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ASYMPTOTIC PROPERTIES OF ENTROPY SOLUTIONS TO

FRACTAL BURGERS EQUATION

NATHAEL ALIBAUD, CYRIL IMBERT, AND GRZEGORZ KARCH

Abstract. We study properties of solutions of the initial value problem for
the nonlinear and nonlocal equation ut +(−∂2

x)α/2u+uux = 0 with α ∈ (0, 1],
supplemented with an initial datum approaching the constant states u± (u− <

u+) as x → ±∞, respectively. It was shown by Karch, Miao & Xu (SIAM
J. Math. Anal. 39 (2008), 1536–1549) that, for α ∈ (1, 2), the large time
asymptotics of solutions is described by rarefaction waves. The goal of this

paper is to show that the asymptotic profile of solutions changes for α ≤ 1.
If α = 1, there exists a self-similar solution to the equation which describes
the large time asymptotics of other solutions. In the case α ∈ (0, 1), we show
that the nonlinearity of the equation is negligible in the large time asymptotic
expansion of solutions.

1. Introduction

In this work, we continue the study of asymptotic properties of solutions of the
Cauchy problem for the nonlocal conservation law

ut + Λαu + uux = 0, x ∈ R, t > 0,(1.1)

u(0, x) = u0(x),(1.2)

where Λα = (−∂2/∂x2)α/2 is the pseudodifferential operator defined via the Fourier

transform (̂Λαv)(ξ) = |ξ|α v̂(ξ).
Motivated by the recent probabilistic approach to problem (1.1)–(1.2) by Jour-

dain, Méléard, and Woyczyński [10, 11], we assume that the initial datum u0 is a
function with bounded variation on R:

(1.3) u0(x) = c +

∫ x

−∞

m(dy)

with c ∈ R and m(dy) being a finite signed measure on R. Moreover, we require
that

(1.4) u0 − u− ∈ L1((−∞, 0)) and u0 − u+ ∈ L1((0, +∞)),

where

(1.5) u− = c and u+ − u− =

∫

R

m(dx) satisfy u− < u+.

If c = 0 and if m(dy) is a probability measure, the function u0(x) defined in (1.3)
is the cumulative distribution function and this property is shared by the solution
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u(t) for every t > 0 (see [10, 11]). As a consequence of our results, we describe the
asymptotic behavior of the family {u(t)}t≥0 of probability distribution functions as
t → ∞ (see the summary at the end of this section).

It was shown in [12] that, under assumptions (1.3)–(1.4) and for 1 < α ≤ 2,
the large time asymptotics of solution to (1.1)–(1.2) is described by the so-called
rarefaction waves. The goal of this paper is to complete these results and to obtain
a universal asymptotic profile of solutions for 0 < α ≤ 1.

1.1. Known results. Let us first recall the results obtained in [12]. For α ∈
(1, 2], the initial value problem for the fractal Burgers equation (1.1)–(1.2) with
u0 ∈ L∞(R) has the unique, smooth, global-in-time solution (cf. [8, Thm. 1.1],
[9, Thm. 7]). If, moreover, the initial datum is of the form (1.3) and satisfies
(1.4)–(1.5), the corresponding solution u = u(x, t) converges as t → ∞ toward the
rarefaction wave (cf. [12, Thm. 1.1]). More precisely, for every p ∈ (3−α

α−1 ,∞] there

exists C = C(p) such that for all t > 0,

(1.6) ‖u(t) − wR(t)‖p ≤ Ct−
1
2
[α−1− 3−α

p
] log(2 + t).

Here, the rarefaction wave wR = wR(x, t) is the explicit function

(1.7) wR(x, t) = WR(x/t) =





u− ,
x

t
≤ u−,

x

t
, u− ≤ x

t
≤ u+,

u+ ,
x

t
≥ u+.

It is well-known that wR is the unique entropy solution of the Riemann problem
for the nonviscous Burgers equation wR

t + wRwR
x = 0.

The goal of the work is to show that, for α ∈ (0, 1], one should expect completely
different asymptotic profiles of solutions. Let us notice that the initial value problem
(1.1)–(1.2) has the unique global-in-time entropy solution for every u0 ∈ L∞(R) and
α ∈ (0, 1] due to the recent work [1]. We recall that result in Section 2.

1.2. Main results for α < 1. In the case where α < 1 the Duhamel principle (see
equation (3.3) below) shows that the nonlinearity in equation (1.1) is negligible in
the asymptotic expansion of solutions.

Theorem 1.1. (Convergence toward the linear part)
Let 0 < α < 1 and u = u(x, t) be the entropy solution to (1.1)–(1.2) corresponding
to the initial condition of the form (1.3) satisfying (1.4)–(1.5). Denote by Sα(t)u0

the solution of the linear initial value problem ut + Λαu = 0, u(x, 0) = u0(x). For
every p ∈

(
1

1−α ,∞
]

there exists C = C(p) > 0 such that

(1.8) ‖u(t) − Sα(t)u0‖p ≤ C‖u0‖∞‖m‖t1− 1
α

(1− 1
p
)

for all t > 0.

Remark 1.2. It follows from the proof of Theorem 1.1 that inequality (1.8) is valid
for every p ∈ [1,∞]. However, its right-hand-side decays only for p ∈

(
1

1−α ,∞
]
.

The asymptotic term in (1.8) can be written in a self-similar way.

Corollary 1.3. (Self-similar behavior of the linear part)
Under the assumptions of Theorem 1.1, we have for each p ∈

(
1

1−α ,∞
]

∥∥∥u(t) −
(

c + Hα(x, t)

∫

R

m(dx)

)∥∥∥
p
→ 0 as t → ∞,

where Hα(x, t) ≡
∫ x

−∞
pα(y, t) dy and pα(x, t) is the fundamental solution of the

linear equation ut + Λαu = 0.
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The function c+Hα(x, t)
∫

R
m(dx) is nothing else but the solution to ut+Λαu = 0

with the initial datum U0 given by (1.9) below. It is well-known that this solution
is self-similar with the scaling Hα(x, t) = Hα

(
xt−1/α, 1

)
, see also the homogeneity

property (3.5).

Remark 1.4. An explicit estimate of the rate of the convergence from Corollary 1.3
can be derived under the additional assumption

∫
R
|z||m|(dz) < ∞, see inequality

(5.5) below.

1.3. Convergence results in the case α = 1. In this case, we use the uniqueness
result from [1] combined with a standard scaling technique to show that equation
(1.1) has self-similar solutions.

Theorem 1.5. (Existence of self-similar solutions)
Assume α = 1. The unique entropy solution U = U(x, t) of the initial value problem
(1.1)–(1.2) with the initial condition

(1.9) U0(x) ≡
{

u− , x < 0,

u+ , x > 0,

is self-similar, i.e. it has the form U(x, t) = U (x/t, 1) for all x ∈ R and all t > 0.

Remark 1.6. Note that the function U0 from (1.9) is of the form (1.3) for the
measure m = (u+ − u−)δ0 where δ0 denotes the Dirac mass at 0.

Our second main convergence result states that the self-similar solution U =
U(x, t) describes the large time asymptotics of other solutions to (1.1)–(1.2).

Theorem 1.7. (Convergence toward the self-similar solution)
Let α = 1. Let u = u(x, t) be the entropy solution to problem (1.1)–(1.2) corre-
sponding to the initial condition of the form (1.3) satisfying (1.4)–(1.5). Denote by
U = U(x, t) the self-similar solution from Theorem 1.5. For every p ∈ [1,∞] there
exists a constant C = C(p) > 0 such that

‖u(t) − U(t)‖p ≤ Ct−
p−1

p ‖u0 − U0‖1

for all t > 0.

1.4. Qualitative results in the case α = 1. Let us complete the result stated in
Theorem 1.7 by listing main qualitative properties of the profile U(1).

Theorem 1.8. (Qualitative properties of the self-similar profile)
The self-similar solution U(x, t) = U(x

t , 1) from Theorem 1.5 enjoys the following
properties:

p1. (Regularity) The function U(1) = U(x, 1) is Lipschitz-continuous.
p2. (Monotonicity and limits) U(1) is non-decreasing and satisfies

lim
x→±∞

U(x, 1) = u±.

p3. (Symmetry) For all y ∈ R, we have

U (c + y, 1) = c − U (c − y, 1) where c ≡ u− + u+

2
.

p4. (Convex/concave) U(1) is convex (resp. concave) on (−∞, c] (resp. on
[c, +∞)).

p5. (Decay at infinity) We have

Ux(x, 1) ∼ u+ − u−

2π2
|x|−2 as |x| → ∞.
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Actually, the profile U(1) = U(x, 1) is expected to be C∞
b or analytic, due to

recent regularity results [14, 7, 16] for the critical fractal Burgers equation with α =
1. It was shown that the solution is smooth whenever u0 is either periodic or from
L2(R) or from a critical Besov space. Unfortunately, we do not know if those results
can be adapted to any initial condition from L∞(R).

Property p3 implies that U(x(t), t) is a constant equal to c along the character-
istic x(t) = ct, with the symmetry

U (ct + y, t) = c − U (ct − y, t)

for all t > 0 and y ∈ R. Thus, the real number c can be interpreted as a mean
celerity of the profile U(t), which is the same mean celerity as for the rarefaction
wave in (1.7).

In property p5, we obtain the decay at infinity which is the same as for the
fundamental solutions p1(x, t) = t−1p1(

x
t , 1) of the linear equation ut + Λ1u = 0,

given by the explicit formula

(1.10) p1(x, 1) =
2

1 + 4π2x2
.

