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Abstract. In front of the large increase of the available amount of structured data (such as XML
documents), many algorithms have emerged for dealing with tree-structured data. In this article, we
present a probabilistic approach which aims ata priori pruning noisy or irrelevant subtrees in a set of
trees. The originality of this approach, in comparison withclassic data reduction techniques, comes
from the fact that only a part of a tree (i.e. a subtree) can be deleted, rather than the whole tree itself.
Our method is based on the use of confidence intervals, on a partition of subtrees, computed accord-
ing to a given probability distribution. We propose an original approach to assess these intervals on
tree-structured data and we experimentally show its interest in the presence of noise.

Keywords: data reduction, tree-structured data, noisy data, stochastic tree automata.

1. Introduction

The use of structured or semi-structured data is increasingin research domains such as knowledge dis-
covery in databases or machine learning. One of the main reasons of this trend is the fact that modern
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data are often stored in relational databases that provide ahigher expressiveness. Thus, it is in the interest
of machine learning and data mining approaches to take advantage of the structure of data in order to
infer better classification models. The increasing interest for directly dealing with such data has led to
the new so-called multi-relational learning field [13].

While a linear representation is sufficient for treating single relational databases, more complex struc-
tures, such as trees or graphs, are required for modeling multi-relational databases. In this paper, we
focus on tree-structured data which provide an interestingcompromise between graphs and linear rep-
resentations. Actually, trees permit the expression of hierarchical dependences and are less costly, from
a computational point of view, than graphs. A lot of applications can be modelized using tree-based
representations such as in medicine and biology. Moreover,two main fields have recently stimulated the
interest for tree-structured data. The first one is natural language processing, which consists in building
language models from a set of sentences. In this context, thetree representation, calledTreebanks, al-
lows one to embed the grammatical structure of a sentence. The other field, probably the most active
one, concerns applications issued from the World Wide Web. Indeed, tree-structured data are natural
candidates to represent the information available on the web, such as XML data. Because of the huge
quantity of available information, it becomes necessary tohave efficient Machine Learning or Data Min-
ing approaches to deal with such data.

From a data mining standpoint, new approaches have been proposed for specifically extracting
knowledge from a set of trees. The probably most interestingtrend consists in adapting the well known
algorithmApriori [2] to tree-structured data.Apriori, proposed by Agrawal and Srikant in 1994, aims
at extracting frequent itemsets, that are objects appearing with a significant number of occurrences in a
database made of flat representations. In [38], Zaki proposed an adaptation of this approach to extract
all frequent subtrees from a forest. In [36], Termieret al. proposed a similar work based on an approx-
imation procedure, which decreases the computational cost. Miyaharahet al. [29] proposed to extract
edge labeled tree patterns. More recently, Nijssen and Kok [31] extended the previous approaches to
unordered tree patterns.

From a machine learning point of view, several approaches have been proposed to learn tree patterns.
In [18], Goldmanet al. presented a polynomial algorithm able to learn union of treepatterns from a
constant number of patterns. Amothet al. studied an exact inference method to learn unordered tree
patterns from a set of unordered trees [3]. Grammatical Inference presents also an interesting framework
for learning models from a set of trees. The objective consists in inferring a grammar representing a tree
language that corresponds to the learning sample. The grammar can be represented by a tree automaton
[11, 16] allowing to define a concept. In this framework, Knuutila [25] proposed to learn finite tree au-
tomata from positive and negative learning trees. Garcı́a and Oncina [15] proposed to learn tree automata
from skeleton trees, that are trees without label on internal nodes. To avoid the use of negative examples,
Ricoet al. [33] dealt with the learning of specific tree automata, called k-testable tree automata. Another
approach to avoid the use of negative examples consists in learning statistical models. In this context,
the objective is to infer stochastic tree automata that allow to define a probabilistic distribution over a
set of trees. Carrascoet al. [8] proposed an adaptation of previous works of Knuutila [25] and Garcı́a
and Oncina [15] in order to learn stochastic tree automata. Rico et al. [34] also extended their own work
to learn k-testable stochastic tree automata. Various applications on tree-structured data used the gram-
matical inference framework based on trees. Abeet al. [1] applied stochastic tree automata to predict
the secondary structure of proteins represented by trees. Kosalaet al. [27] used the k-testable approach
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to extract knowledge from XML data. Habrardet al. [19] proposed a generalization of stochastic tree
automata to extract tree patterns and then allow knowledge extraction from medical data [20].

Machine learning and data mining algorithms dealing with structured data have to overcome the same
couple of drawbacks than the one imposed by unstructured data. First, in front of modern databases, they
require to process huge amounts of data. This algorithmic constraint becomes particularly important
in the context of tree-structured data which are obviously harder to process than linear representations.
Second, they also have to deal with a high level of noise, which can have dramatic impacts on the quality
of the inferred models. In such a context, a classic strategyconsists in removing some instances from
the dataset which are either irrelevant, because of the weakinformation they provide, or detected as
being noisy. These tasks are the matter of data reduction which can be achieved via two ways: prototype
selection (PS) [37] and feature selection (FS) [22]. It is important to note here that these methods usually
require counter-examples and aim at totally deleting either an example (PS) or a feature (FS). Originally
proposed to tackle the problem of storage requirements of case-based learning algorithms, such as k-
Nearest-Neighbors [12], data reduction techniques have rarely been applied, so far, to structured data.

In this paper, we focus more specifically on the ability of data reduction techniques to deal with
irrelevant or noisy instances. We propose an approach allowing to detect such data in a set of trees. In
this context, we can assume that only some particular subtrees of a given tree are noisy or irrelevant
and then deserve to be removed. The suppression of a subtree can be seen as a hybrid approach of data
reduction. It looks like prototype selection when a tree is completely deleted, and it looks like a local
feature selection when only subtrees are removed. Recent complexity theoretic results show that the
problems of PS and FS are NP-hard [32]. This advocates of the use of heuristics for selecting relevant
instances in a set of trees.

