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Abstract. In front of the large increase of the available amount ofctticed data (such as XML
documents), many algorithms have emerged for dealing wat $tructured data. In this article, we
present a probabilistic approach which aima gtiori pruning noisy or irrelevant subtrees in a set of
trees. The originality of this approach, in comparison veidissic data reduction techniques, comes
from the fact that only a part of a treed. a subtree) can be deleted, rather than the whole tree itself.
Our method is based on the use of confidence intervals, ortitigraof subtrees, computed accord-
ing to a given probability distribution. We propose an onajiapproach to assess these intervals on
tree-structured data and we experimentally show its isténethe presence of noise.

Keywords: data reduction, tree-structured data, noisy data, sttichese automata.

1. Introduction

The use of structured or semi-structured data is increasimgsearch domains such as knowledge dis-
covery in databases or machine learning. One of the maimsasf this trend is the fact that modern
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data are often stored in relational databases that proviilghar expressiveness. Thus, itis in the interest
of machine learning and data mining approaches to take safyarof the structure of data in order to
infer better classification models. The increasing intefesdirectly dealing with such data has led to
the new so-called multi-relational learning field [13].

While a linear representation is sufficient for treatinggbirrelational databases, more complex struc-
tures, such as trees or graphs, are required for modeling-reldtional databases. In this paper, we
focus on tree-structured data which provide an interestimgpromise between graphs and linear rep-
resentations. Actually, trees permit the expression afinidical dependences and are less costly, from
a computational point of view, than graphs. A lot of applicas can be modelized using tree-based
representations such as in medicine and biology. Moretwermain fields have recently stimulated the
interest for tree-structured data. The first one is nataadjiage processing, which consists in building
language models from a set of sentences. In this contextrabeepresentation, callédeebanksal-
lows one to embed the grammatical structure of a sentence.offter field, probably the most active
one, concerns applications issued from the World Wide Weldleéd, tree-structured data are natural
candidates to represent the information available on the, wech as XML data. Because of the huge
guantity of available information, it becomes necessatyaie efficient Machine Learning or Data Min-
ing approaches to deal with such data.

From a data mining standpoint, new approaches have beemgmopfor specifically extracting
knowledge from a set of trees. The probably most interedtiegd consists in adapting the well known
algorithm Apriori [2] to tree-structured dataApriori, proposed by Agrawal and Srikant in 1994, aims
at extracting frequent itemsets, that are objects appgavith a significant number of occurrences in a
database made of flat representations. In [38], Zaki prapaseadaptation of this approach to extract
all frequent subtrees from a forest. In [36], Termégral. proposed a similar work based on an approx-
imation procedure, which decreases the computational ddstaharahet al. [29] proposed to extract
edge labeled tree patterns. More recently, Nijssen and Rk dxtended the previous approaches to
unordered tree patterns.

From a machine learning point of view, several approaches haen proposed to learn tree patterns.
In [18], Goldmanet al. presented a polynomial algorithm able to learn union of fratterns from a
constant number of patterns. Amath al. studied an exact inference method to learn unordered tree
patterns from a set of unordered trees [3]. Grammaticalémfee presents also an interesting framework
for learning models from a set of trees. The objective casgisinferring a grammar representing a tree
language that corresponds to the learning sample. The gaairen be represented by a tree automaton
[11, 16] allowing to define a concept. In this framework, Ktilau[25] proposed to learn finite tree au-
tomata from positive and negative learning trees. Gamda@ncina [15] proposed to learn tree automata
from skeleton trees, that are trees without label on inlerades. To avoid the use of negative examples,
Ricoet al.[33] dealt with the learning of specific tree automata, chkdestable tree automata. Another
approach to avoid the use of negative examples consistauinitg statistical models. In this context,
the objective is to infer stochastic tree automata thatatto define a probabilistic distribution over a
set of trees. Carrasaet al. [8] proposed an adaptation of previous works of Knuutila][26d Garcia
and Oncina [15] in order to learn stochastic tree automaito & al. [34] also extended their own work
to learn k-testable stochastic tree automata. Variousagtjains on tree-structured data used the gram-
matical inference framework based on trees. A&beal. [1] applied stochastic tree automata to predict
the secondary structure of proteins represented by treesallet al. [27] used the k-testable approach
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to extract knowledge from XML data. Habraed al. [19] proposed a generalization of stochastic tree
automata to extract tree patterns and then allow knowleggaation from medical data [20].

Machine learning and data mining algorithms dealing withcttired data have to overcome the same
couple of drawbacks than the one imposed by unstructured Bast, in front of modern databases, they
require to process huge amounts of data. This algorithmitstcaint becomes particularly important
in the context of tree-structured data which are obviouslgdar to process than linear representations.
Second, they also have to deal with a high level of noise, lvbén have dramatic impacts on the quality
of the inferred models. In such a context, a classic strateggists in removing some instances from
the dataset which are either irrelevant, because of the wdakmation they provide, or detected as
being noisy. These tasks are the matter of data reductiochvdain be achieved via two ways: prototype
selection (PS) [37] and feature selection (FS) [22]. It ip@miant to note here that these methods usually
require counter-examples and aim at totally deleting eéimeexample (PS) or a feature (FS). Originally
proposed to tackle the problem of storage requirements sd#-based learning algorithms, such as k-
Nearest-Neighbors [12], data reduction techniques haedyrbeen applied, so far, to structured data.

In this paper, we focus more specifically on the ability ofadegduction techniques to deal with
irrelevant or noisy instances. We propose an approach altpte detect such data in a set of trees. In
this context, we can assume that only some particular sebié a given tree are noisy or irrelevant
and then deserve to be removed. The suppression of a subtrdeeseen as a hybrid approach of data
reduction. It looks like prototype selection when a treedmpletely deleted, and it looks like a local
feature selection when only subtrees are removed. Recemplegity theoretic results show that the
problems of PS and FS are NP-hard [32]. This advocates ofgbefiheuristics for selecting relevant
instances in a set of trees.

The goal of our approach is to improve the learning of proligtli models from a set of trees in
the presence of noise. In the probabilistic framework, thgdaive is not to learn a classifier which
is able to discriminate positive from negative exampled,tblearn a probability distribution over the
data. A good probabilistic model gives a correct estimatibthe probability of each example. Such
models are usually inferred from a set of positive examplay, avhich can be useful for many real
world applications. However the presence of irrelevantaisy data can dramatically affect the quality
of the inferred distribution. The goal of this paper is toyid® an approach allowing us to deal with such
data in the framework of probabilistic learning. In factramain objective is not to highly reduce the
size of the learning set, but rather to improve the probghbéstimations of stochastic models in order to
increase their predictive ability.

To achieve this goal, we propose a probabilistic data résluetpproach specifically adapted to tree-
structured data. The method is based on a partitioning ofititde set of subtrees, using on regular tree
patterns (or contexts), and on the evaluation of the relewani the probability of a subtree to be in a
given partition. Subtrees with a too small probability asdeted. This task is carried out thanks to a
confidence interval computed from the subtrees belongirtegartition. We decided to evaluate our
approach in the context of learning stochastic tree autanibhese models allow us to define a proba-
bility distribution on a set of trees using the representatf a probabilistic automata. Such automata
define a probabilistic tree language and are learned usitigtiital information from a learning set con-
stituted of trees. These automata are then very suited diomitey a probability distribution over a set of
trees.
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The paper is organized as follows. Section 2 deals with sagfipitions and notations. In Section 3,
we introduce our data reduction approach. Section 4 presetieoretical analysis of the impact of
noise. In Section 5, we describe our experimental resuitallly, we conclude this paper in Section 6.

