = z implies x < 2. The relation 2z’ < x
in turn implies 2z’ < y, which contradicts 2’ = w’. Also it cannot be the case
that y < 2/, since otherwise y < z. Thus, we have argued that 2z’ € S,. Similarly
w' €8,. As before {z/,z,y,w’} is an antichain, hence z’,z,y,w" also form a
length 4 straight cycle, a contradiction.

We observe next that w < z €S, and w ¢ x implies w € S,. From w <z =z
deduce w =z or w < x. Since w ¢ z, then w = x. Also, if y < w then y < z, which
is not the case.

Our final observation is that S, 2 S, whenever S, \ S, # &. Let z € S; \ S,
pick any w € S, and recall that z,w are comparable. We cannot have z < w:
considering that z £ z, we deduce that z ¢ y as well; then z <w €S, and z £ y
imply z € S,, a contradiction. Hence w < z € S, and w ¢ = imply w € S;, by our
previous observation. O

The previous Lemmas have the following interpretation. If x,y are two
brothers, say that x is more experienced than y if S, 2 S,. Then the Lemmas
state that we can always pick one of the brother who’s more experienced than the
other. Remark that the property is trivial if x,y, z are pairwise brothers, since
in this case Sy, = &, w € {x,y,2 }. The property becomes interesting whenever
y is the only brother of x, for which we formally introduce this relation.

Definition 4.4. We say that {z,y} € F is a proper pair of brothers if y is the
only brother of x.

The next Lemma is an easy consequence of the previous Lemmas. While its
significance might appear obscure right now, the Lemma will prove to be the
key observation when later defining a nice labelling.

Lemma 4.5. Let z,y,z,w € E be four events such that:
1. {z,y} {z,w} are two proper pairs of brothers,
2. wix,
3. z€8,N8y.
Then z is strictly more experienced than w, that is S, 2 Sy,.

Proof. If S, $ Sy, then S, ¢ S, by Lemma 4.3. If w < y, then either w = y or
w < y. We cannot have w =y, since we are assuming that w,y are distinct. We
cannot either have w < y, since otherwise w < z, contradicting w ¢ z. Hence we
have w £ y and x,y € S, € Sy. It follows that {z,y,z,w} is a size 4 clique, a
contradiction. O
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We come now to introduce trees, that are the particular subsets of E for
which we shall define a nice labelling with 3 letters. The presence in trees of
many brothers possibly is the intuitive reason for a nice labelling with 3 letters
to exist.

Definition 4.6. A subset T' € E is a tree if and only if
1. each = € T has exactly one lower cover w(z) € E,
2. T is convex: x,z €T and x <y < z implies y € T,
3. if z,y are minimal in 7', then 7(z) = 7(y).

The height of x in T', noted h (), is the cardinality of the set {y € T |y < x }.
Observe that two events z,y of a tree are brothers if and only if 7 (z) = 7 (y).

In this context, for a linear ordering we shall mean a transitive irreflexive
relation < which, moreover, is total: © <y or x =y or y <. A linear ordering <
on a tree T is said to be compatible with the height if it satisfies

hr(z) <hp(y)impliesz <y . (HEIGHT)

It is a standard result that such a linear ordering always exists. Once fixed such
a linear ordering, we shall think of it as imposing a precise age on events of
T; that is, the relation x < y shall be read as asserting that x is older than y.
Observe that the condition (HEIGHT) implies that an ancestor x of y is older
than y.

With the idea of defining a labelling of T' greedily by means of a fixed linear
ordering <, let us define

Ni={yeT|y=vandyaz}, zeT.

That is, NI is the neighborhood of z within T, restricted to older events. We
represent N as the disjoint union of Bf and SJ where

By ={yel;|n(x)<y},

SY=NS\BjJ.

With respect to these sets BY,S3, x € T', we develop a series of observations.

[

Lemma 4.7. Ify € BY then y is an older brother of x. Consequently there can
be at most two elements in Bj.