The goal of our approach is to improve the learning of probabilistic models from a set of trees in
the presence of noise. In the probabilistic framework, the objective is not to learn a classifier which
is able to discriminate positive from negative examples, but to learn a probability distribution over the
data. A good probabilistic model gives a correct estimationof the probability of each example. Such
models are usually inferred from a set of positive examples only, which can be useful for many real
world applications. However the presence of irrelevant or noisy data can dramatically affect the quality
of the inferred distribution. The goal of this paper is to provide an approach allowing us to deal with such
data in the framework of probabilistic learning. In fact, our main objective is not to highly reduce the
size of the learning set, but rather to improve the probability estimations of stochastic models in order to
increase their predictive ability.

To achieve this goal, we propose a probabilistic data reduction approach specifically adapted to tree-
structured data. The method is based on a partitioning of thewhole set of subtrees, using on regular tree
patterns (or contexts), and on the evaluation of the relevance of the probability of a subtree to be in a
given partition. Subtrees with a too small probability are deleted. This task is carried out thanks to a
confidence interval computed from the subtrees belonging tothe partition. We decided to evaluate our
approach in the context of learning stochastic tree automata. These models allow us to define a proba-
bility distribution on a set of trees using the representation of a probabilistic automata. Such automata
define a probabilistic tree language and are learned using statistical information from a learning set con-
stituted of trees. These automata are then very suited for learning a probability distribution over a set of
trees.
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The paper is organized as follows. Section 2 deals with some definitions and notations. In Section 3,
we introduce our data reduction approach. Section 4 presents a theoretical analysis of the impact of
noise. In Section 5, we describe our experimental results. Finally, we conclude this paper in Section 6.

2. Definitions and Notations

In this section, we formally define the notion of tree, and we illustrate our definitions using an example
presented in Figure 1. In this example, that we will use as illustration all along this paper, we consider
a database of hospital patients affected by a given disease.For each patient, we have two of the main
characteristic symptoms of the disease, his blood group andthe stage of the disease.

The definitions introduced in this section correspond to a classic framework, and are inspired by the
thesis of Kilpeläinen [23].

symptoms blood stage

ID1 severe

patient

A+ID2

symptoms blood stage

patient

peterID7 ID5 O+

symptoms blood stage

ID1 severe

patient

ID2 Cu

symptoms blood stage

patient

ID5ID7 mediumO+

Figure 1. Set of treesT representing 4 patients.

Definition 1. A binary relationR on a setD is a subset of the Cartesian productD ×D

Definition 2. The transitive closure ofR, denoted byR+, is defined by:

R1 = {(x, y) | (x, y) ∈ D2}
Rn+1 = {(x, y) | ∃z ∈ D such that(x, z) ∈ R and(z, y) ∈ Rn, n > 0}

R+ =
⋃

n>0 Rn

Definition 3. A tree t is defined by a triplet(Nt, At, root(t)) whereNt is a set of nodes,At ⊆ N2
t is

a binary relation, androot(t) is a special node called theroot of the treet. For each pair(u, v) ∈ At,
(u, v) is called an edge of the tree andu is the parent ofv, which is denoted byu = parent(v). At must
verify the following conditions:

• root(t) has no parent.

• Each node int (except the root) has exactly one parent.

• From the root, we can reach any node oft in following a path defined by the edges oft, i.e.
∀v ∈ Nt, v 6= root(t), (root(t), v) ∈ A+

t .

Let t be a tree and letu ∈ Nt, we now formally define the notion of children and descendants of a
nodeu.

Definition 4. The children ofu are defined by

children(u) = {v ∈ Nt | (u, v) ∈ At}
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Definition 5. The descendants ofu by:

descendants(u) = {v ∈ Nt | (u, v) ∈ A+
t }

Definition 6. The subtree oft with root u is the tree(Nt[u], At[u], u) such that:

• Nt[u] = {u} ∪ descendants(u)

• At[u] = At ∩ (Nt[u] ×Nt[u])

Trees, we are interested in, are constructed over a signature. This signature allows to label each node
by a functional symbol, such that all the nodes labeled by thesame symbol have exactly the same number
of children. Finally, the symbols are typed and the childrenordered.

Definition 7. A signatureΣ is a 4-tuple(τ, V, arity, σ) where:

• τ is a finite set whose elements are calledsorts,

• V is a finite set whose elements are called function symbols,V called the alphabet,

• arity is a mapping function fromV into IN , arity(f) called thearity of the function symbolf ,

• σ is a mapping function fromV into τ , σ(f) called thesort of f .

We denote byΣT the set of trees defined relatively to asignatureΣ.

Definition 8. A labeled treet over a signatureΣ is a tree such that each nodeu ∈ Nt is mapped with a
symbolf ∈ V such that|children(u)| = arity(f)

We use the notationt = f(t1, . . . , tn) to define a tree having the root labeled by the symbolf and
havingn subtreest1, . . . , tn such thatchildren(root(t)) = {root(t1), . . . , root(tn)}. A total order is
defined on the set of children oft such thatt1 is the first subtree andtn is the last one.

For example, the first of the four trees of Figure 1 representsa patient having symptomsID1 and
ID2, with A+ as blood group and a disease at a severe stage. The label of theroot is patient, and
the labels of the three children of the root aresymptoms, blood and stage. We denote this tree by
patient(symptoms(ID1, ID2), blood(A+), stage(severe)).

In the following, when there is no ambiguity, we will describe the node of a tree by its label.

Definition 9. A position is a couple(f, p) (denoted byf.p) wheref ∈ V andp ∈ IN such that1 ≤
p ≤ arity(f). A positiondefines the subtree corresponding to the child numberp of the symbolf (the
children are ordered from left to right). The special positionproot defines the symbol at the root of a tree.

For example, in the first tree of Figure 1, the subtreesymptoms(ID1, ID2) is at positionpatient.1 of
the treepatient(symptoms(ID1, ID2), blood(A+), stage(severe)) and the subtreeID2 is at position
symptoms.2 of the subtreesymptoms(ID1, ID2).