2. Definitions and Notations

In this section, we formally define the notion of tree, and iiesirate our definitions using an example
presented in Figure 1. In this example, that we will use astitation all along this paper, we consider
a database of hospital patients affected by a given dis¢aseeach patient, we have two of the main
characteristic symptoms of the disease, his blood groughandtage of the disease.

The definitions introduced in this section correspond taaasit framework, and are inspired by the
thesis of Kilpelainen [23].

patient patient patient patient

— T~ — T~ — T~ — T~
symptoms blood stage symptoms blood stage symptoms blood stage symptoms blood stag
N | | N | | N | | N | |

ID1 ID2 A+ severe ID1 ID2 Cu severe ID7 ID5 O+ medium ID7 ID5 O+ peter

Figure 1. Set of tree® representing 4 patients.

Definition 1. A binary relationR on a setD is a subset of the Cartesian produigtx D
Definition 2. The transitive closure aR, denoted by ™, is defined by:

R' = {(z,y) | (z,y) € D?}
R = {(x,y)| 3z € D such thaiz, z) € Rand(z,y) € R",n > 0}
R = Un>0 R"

Definition 3. A treet is defined by a triple{ V;, A;, root(t)) where N, is a set of nodesd; C N7 is
a binary relation, anaoot(t) is a special node called thieot of the treet. For each paifu,v) € Ay,
(u,v) is called an edge of the tree ands the parent of, which is denoted by, = parent(v). A, must
verify the following conditions:

* root(t) has no parent.
» Each node irt (except the root) has exactly one parent.

» From the root, we can reach any nodetah following a path defined by the edges tfi.e.
Vv € Ny, v # root(t), (root(t),v) € A}.

Lett be a tree and let € N;, we now formally define the notion of children and descerslafia
nodeu.

Definition 4. The children ofu are defined by
children(u) = {v € N; | (u,v) € A}
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Definition 5. The descendants afby:
descendants(u) = {v € Ny | (u,v) € A}
Definition 6. The subtree of with root u is the treg( Ny, A, u) such that:
* Ny = {u} Udescendants(u)
* Ay = At N (N X Nyjp)

Trees, we are interested in, are constructed over a signalhis signature allows to label each node
by a functional symbol, such that all the nodes labeled bg#mee symbol have exactly the same number
of children. Finally, the symbols are typed and the childpetered.

Definition 7. A signatureX is a 4-tuple(r, V, arity, o) where:
* 7 is a finite set whose elements are caleuits
» V is afinite set whose elements are called function symboisalled the alphabet,
* arity is a mapping function fron into IV, arity(f) called thearity of the function symboff,
* o is a mapping function fron¥ into 7, o( f) called thesortof f.

We denote by the set of trees defined relatively tsignatureX..

Definition 8. A labeled treet over a signature is a tree such that each node= V; is mapped with a
symbol f € V such thatchildren(u)| = arity(f)

We use the notation = f(t¢4,...,t,) to define a tree having the root labeled by the symbahd
havingn subtreeg, ..., t, such thatchildren(root(t)) = {root(t1),...,root(t,)}. A total order is
defined on the set of children 6such that; is the first subtree ang, is the last one.

For example, the first of the four trees of Figure 1 represanmatient having symptom&D1 and
I1D2, with A+ as blood group and a disease at a severe stage. The label othis patient, and
the labels of the three children of the root amenptoms, blood and stage. We denote this tree by
patient(symptoms(ID1,1D2),blood(A+), stage(severe)).

In the following, when there is no ambiguity, we will des@ithe node of a tree by its label.

Definition 9. A positionis a couple(f, p) (denoted byf.p) wheref € V andp € IN such thatl <
p < arity(f). A positiondefines the subtree corresponding to the child numhsrthe symbolf (the
children are ordered from left to right). The special pasitp,..,; defines the symbol at the root of a tree.

For example, in the first tree of Figure 1, the subtsgewptoms(I D1, ID?2) is at positionpatient.1 of
the treepatient(symptoms(1D1,1D2), blood(A+), stage(severe)) and the subtre@D2 is at position
symptoms.2 of the subtregymptoms(1D1,1D2).

Definition 10. LetT be a sample of trees. We denote$wb(T') the set of subtrees @f and M Sub(T')
the multi-set of subtrees @f.
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For example, if we consider the subset composed of the fistiwes of the sampl€ of Figure 1:

Sub(T) = {ID1,1D2,A+,Cu,severe, symptoms(ID1,1D2),blood(A+),blood(Cu),
stage(severe), patients(symptoms(I D1, ID2), blood(A+), stage(severe)),
patients(symptoms(ID1,1D2), blood(Cu), stage(severe))}

MSub(T) = {ID1,ID1,ID2,I1D2, A+, Cu, severe, severe, symptoms(I1D1,1D2),
symptoms(I1 D1, 1D2),blood(A+), blood(Cu), stage(severe), stage(severe),
patients(symptoms(I1 D1, 1D2), blood(A+), stage(severe)),
patients(symptoms(I1 D1, 1D2), blood(Cu), stage(severe))}

Let us now consider the problem of noisy data. In our exantpesubtreélood(Cu) of the second
tree and the subtregage(peter) of the fourth one, are clearly corrupted, probably due topénty error,
and should be removed. However, the other subtrees of treesedeserve to be kept because they bring
relevantinformation. One of the interest of a data reduction apgndado reduce the dataset size by
removing useless or noisy data without calling into questie probabilistic distribution of the learning
set. Our idea is then to assess this distribution and rematsethving a too weak probability density,
that characterizes both useless and noisy data. This |leatdspnopose a definition of the relevance of a
subtree. This definition is in relation with the one of reletvBeatures introduced in [22].

Definition 11. Let D be a distribution on a set of subtregsa subtree is relevant inS if and only if its
probability estimatiorpp(t) is notsignificantlysmaller than the mean of the probabilities of subtrees of
S.

Roughly speaking, this definition expresses the idea thake@ant subtree must cover a significant
part of the probability density of the learning set. Thera$sess this notion of significance, we propose,
in the next section, to use the concept of confidence intgrvatlely used in statistical inference theory.

3. Pruning Subtrees using Confidence Intervals

In this section, we introduce the probabilistic framewofkwor approach. First, we compute a probability
distribution over a set of trees, based on “N-grams” modea§ pnd adapted to tree-structured data.
Using this distribution, we draw a confidence interval abtime mean of the probabilities of subtrees.
The lower bound of this interval is then used as a criticatshold for testing the relevance of a subtree.
All this process requires to take into account, in the cogr®d learning set, only comparable sub-
trees. Actually, whileblood(A+) andblood(O+) are two subtrees characterizing the same “concept”,
it is obviously irrelevant to comparood(A+) andstage(severe). In other words, it means that one
must formally define a notion afoncepfor permitting the construction of efficient confidence imtds.
We present this formalism at the end of this section, basea jpartitioning method using regular tree
patterns.