Following the terminology introduced in [6], one may say that property p5 expresses
a far field asymptotics and is somewhere in relation with the results in [6] for fractal
conservation laws with α ∈ (1, 2), where the Duhamel principle plays a crucial role.
This principle is less convenient in the critical case α = 1, and our proof of p5 does
not use it.

Finally, if u− = 0 and u+ −u− = 1, property p2 means that U(1) is the cumula-
tive distribution function of some probability law L with density Ux(1). Property p3
ensures that L is symmetrically distributed around its median c; notice that any
random variable with law L has no expectation, because of property p5. Proper-
ties p4-p5 make precise that the density of L decays around c with the same rate
at infinity as for the Cauchy law with density p1(x, 1).

The probability distributions of both laws around their respective medians can
be compared as follows.

Theorem 1.9. (Comparison with the Cauchy law)
Let L be the probability law with density Ux(1), where U = U(x, t) is the self-similar
solution defined in Theorem 1.5, with u− = 0 and u+ = 1. Let X (resp. Y ) be
a real random variable on some probability space (Ω,A, P) with law L (resp. the
Cauchy law (1.10) (with zero median)). Then, we have for all r > 0

P(|X − c| < r) < P(|Y − 0| < r)

where c denotes the median of X.

Remark 1.10. More can be said in order to compare random variables X − c and
Y . Indeed, their cumulative distribution functions satisfy FX−c(x) = FY (x)− g(x)
where g is a positive and explicit function depending the self-similar solution of
(1.1) (see Eq. (6.26)).

1.5. Probabilistic interpretation of results for α ∈ (0, 2). To summarize, let
us emphasize the probabilistic meaning of the complete asymptotic study of the
fractal Burgers equation we have now in hands. We have already mentioned that
the solution u of (1.1)–(1.2) supplemented with the initial datum of the form (1.3)
with c = 0 and with a probability measure m on R is the cumulative distribution
function for every t ≥ 0. This family of probabilities defined by problem (1.1)-(1.2)
converges, as t → ∞, toward

• the uniform distribution on the interval [0, t] if 1 < α ≤ 2 (see the result
from [12] recalled in inequality (1.6) above);
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• the one parameter family of laws constructed in Theorem 1.5 if α = 1 (see
Theorem 1.7);

• the symmetric α-stable laws pα(t) if 0 < α < 1 (cf. Theorem 1.1 and
Corollary 1.3).

1.6. Organization of the article. The remainder of this paper is organized as
follows. In the next section, we recall the notion of entropy solutions to (1.1)-
(1.2) with α ∈ (0, 1]. Results on the regularized equation (i.e. equation (1.1) with
an additional term −εuxx on the left-hand-side) are gathered in Section 3. The
convergence of solutions as ε → 0 to the regularized problem is studied in Section
4. The main asymptotic results for (1.1)-(1.2) are proved in Section 5 by passage
to the limit as ε goes to zero. Section 6 is devoted to the qualitative study of the
self-similar profile for α = 1. Finally, technical lemmata used in proofs are gathered
in Appendix A.

2. Entropy solutions for 0 < α ≤ 1

2.1. Lévy-Khintchine’s representation of Λα. It is well-known (see e.g. [9])
that the operator Λα = (−∂2/∂x2)α/2 for α ∈ (0, 2) has an integral representation:
for every Schwartz function ϕ ∈ S(R) and each r > 0, we have

(2.1) Λαϕ = Λ(α)
r ϕ + Λ(0)

r ϕ,

where the integro-differential operators Λ
(α)
r and Λ

(0)
r are defined by

Λ(α)
r ϕ(x) ≡ −Gα

∫

|z|≤r

ϕ(x + z) − ϕ(x) − ϕx(x)z

|z|1+α
dz,(2.2)

Λ(0)
r ϕ(x) ≡ −Gα

∫

|z|>r

ϕ(x + z) − ϕ(x)

|z|1+α
dz,(2.3)

where Gα =
αΓ( 1+α

2 )
2π

1
2
+αΓ(1−α

2 )
> 0 and Γ is Euler’s function. On the basis of this

formula, we can extend the domain of definition of Λα and consider Λ
(0)
r and Λ

(α)
r

as the operators

Λ(0)
r : Cb(R) → Cb(R) and Λ(α)

r : C2
b (R) → Cb(R);

hence, Λα : C2
b (R) → Cb(R).

Let us recall some properties on these operators. First, the so-called Kato in-
equality can be generalized to Λα for each α ∈ (0, 2]: let η ∈ C2(R) be convex and
ϕ ∈ C2

b (R), then

(2.4) Λαη(u) ≤ η′(u)Λαu.

Note that for α = 2 we have

−(η(u))xx = −η′′(u)u2
x − η′(u)uxx ≤ −η′(u)uxx since η′′ ≥ 0.

If α ∈ (0, 2), inequality (2.4) is the direct consequence of the integral representation
(2.1)–(2.3) and of the inequalities

(2.5) Λ(0)
r η(u) ≤ η′(u)Λ(0)

r u and Λ(α)
r η(u) ≤ η′(u)Λ(α)

r u,

resulting from the convexity of the function η.
Finally, these operators satisfy the integration by parts formula: for all u ∈

C2
b (R) and ϕ ∈ D(R), we have

(2.6)

∫

R

ϕΛu dx =

∫

R

uΛϕdx,
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where Λ ∈ {Λ(0)
r , Λ

(α)
r , Λα} for every α ∈ (0, 2] and all r > 0. Notice that Λϕ ∈

L1(R), since it is obvious from (2.2)-(2.3) that Λ
(α)
r : W 2,1(R) → L1(R) and Λ

(0)
r :

L1(R) → L1(R).
Detailed proofs of all these properties are based on the representation (2.1)–(2.3)

and are written e.g. in [1].

2.2. Existence of the entropy solution. It was shown in [2] (see also [14]) that
solutions of the initial value problem for the fractal conservation law

ut + Λαu + (f(u))x = 0, x ∈ R, t > 0,(2.7)

u(0, x) = u0(x),(2.8)

where f : R → R is locally Lipschitz-continuous, can become discontinuous in
finite time if 0 < α < 1. Hence, in order to deal with discontinuous solutions,
the notion of entropy solutions in the sense of Kruzhkov was extended in [1] to
fractal conservation laws (2.7)–(2.8) (see also [13] for the recent generalization to
Lévy mixed hyperbolic/parabolic equations). Here, the crucial role is played by the
Lévy-Khintchine’s representation (2.1)–(2.3) of the operator Λα.

Definition 2.1. Let 0 < α ≤ 1 and u0 ∈ L∞(R). A function u ∈ L∞(R × (0,∞))
is an entropy solution to (2.7)–(2.8) if for all ϕ ∈ D(R× [0,∞)), ϕ ≥ 0, η ∈ C2(R)
convex, φ : R → R such that φ′ = η′f ′, and r > 0, we have

∫

R

∫ ∞

0

(
η(u)ϕt + φ(u)ϕx − η(u)Λ(α)

r ϕ − ϕη′(u) Λ(0)
r u

)
dxdt

+

∫

R

η(u0(x))ϕ(x, 0) dx ≥ 0.

Note that, due to formula (2.3), the quantity Λ
(0)
r u in the above inequality is

well-defined for any bounded function u.
The notion of entropy solutions allows us to solve the fractal Burgers equation

for the range of exponent α ∈ (0, 1].

Theorem 2.2 ([1]). Assume that 0 < α ≤ 1 and u0 ∈ L∞(R). There exists a
unique entropy solution u = u(x, t) to problem (2.7)–(2.8). This solution u belongs
to C([0,∞); L1

loc(R)) and satisfies u(0) = u0. Moreover, we have the following
maximum principle: ess inf u0 ≤ u ≤ ess supu0.

If α ∈ (1, 2], all solutions to (2.7)–(2.8) with bounded initial conditions are
smooth and global-in-time (see [8, 14, 15]). On the other hand, the occurrence of
discontinuities in finite time of entropy solutions to (2.7)–(2.8) with α = 1 seems
to be unclear. As mentioned in the introduction, regularity results have recently
been obtained [14, 7, 16] for a large class of initial conditions which, unfortunately,
does not include general L∞ initial data. Nevertheless, Theorem 2.2 provides the
existence and the uniqueness of a global-in-time entropy solution even for the critical
case α = 1.

3. Regularized problem

In this section, we gather properties of solutions to the Cauchy problem for the
regularized fractal Burgers equation with ε > 0

uε
t + Λαuε − εuε

xx + uεuε
x = 0, x ∈ R, t > 0,(3.1)

uε(x, 0) = u0(x).(3.2)

Our purpose is to derive asymptotic stability estimates of a solution uε = uε(x, t)
(uniform in ε) that will be valid for (1.1)–(1.2) after passing to the limit ε → 0.
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Most of the results of this section are inspired from [12] and, when it is the case,
the reader is referred to the corresponding proofs of that work.

Below, we will use the following integral formulation of the initial value prob-
lem (3.1)-(3.2)

(3.3) uε(t) = Sε
α(t)u0 −

∫ t

0

Sε
α(t − τ)uε(τ)uε

x(τ) dτ,

where {Sε
α(t)}t>0 denotes the semi-group of linear operators which infinitesimal

generator is −Λαuε + εuε
xx.

If, for each α ∈ (0, 2], the function pα(x, t) denotes the fundamental solution of
the linear equation ut + Λαu = 0, then

(3.4) Sε
α(t)u0 = pα(t) ∗ p2(εt) ∗ u0.