Definition 10. Let T be a sample of trees. We denote bySub(T ) the set of subtrees ofT andMSub(T )
the multi-set of subtrees ofT .
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For example, if we consider the subset composed of the first two trees of the sampleT of Figure 1:

Sub(T ) = {ID1, ID2, A+, Cu, severe, symptoms(ID1, ID2), blood(A+), blood(Cu),

stage(severe), patients(symptoms(ID1, ID2), blood(A+), stage(severe)),

patients(symptoms(ID1, ID2), blood(Cu), stage(severe))}
MSub(T ) = {ID1, ID1, ID2, ID2, A+, Cu, severe, severe, symptoms(ID1, ID2),

symptoms(ID1, ID2), blood(A+), blood(Cu), stage(severe), stage(severe),

patients(symptoms(ID1, ID2), blood(A+), stage(severe)),

patients(symptoms(ID1, ID2), blood(Cu), stage(severe))}

Let us now consider the problem of noisy data. In our example,the subtreeblood(Cu) of the second
tree and the subtreestage(peter) of the fourth one, are clearly corrupted, probably due to a typing error,
and should be removed. However, the other subtrees of these trees deserve to be kept because they bring
relevantinformation. One of the interest of a data reduction approach is to reduce the dataset size by
removing useless or noisy data without calling into question the probabilistic distribution of the learning
set. Our idea is then to assess this distribution and remove data having a too weak probability density,
that characterizes both useless and noisy data. This leads us to propose a definition of the relevance of a
subtree. This definition is in relation with the one of relevant features introduced in [22].

Definition 11. Let D be a distribution on a set of subtreesS, a subtreet is relevant inS if and only if its
probability estimation̂pD(t) is notsignificantlysmaller than the mean of the probabilities of subtrees of
S.

Roughly speaking, this definition expresses the idea that a relevant subtree must cover a significant
part of the probability density of the learning set. Then, toassess this notion of significance, we propose,
in the next section, to use the concept of confidence intervals, widely used in statistical inference theory.

3. Pruning Subtrees using Confidence Intervals

In this section, we introduce the probabilistic framework of our approach. First, we compute a probability
distribution over a set of trees, based on “N-grams” models [30] and adapted to tree-structured data.
Using this distribution, we draw a confidence interval around the mean of the probabilities of subtrees.
The lower bound of this interval is then used as a critical threshold for testing the relevance of a subtree.

All this process requires to take into account, in the considered learning set, only comparable sub-
trees. Actually, whileblood(A+) andblood(O+) are two subtrees characterizing the same “concept”,
it is obviously irrelevant to compareblood(A+) andstage(severe). In other words, it means that one
must formally define a notion ofconceptfor permitting the construction of efficient confidence intervals.
We present this formalism at the end of this section, based ona partitioning method using regular tree
patterns.

3.1. Tree-based Probability Distribution

Given a learning sampleT of trees, we aim at constructing a probability distributionon the whole set
T . To achieve this task, we compute a probability for each subtree inSub(T ) according to an approach
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similar to the one of “N-grams” often used in natural language modeling [6]. This approach assumes
that the probability of a given symbol in a string can be computed using then − 1 previous symbols.
We use a similar principle, withn = 2, computing the probability of a symbol relatively to its parent.
Note that a different adaptation of this approach in the context of trees has been proposed in [34]. For
each symbola of the learning setT , we assess its probabilitŷpc(a | f.i) to be the child numberi of any
symbolf . Formally, if #T

f.i(a) is the number of nodes labeled bya at positionf.i in the setT and if

#T (f) corresponds to the number of nodes labeled byf in T , we have:

∀a ∈ V , ∀f ∈ V , ∀1 ≤ i ≤ arity(f), p̂c(a | f.i) =
#T

f.i(a)

#T (f)

Moreover we compute for each symbol its probability to be theroot of a tree.

∀a ∈ V , p̂r(a) =
#T

proot
(a)

|T |
where|T | is the cardinality of the setT .
Finally the probability of a treet = f(t1, . . . , tn) is computed as follows:

p̂a(f(t1, . . . , tn)) = p̂r(f)× p̂pos(t1 | f.1)× · · · × p̂pos(tn | f.n)

wherep̂pos is recursively defined by:

p̂pos(g(u1, . . . , um) | f.i) = p̂c(g | f.i)× p̂pos(u1 | g.1) × · · · × p̂pos(um | g.m)

For example, the set of trees of Figure 1 leads to the following conditional probabilities (only the non
null probabilities are indicated):

p̂c(ID1 | symptoms.1) = 2
4 p̂c(A+ | blood.1) = 1

4 p̂c(medium | stage.1) = 1
4

p̂c(ID2 | symptoms.2) = 2
4 p̂c(Cu | blood.1) = 1

4 p̂c(peter | stage.1) = 1
4

p̂c(ID7 | symptoms.1) = 2
4 p̂c(O+ | blood.1) = 2

4 p̂c(stage | patient.3) = 4
4

p̂c(ID5 | symptoms.2) = 2
4 p̂c(severe | stage.1) = 2

4 p̂c(blood | patient.2) = 4
4

p̂c(symptoms | patient.1) = 4
4 p̂r(patient) = 4

4

and the probability of the treet = patient(symptoms(ID1, ID2), blood(A+), stage(severe)) is com-
puted as follows:

p̂a(t) = p̂r(patient)× p̂c(symptoms | patient.1)× p̂c(blood | patient.2)×
p̂c(stage | patient.3)× p̂c(ID1 | symptoms.1)× p̂c(ID2 | symptoms.2)×
p̂c(A+ | blood.1)× p̂c(severe | stage.1)