3.1. Tree-based Probability Distribution

Given a learning sampl& of trees, we aim at constructing a probability distributimm the whole set
T. To achieve this task, we compute a probability for eachreelih Sub(T") according to an approach
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similar to the one of “N-grams” often used in natural langeiagodeling [6]. This approach assumes
that the probability of a given symbol in a string can be cotagwsing then — 1 previous symbols.
We use a similar principle, witlh = 2, computing the probability of a symbol relatively to its pat.
Note that a different adaptation of this approach in the exinof trees has been proposed in [34]. For
each symbok of the learning sef’, we assess its probabilify.(a | f.i) to be the child numberof any
symbol f. Formally, if #%(a) is the number of nodes labeled hyat positionf.i in the setl” and if

#7(f) corresponds to the number of nodes labeled iy 7', we have:

. . . . #?i(a)
Va e V,Vf eV, V1l <i<arity(f),pela| f.i) = 2T
Moreover we compute for each symbol its probability to berthat of a tree.
s )
Ya €V, pr(a) = Lo =
T

where|T| is the cardinality of the séf.
Finally the probability of a tre¢ = f(¢4,...,t,) is computed as follows:

ﬁa(f(tla oo >tn)) = ﬁr(f) X ﬁpos(tl | fl) X X ﬁpos(tn | f’I’L)
wherep,,, is recursively defined by:
ﬁpos(g(uh ce. aum) ‘ fZ) = ﬁc(g ‘ fZ) X ﬁpos(ul ’ g-l) X X ﬁpos(um ‘ g-m)

For example, the set of trees of Figure 1 leads to the follgvdanditional probabilities (only the non
null probabilities are indicated):

pe(ID1 | symptoms.1) = % pe(A+ | blood.1) = 1 pe(medium | stage.1) = 1
pe(ID2 | symptoms.2) = 2 pe(Cu | blood.1) = % pe(peter | stage.l) =
Pe(IDT | symptoms.1) = 2 Pe(O+ | blood.1) = 2 pe(stage | patient.3) = %
Pe(ID5 | symptoms.2) = % pe(severe | stage.1) = % pe(blood | patient.2) = %
Pe(symptoms | patient.1) = % pr(patient) = %

and the probability of the tree= patient(symptoms(ID1,1D2),blood(A+), stage(severe)) is com-
puted as follows:

Pa(t) = pr(patient) X p.(symptoms | patient.1) x p.(blood | patient.2) x
Pe(stage | patient.3) X p.(ID1 | symptoms.1) x p.(ID2 | symptoms.2) X
Pe(A+ | blood.1) X p.(severe | stage.1)
1 1

1 1
= IX1IXIXIX=X=X-—X=—=—
2 2 4 2 32

If ¢ is a subtree of a tree, assuming tHas different than the whole tree, then we compute its prob-
ability taking into account its position relatively to itagent. For example, the probability of the subtree
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blood(A+) of the previous tree is computed as follows:

Ppos(blood(A+) | patient.2) = pc(blood | patient.2) x p.(A+ | blood.1) =

NN
X
e~ =
e~ =

The probability distribution allows us to compute the lovibeund of a confidence interval which
helps us to detect irrelevant instances. However, when fidemte interval is estimated with a small
number of examples, the lower bound can be negative. It is iflmpossible to detect very rare in-
stances. To overcome this drawback, we propose to slightigifinthe probability distribution in order
to automatically delete very rare instances, that occur only once. For this purpose, to compute the
probability of a subtree, we adapt the probability distribution such that the instanft is not taken
into account. Formally, if.(a|f.7) is involved in the computation of the probability estimatiof ¢, then
pe(a|f.7) is replaced by:

0 if #7(f) = #'(f)
#1.i(a)—#% ,(a)
#1(f)—#(f)
where#}j(a) is the number of symbols at positionf.i in ¢, and#!(f) the number of labelg in ¢.
For example, the probability of the subtrdeod( A+ ) is actually evaluated as follows:

otherwise

wlw

wlo
I
o

Ppos(blood(A+) | patient.2) = p.(blood | patient.2) x p.(A+ | blood.1) = = X

This modification allows us to associate a null probabilityristances occurring once in the dataset.
In our approach, all subtrees with a null probability areoaustically removed.

3.2. Probabilistic Pruning Rule

In the previous section, we have proposed a way to constrpeblaability distribution from a set of
treesT. We show here how we can use this distributioratpriori (i.e. before any learning process)
prune subtrees considered statistically irrelevant,kbdo a statistical test. Let us consider a sutssef
MSub(T). We compute a confidence interval, according to a didfcalled the level of significance of
the test, or Type | error). We look for an intenvglmin; 1] such that the theoretical probability,(¢) of

a subtree satisfies the following constraint:

p(pa(t) > pmin) =1 — a.

According to the Central Limit Theorem, the megy(ts) of probabilities of the elements ¢f fol-

lows a normal distribution with an expected valuand a standard deviation%. Then the confidence

interval aroundu is defined as follows:

N

Da(ts) + ——
:uep(S) \/@

X Ugq
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whereg is the estimated standard deviation anadthe (1 — a)-percentile of the normal distribution. Let
pmin be the lower bound of this interval, such that:

g

pmin = pu(ts) — — X u,
!1( ) /—|S| «a

When the size of5 is not sufficient [S| < 30) for approximating the distribution of the random
variablep,(t) by the normal distributionp,(¢) follows a Student distribution withS| — 1 degrees of
freedom.

Once this lower bound is computed, our decision rule cangistieleting all subtrees ¢f that have
a probability smaller thapmin. Then, we can refine Definition 11 on the relevance of a sulbiidag
into account this notion of confidence interval.

Definition 12. Let D be a distribution on a set of subtregsand leta be a risk. A subtree¢is (1 — «)-
. . e A ~ - &
relevant inS'if and only if p,(t) > pa(ts) WE X Ug.
We claim that such pruning strategy is particularly suitedrEmoving noisy subtrees. In fact, such
data have by nature an individual weak probability. Actyaf the opposite case, they would constitute
a part of the concept to learn, and then would deserve to bedrképe learning set.

3.3. Partitioning Subtrees with Regular Tree Patterns

So far, we assumed that we have a learning sarfiptd trees, from which we are now able to detect
irrelevant data. However, we think that the previous prgréirategy is relevant if the probability of a
subtree is computed relatively to those characterizingstmae concept. Roughly speaking, we must
compare only what is comparable. In the definitions of SecZiowe considered that children of a node
are ordered and we proposed a definition for the position ob&ree. Then, we are able to define subtrees
representing the same concept as subtrees that appedy exdloe same position. Indeed, because they
appear at the same position, they represent instances shthe concept. In the example of hospital
patients (see Figure 1), subtrees at positiatient.3 are instances of the concept representing the stage
of the disease.

In fact, we can go farther in our definition of a concept. Whik position of a subtree, we can also
take into account some information given by subtrees apmgat other positions. In our example on
patients, subtrees at positigatient.2 define the concepilood groupof a person. We can refine this
context by taking into account subtrees appearing at posifiatient.1 andpatient.3. For example,
we can consider blood groups of patients having the sympidirisand/ D2 and being at a severe stage
of the disease. Subtrees corresponding to this concelpioofl groupare those appearing at position
patient.2 with the subtreeymptoms(1 D1, I D2) at positionpatient.1 and the subtregtage(severe)
at positionpatient.3. In this case, a concept is defined bgamtexttaking into account the maximum of
local information available.