It is well-known that pα(x, t) can be represented via the Fourier transform p̂α(ξ, t) =
e−t|ξ|α . In particular,

(3.5) pα(x, t) = t−
1
α Pα(xt−

1
α ),

where Pα is the inverse Fourier transform of e−|ξ|α . For every α ∈ (0, 2] the function
Pα is smooth, non-negative,

∫
R

Pα(y) dy = 1, and satisfies the estimates (optimal
for α 6= 2)

(3.6) 0 < Pα(x) ≤ C(1 + |x|)−(α+1) and |(Pα)x(x)| ≤ C(1 + |x|)−(α+2)

for a constant C and all x ∈ R.

One can see that problem (3.1)–(3.2) admits a unique global-in-time smooth
solution that satisfies the maximum principle.

Theorem 3.1. Let α ∈ (0, 2], ε > 0, and u0 ∈ L∞(R). There exists the unique
solution uε = uε(x, t) to problem (3.1)–(3.2) in the following sense: for all T > 0,

• uε ∈ Cb((0, T )× R) and uε ∈ C∞
b ((a, T ) × R) for all a ∈ (0, T ),

• uε satisfies equation (3.1) on (0, T )× R,
• limt→0 uε(t) = u0 in L∞(R) weak-∗ and in Lp

loc(R) for all p ∈ [1,∞).

Moreover, the following inequalities hold true:

(3.7) ess infu0 ≤ u(t) ≤ ess sup u0 for all t > 0.

Proof. Here, the results from [8] can be easily modified in order to get the existence
and the regularity of solutions to (3.1)–(3.2) with ε > 0. �

The next proposition provides an estimate on the gradient of uε.

Proposition 3.2. Assume that 0 < α ≤ 2, ε > 0, and u0 is of the form (1.3) with
c ∈ R and a finite non-negative measure m(dx) on R. Denote by uε = uε(x, t) the
unique solution of problem (3.1)–(3.2). Then

• uε
x(x, t) ≥ 0 for all x ∈ R and t > 0,

• for every p ∈ [1,∞] there exists a constant C = C(p) such that and for all
t > 0, we have

(3.8) ‖uε
x(t)‖p ≤ C min{t−(1− 1

p
)‖m‖ 1

p , t−
1
α

(1− 1
p
)‖m‖}.

Proof. The proof that uε
x(x, t) ≥ 0 for all x ∈ R and t > 0 is almost identical as

[12, Proof of Thm. 2.3.i].
To show the decay estimate (3.8), it suffices to modify slightly the argument

from [12] as follows. We multiply the equation for v = uε
x

vt + Λαv − εvxx + (uεuε
x)x = 0
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by vp−1 to obtain (cf. [12, eq. (2.19)])

(3.9)
1

p

d

dt
‖v(t)‖p

p +

∫

R

vp−1Λαv dx − ε

∫

R

vp−1vxx dx +
p − 1

p

∫

R

vp+1 dx = 0.

Note that, due to the Kato inequality (2.4) (see also [12, inequality (2.7)]), the
second term on the left-hand side is nonnegative. The same property holds true for
the third term because integrating by parts we have

(3.10) − ε

∫

R

vxx(x, t)ϕ(v(x, t)) dx ≥ 0

for any nondecreasing function ϕ.
Now, for the proof of the first decay rate on the right-hand side of (3.8), one

should use the following inequality resulting immediately from (3.9)

1

p

d

dt
‖v(t)‖p

p +
p − 1

p

∫

R

vp+1 dx ≤ 0.

and follow [12, Proof of Thm 2.3.ii]. On the other hand, for the second decay
estimate in (3.8), one should deal with the inequality

1

p

d

dt
‖v(t)‖p

p +

∫

R

vp−1Λαv dx ≤ 0

and follow estimates from [12, Lemma 3.1]. �

We can now give asymptotic stability estimates uniform in ε.

Theorem 3.3. Let α ∈ (0, 2] and ε > 0. Assume that uε and ũε are two solutions
of the regularized problem (3.1)–(3.2) with initial conditions u0 and ũ0 associated
with finite signed measures m and m̃ respectively. Suppose, moreover, that the
measure m̃ of ũ0 is non-negative and u0 − ũ0 ∈ L1(R). Then, for every p ∈ [1,∞]
there exists a constant C = C(p) > 0 independent of ε such that for all t > 0

(3.11) ‖uε(t) − ũε(t)‖p ≤ Ct−
1
α

(1− 1
p
)‖u0 − ũ0‖1 .

Proof. First, to show inequality (3.11) for p = 1, it suffices to copy computations
from [12, Proof of Thm. 2.2]. Next, the proof of (3.11) for p > 1 follows the
arguments from [12, Proof of Lemma 3.1]. In this reasoning, in the case of solutions
of the regularized problem (3.1)–(3.2), we have to deal with the additional term

−εvxx = −ε(uε − ũε)xx which can be always skipped in calculations thanks to
inequality (3.10). �

Theorem 3.4. Let 0 < α < 1 and ε > 0. Assume that u0(x) = c+
∫ x

−∞ m(dy) with

c ∈ R and m being a finite non-negative measure on R. Denote Sε
α(t) the semigroup

of linear operators generated by −tΛα+εt∂2
x. Then, for every p ∈ [1,∞] there exists

C = C(p, α) > 0 independent of ε such that the solution uε to (1.1)–(1.2) satisfies

‖uε(t) − Sε
α(t)u0‖p ≤ C‖u0‖∞‖m‖t1− 1

α
(1− 1

p
)

for all t > 0.

Proof. Using the integral equation (3.3) we immediately obtain

(3.12) ‖uε(t) − Sε
α(t)u0‖p ≤

∫ t

0

‖Sε
α(t − τ)uε(τ)uε

x(τ)‖p dτ.

Now, we estimate the integral in the right-hand side of (3.12) using the Lp-decay of
the semigroup Sε

α(t) as well as inequalities (3.7) and (3.8). Indeed, it follows from
(3.5)-(3.6) that

‖p2(εt)‖1 = 1 and ‖pα(t)‖r = t−
1
α

(1− 1
r
)‖pα(1)‖r
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for every r ∈ [1,∞]. Hence, by the Young inequality for the convolution and
inequalities (3.7), (3.8), we obtain

‖Sε
α(t − τ)uε(τ)uε

x(τ)‖p

≤ ‖pα(t − τ) ∗ (uε(τ)uε
x(τ))‖p

≤ C(t − τ)−
1
α

( 1
q
− 1

p
)‖uε(τ)‖∞‖uε

x(τ)‖q

≤ C(t − τ)−
1
α

( 1
q
− 1

p
)‖u0‖∞‖m‖τ− 1

α
(1− 1

q
),

(3.13)

for all 1 ≤ q ≤ p ≤ ∞, t > 0, τ ∈ (0, t), and the constant C > 0 independent of
t, τ, ε.

Next, we decompose the integral on the right-hand side of (3.12) as follows∫ t

0 ... dτ =
∫ t/2

0 ... dτ +
∫ t

t/2 ... dτ and we bound both integrands by using inequality

(3.13) either with q = 1 or with q = p. This leads to inequality

‖uε(t) − Sε
α(t)u0‖p

≤ C‖u0‖∞‖m‖
(∫ t/2

0

(t − τ)−
1
α

(1− 1
p
) dτ +

∫ t

t/2

τ− 1
α

(1− 1
p
) τ

)
.

(3.14)

Computing both integrals with respect to τ , we complete the proof of Theorem 3.4.
�

4. Convergence toward the entropy solution

It is natural to expect that the solution uε of (3.1)–(3.2) converges, as ε → 0,
toward the entropy solution u to (1.1)–(1.2). Here, we prove this property in the
case of fractal conservation laws with general nonlinearities. For a first reading, the
reader can omit the proof of Theorem 4.1 and proceed directly to Section 5.

Together with the general fractal conservation law (2.7)–(2.8), we study the
associated regularized problem

uε
t + Λαuε − εuε

xx + (f(uε))x = 0, x ∈ R, t > 0,(4.1)

uε(x, 0) = u0(x)(4.2)

where f ∈ C∞(R). Hence, by results of [8] (see also Theorem 3.1), problem (4.1)-
(4.2) admits the unique, global-in-time, smooth solution uε.

The main result of this section reads as follows.

Theorem 4.1. Assume that u0 ∈ L∞(R) and ε > 0. Let uε = uε(x, t) be the
solution to (4.1)–(4.2) and u = u(x, t) be the entropy solution to (2.7)–(2.8). Then,
for every T > 0, uε → u in C([0, T ]; L1

loc(R)) as ε → 0.

Remark 4.2. We assume for simplicity that f ∈ C∞ but general Lipschitz-continu-
ous nonlinearities can be considered. More generally, this result holds true in the
case of multidimensional fractal conservation laws with source terms h = h(u, x, t)
and fluxes f = f(u, x, t) (see [9, 8]). However, the study of such equations would
lead to several technical difficulties which we prefer to avoid for the sake of clarity.

4.1. Finite-infinite propagation speed property. Inequality from the follow-
ing proposition is the starting point to prove Theorem 4.1.

Proposition 4.3. Let u0, ũ0 ∈ L∞(R) and ε > 0. Let uε = uε(x, t) and ũε =

ũε(x, t) be the solutions to (4.1)–(4.2) with the initial data u0 and ũ0, resp. Then

(4.3)

∫ R

−R

|uε(x, t) − ũε(x, t)| dx ≤
∫ R+Lt

−R−Lt

Sε
α(t)|u0 − ũ0|(x) dx
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for all t > 0 and R > 0, where

(4.4) L = max
z∈[−M,M ]

|f ′(z)| and M = max {‖u0‖∞, ‖ũ0‖∞} .