= 1× 1× 1× 1× 1

2
× 1

2
× 1

4
× 1

2
=

1

32

If t′ is a subtree of a tree, assuming thatt′ is different than the whole tree, then we compute its prob-
ability taking into account its position relatively to its parent. For example, the probability of the subtree
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blood(A+) of the previous treet is computed as follows:

p̂pos(blood(A+) | patient.2) = p̂c(blood | patient.2)× p̂c(A+ | blood.1) =
4

4
× 1

4
=

1

4

The probability distribution allows us to compute the lowerbound of a confidence interval which
helps us to detect irrelevant instances. However, when a confidence interval is estimated with a small
number of examples, the lower bound can be negative. It is then impossible to detect very rare in-
stances. To overcome this drawback, we propose to slightly modify the probability distribution in order
to automatically delete very rare instances,i.e. that occur only once. For this purpose, to compute the
probability of a subtreet, we adapt the probability distribution such that the instance of t is not taken
into account. Formally, if̂pc(a|f.i) is involved in the computation of the probability estimation of t, then
p̂c(a|f.i) is replaced by:







0 if #T (f) = #t(f)
#T

f.i
(a)−#t

f.i
(a)

#T (f)−#t(f)
otherwise

where#t
f.i(a) is the number of symbolsa at positionf.i in t, and#t(f) the number of labelsf in t.

For example, the probability of the subtreeblood(A+) is actually evaluated as follows:

p̂pos(blood(A+) | patient.2) = p̂c(blood | patient.2)× p̂c(A+ | blood.1) =
3

3
× 0

3
= 0

This modification allows us to associate a null probability to instances occurring once in the dataset.
In our approach, all subtrees with a null probability are automatically removed.

3.2. Probabilistic Pruning Rule

In the previous section, we have proposed a way to construct aprobability distribution from a set of
treesT . We show here how we can use this distribution toa priori (i.e. before any learning process)
prune subtrees considered statistically irrelevant, thanks to a statistical test. Let us consider a subsetS of
MSub(T ). We compute a confidence interval, according to a riskα (called the level of significance of
the test, or Type I error). We look for an interval[pmin; 1] such that the theoretical probabilitypa(t) of
a subtree satisfies the following constraint:

p(pa(t) ≥ pmin) = 1− α.

According to the Central Limit Theorem, the meanp̂a(tS) of probabilities of the elements ofS fol-
lows a normal distribution with an expected valueµ and a standard deviationσ√

|S|
. Then the confidence

interval aroundµ is defined as follows:

µ ∈ p̂a(tS)± σ̂
√

|S|
× uα
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whereσ̂ is the estimated standard deviation anduα the(1−α)-percentile of the normal distribution. Let
pmin be the lower bound of this interval, such that:

pmin = p̂a(tS)− σ̂
√

|S|
× uα

When the size ofS is not sufficient (|S| < 30) for approximating the distribution of the random
variablepa(t) by the normal distribution,pa(t) follows a Student distribution with|S| − 1 degrees of
freedom.

Once this lower bound is computed, our decision rule consists in deleting all subtrees ofS that have
a probability smaller thanpmin. Then, we can refine Definition 11 on the relevance of a subtreetaking
into account this notion of confidence interval.

Definition 12. Let D be a distribution on a set of subtreesS, and letα be a risk. A subtreet is (1− α)-
relevant inS if and only if p̂a(t) ≥ p̂a(tS)− σ̂√

|S|
× uα.

We claim that such pruning strategy is particularly suited for removing noisy subtrees. In fact, such
data have by nature an individual weak probability. Actually, in the opposite case, they would constitute
a part of the concept to learn, and then would deserve to be kept in the learning set.

3.3. Partitioning Subtrees with Regular Tree Patterns

So far, we assumed that we have a learning sampleT of trees, from which we are now able to detect
irrelevant data. However, we think that the previous pruning strategy is relevant if the probability of a
subtree is computed relatively to those characterizing thesame concept. Roughly speaking, we must
compare only what is comparable. In the definitions of Section 2, we considered that children of a node
are ordered and we proposed a definition for the position of a subtree. Then, we are able to define subtrees
representing the same concept as subtrees that appear exactly at the same position. Indeed, because they
appear at the same position, they represent instances of thesame concept. In the example of hospital
patients (see Figure 1), subtrees at positionpatient.3 are instances of the concept representing the stage
of the disease.

In fact, we can go farther in our definition of a concept. With the position of a subtree, we can also
take into account some information given by subtrees appearing at other positions. In our example on
patients, subtrees at positionpatient.2 define the conceptblood groupof a person. We can refine this
context by taking into account subtrees appearing at positionspatient.1 andpatient.3. For example,
we can consider blood groups of patients having the symptomsID1 andID2 and being at a severe stage
of the disease. Subtrees corresponding to this concept ofblood groupare those appearing at position
patient.2 with the subtreesymptoms(ID1, ID2) at positionpatient.1 and the subtreestage(severe)
at positionpatient.3. In this case, a concept is defined by acontexttaking into account the maximum of
local information available.

To assess this notion of context, we propose a method of partitioning using regular tree patterns,
i.e. tree patterns with only one variable. This approach ensuresthat two subtrees that appear in the same
context (i.e. subtrees with the same ancestors and siblings) will be in thesame partition. This kind of tree
patterns corresponds exactly to our notion of context. In fact, we can easily construct such tree patterns
by replacing only one subtree in a tree by a variable. If we iterate this process in order to consider all
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the nodes ofT , we can construct all definable contexts in this set. Before presenting our partitioning
method, we give a formal definition of regular tree patterns.

Definition 13. A regular tree pattern is a treet defined on a signature(τ, V ∪ {X}, arity, σ) whereX

is a variable andt has exactly one leaf labeled byX.
Let t be a regular tree pattern andt′ be a classic tree. We denote byt.#t′ the substitution of the variable
X of t by the treet′.

Definition 14. The set of all the regular tree patterns, that are tree patterns with exactly one variable,
definable on a signatureΣ = (τ, V ∪ {X}, arity, σ) by ΣX

T .