To assess this notion of context, we propose a method otipaitig using regular tree patterns,
i.e. tree patterns with only one variable. This approach enghgswo subtrees that appear in the same
context {.e. subtrees with the same ancestors and siblings) will be isdhee partition. This kind of tree
patterns corresponds exactly to our notion of context. ¢h, fae can easily construct such tree patterns
by replacing only one subtree in a tree by a variable. If weatethis process in order to consider all



10 A. Habrard, M. Bernard and M. Sebban / Detecting irrelevaagtstructured data

the nodes off’, we can construct all definable contexts in this set. Befoesgnting our partitioning
method, we give a formal definition of regular tree patterns.

Definition 13. A regular tree pattern is a treedefined on a signature, V U { X }, arity, o) where X
is a variable and has exactly one leaf labeled 5.

Lett be a regular tree pattern artidbe a classic tree. We denote by:t’ the substitution of the variable
X of t by the treet’.

Definition 14. The set of all the regular tree patterns, that are tree patteith exactly one variable,
definable on a signatute = (7, V U { X}, arity, o) by ¥

For example, Figure 2 shows the result of the concatenafitheosubtreesymptoms(ID1,1D2)
with the tree patterpatient(X, blood(A+), stage(severe)).

patient patient
P symptoms  _ I
X blood stage o PN - symptoms blood stag:
| | ID1 D2 SN |
A+ severe ID1 ID2 A+ severe
regular tree concatenation
pattern

Figure 2. Regular tree pattern and concatenation.

To construct a partition of the multi-set of subtrees, oyrapch consists in extracting all the regular
tree patterns definable froffi. As seen before, the number of such tree patterns correspaxattly
to the number of nodes df. Then formally, the set of all regular tree patterns can biéndd by
{t | ;' € MSub(T)andt.»t' € T}. Figure 3 shows all the tree patterns definable from the tree
patient(symptoms(ID1,1D2),blood(A+), stage(severe)).

patient patient patient patient
symptoms  blood stage symptoms blood stage X blood stage symptoms  blood stag:
N I I N [ I [ I N I I
X ID2 A+ severe ID1 X A+ severe A+ severe ID1 ID2 X severe

patient patient patient
— T — T — T

symptoms X stage symptoms blood X symptoms blood stage

N I N [ RN I I

ID1 ID2 severe ID1 ID2 A+ ID1 ID2 A+ X

Figure 3. Tree patterns definable fromatient(symptoms(ID1,1D2), blood(A+), stage(severe)).

Each patterrt allows us to define a class of the partition of the multi-set of subtrees. The sub-
trees which can be concatenatedttto obtain a tree of the learning sample belong to this paniti
m = {t' € MSub(T) | t.4t' € T}. We construct all partitions definable from a set of treeshait
guadratic time complexity in the number of nodeslin This time complexity gives an upper bound of
the complexity of our approach. Figure 4 shows examples @ktdmple: selected by the tree pattern
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patient(symptoms(ID1,1D2), X, stage(severe)). Note that the subtreldood(O+) of the third tree
is not selected because the subtrees at positivient.3 in this tree and in the regular tree pattern are
different.

patient patient patient patient
symptoms X stage T= symptoms blood stage symptoms blood stage symptoms blood stage
N | N | | N | | N | |
ID1 ID2 severe ID1 ID2 A+ severe ID1 D2 Cu severe |ID7 IDS O+  mediurr
blood blood

Selected subtrees: | |
A+ Cu

Figure 4. Construction of a partition.

To end this section, we synthesize the main steps of ourpguniethod in Algorithm 1.

Data: T": a set of trees
a: areale [0;1]
begin
Construct the probability distribution ovért
T — partitioning M Sub(T")
foreach S € T'do
Compute an intervdpmin; 1] for probabilities of subtrees df to the riska
foreacht € S do
Deletet if it is not (1 — «)-relevant or ifp, () = 0
end
end
end

Algorithm 1: Pruning subtrees using confidence intervals.

4. Theoretical Results in the Presence of Noise

As we said before, an important aspect of our work is its ciypém deal with noisy data. In this section,
we propose to draw a theoretical study of the impact of noisewr method. To begin with, we define
the protocol of the data corruption process we considernTheder reasonable assumptions about the
nature of noise, we study the impact of noisy data on the fmithadistribution we have to build. We
show that it has a direct influence on the number of deletettesedy We finish this study with the
examination of the impact of noise on subtrees. From a glpbialt of view, this study has the objective
to point out the kind of data that can be efficiently preprseesin the presence of noise.

We assume that the noise is uniformly distributed on thedsaf the learning sét. We think that
such assumption is reasonable in the context of tree-stedtidata because, in most of applications, the
precise information concerning the concept is often stimdeéaves (for examplel+, severe), while
the other nodes characterize more global information.~Le¢ the level of noise, which corresponds to
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the percentage of leaves that have been corrupted. We assah@enoisy leaf is replaced by a different
leaf, randomly chosen from the other leaves of the datasehel following, we denote by, the whole
set of leaves ifT” (without repetitions).

According to our experimental set up, only probabilitiessgmbols located at the leaves, that we
will call “constant”, are affected by the noise. Then, welwilly consider probabilitiep(a| f.n) where
a is such a constant anfla symbol such that < n < arity(f). In all the section, we assume that for
any positionf.n, 3 .cv, arity(a)=o P(alfn) = 1.

In the presence of an uniformly distributed noigewe can easily determine the probability of any
constant: given any positionf.n:

Py(alfm) = (1 =) #plalfin) + (1 - plalfm)) 7
= (1 |Lr| * plal fn)) * = + plal fn)

P,(a | f.n)is composed of two terms. The first one represents the welgirportion of leaves
that are not affected by the noise, while the second correlspto the weighted proportion of corrupted
data that were originally different from before their modification inta (due to the noise). An impor-
tant point to remark is tha®, (a | f.n) evolutes linearly in function of.

Let us now study the behavior &t,(a|f.n).

Theorem 4.1. P, (a|f.n) is an increasing function of if p(a|f.n) < ﬁ and a decreasing function of
1

vif plalfn) > 7o

Proof:
Py(alfn) = (1= |Lz| % p(al f0)) x —I— + p(alf.n)
|Lr| -1
then
0P, (alf.n) 1
) —(1-|L . —
oy = ILrl e plalfn) * ey
Then it is easy to see th#t, (a|f.n) increases with the level of noise whetu|f.n) < \L_lTI and
decreases whep(al f.n) > 7. O

This result shows that when the noise level increases, thteapility of the constant (whatever its
nature) tends to the same valﬁé;‘.

The number of leaves plays an important role in the estimaticthe distribution. We have exper-
imentally observed that, for a given level of noise, the éage of the number of leaves tends to highly
disturb the original distribution, that may have a direcpamt on our pruning method. To confirm this
phenomenon, we theoretically study, here, the deviatiowésnp(a|f.n) and P, (a|f.n).