Even if this result does not appear in [1], its proof is based on ideas introduced
in [1, Thm 3.2]. This is the reason why we only sketch the proof of Proposition 4.3;
the reader is referred to [1] for more details.

Sketch of proof of Proposition 4.3. The solution uε of (4.1)–(4.2) satisfies

(4.5)

∫

R

∫ ∞

a

(
η(uε)ϕt + φ(uε)ϕx

)
dxdt

+

∫

R

∫ ∞

a

(
− η(uε)Λ(α)

r ϕ − ϕη′(uε) Λ(0)
r uε

)
dxdt

− ε

∫

R

∫ ∞

a

(η(uε))x ϕx dxdt +

∫

R

η(uε(x, a))ϕ(x, a) dx ≥ 0,

for all ϕ ∈ D(R × [0,∞)) non-negative, η ∈ C2(R) convex, φ′ = η′f ′ and a, r >
0. To show this inequality, it suffices to mutliply (4.1) by η′(uε)ϕ, use the Kato
inequalities (2.4) and integrate by parts over the domain R × [a,∞). Now, let us
introduce the so-called Kruzhkov entropy-flux pairs (ηk, φk) defined for fixed k ∈ R

and all u ∈ R by

ηk(u) ≡ |u − k| and φk(u) ≡ sign(u − k) (f(u) − f(k)) ,

where “sign” denotes the sign function defined by

sign(u) ≡





1, u > 0,

−1, u < 0,

0, u = 0.

Consider a sequence {ηn
k }n∈N ⊂ C2(R) of convex functions converging toward ηk

locally uniformly on R and such that (ηn
k )′ → sign(· − k) pointwise on R by be-

ing bounded by 1, as n → ∞. The associated fluxes φn
k (u) ≡

∫ u

k
η′

k(τ)f ′(τ)dτ
then converge toward φk pointwise on R, as n → ∞, by being pointwise bounded
by |φn

k (u)| ≤ sign(u− k)
∫ u

k
|f ′(τ)|dτ . By the dominated convergence theorem, the

passage to the limit in (4.5) with (η, φ) = (ηn
k , φn

k ) gives

(4.6)

∫

R

∫ ∞

a

(
|uε − k|ϕt + sign(uε − k) (f(uε) − f(k))ϕx

)
dxdt

+

∫

R

∫ ∞

a

(
− |uε − k|Λ(α)

r ϕ − ϕ sign(uε − k) Λ(0)
r uε

)
dxdt

− ε

∫

R

∫ ∞

a

sign(uε − k)uε
x ϕx dxdt +

∫

R

|uε(x, a) − k|ϕ(x, a) dx ≥ 0,

for all ϕ ∈ D(R× [0,∞)) non-negative, a, r > 0 and k ∈ R. In the same way, similar
inequalities hold true for ũε.

On the basis of these inequalities, we claim that the well-known doubling variable
technique of Kruzhkov allows us to compare uε and ũε. To do so, we have to copy
almost the same computations from [1], since the beginning of [1, Subsection 4.1]

until [1, equation (4.11)] with u = uε and v = ũε. The only difference comes from

the term −ε
∫

R

∫∞

a sign(uε−k)uε
x ϕx dxdt in (4.6) and the term −ε

∫
R

∫∞

a sign(ũε−
k) ũε

x ϕx dxdt in the entropy inequalities of ũε. But, these new terms do not present
any particular difficulty, since uε and ũε are smooth. Arguing as in [1], one can
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show that for all φ ∈ D(R × [0,∞)) non-negative and a > 0,
∫

R

∫ ∞

a

|uε − ũε| (φt + L|φx| − Λαφ)

− ε

∫

R

∫ ∞

a

sign(uε − ũε) (uε − ũε)x φx

+

∫

R

|uε(x, a) − ũε(x, a)|φ(x, a) dx ≥ 0,

where L is defined in (4.4). Since |uε− ũε| is Lipschitz-continuous on R× [a,∞), its

a.e. derivative is equal to its distribution derivative with sign(uε − ũε) (uε − ũε)x =(
|uε − ũε|

)
x
. By integrating by parts, we deduce that

∫

R

∫ ∞

a

|uε − ũε| (φt + L|φx| − g[φ]) dxdt

+

∫

R

|uε(x, a) − ũε(x, a)|φ(x, a) dx ≥ 0,

where g[φ] ≡
(
Λα − ε∂2

x

)
φ. Passing to the limit as a → 0, thanks to the continuity

with values in L1
loc(R) of uε and ũε in Theorem 3.1, one can prove that for all

non-negative φ ∈ D(R × [0,∞))

(4.7)

∫

R

∫ ∞

0

|uε − ũε| (φt + L|φx| − g[φ]) dxdt

+

∫

R

|u0(x) − ũ0(x)|φ(x, 0) dx ≥ 0.

This is almost the same equation as that in [1, equation (4.11)] with the diffusive
operator g = Λα − ε∂2

x instead of g = Λα. Hence, we can argue exactly as in [1,
Subsection 4.2] replacing the kernel of Λα by the kernel of the new operator Λα −
ε∂2

x. This gives the desired inequality (4.3) in place of the inequality [1, equation
(3.1)]. �

Proof of Theorem 4.1. Now, we are in a position to prove the convergence result in
Theorem 4.1. The proof follows two steps: first we show the relative compactness
of the family of functions F ≡ {uε : ε ∈ (0, 1]} and, next, we pass to the limit in
entropy inequalities.

Step 1: compactness. Let us prove that

(4.8) F is relatively compact in F ≡ C([0, T ]; L1([−R, R]))

for all T, R > 0. The space F being a Banach space, the statement (4.8) is equivalent
to the precompactness of F :

∀µ > 0 ∃Fµ ⊆ F relatively compact such that

lim
µ→0

sup
uε∈F

distF (uε,Fµ) = 0.(4.9)

To construct Fµ, we consider an approximation of the Dirac mass

ρµ(x) ≡ µ−1ρ(µ−1x)

with a smooth, non-negative function ρ = ρ(x), supported in [−1, 1] and such that∫
R

ρ(x) dx = 1. Then we define

Fµ ≡
{
uε

µ : ε ∈ (0, 1]
}

,

where uε
µ ≡ uε ∗x ρµ and ∗x denotes the convolution product with respect to the

space variable.
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First, we have to prove that Fµ is relatively compact in F . By estimate (3.7), it
is clear that

(4.10) ‖uε
µ‖∞ ≤ ‖u0‖∞ and ‖(uε

µ)x‖∞ ≤ ‖u0‖∞‖(ρµ)x‖1.

Moreover, using equation (4.1) satisfied by uε we obtain

(4.11) (uε
µ)t = −Λαuε

µ + ε(uε
µ)xx − (f(uε)x) ∗x ρµ = 0.

Applying the equalities Λαuε
µ = Λα(uε ∗x ρµ) = uε ∗x (Λαρµ) we see that

‖Λαuε
µ‖∞ ≤ ‖uε‖∞‖Λαρµ‖1 ≤ ‖u0‖∞‖Λαρµ‖1.

The same way, one can prove that

‖(uε
µ)xx‖∞ ≤ ‖u0‖∞‖(ρµ)xx‖1 and ‖(f(uε)x) ∗x ρµ‖∞ ≤ C(‖u0‖∞)‖(ρµ)x‖1.

Consequently, it follows from equation (4.11) that for every fixed µ > 0, the time
derivative of uε

µ is bounded independently of ε ∈ (0, 1]. By (4.10) and the Ascoli-
Arzelà Theorem, we infer that Fµ is relatively compact in Cb([−R, R]× [0, T ]) and,
a fortiori, in F .

Next, we have to prove that limµ→0 supuε∈F distF (uε,Fµ) = 0. Applying Theo-
rem 4.3 to the following simple inequality

‖uε(t) − uε
µ(t)‖L1([−R,R]) ≤

∫ R

−R

∫ µ

−µ

|uε(x, t) − uε(x − y, t)|ρµ(y) dxdy

we get

‖uε(t) − uε
µ(t)‖L1([−R,R]) ≤ sup

|y|≤µ

∫ R

−R

|uε(x, t) − uε(x − y, t)| dx,

≤ sup
|y|≤µ

∫ R+Lt

−R−Lt

Sε
α(t)vy

0 (x) dx,

where vy
0 (x) = |u0(x)−u0(x−y)|. Consequently, by Lemma A.1 in Appendix A, we

see that there exists a modulus of continuity ω such that for all r > 0 and ε ∈ (0, 1]

‖uε − uε
µ‖F ≤ sup

|y|≤µ

∫ R+LT+r

−R−LT−r

vy
0 (x) dx + ‖vy

0‖∞ω(1/r).

The continuity of the translation in L1 implies that

lim
µ→0

sup
|y|≤µ

∫ R+LT+r

−R−LT−r

vy
0 (x) dx = 0.

Hence, it is clear that limµ→0 supε∈(0,1] ‖uε − uε
µ‖F = 0, which proves (4.9) and

thus (4.8).
Conclusion: passage to the limit. It follows from the first step that there ex-

ists v ∈ C([0,∞); L1
loc(R)) such that limε→0 uε = v (up to a subsequence) in

C([0, T ]; L1
loc(R)) for all T > 0. Passing to another subsequence, if necessary, we can

assume that uε → v a.e. From inequality (3.7), we deduce that v ∈ L∞(R×(0,∞)).
What we have to prove is that v = u, however, by the uniqueness of entropy so-
lutions (cf. Theorem 2.2), it suffices to show that v is an entropy solution to
(2.7)–(2.8).