For example, Figure 2 shows the result of the concatenation of the subtreesymptoms(ID1, ID2)
with the tree patternpatient(X, blood(A+), stage(severe)).

symptoms blood stage

ID1 severe

patient

A+ID2

symptoms

ID1 ID2
blood stage

severe

patient

A+

X

regular tree concatenation

.

 pattern

#
=

Figure 2. Regular tree pattern and concatenation.

To construct a partition of the multi-set of subtrees, our approach consists in extracting all the regular
tree patterns definable fromT . As seen before, the number of such tree patterns corresponds exactly
to the number of nodes ofT . Then formally, the set of all regular tree patterns can be defined by
{t | ∃t′ ∈ MSub(T ) andt.#t′ ∈ T}. Figure 3 shows all the tree patterns definable from the tree
patient(symptoms(ID1, ID2), blood(A+), stage(severe)).

blood stage

severe

patient

A+

X symptoms blood stage

ID1 severe

patient

ID2  X

symptoms blood stage

ID1 severe

patient

A+  X

symptoms blood stage

severe

patient

A+ID2X

symptoms blood stage

ID1

patient

A+ID2     X

symptoms blood 

ID1

patient

A+ID2

Xsymptoms stage

ID1 severe

patient

ID2

X

Figure 3. Tree patterns definable frompatient(symptoms(ID1, ID2), blood(A+), stage(severe)).

Each patternt allows us to define a classπt of the partition of the multi-set of subtrees. The sub-
trees which can be concatenated tot to obtain a tree of the learning sample belong to this partition:
πt = {t′ ∈ MSub(T ) | t.#t′ ∈ T}. We construct all partitions definable from a set of trees with a
quadratic time complexity in the number of nodes inT . This time complexity gives an upper bound of
the complexity of our approach. Figure 4 shows examples of the samplet selected by the tree pattern
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patient(symptoms(ID1, ID2),X, stage(severe)). Note that the subtreeblood(O+) of the third tree
is not selected because the subtrees at positionpatient.3 in this tree and in the regular tree pattern are
different.

symptoms blood stage

ID1 severe

patient

ID2 Cu

symptoms blood stage

patient

ID5ID7 mediumO+

blood 

A+

symptoms stage

ID1 severe

patient

ID2

X blood 

A+

symptoms stage

ID1 severe

patient

ID2

blood 

Cu
Selected subtrees:

T =

Figure 4. Construction of a partition.

To end this section, we synthesize the main steps of our pruning method in Algorithm 1.

Data: T : a set of trees
α: a real∈ [0; 1]

begin
Construct the probability distribution overT

T ← partitioningMSub(T )
foreach S ∈ T do

Compute an interval[pmin; 1] for probabilities of subtrees ofS to the riskα

foreach t ∈ S do
Deletet if it is not (1− α)-relevant or ifp̂a(t) = 0

end
end

end

Algorithm 1: Pruning subtrees using confidence intervals.

4. Theoretical Results in the Presence of Noise

As we said before, an important aspect of our work is its capacity to deal with noisy data. In this section,
we propose to draw a theoretical study of the impact of noise on our method. To begin with, we define
the protocol of the data corruption process we consider. Then, under reasonable assumptions about the
nature of noise, we study the impact of noisy data on the probability distribution we have to build. We
show that it has a direct influence on the number of deleted subtrees. We finish this study with the
examination of the impact of noise on subtrees. From a globalpoint of view, this study has the objective
to point out the kind of data that can be efficiently preprocessed in the presence of noise.

We assume that the noise is uniformly distributed on the leaves of the learning setT . We think that
such assumption is reasonable in the context of tree-structured data because, in most of applications, the
precise information concerning the concept is often storedin leaves (for exampleA+, severe), while
the other nodes characterize more global information. Letγ be the level of noise, which corresponds to
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the percentage of leaves that have been corrupted. We assumethat a noisy leaf is replaced by a different
leaf, randomly chosen from the other leaves of the dataset. In the following, we denote byLT the whole
set of leaves inT (without repetitions).

According to our experimental set up, only probabilities ofsymbols located at the leaves, that we
will call “constant”, are affected by the noise. Then, we will only consider probabilitiesp(a|f.n) where
a is such a constant andf a symbol such that1 ≤ n ≤ arity(f). In all the section, we assume that for
any positionf.n,

∑

a∈V , arity(a)=0 p(a|f.n) = 1.
In the presence of an uniformly distributed noiseγ, we can easily determine the probability of any

constanta given any positionf.n:

Pγ(a|f.n) = (1− γ) ∗ p(a|f.n) + (1− p(a|f.n)) ∗ γ
|LT |−1

= (1− |LT | ∗ p(a|f.n)) ∗ γ
|LT |−1 + p(a|f.n)

Pγ(a | f.n) is composed of two terms. The first one represents the weighted proportion of leavesa
that are not affected by the noise, while the second corresponds to the weighted proportion of corrupted
data that were originally different froma before their modification intoa (due to the noise). An impor-
tant point to remark is thatPγ(a | f.n) evolutes linearly in function ofγ.

Let us now study the behavior ofPγ(a|f.n).

Theorem 4.1. Pγ(a|f.n) is an increasing function ofγ if p(a|f.n) < 1
|LT | and a decreasing function of

γ if p(a|f.n) > 1
|LT |

Proof:

Pγ(a|f.n) = (1− |LT | ∗ p(a|f.n)) ∗ γ

|LT | − 1
+ p(a|f.n)

then
∂Pγ(a|f.n)

∂γ
= (1− |LT | ∗ p(a|f.n)) ∗ 1

|LT | − 1

Then it is easy to see thatPγ(a|f.n) increases with the level of noise whenp(a|f.n) < 1
|LT | , and

decreases whenp(a|f.n) > 1
|LT | . ⊓⊔

This result shows that when the noise level increases, the probability of the constanta (whatever its
nature) tends to the same value1|LT | .

The number of leaves plays an important role in the estimation of the distribution. We have exper-
imentally observed that, for a given level of noise, the increase of the number of leaves tends to highly
disturb the original distribution, that may have a direct impact on our pruning method. To confirm this
phenomenon, we theoretically study, here, the deviation betweenp(a|f.n) andPγ(a|f.n).