Proof. If y € By, then y <z and hy(y) < hp(z). Since 7(x) <y then hp(w(z)) <
hr(y) and hp(z) = hp(#(z)) +1 < hy(y). We deduce therefore that hp(z) =
hy(y), showing that 7(x) is a lower cover of y, so that y is a brother of z. O

Lemma 4.8. S? is a lower set of S,. That is, S§ €S, and 2z’ < z € S5 implies
2" €83, provided that z' € S,.

14



Proof. If z € SJ then z = x and 7(z) ¢ z, hence 7(z) ¢ z. If y is a brother of z,
then relation y < z implies 7(z) = 7(y) < y < z and contradicts z = 7(x). Hence
y £z and z € S,. Let us suppose that z’ < z and 2z’ = z. Then hr(z’) < hr(z),
2/ <z <x,and 2’ <. Since 2’ = x > 7w(x) then either 2’ = w(x), or w(z) < 2'.
However, the latter property implies 7(x) < z, which is not the case. Therefore
z' =7m(x) and 2’ €8S;. O

Lemma 4.9. If both BY and S5 are not empty, then B is a singleton {y} and
{z,y} is a proper pair of brothers.

Proof. By the previous Lemma, S3 € S,. Hence, if SJ is not empty, then S, is
not empty as well, so that by Lemma 4.2 x can have at most one brother. Since
BS is not empty, and every element in B is a brother of z, then B has a unique
element y, and {z,y } form a proper pair of brothers. O

Let us remark that x,y € T are a proper pair of brothers if they are brothers
and {z|7(z) =n(z) } = {x,y}. The previous observations suggest to look for
a linear order « that enforces a strictly more experience brother to be an eldest
brother.

Definition 4.10. We say that a linear order < on T is compatible with proper
pair of brothers if it satisfies (HEIGHT) and moreover

S; o Sy impliesz <y, (BROTHERS)

for each proper pair of brothers z,y.

Again, it is not difficult to see that such a linear order always exists. In the
following we shall assume that < satisfies both (HEIGHT) and (BROTHERS).

We are ready to define a partial labelling A of the event structure £. The
function A\ will have T" as its domain. Let us fix a three elements totally ordered
alphabet ¥ = {ag,a1,as }. The labelling A : T — X is formally defined by the
clauses (1)-(4) to follow.

Before introducing the formal definition, let us introduce some ideas — as
well as some terminology — that might help understanding the definition of A
and the proof of Theorem 4.12. W.r.t. the linear order <, we shall say that
x €T is an eldest brother if B = &; otherwise, we shall say that x is a younger
brother. The clauses (1)-(2) may be understood as stating that an eldest brother
z inherits the property A(w(z)) of his father w(xz). This stipulation will never
create conflicts. The main concern when defining the labelling is to understand
how younger brothers can enrich themselves — that is, get a property from the set
3 — without entering in conflict with members of their neighborhood. Clause (3)
observes that if at the date of his birth a younger brother is related to his older
brothers only, then these brothers can be at most two and it won’t be a problem
getting an unused letter from the alphabet ¥. Clause (4) is the subtlest. If at
his birth a younger brother x has some relation outside his family, then he has
just one brother y who, by condition (BROTHERS), is more experienced than
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. In particular, we shall see that the society of x has a main ancestor zy and
is a main lineage of zg, meaning that all of its members are eldest descendants
of zp. Thus, assuming that such a lineage has inherited the same color from its
ancestor, we shall see that the colors used in the neighborhood of = are just 2;
an unused color from ¥ is therefore still available.

Definition 4.11. The labelling A : T'— X is formally defined by induction on
< by following clauses:

1. If z € T is an eldest brother and hy(z) = 0, then we let A(z) = ao.

2. If z € T is an eldest brother and hp(z) > 1, let w(z) be its unique lower
cover. Since w(xz) € T and w(x) <z, A(w(z)) is defined and we let A\(z) =

A(m(2)).

3. If = is a younger brother and SJ = @, then, by Lemma 4.7, we let A(x) be
the least symbol not in A(BJ).

4. If z is a younger brother and S$ # & then:

e by Lemma 4.9 BS = {y } is a singleton and {z,y} is a proper pair of
brothers,

e by Lemma 4.8 S7 is a lower set of S,. By the condition (BROTHERS),
Sz €Sy, so that S, is a linear order. Let therefore zy be the common
least element of S§ and S,.