Let η ∈ C2(R) be convex, φ′ = η′f ′ and r > 0. Integrating by parts the
term −ε

∫
R

∫∞

a
(η(uε))x ϕx dxdt in (4.5) and passing to the limit a → 0 in this

inequality, we get
∫

R

∫ ∞

0

(
η(uε)ϕt + φ(uε)ϕx − η(uε)Λ(α)

r ϕ − ϕη′(uε) Λ(0)
r uε

)
dxdt

+

∫

R

η(u0(x))ϕ(x, 0) dx ≥ −ε

∫

R

∫ ∞

0

η(uε)ϕxx dxdt.
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Finally, let us recall that uε → v a.e. as ε → 0 and that uε is bounded in L∞-norm
by ‖u0‖∞. Hence, the Lebesgue dominated convergence theorem allows us to pass
to the limit, as ε → 0, in the inequality above and to deduce that

∫

R

∫ ∞

0

(
η(v)ϕt + φ(v)ϕx−η(v)Λ(α)

r ϕ − ϕη′(v) Λ(0)
r v

)
dxdt

+

∫

R

η(u0(x))ϕ(x, 0) dx ≥ 0.

Hence, according to Definition 2.1 and Theorem 2.2, the function v is the unique
entropy solution to (2.7)–(2.8). The proof of Theorem 4.1 is complete. �

5. Passage to the limit ε → 0 and asymptotic study

This section is devoted to the proof of Theorems 1.1-1.7 and Corollary 1.3. Below,
we systematically use Theorem 4.1 in order to pass to the limit ε → 0 in estimates
from Section 3.

Proof of Theorem 1.5. The existence of the solution U = U(x, t) to equation (1.1)
with α = 1 supplemented with the initial condition (1.9) is provided by Theorem
2.2. To obtain the self-similar form of U , we follow a standard argument based
on the uniqueness result from Theorem 2.2. Observe that if U is the solution to
(1.1), the rescaled function Uλ(x, t) = U(λx, λt) is the solution for every λ > 0,
too. Since, the initial datum (1.9) is invariant under the rescaling Uλ

0 (x) = U0(λx),
by the uniqueness, we obtain that for all λ > 0, U(x, t) = U(λx, λt) for a.e. (x, t) ∈
R × (0, +∞). �

Theorem 1.7 is a particular case of the following more general result which is an
immediate corollary of Theorem 3.3 by passing to the limit as ε → 0.

Corollary 5.1. Let 0 < α ≤ 1. Assume that u and ũ are two entropy solutions
of (1.1)–(1.2) with initial conditions u0 and ũ0 of the form (1.3) with finite signed
measures m and m̃. Suppose, moreover, that the measure m̃ of ũ0 is non-negative
and u0−ũ0 ∈ L1(R). Then for every p ∈ [1,∞] there exists a constant C = C(p) > 0
such that for all t > 0

(5.1) ‖u(t) − ũ(t)‖p ≤ Ct−
1
α

(1− 1
p
)‖u0 − ũ0‖1.

Proof. Denote by uε and ũε the solutions to the regularized equation (3.1) with the
initial conditions u0 and ũ0. By Theorem 4.1 and inequality (3.7), we know that

limε→0 uε(t) = u(t) and limε→0 ũε(t) = ũ(t) in Lp
loc(R) for every p ∈ [1,∞) and in

L∞(R) weak-∗. Hence, for each R > 0 and p ∈ [1,∞], using Theorem 3.3 we have

‖u(t) − ũ(t)‖Lp((−R,R)) ≤ lim inf
ε→0

‖uε(t) − ũε(t)‖Lp((−R,R))

≤ Ct−
1
α

(1− 1
p
)‖u0 − ũ0‖1.

Since R > 0 is arbitrary and the right-hand side of this inequality does not depend
on R, we complete the proof of inequality (5.1). �

Proof of Theorem 1.7. Apply Corollary 5.1 with α = 1 and ũ0 = U0. �

Proof of Theorem 1.1. We argue exactly as in the proof of Corollary 5.1, since
limε→0 uε(t) = u(t) and limε→0 ũε(t) = ũ(t) in Lp

loc(R) for every p ∈ [1,∞) and in
L∞(R) weak-∗. Moreover, it is well-known that for fixed t > 0

lim
ε→0

Sε
α(t)u0 = lim

ε→0
p2(εt) ∗

(
pα(t) ∗ u0

)
= Sα(t)u0 in Lp(R)
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for all p ∈ [1,∞]. Hence, for every R > 0 and p ∈ [1,∞], by Theorem 3.4, we obtain

‖u(t) − Sα(t)u0‖Lp((−R,R)) ≤ lim inf
ε→0

‖uε(t) − Sε
α(t)u0‖Lp((−R,R))

≤ C‖u0‖∞‖m‖t1− 1
α

(1− 1
p
).

The proof is complete by letting R → ∞. �

Proof Corollary 1.3. By Theorem 1.1, it suffices to show

(5.2)
∥∥∥c + Hα(t)

∫

R

m(dx) − Sα(t)u0

∥∥∥
p
→ 0 as t → ∞.

Moreover, replacing u0 by u0 − c (note that Sα(t)c ≡ c) we can assume that c = 0
and u0(x) =

∫ x

−∞
m(dy) in the expression (1.3). Hence, using the Fubini theorem

and changing the variables we obtain

Sα(t)u0(x) =

∫

R

pα(x − y, t)u0(y) dy =

∫ +∞

−∞

∫ y

−∞

pα(x − y, t)m(dz) dy

=

∫ +∞

−∞

∫ x−z

−∞

pα(y, t) dy m(dz) =

∫ +∞

−∞

Hα(x − z, t)m(dz),

and consequently,

Sα(t)u0(x) − Hα(x, t)

∫

R

m(dx)

=

∫ +∞

−∞

(
Hα(x − z, t) − Hα(x, t)

)
m(dz).

(5.3)

Observe that |Hα(x−z, t)−Hα(x, t)| ≤ |Hα(x−z, t)|+|Hα(x, t)| ≤ 2. Furthermore,
by Taylor’s expansion, we have

|Hα(x − z, t) − Hα(x, t)| =
∣∣∣
∫ 1

0

d

ds
Hα(x − sz, t) ds

∣∣∣,

= |z|
∫ 1

0

pα(x − sz, t) ds.(5.4)

Now, under the additional assumption
∫

R
|z| |m|(dz) < ∞, using equality (5.3)

combined with identity (5.4) we have the following Lp-estimate

(5.5)
∥∥∥c + Hα(t)

∫

R

m(dx) − Sα(t)u0

∥∥∥
p
≤ Ct−

1
α

(1− 1
p
)

∫

R

|z| |m|(dz)

for each p ∈ [1,∞] and all t > 0. A standard approximation argument leads
to the decay estimate (5.2) (however, without any rate) for every finite measure
m(dx). �

6. Qualitative study of the self-similar profile for α = 1

This section is devoted to the proof of Theorems 1.8 and 1.9.

Proof of properties p1–p4 from Theorem 1.8. The Lipschitz-continuity stated in p1
is an immediate consequence of Proposition 3.2 and Theorem 4.1. Indeed, U(1) is
the limit in L1

loc(R) of uε(1) as ε → 0, where uε = uε(x, t) is solution to (3.1)–(3.2)
with u0 = U0 defined in (1.9). Moreover, by (3.8), the family {uε(1) : ε > 0} is equi-
Lipschitz-continuous, which implies that the limit U(1) is Lipschitz-continuous.

Before proving properties p2–p4, let us reduce the problem to a simpler one. We
remark that equation (1.1) is invariant under the transformation

(6.1) V (x, t) ≡ U (x + ct, t) − c where c ≡ u− + u+

2
;
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that is to say, if U is a solution to (1.1) with U(x, 0) = U0(x) defined in (1.9), then
V is a solution to (1.1) with the initial datum

(6.2) V (x, 0) = V0(x) ≡
{

v+, x < 0,

v−, x > 0,

where v− = −v+ and v+ ≡ |c| ≥ 0. It is clear that U satisfies p2–p4, whenever V
enjoys these properties. In the sequel, we thus assume without loss of generality
that u− = −u+ and u+ > 0.

It has been shown in [2, Lemma 3.1] that if u0 ∈ L∞(R) is non-increasing, odd
and convex on (0, +∞), then the solution u = u(x, t) of (1.1)-(1.2) shares these
properties w.r.t. x, for all t > 0. The proof is based on a splitting method and
on the fact that the “odd, concave/convex” property is conserved by both the
hyperbolic equation ut + uux and the fractal equation ut + Λ1u = 0. The same
proof works with minor modifications to show that if u0 is non-decreasing, odd
and convex on (−∞, 0), then these properties are preserved by problem (1.1)–(1.2).
Details are left to the reader since in that case, no shock can be created by the
Burgers part and the proof is even easier. By the hypothesis u− = −u+ < 0 made
above, the initial datum in (1.9) is non-decreasing, odd and convex on (−∞, 0). We
conclude that so is the profile U(1). The proof of properties p3–p4 is now complete.

What is left to prove is the limit in property p2. By Theorem 2.2, we have U(t) →
U0 in L1

loc(R) as t → 0. In particular, the convergence holds true a.e. along a
subsequence tn → 0 as n → ∞ and there exists ±x± > 0 such that U(x±, tn) → u±.
By the self-similarity of U , we get U(x±/tn, 1) → u± as n → ∞. Since x±/tn →
±∞ and U(1) is non-decreasing, we deduce property p2. �

6.1. Technical lemmata. Property p5 of Theorem 1.5 is the most difficult part
to prove. Let us first show technical results that shall be needed in our reasoning.