Theorem 4.2. The deviationDLT
(a | f.n) = p(a|f.n)− Pγ(a|f.n) is an increasing function in|LT |.
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Proof:

DLT
(a | f.n) = p(a|f.n)− Pγ(a|f.n)

= p(a|f.n)− (1− γ) ∗ p(a|f.n)− (1− p(a|f.n)) ∗ γ
|LT |−1

= γ ∗ p(a|f.n)− (1− p(a|f.n)) ∗ γ
|LT |−1

Then
∂DLT

(a | f.n)

∂LT
= −−(1− p(a|f.n)) ∗ γ

(|LT | − 1)2
=

(1− p(a|f.n)) ∗ γ

(|LT | − 1)2
≥ 0

which is positive. ⊓⊔
The deviation between the two probabilities increases with|LT |, and implies that the probability

distribution is highly modified, whatever the level of noiseγ. This result can be easily interpreted.
Indeed, when the number of leaves is high, those originally labeled bya are replaced by others, and at
the same time, there is only a small proportion of leaves different froma modified intoa. Then, given a
level of noise, the probabilityp(a|f.n) is modified with the increase of|LT |.

Since the number of occurrences of a given tree is used for drawing the probability distribution, we
aim here at computing the probability to modify this number according to the level of noiseγ. LetNt be
the set of trees having the same number of leaves ast and differing from it in at least one leaf. In other
words, for each treet′ ∈ Nt, we can define a bijection between the leaves oft′ and the ones oft such that
we can obtaint from t′. Given a treet′ ∈ Nt, let diff(t, t′) be the number of different leaves betweent

andt′. We denote byNLt the number of leaves of a treet, and byNOt the number of occurrences of a
treet in the setT .

Theorem 4.3. The probability that the number of occurrences of a treet is modified byγ is

(1− (1− γ))NLt ∗ NOt

|T | +
∑

t′∈Nt

(

(

γ ∗ 1

|LT | − 1

)diff(t′,t)

∗ (1− γ)(NLt−diff(t′,t)) ∗ NOt′

|T |

)

Proof:
Noise may corrupt the number of occurrences of a treet via two ways. On the one hand, it can affect the
leaves oft, on the other hand it can corrupt a tree ofNt which becomes an instance oft.

The probability to corrupt at least one leaf oft is equal to the complementary of the probability not
to add noise to any leaf oft, that is1 − (1 − γ)NLt . This quantity requires then to be multiplied by the
probability to have the treet in the setT : NOt

|T | .

Moreover, for any treet′ ∈ Nt, if diff(t, t′) = n, then we have to add noise ton leaves oft′ such
that each of them becomes exactly equal to the one oft, and we do not corrupt the other leaves. The
probability thatt′ becomes equal tot is (γ ∗ 1

|LT |−1)diff(t,t′) ∗ (1− γ)(NLt−diff(t,t′)). We must multiply

this probability by the one of havingt′: NOt′

|T | . We repeat this for each tree inNt and holds
∑

t′∈Nt
(γ ∗ 1

|LT |−1)diff(t,t′) ∗ (1− γ)(NLt−diff(t,t′)) ∗ NOt′

|T | .
Then, at the end of the corruption, the probability that the number of occurrences of a treet is

modified byγ is

(1− (1− γ))NLt ∗ NOt

|T | +
∑

t′∈Nt

(

(

γ ∗ 1

|LT | − 1

)diff(t,t′)

∗ (1− γ)(NLt−diff(t,t′)) ∗ NOt′

|T |

)

⊓⊔
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5. Evaluation in the Context of Learning Stochastic Tree Automata

We present, in this section, experimental results which justify the interest of our method to preprocess
the learning sample in presence of noisy data. Since we work on trees, we propose to evaluate our data
reduction approach in the framework of learning stochastictree automata from a learning set [8, 15, 35].
In such a context, we have a sample of trees, supposed to be generated from a probability distribution.
The objective is to learn the probabilistic model which has generated the data. Thus, the main goal of
such an approach is not to learn a classifier which can discriminate negative from positive examples, but
rather to learn a statistical distribution over the learning sample. We propose to compare the automata
inferred from noisy data and those induced after our pruningprocess. To carry out this task, we can
achieve two series of experiments. The first one deals with learning problems where the target automaton
is a priori known. In this case, we can use a measure of distance between the inferred model and the
target automaton. However, since the target model is often unknown, in a second series of experiments,
we also evaluate our approach using a perplexity measure. This criterion assesses the relevance of the
model on a test sample.

In this section, we first specify automata we work on, called many-sorted stochastic tree automata,
defined relatively to a signature. Then, we present the algorithm we use for inferring stochastic tree
automata (STA). Finally, after having detailed the main criteria allowing us to assess the efficiency of our
pruning method, we carry out a large experimental study showing the interest of our approach.

5.1. Stochastic Many-Sorted Tree Automata

Deterministic Tree Automata (DTA) generalize Deterministic Finite-state Automata (DFA). In contrast
to DFA, that parse strings from left to right, DTA work bottom-up. A state of the automaton is associated
to each node of the tree. The label of each node is defined by a transition function, and the state of the
root determines if the tree belongs to the language or not. Toillustrate this informal description, we
give a graphical representation of such automata in Figure 5. In this example, states are represented by a
circle, final states by a double circle and transitions by a triangle containing the symbol involved in the
transition. Let us define formally the concept of stochastictree automata able to recognize trees defined
on a signatureΣ (already presented in Section 2).

Definition 15. A SMDTA is a 5-tupleA = (Σ, Q, r, δ, p) where

– Σ is a signature(τ, V, arity, σ),

– Q = ∪s∈τQ
s is a finite set of states, each state having a sort inS,

– r : Q −→ [0, 1] is the probability for a state to be a final state,

– δ : V ×Q∗ −→ Q is the transition function,

– p : V ×Q∗ −→ [0, 1] is the probability of a transition.