Theorem 4.2. The deviationDy,,. (a | f.n) = p(a|f.n) — Py(a|f.n) is an increasing function ifLr|.
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Proof:
Dip(al fn) = plalfn) — Py(alfn)
= plalf-n) — (1—~) *plalfn) — (1~ plal f-n)) * i
= yxplalfn) — (1 —plalfn)* =
Then
dDp,, (a | f.n) _ ~ —( =p(alfn))*~ _ (I —p(a|fn))*~ >0
OLr (ILr| —1)2 (ILrl—=1)2  ~
which is positive. U

The deviation between the two probabilities increases With, and implies that the probability
distribution is highly modified, whatever the level of noise This result can be easily interpreted.
Indeed, when the number of leaves is high, those originalbglled bya are replaced by others, and at
the same time, there is only a small proportion of leave®rhfiit froma modified intoa. Then, given a
level of noise, the probability(a| f.n) is modified with the increase ¢L7|.

Since the number of occurrences of a given tree is used favidgathe probability distribution, we
aim here at computing the probability to modify this numberading to the level of noise. Let N, be
the set of trees having the same number of leavesaasl differing from it in at least one leaf. In other
words, for each tre€ € NN;, we can define a bijection between the leaves ahd the ones afsuch that
we can obtairt from ¢'. Given a treg’ € Ny, letdif f(t,t') be the number of different leaves between
andt’. We denote byV L, the number of leaves of a tregand by NO, the number of occurrences of a
treet in the setT".

Theorem 4.3. The probability that the number of occurrences of a tresemodified by is

(1— (1 —~))NEt & + < 7) s (1 — ) (NLe—dif F(E.0))
D 2 0 =" il

t'€ Nt

Proof:
Noise may corrupt the number of occurrences of atrda two ways. On the one hand, it can affect the
leaves oft, on the other hand it can corrupt a treeNéf which becomes an instance iof

The probability to corrupt at least one leaftof equal to the complementary of the probability not
to add noise to any leaf af that is1 — (1 — ~)¥%t, This quantity requires then to be multiplied by the
probability to have the tregin the setr” J|VTO"5.

Moreover, for any tre¢’ € Ny, if dif f(¢,t') = n, then we have to add noise toleaves oft’ such
that each of them becomes exactly equal to the ong ahd we do not corrupt the other leaves. The
probability thatt’ becomes equal tois (v * 17 T YY) s (1 — ) (NLe=dif F(E)) We must multiply

7]
this probability by the one of having: Ng‘t/ We repeat this for each tree M, and holds

>ven, (7% ‘Ll‘ )dlff(“') s (1 — ) (INLe—dif J(2, ) % N|o‘t/
t —
Then, at the end of the Corrupt|on the probability that tieenher of occurrences of a treeis

modified by~ is

1-( ))NLt* +Z ( ] )diff(tﬁt/)*(l yovpedifpee) , KO
7 Lo —1 7 T

t'eNy
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5. Evaluation in the Context of Learning Stochastic Tree Aubmata

We present, in this section, experimental results whictifjuthe interest of our method to preprocess
the learning sample in presence of noisy data. Since we wotkees, we propose to evaluate our data
reduction approach in the framework of learning stochastie automata from a learning set [8, 15, 35].
In such a context, we have a sample of trees, supposed to beaggsh from a probability distribution.
The objective is to learn the probabilistic model which hagayated the data. Thus, the main goal of
such an approach is not to learn a classifier which can digtaites negative from positive examples, but
rather to learn a statistical distribution over the leagngmmple. We propose to compare the automata
inferred from noisy data and those induced after our prumiraggcess. To carry out this task, we can
achieve two series of experiments. The first one deals wattmlag problems where the target automaton
is a priori known. In this case, we can use a measure of distance betiweenférred model and the
target automaton. However, since the target model is oftdmawn, in a second series of experiments,
we also evaluate our approach using a perplexity measurs. cfiterion assesses the relevance of the
model on a test sample.

In this section, we first specify automata we work on, callethyasorted stochastic tree automata,
defined relatively to a signature. Then, we present the #llgorwe use for inferring stochastic tree
automata (STA). Finally, after having detailed the maitetia allowing us to assess the efficiency of our
pruning method, we carry out a large experimental study stgpihe interest of our approach.

5.1. Stochastic Many-Sorted Tree Automata

Deterministic Tree Automata (DTA) generalize Determiigistinite-state Automata (DFA). In contrast
to DFA, that parse strings from left to right, DTA work bottenp. A state of the automaton is associated
to each node of the tree. The label of each node is defined ansition function, and the state of the
root determines if the tree belongs to the language or notilldstrate this informal description, we
give a graphical representation of such automata in Figuhe this example, states are represented by a
circle, final states by a double circle and transitions byiamtfle containing the symbol involved in the
transition. Let us define formally the concept of stochatsde automata able to recognize trees defined
on a signatures (already presented in Section 2).

Definition 15. A SMDTA is a 5-tupleA = (X, Q, r, 6, p) where
— Y is a signaturér, V, arity, o),
— QQ = Uge, Q% is afinite set of states, each state having a saft, in
- r: @ — [0, 1] is the probability for a state to be a final state,
- 6:V x Q* — Q@ is the transition function,
—p:V x Q" — [0, 1] is the probability of a transition.
The transition functior is recursively extended to a functieft V' x (X7)* — @ as follows:

§'(f) = o(f) if arity(f) =0
3(f(t1, ... tn)) =0(f,8(t1),...,98(ty)) otherwise
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Note that we consider deterministic automata with the foilhgy properties. The transition rules 6f
are valid, that is for each rulef, ¢1,...,q,) — q, arity(f) = nando(f) = o(q). Probabilities are
normalized, so that probabilities of transitions leadiagite same state sum to one.

The probability of a tree parsed by a tree automatehis computed as follows:

p(t | A) =r('(t) x n(t)

wherer (t) is recursively given by:

7(f(t1, ... tn)) = p(f,d(t1),...,0 (tn)) X 7(t1) X -+ x 7w(ty)

7(f) stops wherf is a constant symbol, that is whenity(f) = 0. We say that an SMDTA! accepts
atreet if and only if p(¢t | A) > 0. The language recognized by an automaton is the set of a8 tre
accepted by the automaton.

10
ID1 _»

+ 0.4

severe
0.8
1.0
_» —
medium 0.2

Figure 5. An example of stochastic tree automaton.

LAVAVAVAS
5
O
i
&

For example, let us consider the automatbm Figure 5 which is defined with the following transi-
tions and probabilities:

1.0:I1D1 — ¢ 0.6: A+ — qq

1.0:1D2 — g9 04:0+ — qu

1.0 : symptoms(q1,q2) — q3 1.0 : blood(qs) — g5

0.2 : medium — qg 0.8 : severe — qg

1.0 : stage(qs) — q7 1.0 : patient(qs, q5,q7) — qs

r(gg) = 1.0
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This automaton recognizes the first tree of the base on patéirigure 1:
t = patient(symptoms(ID1,ID2),blood(A+), stage(severe))) with the probability
p(t| A) =0.48.

p(t[A) = r(d'(t) x =(t)
= 1(gs) x p(patients, &' (symptoms(ID1,1D2)), 5 (blood(A+)),d (stage(severe))) x
m(symptoms(ID1,1D2)) x w(blood(A+)) x 7(stage(severe))
= 1.0 x p(patients, q3,qs,q7) x p(symptoms, &' (ID1),8 (ID2)) x m(ID1) x w(ID2) x
p(blood, §' (A+)) x w(A+) x p(stage, §' (severe)) x w(severe)
= 1.0 x 1.0 x p(patients, q3,qs5,q7) X p(symptoms, q1,q2) X p(ID1) x p(ID2) x

p(blood, q4) x p(A+) x p(stage, qs) % p(severe)
= 10x10x1.0x1.0x10x1.0x0.6x10x0.8
= 048

An important feature of a stochastic tree automaton is itssistency since it allows to define a
statistical distribution oveE7, that is:

dopt|A)=1

texT

In our inference procedure, probabilities of the SMDTA acenputed from random samples and
thus consistency is always preserved [10, 35].