Lemma 6.1. Let v ∈ L∞(R) be non-negative, even and non-decreasing on (−∞, 0).
Assume that there exists ℓ > 0 such that for all x0 > 1/2,

(6.3) lim
n→∞

n−1

∫ n(x0+1/2)

n(x0−1/2)

y2v(y)dy = ℓ.

Then, we have v(y) ∼|y|→∞ ℓ |y|−2 (in the sense that v admits an a.e. representant
satisfying this equivalence).

Proof. By assumption, v admits an a.e. representant which is defined everywhere
on R by being non-negative, even and non-decreasing on (−∞, 0]. We still let v
denote this representant. For all x0 > 1/2, we have

n−1

∫ n(x0+1/2)

n(x0−1/2)

y2v(y)dy ≥ n2(x0 − 1/2)2v(n(x0 + 1/2)),

thanks to the fact that v is non-increasing on [0, +∞). Hence, we have

n2(x0 + 1/2)2v(n(x0 + 1/2)) ≤ n2(x0 + 1/2)2

n2(x0 − 1/2)2
n−1

∫ n(x0+1/2)

n(x0−1/2)

y2v(y)dy.

Taking the upper semi-limit, we get for all x0 > 1/2

(6.4) lim sup
n→∞

n2(x0 + 1/2)2v(n(x0 + 1/2)) ≤ ℓ

(
x0 + 1/2

x0 − 1/2

)2

,

thanks to (6.3). In the same way, one can show that for all x0 > 1/2,

(6.5) ℓ

(
x0 − 1/2

x0 + 1/2

)2

≤ lim inf
n→∞

n2(x0 − 1/2)2v(n(x0 − 1/2)).
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Moreover, for fixed x0 > 1/2 and all y ≥ x0 +1/2, there exists an unique integer ny

such that

ny(x0 + 1/2) ≤ y < (ny + 1)(x0 + 1/2).

Using again that v is non-increasing on [0, +∞), we infer that

y2v(y) ≤ (ny + 1)2(x0 + 1/2)2 v(ny(x0 + 1/2)),

=
(ny + 1)2(x0 + 1/2)2

n2
y(x0 + 1/2)2

n2
y(x0 + 1/2)2 v(ny(x0 + 1/2)).

Notice that ny → ∞ as y → +∞. Therefore, passing to the upper semi-limit
as y → +∞ in the inequality above, one can show that for all x0 > 1/2

lim sup
y→+∞

y2v(y) ≤ ℓ

(
x0 + 1/2

x0 − 1/2

)2

,

thanks to (6.4). In the same way, we deduce from (6.5) that for all x0 > 1/2

ℓ

(
x0 − 1/2

x0 + 1/2

)2

≤ lim inf
y→+∞

y2v(y).

Letting finally x0 → +∞ in both inequalities above implies that

ℓ ≤ lim inf
y→+∞

y2v(y) ≤ lim sup
y→+∞

y2v(y) ≤ ℓ.

Since v is even, we have complete the proof of the lemma. �

Lemma 6.2. Let u ∈ L∞(R) and r > 0. Then Λ
(0)
r u ∈ L∞(R) ⊂ L1

loc(R) defined
in (2.3). Moreover, if {un}n∈N is uniformly essentially bounded and un → u in

L1
loc(R), then Λ

(0)
r un → Λ

(0)
r u as n → +∞.

Proof. For u ∈ L∞(R), we have

Λ(0)
r u(x)

= −G1

∫

R

u(x + z) 1{|z|>r}|z|−2 dz + u(x) G1

∫

|z|>r

|z|−2 dz

= u ∗ ρ(x) + Cu(x),

where ρ(x) ≡ −G11{|x|>r}|x|−2 ∈ L1(R) and C = ‖ρ‖1 ≡ 2G1r
−1. The second part

of the lemma is a consequence of classical properties of the convolution product.
The proof is now complete. �

Lemma 6.3. Let u ∈ L∞(R) be non-decreasing, odd and convex on (−∞, 0). Then,

for the operator defined in (2.2), we have Λ
(1)
r u ∈ L1

loc(R∗) together with the in-
equality

∫

|x|>R

|Λ1
ru(x)| dx ≤ 4G1r

R − r
‖u‖∞(6.6)

for all R > r > 0.

Proof. The proof is divided into a sequence of steps.

Step 1: estimates of ux. The convex function u on (−∞, 0) is locally Lipschitz-
continuous on (−∞, 0) and a fortiori a.e. differentiable, with a distribution deriva-
tive equal to its a.e. derivative. By the slopes inequality for convex functions with
the points (x, u(x)) and (0, u(0)) = (0, 0), we see that for a.e. x 6= 0,

|ux(x)| ≤ ‖u‖∞ |x|−1;(6.7)

notice that the slopes inequality gives the inequality for x < 0 and the one for x > 0
is deduced by oddity of u.
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Step 2: estimates of uxx. By convexity of u, uxx is a non-negative Radon mea-
sure on (−∞, 0) in the distribution sense. Hence, ux ∈ BVloc((−∞, 0)) satisfies∫
(ex,x] uyy(dy) = ux(x)−ux(x̃), for a.e. x̃ < x < 0. Using (6.7) and letting x̃ → −∞,

we conclude that for a.e. x < 0

(6.8)

∫

(−∞,x]

uyy(dy) = ux(x),

thanks to the sup-continuity of non-negative measures. Again by (6.7) and oddity
of uxx, this shows for a.e. x 6= 0

(6.9)

∫

|y|≥|x|

|uyy|(dy) ≤ 2‖u‖∞|x|−1;

notice that by the inf-continuity of non-negative measures, this inequality holds for
all x 6= 0.

Step 3: estimate of Λ
(1)
r u. Let us prove that Λ

(1)
r u is well-defined by formula

(2.2) for a.e. x 6= 0. By the preceding steps, we know that u ∈ L∞(R) ∩W 1,∞
loc (R∗)

and ux ∈ BVloc(R∗). By Taylor’s formula (see Lemma A.2 in Appendix A), we
infer that for all R > r > 0

I ≡
∫

|x|>R

∫

|z|≤r

|u(x + z) − u(x) − ux(x)z|
|z|2 dx dz

≤
∫

|x|>R

∫

|z|≤r

|z|−2

∣∣∣∣∣

∫

Ix,z

|x + z − y|uyy(dy)

∣∣∣∣∣ dx dz,

where Ix,z ≡ (x, x + z) if z > 0 and Ix,z ≡ (x + z, x) in the oposite case. Therefore,
we see that

I ≤
∫

|x|>R

∫

|z|≤r

|z|−1

∫

Ix,z

|uyy|(dy) dx dz,

=

∫

R∗

∫

R

|z|−11{|z|≤r}

∫

|x|>R

1Ix,z
(y) dx |uyy|(dy) dz,

by integrating first w.r.t x; notice that all the integrands are measurable by Fubini’s
theorem, since the Radon measure |uyy|(dy) is σ-finite on R∗. For fixed (y, z) ∈
R∗ × R, we have

1{|z|≤r}

∫

|x|>R

1Ix,z
(y) dx ≤ |z| 1{|z|≤r} 1{|y|≥R−r},

because the measure of the set {x : y ∈ Ix,z} can be estimated by |z|, and if |z| ≤ r,
then 1Ix,z

(y) = 0 for all |x| > R whenever |y| < R − r. It follows that

I ≤
∫

R∗

∫

R

1{|z|≤r} 1{|y|≥R−r} |uyy|(dy) dz = 2r

∫

|y|≥R−r

|uyy|(dy).

Recalling the definition of I above and estimate (6.9), we have shown that

(6.10)

∫

|x|>R

∫

|z|≤r

|u(x + z) − u(x) − ux(x)z|
|z|2 dx dz ≤ 4r‖u‖∞(R − r)−1.

Fubini’s theorem then implies that Λ
(1)
r u(x) is well-defined by (2.2) for a.e. |x| >

R > r by satisfying the desired estimate (6.6).

Step 4: local integrability on R∗. Estimate (6.6) implies that Λ
(1)
r u ∈ L1

loc(R \
[−r, r]). In fact, Λ

(1)
r u is locally integrable on all R∗. Indeed, simple computations

show that for all r > r̃ > 0

(6.11) Λ(1)
r u + Λ(0)

r u = Λ
(1)
er u + Λ

(0)
er u,
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since their difference evaluated at some x is equal to
∫

er≤|z|≤r
−ux(x)z

|z|2 , which is

null by oddity of the function z → −ux(x)z. By Lemma 6.2 and Step 3, it follows

that Λ
(1)
r u = Λ

(1)
er u+Λ

(0)
er u−Λ

(0)
r u ∈ L1

loc(R\[−r̃, r̃]), which completes the proof. �

Remark 6.4. Lemmata 6.2–6.3 imply that Λ
(1)
r u + Λ

(0)
r u ∈ L1

loc(R∗) whenever u ∈
L∞(R) is non-decreasing, odd and convex on (−∞, 0). This sum does not depend
on r > 0 by (6.11). Denoting by Λ1u this sum, one see from (6.10), Fubini’s theorem
and (2.1), that for all ϕ ∈ D(R∗),

∫
R

ϕΛ1u dx =
∫

R
uΛ1ϕ dx. This means that this

sum corresponds to the distribution fractional Laplacian of u on R∗.

Here is a corollary of the two previous lemmata.