The transition functionδ is recursively extended to a functionδ′: V × (ΣT )∗ −→ Q as follows:
{

δ′(f) = δ(f) if arity(f) = 0

δ′(f(t1, . . . , tn)) = δ(f, δ′(t1), . . . , δ
′(tn)) otherwise
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Note that we consider deterministic automata with the following properties. The transition rules ofδ

are valid, that is for each rule(f, q1, . . . , qn) −→ q, arity(f) = n andσ(f) = σ(q). Probabilities are
normalized, so that probabilities of transitions leading to the same state sum to one.

The probability of a treet parsed by a tree automatonA is computed as follows:

p(t | A) = r(δ′(t))× π(t)

whereπ(t) is recursively given by:

π(f(t1, . . . , tn)) = p(f, δ′(t1), . . . , δ
′(tn))× π(t1)× · · · × π(tn)

π(f) stops whenf is a constant symbol, that is whenarity(f) = 0. We say that an SMDTAA accepts
a treet if and only if p(t | A) > 0. The language recognized by an automaton is the set of all trees
accepted by the automaton.

q3

q1

q2

q4 q5

q6

q8

q7

ID2

O+

A+

blood

medium

severe

patient

ID1

stage

1.0

1.0

0.6

0.4

0.8

0.2

symptoms
1.0

1.0

1.0 1.0

1.0

Figure 5. An example of stochastic tree automaton.

For example, let us consider the automatonA in Figure 5 which is defined with the following transi-
tions and probabilities:

1.0 : ID1 −→ q1 0.6 : A+ −→ q4

1.0 : ID2 −→ q2 0.4 : O+ −→ q4

1.0 : symptoms(q1, q2) −→ q3 1.0 : blood(q4) −→ q5

0.2 : medium −→ q6 0.8 : severe −→ q6

1.0 : stage(q6) −→ q7 1.0 : patient(q3, q5, q7) −→ q8

r(q8) = 1.0
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This automaton recognizes the first tree of the base on patients of Figure 1:
t = patient(symptoms(ID1, ID2), blood(A+), stage(severe))) with the probability
p(t | A) = 0.48.

p(t | A) = r(δ′(t))× π(t)

= r(q8)× p(patients, δ′(symptoms(ID1, ID2)), δ′(blood(A+)), δ′(stage(severe))) ×
π(symptoms(ID1, ID2))× π(blood(A+)) × π(stage(severe))

= 1.0× p(patients, q3, q5, q7)× p(symptoms, δ′(ID1), δ′(ID2))× π(ID1) × π(ID2)×
p(blood, δ′(A+))× π(A+)× p(stage, δ′(severe)) × π(severe)

= 1.0× 1.0 × p(patients, q3, q5, q7)× p(symptoms, q1, q2)× p(ID1)× p(ID2)×
p(blood, q4)× p(A+)× p(stage, q6)× p(severe)

= 1.0× 1.0 × 1.0× 1.0× 1.0× 1.0 × 0.6× 1.0× 0.8

= 0.48

An important feature of a stochastic tree automaton is its consistency since it allows to define a
statistical distribution overΣT , that is:

∑

t∈ΣT

p(t | A) = 1

In our inference procedure, probabilities of the SMDTA are computed from random samples and
thus consistency is always preserved [10, 35].

Note that these stochastic tree automata are able to recognize ordered trees which are defined on a
ranked alphabet (that is where the arity of the nodes are fixed). As far as we know, there are no attempts
for learning tree automata with unordered trees (which seems to be a difficult task), only data mining
approaches [31] or machine learning of tree pattern languages [3] have tried to investigate this field.
However, we can notice that [26] tries to learn unranked treeautomata with ordered trees but in a non
probabilistic framework. In this paper, we rather focus on learning stochastic tree automata working with
ordered trees defined over a ranked alphabet.

5.2. Induction of Stochastic Tree Automata

In stochastic grammatical inference, Carrascoet al.[8] proposed an efficient algorithm to learn stochastic
tree automata. Abeet al. [1] dealt with learning stochastic tree grammars to predictprotein secondary
structure. Ricoet al. [33] presented a generalization of k-gram models for stochastic tree languages.

Our inference procedure is an extension of [8], that takes sorts into account [19]. Algorithm 2 gives
an idea of the main steps of the inference. For formally details, the interested reader may refer to [8, 19].
The input of the algorithm is a training setT of trees and the output is a SMDTA which respects the
distribution overT .

The algorithm computes the transition function considering all subtrees of the training set. A total
order is defined on subtrees comparing their depth. Each subtree is mapped to a state, taking into account
the fact that if two subtrees are similar in the training set,then they have the same state. We denote by
[t] the state mapped to the subtreet. To compute the similarity of two subtrees (comp function), the
algorithm uses a statistical test [21] depending on a parameter 0 ≤ β ≤ 1, which corresponds to the
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Data: T : a training set of trees,
Σ = (τ, V, arity, σ): a signature

Result: A = (Σ, Q, δ, p, r): a SMDTA

begin
W ← Sub(T )
Q← ∅
while W 6= ∅ do

x← g(t1, . . . , tn) = min W

W ←W\{x}
if ∃y ∈ Q | σ(x) = σ(y) andcomp(x, y, β) then

δ(g, [t1], . . . , [tn]) = y

else
Q← Q ∪ {x}
δ(g, [t1], . . . , [tn]) = x

end
end
compute probabilities(T, δ, p, r)

end

Algorithm 2: Inference of a SMDTA.

Type I error of a similarity test of two subtrees. Intuitively β represents a tolerance parameter for the
merging of two subtrees into a same state. Thecomp function is described in Algorithm 3. The notation
CT (t) corresponds to the number of occurrences of a subtreet in the learning setT . The similarity
of two subtrees is assessed by using the regular tree patterns of ΣX

T , the test evaluates if two subtrees
are statistically equivalent in a same context. The probabilities are then computed counting subtree
occurrences in the training set, with respect to the normalization of SMDTA.