We let A(z) be the unique symbol not in A({y, 20 }).
Theorem 4.12. For each z,y €T, if v =y then X\(z) # A(y).

Proof. Tt suffices to prove that A(y) # A(z) if y € NS. The statement is proved
by induction on <. Let us suppose the statement is true for all z < x.

(i) If hp(z) = 0 then x is minimal in 7', so that NI = BS. If moreover z is an
eldest brother then NJ = BY = @, so that the statement holds trivially.

(ii) If z is an eldest brother and hp(x) > 1, then its unique lower cover ()
belongs to T. Observe that N =SS ={y €T |y <zandy = 7(z) }, so that if
y € NI, then y = m(z). Since y < z and 7(z) < z, and either y € N(n(z)) or
m(x) €Ny, it follows that A(x) = A(7(z)) # A(y) from the inductive hypothesis.

(iii) If z is a younger brother and S§ = @, then N = BJ and, by construction,
A(y) # A(z) whenever y € NJ.

(iv) If z is a younger brother and SJ # &, then let BS = {y } and let zy be
the common least element of S5 and S%¥. Since by construction A(z) # A(y),
to prove that the statement holds for z, it is enough to pick z € S§ and argue
that A(z) # A(z). We claim that each element z € S3 \{ 29 } is an eldest brother.
If the claim holds, then A(z) = A(7(2)), so that A(z) = A(z0) is inductively
deduced.

Suppose therefore that there exists z € SS\{ 2o } which is not an eldest brother
and let w € B. Recall first from Lemma 4.9 that {z,y} form a proper pair of
brothers. Similarly, {w,z} form a proper pair of brothers. Otherwise, if z,w,u
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are pairwise distinct brothers, then either w < x or u < = by Lemma 4.2. In both
cases, however, we obtain zg <  — since zg < z,u,w — which contradicts zg = x.
Clearly, z,y, z,w are pairwise distinct as well.

Since y < z, condition (BROTHERS) implies S, ¢ S, and hence z € S; N'S,,.
If w € B, then we cannot have w < z, since again we would deduce 2o < . Thus
we deduce that w ¢ z and we can apply Lemma 4.5 to deduce S, > S,,. On
the other hand, w < z and condition (BROTHERS) imply S, € S,,. Thus, we
have reached a contradiction by assuming BY # @. It follows that z is an eldest
brother. O

The obvious corollary of Proposition 4.12 is that if £ is already a sort of tree,
then it has a nice labelling with 3 letters. We state this fact as the following
Theorem, after we have made precise the meaning of the phrase “£ is a sort of
tree.”

Definition 4.13. Let us say that £ is a forest if every element has at most one
lower cover. Let F3 be the class of event structures of degree 3 that are forests.

Theorem 4.14. The index of the class F3 is 3.

As a matter of fact, let £ be a forest, and consider the event structure &£,
obtained from £ by adding a new bottom element 1. Remark that the graph
G(&)) is the same graph as G(€) apart from the fact that an isolated vertex L
has been added. The set of events F is a tree within &, , hence the graph induced
by E in G(&,) can be colored with three colors. But this graph is exactly G(&).

To end this section, we mention that Theorem 4.14, stating the equality
between the index and the degree for forests of degree 3, does not generalize to
forests in higher degrees [13].

5 More Upper Bounds

We present in this section some concluding remarks that are meant to suggest
some promising path toward a general solution of the nice labelling problem for
event structures of dgree 3.

The results presented in the previous sections point out a remarkable prop-
erty of event structures of degree 3: many types of subsets of events induce a
subgraph of G(&) that can be colored with 3 colors. These include:

1. antichains, by Corollary 3.3,
2. trees by Theorem 4.12,

3. history-aware configurations, since if X € H, then w(X) < 3, so that such
a subset can be labeled with 3 letters by Dilworth’s Theorem,

4. the stars of events.
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The star of an event z € E is the subgraph of G(£) induced by the subset
{z}u{yeE|y=x}. To seethat a star can also be labeled with 3 letters, let

Ny={yeE|y=z}
be the neighborhood of z in G(£), and consider the structure

Ew = <Nz7£|N27C|N¢)7
where <y, is the restriction of < to N, and Cjy, ={X NN, | X eC}.