Corollary 6.5. Let α = 1 and U = U(x, t) be the self-similar solution from Theo-
rem 1.5 with initial datum U0 in (1.9) for some u− = −u+ < 0. Then, for all t ≥ 0,
one have Λ1U(t) ∈ L1

loc(R∗). Moreover, Λ1U(t) converges toward Λ1U0 in L1
loc(R∗)

as t → 0, where for all x 6= 0

Λ1U0(x) =
u+ − u−

2π2
x−1.

Proof. By properties p2–p4 of Theorem 1.8, U(t) ∈ L∞(R) is non-decreasing, odd
and convex on (−∞, 0) for all t ≥ 0. By Remark 6.4, Λ1U(t) and Λ1U0 belong
to L1

loc(R∗). By taking 0 < r < |x|, simple computations show that

(6.12) Λ(1)
r U0(x) = 0 and Λ(0)

r U0(x) =
u+ − u−

2π2
x−1,

so that

Λ1U0(x) =
u+ − u−

2π2
x−1;

here, we have used the equalities Γ(1) = 1 and Γ(1/2) =
√

π in order to get
G1 = (2π2)−1 in (2.2)–(2.3). Moreover, Theorem 2.2 implies that U(t) → U0

as t → 0 in L1
loc(R) with ‖U(t)‖∞ ≤ ‖U0‖∞. We deduce from Lemma 6.2 that

for fixed r > 0, Λ
(0)
r U(t) → Λ

(0)
r U0 in L1

loc(R) as t → 0. It follows that for

all R̃ > R > r,

lim sup
t→0

∫

R<|x|< eR

|Λ1U(t) − Λ1U0| dx

≤ lim sup
t→0

∫

R<|x|< eR

|Λ(1)
r U(t) − Λ(1)

r U0| dx,

= lim sup
t→0

∫

R<|x|< eR

|Λ(1)
r U(t)| dx by (6.12),

≤ lim sup
t→0

4G1r‖U(t)‖∞(R − r)−1 by (6.6) in Lemma 6.3,

≤ 4G1r‖U0‖∞(R − r)−1.

The proof is complete by letting r → 0. �

Proof of property p5 from Theorem 1.8. Let us finish the proof of Theorem 1.8. We
assume again without loss of generality that u− = −u+ < 0, thanks to the trans-
formation (6.1); hence, U0 ∈ L∞(R) is non-decreasing, odd and convex on (−∞, 0)
and so is U(t) for all t > 0 by properties p2–p4 of Theorem 1.8. We proceed again
in several steps.

Step 1: equation satisfied by U(1). By using η(r) = ±r in Definition 2.1, we
obtain (in a classical way) that entropy solutions to (1.1) are distribution solu-
tions, i.e.

(6.13) Ut + UUx + Λ1U = 0 in D′(R × (0,∞)).
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By property p1 of Theorem 1.8, one has U(1) ∈ W 1,∞(R). By the self-similarity
U(x, t) = U(x

t , 1), one has at least Ut, Ux ∈ L∞
loc(R × (0,∞)) together with the

following equalities for a.e. t > 0 and x ∈ R

Ut(x, t) = −xt−2Ux

(x

t
, 1
)
,

Ux(x, t) = t−1Ux

(x

t
, 1
)
.

By Corollary 6.5, we have also Λ1U(1) ∈ L1
loc(R∗). Using again the self-similarity,

it is easy to deduce from (2.1) that Λ1U ∈ L1
loc(R∗ × (0,∞)) with for a.e. t > 0

and x ∈ R∗,

Λ1U(x, t) = t−1Λ1U
(x

t
, 1
)

(in fact, Λ1U ∈ L∞
loc(R × (0,∞)) by (6.13) so that Λ1U(1) ∈ L∞

loc(R)). Putting
these formulas into (6.13), we get for a.e. t > 0 and x ∈ R,

−xt−2Ux

(x

t
, 1
)

+ t−1U
(x

t
, 1
)
Ux

(x

t
, 1
)

+ t−1Λ1U
(x

t
, 1
)

= 0.

Multiplying by t and changing the variable by y = t−1x, one infer that the pro-
file U(y) ≡ U(y, 1) satisfies for a.e y ∈ R

(6.14) (U(y) − y)Uy(y) + Λ1U(y) = 0.

Step 2: reduction of the problem. By properties p1–p4, the function Uy ∈ L∞(R)
is non-negative, even and non-decreasing on (−∞, 0). Then, Lemma 6.1 shows that
the proof of p5 can be reduced to the proof of the following property:

(6.15) ∀x0 > 1/2 lim
n→∞

n−1

∫ n(x0+1/2)

n(x0−1/2)

y2Uy(y)dy =
u+ − u−

2π2
.

Moreover, equality (6.14) implies that Uy(y) = Λ1U(y)
y−U(y) (for a.e. y > ‖U‖∞). One

deduce that (6.15) is equivalent to the following property:

(6.16) ∀x0 > 1/2 lim
n→∞

n−1

∫ n(x0+1/2)

n(x0−1/2)

yΛ1U(y) dy =
u+ − u−

2π2
.

Conclusion: proof of (6.16). Let us change the variable by y = nx. Easy
computations show that

n−1

∫ n(x0+1/2)

n(x0−1/2)

yΛ1U(y) dy = n−1

∫ x0+1/2

x0−1/2

nxΛ1U(x/n−1, 1)ndx,

=

∫ x0+1/2

x0−1/2

xΛ1U(x, n−1) dx.

Since Corollary 6.5 implies that the function x → xΛ1U(x, n−1) converges to-

ward u+−u−

2π2 in L1((x0 − 1/2, x0 + 1/2)) as n → ∞, the proofs of (6.16) and thus
of property p5 are complete. �

6.2. Duhamel’s representation of the self-similar profile. It remains to prove
Theorem 1.9, for which we need the following result.
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Proposition 6.6. Let α = 1 and let U = U(x, t) be the self-similar solution of
Theorem 1.5 with u± = ±1/2. Then, for all x ∈ R, we have

(6.17) U(x, 1) = −1/2 + H1(x, 1)

−
∫ 1/2

0

∂xp1(1 − τ) ∗ U2(·/τ, 1)

2
(x) dτ

−
∫ 1

1/2

τ−1 p1(1 − τ) ∗ (U(·/τ, 1)Ux(·/τ, 1)) (x) dτ

(where H1(x, 1) =
∫ x

−∞
p1(y, 1)dy).

Proof. The proof proceeds in several steps.
Step 1: Duhamel’s representation of the approximate solution. Notice that for-

mula (6.17) makes sense. Indeed, by the homogeneity property (3.5), we have for
all t > 0

(6.18) ‖∂xp1(t)‖1 = C0t
−1,

where C0 ≡ ‖∂xP1(1)‖1 is finite by (3.6). Hence, the integral
∫ 1/2

0 . . . dτ in (6.17)
is well-defined since the integration variable τ is far from the singularity at τ = 1.

The same way, since U(1) ∈ W 1,∞(R), the integral
∫ 1

1/2 . . . dτ is also well-defined.

Let now uε = uε(x, t) be the solution to the regularized equation (3.1), with
initial datum U0 in (1.9). The goal is to pass to the limit in formula (3.3) at
time t = 1

(6.19) uε(x, 1) = Sε
1(1)U0(x)

−
∫ 1/2

0

p2(ε(1 − τ)) ∗ ∂xp1(1 − τ) ∗ (uε(τ))2

2
(x) dτ

−
∫ 1

1/2

p2(ε(1 − τ)) ∗ p1(1 − τ) ∗ (uε(τ)uε
x(τ)) (x) dτ,

for all x ∈ R.
Step 2: pointwise limits and bounds of the integrands. We first remark that

lim
x→±∞

uε(t, x) = u± .

Hence, thanks to Dini theorem for cumulative distribution functions, we know that
for fixed t > 0, limε→0 uε(t) converges toward U(t) uniformly on R.

Let us next recall that ∂xp1(t) ∈ L1(R), so that for fixed τ ∈ (0, 1)

lim
ε→0

∂xp1(1 − τ) ∗ (uε(τ))2

2
= ∂xp1(1 − τ) ∗ (U(τ))2

2
uniformly on R.

It follows from classical approximate unit properties of the heat kernel p2(x, t) that
for all τ ∈ (0, 1),

(6.20) lim
ε→0

p2(ε(1 − τ)) ∗ ∂xp1(1 − τ) ∗ (uε(τ))2

2
= ∂xp1(1 − τ) ∗ U2(τ)

2

uniformly on R. In particular, for all τ ∈ (0, 1), we have also

(6.21) lim
ε→0

p2(ε(1 − τ)) ∗ p1(1 − τ) ∗ (uε(τ)uε
x(τ)) = p1(1 − τ) ∗ (U(τ)Ux(τ))

uniformly on R, since

p2(ε(1 − τ)) ∗ ∂xp1(1 − τ) ∗ (uε(τ))2

2
= p2(ε(1 − τ)) ∗ p1(1 − τ) ∗ (uε(τ)uε

x(τ))
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and ∂xp1(1 − τ) ∗ U2(τ)
2 = p1(1 − τ) ∗ (U(τ)Ux(τ)).

Morever, by (3.7), (3.8) with p = +∞ and (6.18), one can see that the integrands
of (6.19) are pointwise bounded by

(6.22)
∥∥∥p2(ε(1 − τ)) ∗ ∂xp1(1 − τ) ∗ (uε(τ))2

2

∥∥∥
∞

≤ C0(1 − τ)−1 ‖u0‖2
∞

2
,

and

(6.23)
∥∥∥p2(ε(1 − τ)) ∗ p1(1 − τ) ∗ (uε(τ)uε

x(τ))
∥∥∥
∞

≤ τ−1‖u0‖∞.