Note that these stochastic tree automata are able to reeogrdered trees which are defined on a
ranked alphabet (that is where the arity of the nodes are)fi¥esifar as we know, there are no attempts
for learning tree automata with unordered trees (which setmnbe a difficult task), only data mining
approaches [31] or machine learning of tree pattern langgig8] have tried to investigate this field.
However, we can notice that [26] tries to learn unranked #&net®mata with ordered trees but in a non
probabilistic framework. In this paper, we rather focus earhing stochastic tree automata working with
ordered trees defined over a ranked alphabet.

5.2. Induction of Stochastic Tree Automata

In stochastic grammatical inference, Carrastal.[8] proposed an efficient algorithm to learn stochastic
tree automata. Abet al.[1] dealt with learning stochastic tree grammars to pregdiotein secondary
structure. Riceet al.[33] presented a generalization of k-gram models for ststih&ree languages.

Our inference procedure is an extension of [8], that takes sato account [19]. Algorithm 2 gives
an idea of the main steps of the inference. For formally &ttie interested reader may refer to [8, 19].
The input of the algorithm is a training sét of trees and the output is a SMDTA which respects the
distribution overT'.

The algorithm computes the transition function considgmii subtrees of the training set. A total
order is defined on subtrees comparing their depth. Eachesuistmapped to a state, taking into account
the fact that if two subtrees are similar in the training e¢n they have the same state. We denote by
[t] the state mapped to the subtreeTo compute the similarity of two subtreesofnp function), the
algorithm uses a statistical test [21] depending on a paeme< § < 1, which corresponds to the
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Data: T": a training set of trees,

Y = (1, V,arity,o): a signature
Result A = (3,Q,4,p,r): a SMDTA
begin
W — Sub(T)

Q10
while W # () do
x—g(tr,...,ty) =min W
W — W\{z}
if 3y € Q | o(z) = o(y) andcomp(x, y, 5) then
‘ 5(97 [t1]> AR [tn] =Y

else

Q—QU{x)

5(97 [t1]7 A [tn]) =z
end
end
compute_probabilities(T, 6, p, )
end

Algorithm 2: Inference of a SMDTA.

Type | error of a similarity test of two subtrees. Intuitiyeb represents a tolerance parameter for the

merging of two subtrees into a same state. d&hep function is described in Algorithm 3. The notation
Cr(t) corresponds to the number of occurrences of a sulitieethe learning sefl’. The similarity
of two subtrees is assessed by using the regular tree patéy, the test evaluates if two subtrees
are statistically equivalent in a same context. The prdliigsi are then computed counting subtree
occurrences in the training set, with respect to the nomatibn of SMDTA.

Data: x a subtree obub(T')
y a subtree ofub(T')
g areale [0;1]
begin
foreachVz € X such that:.,z € T or z.xy € T do

o | Cr(z.pzx)  Cr(z.zy) 1 2 1 1
L'f b - e > Yz (3)- <\/0T<x> " \/0T<y>> fhen retun faise

return true
end

Algorithm 3: Thecomp function

The algorithm has the following properties: it is polynoiriathe number of different subtrees of
the training set, and it converges to the limit under the Galchdigm [17]. If the seT” of terms has been
generated with a target stochastic tree automatgn,.; and if A(T') is the automaton learned froff,
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then we have the following property:

lim Z (p (t|Atarget) — P(E{A(T))] = 0

|T\—>oo

5.3. Evaluation of Stochastic Tree Automata

The evaluation of non-probabilistic models is often basethe correct classification rate. This is not the
case for our approach aiming at learning a probability itistron from a learning sample. Probabilistic

models are rather assessed on their ability to correctlglipréhe probability of the examples of a test
sample. When the target model is known, the correctnessalsiated by the distance between the
statistical distribution of the learned model and the targedel [7]. Nevertheless, when we work on real
applications, the target model is often unknown, and thdityuaf the learned model can be evaluated
with a measure of perplexity.

5.3.1. Probabilistic Distance

Lyngs@et al. [28] defined distances between two hidden Markov modelsdhiting the co-emission
probability, as the probability that two independent medgtnerate the same string. Carrastal. [9]
presents an adaptation of the co-emission to stochasticatrtiomata. The probability that two proba-
bilistic models,A and A’, generate the same tree is defined by

C(A,A) = pa(t) x pa(t)
texT

WherePy4(t) is the probability oft given the model. The co-emission probability allows us to de-
fine a distance), which can be interpreted as the measure of the angle betiveemttors representing
automata in a space whose base is the set of treg$ of

Definition 16. The distanceD, between two automatd1 and A2 is defined by:

Dy (A1, A2) = arccos C(A1, A2)
o J/C(AL Al) « C (A2, A2)

In the context of stochastic automata, Carrastal. [9] proposed a recursive definition of the co-
emission in order to compute a distance between two stactagbmata. Then, the co-emission can be

written such that
C(AA) = ZZ’I“A X Tar(q) X vy g
q€Q ¢'€Q

Vaq = Z p(f(Girs -+ Gim) = @) ¥ D' (f(qir, - Gim) — @) ¥ Vgil,qjl X - - - X Vgim,qjm
fEX s.t.
f(gi1,e-qim)—4,
f(a51505m)—d’

The recursive definition af, , stops for constant symbols arriving gror ¢'.
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5.3.2. Perplexity

In the case of stochastic tree automata the quality of a médel a test sef;.;; can be evaluated by the

following measure:

LL=— S logp(t] 4)

| Stest || tEStest

where|| Si.s: || is the number of nodes of every tree $if ..

A perfect model can predict each element of the test set wiphohability equal to one, and so
LL = 0. In a general way, we consider the perplexity of the test $ethvis defined byP P = 24, A
minimal perplexity PP = 1) is reached when the model can predict each element of theaswple.
Therefore we consider that a model is more predictive thanheem if its perplexity is lower.

A problem occurs when a tree of the test sample cannot bememmbby the automaton. Actually the
probability of this example is 0 and the perplexity cannotbmputed. To avoid this problem, a classical
method consists in smoothing the distribution of the ledmm®del using an interpolation approach [30]
with a unigram modeH, recognizing all trees oE”. This automaton has only one state, and for each
function symbol of the signature, there is a transitiontstgrfrom and ending in this state. Finally, a
transition is added for any unknown symbol. The probab#itdf transition rules are computed from the
training set, keeping a small ratio for the transition it unknown symbols. In the smoothed model,
a treet has the probability:

P(t) = Ap(t|A) + (1 = A).p(t] Ao)

where0 < X < 1.