Lemma 5.1. &, is a coherent event structure with the property that G(E;) is
the subgraph of G(E) induced by N,. Consequently w(&,) <w(E).

Proof. We leave the reader to verify that £, is an event structure whose concur-
rency relation ~, is the restriction of ~ to the set N,. Consequently Cy, is the
set, of cliques for ~, and &, is coherent. Let y =, z be the orthogonality relation
of &, let us verify that, for y,z € N, y =, z if and only if y = z.

If y = 2 then y, z are not comparable. If 4y’ € N, and y’ <y, then either 3’ < z
or 3y ~ z, that is y' ~, 2. By symmetry, 2z’ < z with 2z’ € N, implies 2’ <y or
Yy~ 2, thus y =, 2.

Let us suppose in the other direction that y =, z. Then ¥,z are not compa-
rable. If ¥’ <y and y' € N,, then y’' ~, z or y’ < z, which implies y'2z. If y' <y
but 3y’ ¢ N, then 3’ < z. From z = x and y’ < z it follows that 3’2 2. Similarly,
if 2 < z then 2z’ 2z and therefore we can deduce y = z.

Finally, observe that, by adding the event z, a size n clique in G(&,) gives
rise to a size n + 1 clique in G(&). O

We finalize our discussion by observing that if w(€) = 3, then w(&,) <2 so
that £, has a labelling with 2 letters, by [13]. It follows that star of x, the
{x } U N,, can be labeled with 3 letters.

We might ask whether this property can be exploited to construct nice la-
bellings. A tentative answer comes from a standard technique in graph theory
[28]. Consider a partition P = {[z] | z € E } of the set of events such that each
equivalence class [z] has a labelling with 3 letters. Define the quotient graph
G(P,E) as follows: its vertexes are the equivalence classes of P and [z] = [y] if
and only if there exists 2’ € [z], 3y € [y] such that 2’ = y'.

Proposition 5.2. If the graph G(P,£) is n-coloriable, then £ has a labelling
with 3n colors.

Proof. For each equivalence class [x] choose a coloring A, of [x] with an
alphabet with 3 letters. Let A9 a coloring of the graph G(P,€£) and define
A(x) = (Az1(2), Ao([2])). Then X is a coloring of £: if x = y and [x] = [y], then
A1 (®) = Apy(x) # Apy(y) and otherwise, if [x] # [y], then [z] = [y] so that
Ao([2]) # Ao([y])- O
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Figure 1: The event structure &

The reader should remark that the technique suggested by Proposition 5.2
has already been used within Proposition 3.4.

We conclude our discussion by exemplifying how to use the Labelling Theo-
rem for trees 4.12 in connection with Proposition 5.2 to construct a finite upper
bound for the index of a particular class of event structures. This class shall be
called simple due to the additional simplifying properties of its structures.

Consider the event structure depicted in Figure 1, named S. In this picture
we have used dotted lines for the edges of the Hasse diagram of (E, <), simple
lines for maximal concurrent pairs, and double lines for minimal conflicts. Con-
current pairs z ~ y that are not maximal, i.e. for which there exists z’,y’ such
that =’ = ¢’ and either z < 2’ or y < ¢/, are not drawn. We leave the reader to
verify that a nice labelling of S needs at least 4 letters. On the other hand, it is
not difficult to find a nice labelling with 4 letters. To obtain it, take apart events
with at most 1 lower cover from the others, as suggested in the picture. Use
then the results of the previous section to label with three letters the elements
with at most one lower cover, and label the only element with two lower covers
with a forth letter.

A formalization of this intuitive method leads to the following Definition and
Proposition.

Definition 5.3. We say that an event structure is simple if
1. it is graded, i.e. h(z) =h(y) - 1 whenever z <y,
2. every size 3 clique of G(£) contains a minimal conflict.

The event structure S is simple and proves that even simple event structures
cannot be labeled with just 3 letters.