Step 3: passing to the limit. Recall that

lim
ε→0

Sε
1(1)U0 = S1(1)U0 = p1(1) ∗ U0

in Lp(R) for all p ∈ [1,∞]. Let us recall that U0(x) = ±1/2 for ±x ≥ 0 and∫
R

p1(y, 1)dy = 1, so that for all x ∈ R

1/2 + p1(1) ∗ U0(x) = p1(1) ∗ (U0 + 1/2)(x) =

∫ x

−∞

p1(y, 1)dy = H1(x, 1).

We have proved in particular that limε→0 Sε
1(1)U0 → −1/2+H1(1) pointwise on R.

In order to pass to the limit in the integral terms of (6.19), we use the Lebesgue
dominated convergence theorem. We deduce from (6.20) and (6.22) that for all x ∈
R, the first integral term converges toward

∫ 1/2

0

∂xp1(1 − τ) ∗ (U(τ))2

2
(x) dτ

as ε → 0. In the same way, we deduce from (6.21) and (6.23) that the last integral
term converges toward

∫ 1

1/2

p1(1 − τ) ∗ (U(τ)Ux(τ)) (x) dτ.

The limit as ε → 0 in (6.19) then implies that for all x ∈ R,

U(x, 1) = −1/2 + H1(x, 1) −
∫ 1/2

0

∂xp1(1 − τ) ∗ U2(τ)

2
(x) dτ

−
∫ 1

1/2

p1(1 − τ) ∗ (U(τ)Ux(τ)) (x) dτ.

This completes the proof of (6.17), thanks to the self-similarity of U . �

Proof of Theorem 1.9. We have to prove that for all r > 0

(6.24) P(|X − c| < r) < P(|Y − 0| < r).

Let us verify that c and 0 are the medians of X and Y , respectively. First, a simple
computation allows to see that p1(x, 1), defined by Fourier transform by p̂1(ξ, 1) =
e−|ξ|, also satisfies formula (1.10). This density of probability is even and the
median of Y is null. Second, by property p3 of Theorem 1.8, Ux(1) is symmetric

w.r.t. to the axis {x = c} and the median of X is c = u−+u+

2 .
In particular, the centered random variable X − c admits a density being the

even function
fX−c(x) = Ux(x + c, 1).

It becomes clear that (6.24) is equivalent to the following property

(6.25) ∀x > 0 FX−c(x) < FY (x),

where FX−c and FY are the cumulative distribution functions of X − c and Y ,
respectively.
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Let us compute these functions. First, we have seen above that fX−c(x) =
Vx(x, 1), where V is defined by the transformation (6.1). Let us recall that V is
the self-similar solution to (1.1) with initial datum V (x, 0) = ±1/2 for ±x > 0.
Hence, FX−c is equal to V (·, 1) up to an additive constant, which has to be 1/2 by
property p2 of Theorem 1.8; that is to say, we have FX−c(x) = 1/2 + V (x, 1) for
all x ∈ R. Second, we defined H1 in Proposition 6.6 such that FY (x) = H1(x, 1).
By this proposition, we have for all x ∈ R,

FX−c(x) = FY (x) − g(x),

where g(x) is defined by

(6.26) g(x) ≡
∫ 1/2

0

∂xp1(1 − τ) ∗ V 2(·/τ, 1)

2
(x) dτ

+

∫ 1

1/2

τ−1 p1(1 − τ) ∗ (V (·/τ, 1)Vx(·/τ, 1)) (x) dτ.

One concludes that the proof of (6.25), and thus of (6.24), is equivalent to the proof
of the positivity of g(x) for positive x. But, by definition of g, it suffices to prove
that for each τ ∈ (0, 1) and x > 0,

(6.27) p1(1 − τ) ∗ (V (·/τ, 1)Vx(·/τ, 1)) (x) > 0.

Indeed, the second integral term in (6.26) would be positive, and the first integral
term also, since for fixed τ ,

∂xp1(1 − τ) ∗ V 2(·/τ, 1)

2
(x) = τ−1 p1(1 − τ) ∗ (V (·/τ, 1)Vx(·/τ, 1)) (x).

Let us end by proving inequality (6.27), thus concluding Theorem 1.9. It is
clear that the function V (·/τ, 1)Vx(·/τ, 1) is odd, since V (1) is odd. Moreover,
we already know that Vx(1) is non-negative, even and non-increasing on (0, +∞),
since V (1) is non-decreasing, odd and concave on [0, +∞). By property p5, we
conclude that Vx(1) is positive a.e. on (0, +∞), and thus on R as even function. In
particular, V (1) is increasing and for all x > 0, V (x, 1) > V (0, 1) = 0.

To summarize, V (·/τ, 1)Vx(·/τ, 1) is odd and positive on (0, +∞). Moreover, it
is clear that p1(1 − τ) is positive, even and decreasing on (0, +∞), see (1.10). A
simple computation then implies that the convolution product in (6.27) is effectively
positive for positive x. The proof of Theorem 1.9 is complete. �

Appendix A. Additional technical lemmata

Lemma A.1. There exists a modulus of continuity ω such that for all v0 ∈ L∞(R),
all T, R, r > 0, and all ε ∈ (0, 1], we have

sup
t∈[0,T ]

∫ R+Lt

−R−Lt

Sε
α(t)|v0|(x) dx ≤

∫ R+LT+r

−R−LT−r

|v0(x)| dx + ‖v0‖∞ω (1/r) .

Proof. First, we write

sup
t∈[0,T ]

∫ R+Lt

−R−Lt

Sε
α(t)|v0|(x) dx

= sup
t∈[0,T ]

∫ R+Lt

−R−Lt

pα(t) ∗ p2(εt) ∗ |v0|(x) dx

≤ sup
s∈[0,T ]

sup
t∈[0,T ]

∫ R+Lt

−R−Lt

pα(t) ∗ p2(εs) ∗ |v0|(x) dx.

(A.1)
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Now, for every s ∈ [0, T ], we estimate from above the following function

M(s) ≡ sup
t∈[0,T ]

∫ R+Lt

−R−Lt

pα(t) ∗ w0(x) dx,

where w0 ≡ p2(εs) ∗ |v0|. Using properties of the kernel pα and its self-similarity
(see (3.5)) we obtain

∫ R+Lt

−R−Lt

pα(t) ∗ w0(x) dx =

∫

|x|≤R+Lt

∫

|y|≤r/2

pα(y, t)w0(x − y) dxdy

+

∫

|x|≤R+Lt

∫

|y|≥r/2

pα(y, t)w0(x − y) dxdy

≤‖pα(t)‖1

∫ R+Lt+r/2

−R−Lt−r/2

|w0(x)| dx

+ ‖w0‖∞2(R + Lt)

∫

|y|≥r/2

pα(y, t) dy

=

∫ R+Lt+r/2

−R−Lt−r/2

|w0(x)| dx

+ ‖w0‖∞2(R + Lt)

∫

|x|≥t−
1
α r/2

pα(x, 1) dx.

Computing the supremum with respect to t ∈ [0, T ] we infer that

M(s) ≤
∫ R+LT+r/2

−R−LT−r/2

|w0(x)| dx + ‖w0‖∞ωα(1/r),

where ωα : [0,∞) → (0,∞) is defined by

ωα(1/r) ≡ (2R + 2LT )

∫

|x|≥T−
1
α r/2

pα(x, 1) dx.

It is clear that the modulus of continuity ωα is non-decreasing and satisfies

lim
r→+∞

ωα(1/r) = 0.

Finally, since ‖w0‖∞ = ‖p2(εs) ∗ |v0|‖∞ ≤ ‖v0‖∞, we obtain

M(s) ≤
∫ R+LT+r/2

−R−LT−r/2

|w0(x)| dx + ‖v0‖∞ωα(1/r).

Analogous computations show now that
∫ R+LT+r/2

−R−LT−r/2

|w0(x)| dx =

∫ R+LT+r/2

−R−LT−r/2

p2(εs) ∗ |v0|(x) dx

≤
∫ R+LT+r

−R−LT−r

|v0(x)| dx + ‖v0‖∞ω2(
√

ε/r)

≤
∫ R+LT+r

−R−LT−r

|v0(x)| dx + ‖v0‖∞ω2(1/r),

because ε ≤ 1.
Finally, with the new modulus of continuity ω (1/r) ≡ ωα(1/r) + ω2(1/r), we

have

M(s) ≤
∫ R+LT+r

−R−LT−r

|v0(x)| dx + ‖v0‖∞ω(1/r).

Coming back to inequality (A.1), we complete the proof of Lemma A.1. �
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Lemma A.2. Let I be an open interval of R and u ∈ W 1,∞(I) be such that u′ ∈
BV (I). Then, for a.e. x ∈ I and all z ∈ I − x, we have

u(x + z) = u(x) + u′(x)z +

∫

Ix,z

|x + z − y| u′′(dy),

where Ix,z ≡ (x, x + z) if z > 0 and Ix,z ≡ (x + z, x) if not.

Proof. We can reduce to the case I = (a, b) with a, b ∈ R. Let us assume with-
out loss of generality that z > 0. Since ux ∈ BV (I), the function ũx(x) ≡
c +
∫
(a,x]

uyy(dy) is an a.e. representant of ux, where c is the trace of ux on the left

boundary of I. The trace of ux ∈ BV (Ix,z) onto {x} is equal to ũx(x), because {x}
is the left boundary of Ix+z. Simple integration by parts formulas now give

u(x + z) = u(x) +

∫

Ix,z

uy(y)dy,

= u(x) −
∫

Ix,z

(y − x − z)uyy(y)dy + ũx(x)z.

The proof is complete. �
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