5.4. Experimentations

In this section, we present a set of experiments showingrtezdst of our method in the context of
learning in presence of noisy data. We study the ability af method to remove irrelevant or noisy
subtrees to learn stochastic tree automata from a set af tree

To verify this behavior, we carried out two series of expents. First, we consider datasets where
the target automaton is known and we evaluate the qualitheofdarned model by computing the,
distance. For this experiment, we used five artificial dasase

» The dataseStacks is produced by an automaton representing stacks of objegtgfes and tri-
angles) [4]. Each object is described by its shape and itsr.calhis dataset has an alphabet
constituted of 8 different leaves and allows to generatestieith a comb pattern representing the
size of the stack. A sample of 5000 examples is generatetiitodataset.

» The dataseBool is generated by an automaton modeling boolean expressidresalphabet in-
cludes only two leavedriue andfalse€ and the generated trees define boolean expressions with
operatorsand or andnot. We use a sample of 5000 trees for this dataset.

» The datase€Cond is defined an automaton representing conditional stateadrat programming
language [8]. This dataset has an alphabet with 13 leaveallvas to generate wide and depth
trees. We infer automata from a sample of 3000 trees.
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» The datasetartl andArt2, are generated by automata represented in Figure 6, ana dafiple

languages with different leaves. In these datasets, tlaidmcof the leaves has an important effect
on the language. In this case, each dataset is composed ®fre@a.

0.40:
0.30:
0.30:
0.55:
0.45:
0.20:

The other experiments concern samples for which we do nowkhe target model. Then we mea-
sure the quality of the learned models by the perplexity mesasIn this context, we re-use the five

a-ql
b—ql
c—ql
d-q2
e-Q2

0.50: f(q1,91,92)%q3
0.50: g(g2,92,91-04
0.30: f(q1,94,92%q3
0.30: g(92,93,91»q4
0.20: f(q1,93,92)%:q3

0(g2,94,91»094  Final State r(q4)=1

(a) Automaton ofArt1.

0.40:
0.30:
0.30:
0.55:
0.45:

Figure 6. Databasesrtl andArt2.

a-ql
b—ql
c—ql
d—qg2
e—~Q2

0.60: f(q1,91,92)%q3
0.60: g(g2,92,91-04
0.40: f(q1,94,92%q3
0.40: g(92,93,91»q4
Final State r(q4)=1

(b) Automaton ofArt2.

previous samples and we also evaluate our approach on 3ateslats.

» The databaskoan of the UCI Irvine [5]. This dataset corresponds to struddudata in 1st order
logic and is converted into trees according to the principkesented in [4]. This sample has 1000

examples composed of 143 different leaves.

» The databasd@acrine comes from a dataset on the toxicity of the tacrine molectdsgnted in

[24]. This dataset is also structured in 1st order logic andlso converted into trees with the
principle proposed in [4]. This dataset has 1000 examplds 42 different leaves, but has larger

trees than the previous one.

« We also use a sample proposed for the PKDD’02 discoveryarigg! (dataset on hepatitis); the
transformation of data into trees is described in [19]. Tdasaset has 4000 examples with 253

leaves.

Our experimental setup consists in adding noise in eaclsekatas previously described in Section 4,

with a levely from 0 to 25%. For experiments with an unknown target, we uséadd cross-validation,

where only the learning sample is noisy. Then we preprocask eorrupted sample with our approach

using a Type | errox between 0.25 and 0.01. For each level of noise, we keepxthialue which

minimizes the quality measure. In order to show the effigfasfoour pruning technique, we compare it
with a Monte-Carlo sampling which randomly removes of the subtrees.

In our experiments, we study two variants of our pruning radthin the first one (called/,), the

removed subtree is replaced by a special symbol that doesppetar in the dataset. This way to proceed

looks like to the one used in classic data reduction teclesiqu he other one (calledl/s) consists in

http://lisp.vse.cz/challenge/ecmlpkdd2002/
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replacing a deleted subtree by the most probable one of titigigpg in order not to lose a part of the
information. In the Monte-Carlo approach, this subtreenissen randomly among the other subtrees.

We use two statistical measures to evaluate the resultsnéa and the standard deviation of the
quality criterion (distance or perplexity) for the differelevels of noise.

The results are presented in Tables 1, 2 and 3. In each of theindicate the pruning rate according
to the number of nodes removed in columRed. The global size (in the total number of nodes) of
the datasets is indicated Hy5. The results obtained without a preprocessing are storeddolumn
with a suffix N (the prefix corresponds to the mean for the critdtia and Perp), those obtained by
our approach withC'I. The columnM C' corresponds to the Monte-Carlo sampling method previously
mentioned. Finally, the columig indicates the significance of the results betw@deandCT using a
Student paired t-test over the means with a critical riski6f 9 he columnSig2 indicates the significance
of the results betwee@'I and M C' using the same comparison test.

5.4.1. Experimentations Knowing the Target Automaton

Before detailing the behavior of our pruning method, we enésn Figure 7, the evolution of the mean

of variances, before the preprocessing, for each dataketinterest of this experiment is to empirically

show the effect of the Theorem 4.2. Actually, the datatizmsal, which presents a steady variance, is the
one having the smallest alphabet size. It confirms that thlegtilistic distribution has not been changed
a lot in the presence of noise, that has a direct impact onnin@img method. On the other hand, the

databaseStacks andCond, which have a higher alphabet size, present a more distwdréahce.

0.045

0.04

0.035

0.03

0.025

Mean

0.02

0.015

0.01

0.005 (/%

0 4 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

Level of noise (%)

Figure 7. Mean of variances of probabilities for the 5 ari#ficatasets.

Table 1 synthesizes results for the varidifit which replaces, as we said before, the deleted subtree
by a special symbol. The results for the varidd, which replaces the deleted subtree by the most
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probable one, are presented in Table 2. We give the averatgndeD,, observed between the target
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automaton and the inferred automatarthe standard deviation.

Base 18 Red Dy.N D,.CI D,.MC Sig | Sig2
Stacks 35724 | 3.5% | 0.30+0.11 | 0.23+0.15 | 0.60£0.45 | yes yes
Cond 71683 | 14% 0.60+0.22 | 0.44+0.12 | 1.00£0.18 | yes yes
Bool 43185 | 76% 0.22+0.08 | 0.16+0.09 | 0.17/0.10 | yes yes
Artl 33137 | 8.6% | 1.264+0.28 | 0.51+0.20 | 0.56+0.21 | yes yes
Art2 30113 | 1.3% | 0.19+0.15 | 0.16+0.15 | 0.18£0.15 | yes yes
Average | 42678 | 27% | 0.514+0.16 | 0.30+0.14 | 0.35:0.22 | yes yes
Table 1. Distance®, to the target automaton with the variaht .
Base IS Red Dy.N D,.CIT D,.MC | Sig | Sig2
Stacks 35724 | 1.4% | 0.30+0.11 | 0.11£+0.10 | 0.13£0.08 | yes yes
Cond 71683 6% 0.60+£0.22 | 0.59+0.23 | 0.57+0.07 | yes yes
Bool 43185 | 61% 0.22+0.08 | 0.10+0.04 | 0.170.09 | yes yes
Artl 33137 | 1.7% | 1.264+0.28 | 0.38:0.06 | 0.39£0.07 | yes no
Art2 30113 | 1.1% | 0.19+0.15 | 0.1/40.15 | 0.18:0.15 | yes yes
Average || 42678 | 14% 0.51+0.11 | 0.2740.12 | 0.29+0.09 | yes yes
Table 2. Distance®, to the target automaton with the variaht,.