Proposition 5.4. Fvery simple event structure £ of degree 3 has a nice labelling
with 12 letters.

Proof. Recall that f(x) is the number of lower covers of z and let E, = {z €
E | f(z) =n}. Observe that a simple £ is such that F3 = @: if z € E3, then its
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three lower covers form a clique of concurrent events. Also, by considering the
lifted event structure £, introduced at the end of section 4, we can assume that
card(Ep) = 1, i.e. £ has just one minimal element which necessarily is isolated
in the graph G(&).

Let <« be a linear ordering of E compatible with the height. W.r.t. this
linear ordering we shall use a notation analogous to the one used in the previous
section. We let

Ni={yeE|y<zandy=x}, B,={yeE|y=mrandy’ <yimpliesy <x}.

Claim 5.5: The subgraph of G(&) induced by Es can be colored with 3-colors.

We remark first that if z € E5 then NI € B,. Let y € NS and let z1,22 be the
two lower covers of . From x; < ¢ = y it follows z; <y or z; ~y. If z; ~ y for
i =1,2, then y,x1,x2 is a clique of concurrent events. Therefore, at least one
lower cover of z is below y, let us say z1 < y. It follows that h(y) > h(z), and
since y < z implies h(y) < h(x), then z,y have the same height. We deduce that
z1 < y. If y has a second lower cover 3’ which is distinct from x, then y’ = 22,
otherwise y’,z1, 22 is a clique of concurrent events.

Next, we remark that if y,2 €B, and x € E5 then y = 2: if ¢y’ <y then y' <z
so that x = z implies y’' 2z, and symmetrically. It follows that for x € Es, B,
may have at most 2 elements.

A fortiori, NJ has at most 2 elements which always form a clique. The re-
striction of < to Fs is therefore a 2-elimination ordering by which we can color
FE5 with 3 colors. O Claim

For x € By let p(z) =max{ze E|z<xz,2¢ By } and [z] ={y € E1 | p(y) =
p(z)}. Let P be the partition {Ey }u {[z] |z € E; } u{Es}. Since each [z],
x € Fy, is a tree, the partition P is such that each equivalence class induces a
3-colorable subgraph of G(&).

Claim 5.6: The graph G(P,E) is 4-colorable.

Since Ej is isolated in G(P,&), is it enough to prove that the subgraph of
G(P, &) induced by the trees { [x] | x € E; } is 3-colorable. We define fist a linear
ordering < on the set of trees by stating that [y] < [z] if and only if p(y) < p(z).

As usual, let N7, = {[y] = [#] | [y] < [¢]}, we claim that N, may contain
at most two trees. To this goal, we shall define a function f : Nf’w] — By(a)
and prove it is injective. If [y] = [z] and [y] < [z] then we can pick y’ € [y]
and 2’ € [z] such that y’ = 2’. Notice that y' = p(z): from p(z) < 2’ = y', we
deduce p(z) =y’ or p(z) < y’. The latter, however, implies p(z) < p(y), by the
definition of p, and this relation contradicts p(y) < p(z). Thus we let

f([y]) =min{ z | p(y) <z <y'and z £ p(z) }.

This definition implies that f([y]) = p(z): as a matter of fact, f([y]) <y’ = p(x)

and f([y]) £ p(x) implies f([y]) = p(x). Moreover every lower cover of f([y])
is a lower cover of p(x): this statement clearly holds if f([y]) # p(y), and if

f([y]) = p(y) then it holds since p(y) < p(x) implies f([y]) € N7 ,) S By(y), as
in the proof of the previous Claim.
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Thus the set f (wa]) has cardinality at most 2 and, to prove that wa] has
at most 2 elements, we prove that f is injective. The intuitive reason is that f
is a choice function, i.e. f([y]) € {p(y) } u[y]. Let us suppose that f([y]) =

f(zD. It f([y]) = p(y), then f([2]) = p(z) as well and [y] = [z]. Otherwise
f(lw]) = f([z]) implies p(y) = p(f([y])) = p(f([2])) = p(z) and [y] = [2].

O Claim

Thus, by applying Proposition 5.2, we deduce that G(€) has a labelling with
12 letters. O
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