The first point to note is the fact that our approach is usefuiriferring better models in presence
of noise, than an approach without preprocessing. Actutdlg behavior is true fod/; and M,, but
the latter seems to have better results. We can easily exihis behavior by the fact that our learning
algorithm (here a stochastic automata learning algoritterased on the statistical information con-
tained in the dataset. Then, it requires a lot of examplegfioa the estimations. This remark is very
important because it expresses a particularity of the dataation techniques that can be used for im-
proving stochastic automata learning algorithms. In thetext of probability distribution estimation,
our experiments show that a radical deletion is not the agitinay to proceed, and that the replacement
by a relevant tree (the most probable one) is more performlifgs phenomenon is not surprising, and
this kind of approach has already shown its efficiency in DMiteing for dealing with missing attributes.
Actually, in the specific field of grammatical inference, animal number of examples is needed in or-
der to infer the correct structure of the automaton [14]. €&muently, the suppression of the structure
of some examples can affect the quality of the learned autmrand then the quality of the probability
distribution inferred.

We can finally notice that the significance tests betw&eandC'I are all in favor of our approach
that confirms its interest for preprocessing noisy data.édwer, those betweearil andM C are in favor
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Figure 8. Behavior on thBool database.

of our approach, except for the ba&sal with the method\/,.

Since Tables 1 and 2 are synthetic, we also present the loelwvdur method for the specific base
Bool in Figure 8. We can make the following remarks. For both ofdhlernative variantd/; and Ms,

CT allows to infer automata that are always significantly bietti@n the ones learned from noisy data
without preprocessing. Moreovet;] is always better than the Monte-Carlo approach that justifie
claim that we are able to detect and remove noisy subtrees.

The baseBool is an example of a correct behavior of our approach. Howehisris not always
so significant. For example, let consider the behavior of approach on the baskrtl, represented
in Figure 9. Our two alternative procedures give good resuittil a level of noise of.5%. Beyond
this point, M C' has a behavior similar and sometimes better, which showistivaapproach has some
difficulties to deal with high levels of noise.

An explanation of this phenomenon is that the presence skninds to smooth the repartition of
the data. Actually, we noticed that when the level of noiswaases, the average number of subtrees in
a partition tends to decrease. In fact, there are more ijpadiand less examples in each partition. For
example, in the case of thertl database, there is an averagebd7 subtrees in a partition with%
of noise and only2.36 subtrees when the noise level isl@%. In this context, when the noise level
is increasing, the estimations of the bounds of the configlémerval are sharpness, resulting in larger
intervals. Thus, it is more difficult to detect and removelevant instances. On the other hadd(
always removes a given proportion of trees, whatever thel lenoise is. Then, when this level is high,
the probability that\/ C' removes a corrupted subtree increases and allows thisagipto have a better
behavior.

5.4.2. Experimentations without Knowing the Target Automdon

In this context, we divide the sample of trees in two setsamiing set and a test set. Since we want to
evaluate our approach in the context of noise, we only adskenmi the training set. From this one, we
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infer two automata: the first one is learned without prepssteg, the second one is inferred after the
pruning process. The noise-free test set is then parsedebiywthautomata resulting in the computation
of two perplexity measures. Note that all the experimentsaahieved using a 5 fold cross-validation.

Base 18 Red Perp.N Perp.CI Perp.MC | Sig | Sig2
Stacks 35724 2% 1.93+0.15 | 1.83+0.07 | 1.86+0.08 | yes yes
Cond 71683 | 3.9% | 1.4740.21 | 1.33:0.07 | 1.42+0.10 | yes yes
Bool 43185 | 3.8% | 3.41+0.16 | 3.56+0.09 | 3.95+0.21 | yes yes
Artl 33137 | 2.5% | 3.68+0.43 | 2.50+0.12 | 2.57+0.15 | yes yes
Art2 30113 | 1.8% | 1.33+0.12 | 1.30+0.10 | 1.32+0.11 | yes no
Loan 14117 1% 9.02£2.63 | 5.10+1.30 | 5.75+:0.49 | yes yes
Tacrine 41130 | 2.6% | 4.60+2.84 | 3.14+0.77 | 3.21+0.80 | yes yes
PKDD’02 115173 | 20% | 12.2+4.60 | 8.75+2.50 | 9.00+2.00 | yes no
Average 47999 | 4.7% | 4.71+1.39 | 3.44+0.63 | 3.64£0.49 | yes yes

Table 3. Perplexity results obtained with the variafy.

Since the variani/, consisting in replacing a noisy subtree by the most problaédealready shown
its efficiency with theD, criterion, we only test this approach for the second serfesxperiments.
The results are presented in Table 3. From a general poinieof, these results confirm the behavior
already seen in the previous experiments. Our pruning ndethbpermits to efficiently preprocess all
the databases except the b&smwl. Moreover, an interesting remark is that our approach hasaller
standard deviation than the one computed from the unprepsed sets, that denotes a better robustness.
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One of the interest of this series of experiments is also senke the behavior @' on real datasets.
The results are always in favor of our method, but the mostésting effect is certainly obtained for the
basePKDD’02, with a high reduction rate and a large decrease of the pétpleAs for the previous
criterion D, let us study the behavior @i’/ on a single database (here the bhaean, see Figure 10).
Whatever the level of nois&, I dramatically decreases the perplexity in comparison with unpre-
processed dataset. Moreover, the level of the deviatiowdsst the curvedv andC'1 is kept with the
increase of the noise. In comparison with the Monte-Cartoing, C' I provides better results until
10% of noise. Beyond this rate, it begins to have some difficsifteeremain performing, which confirms
the fact our approach is not very suited for dealing with Higkels of noise.
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In order to compare the two measures we used for evaluatmgdiformances, we summarize all
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our results, obtained with the variahfs, in Figure 11. Each dot represents a database. A dot under the
bisecting line expresses the fact that our pruning appreakls better than the one without pruning.

6. Conclusion

In this paper we have presented an original approach alptardeal with irrelevant and noisy subtrees
in a set of trees. This approach is a data reduction technigpiean be considered as a hybrid approach.
It can actually delete either a whole irrelevant tree or sdyne of its subtrees. Our pruning method is
based on the use of confidence intervals computed from a Ipititpalistribution on subtrees appearing
in a same context. Our experiments have shown that our agipis&fficient and robust resulting in the
inference of automata closer to the target concept in thegpiee of noisy data.

Despite this interesting general behavior, we have exparially noted that our pruning method has
some difficulties to deal with datasets with a small alphdiketthe one of boolean expressions or parity
functions. Moreover, our approach is based on confidenesvias which depend on the size of the
learning set. Then, its efficiency is only ensured with ladgéabases, that is not a too strong hypothesis
considering the size of the modern databases. Finally, etin@d depends on the partitioning technique
for which we propose a first solution based on the notion ofexin We think that this solution requires
a relatively strong constraint on the trees. Indeed, whenetlis a too small number of elements in
a partition, the computation of the confidence intervalsnecturate and our approach becomes less
efficient, especially for high levels of noise. We are wogkion other relaxing partitioning approaches
which deserve further investigations. Finally, we thinkttlan interesting improvement of our method
would concern its adaptation to unordered trees, which arexfample suited for dealing with XML
data.
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