Data: x a subtree ofSub(T )
y a subtree ofSub(T )
β a real∈ [0; 1]

begin
foreach∀z ∈ ΣX

T such thatz.#x ∈ T or z.#y ∈ T do

if
∣

∣

∣

CT (z.#x)
CT (x) −

CT (z.#y)
CT (y)

∣

∣

∣
>

√

1
2 ∗ ln

(

2
β

)

∗
(

1√
CT (x)

+ 1√
CT (y)

)

then return false

return true
end

Algorithm 3: Thecomp function

The algorithm has the following properties: it is polynomial in the number of different subtrees of
the training set, and it converges to the limit under the Goldparadigm [17]. If the setT of terms has been
generated with a target stochastic tree automatonAtarget and if A(T ) is the automaton learned fromT ,
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then we have the following property:

lim
|T |−→∞

∑

t∈ΣT

∣

∣

∣p(t|Atarget)− p(t|A(T ))
∣

∣

∣
= 0

5.3. Evaluation of Stochastic Tree Automata

The evaluation of non-probabilistic models is often based on the correct classification rate. This is not the
case for our approach aiming at learning a probability distribution from a learning sample. Probabilistic
models are rather assessed on their ability to correctly predict the probability of the examples of a test
sample. When the target model is known, the correctness is evaluated by the distance between the
statistical distribution of the learned model and the target model [7]. Nevertheless, when we work on real
applications, the target model is often unknown, and the quality of the learned model can be evaluated
with a measure of perplexity.

5.3.1. Probabilistic Distance

Lyngsøet al. [28] defined distances between two hidden Markov models introducing the co-emission
probability, as the probability that two independent models generate the same string. Carrascoet al. [9]
presents an adaptation of the co-emission to stochastic tree automata. The probability that two proba-
bilistic models,A andA′, generate the same tree is defined by

C(A,A′) =
∑

t∈ΣT

pA(t)× pA′(t)

WherePA(t) is the probability oft given the modelA. The co-emission probability allows us to de-
fine a distanceDa which can be interpreted as the measure of the angle between the vectors representing
automata in a space whose base is the set of trees ofΣT .

Definition 16. The distanceDa between two automataA1 andA2 is defined by:

Da(A1, A2) = arccos

(

C(A1, A2)
√

C(A1, A1) ∗ C(A2, A2)

)

In the context of stochastic automata, Carrascoet al. [9] proposed a recursive definition of the co-
emission in order to compute a distance between two stochastic automata. Then, the co-emission can be
written such that

C(A,A′) =
∑

q∈Q

∑

q′∈Q

rA(q)× rA′(q′)× νq,q′

where

νq,q′ =
∑

f∈Σ s.t.
f(qi1,...,qim)→q,
f(qj1,...,qjm)→q′

p(f(qi1, . . . , qim)→ q)× p′(f(qi1, . . . , qim)→ q)× νqi1,qj1 × . . .× νqim,qjm

The recursive definition ofνq,q′ stops for constant symbols arriving onq or q′.
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5.3.2. Perplexity

In the case of stochastic tree automata the quality of a modelA on a test setStest can be evaluated by the
following measure:

LL =
1

|| Stest ||
∑

t∈Stest

log p(t | A)

where|| Stest || is the number of nodes of every tree ofStest.
A perfect model can predict each element of the test set with aprobability equal to one, and so

LL = 0. In a general way, we consider the perplexity of the test set which is defined byPP = 2LL. A
minimal perplexity (PP = 1) is reached when the model can predict each element of the test sample.
Therefore we consider that a model is more predictive than another if its perplexity is lower.

A problem occurs when a tree of the test sample cannot be recognized by the automaton. Actually the
probability of this example is 0 and the perplexity cannot becomputed. To avoid this problem, a classical
method consists in smoothing the distribution of the learned model using an interpolation approach [30]
with a unigram modelA0 recognizing all trees ofΣT . This automaton has only one state, and for each
function symbol of the signature, there is a transition starting from and ending in this state. Finally, a
transition is added for any unknown symbol. The probabilities of transition rules are computed from the
training set, keeping a small ratio for the transition involving unknown symbols. In the smoothed model,
a treet has the probability:

P̂ (t) = λ.p(t|A) + (1− λ).p(t|A0)

where0 ≤ λ ≤ 1.

5.4. Experimentations

In this section, we present a set of experiments showing the interest of our method in the context of
learning in presence of noisy data. We study the ability of our method to remove irrelevant or noisy
subtrees to learn stochastic tree automata from a set of trees.

To verify this behavior, we carried out two series of experiments. First, we consider datasets where
the target automaton is known and we evaluate the quality of the learned model by computing theDa

distance. For this experiment, we used five artificial datasets.

• The datasetStacks is produced by an automaton representing stacks of objects (squares and tri-
angles) [4]. Each object is described by its shape and its color. This dataset has an alphabet
constituted of 8 different leaves and allows to generate trees with a comb pattern representing the
size of the stack. A sample of 5000 examples is generated for this dataset.

• The datasetBool is generated by an automaton modeling boolean expressions.The alphabet in-
cludes only two leaves (true and false) and the generated trees define boolean expressions with
operatorsand, or andnot. We use a sample of 5000 trees for this dataset.

• The datasetCond is defined an automaton representing conditional statements of a programming
language [8]. This dataset has an alphabet with 13 leaves andallows to generate wide and depth
trees. We infer automata from a sample of 3000 trees.
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• The datasetsArt1 andArt2, are generated by automata represented in Figure 6, and define simple
languages with different leaves. In these datasets, the location of the leaves has an important effect
on the language. In this case, each dataset is composed of 5000 trees.

0.40: a→q1 0.50: f(q1,q1,q2)→q3

0.30: b→q1 0.50: g(q2,q2,q1)→q4

0.30: c→q1 0.30: f(q1,q4,q2)→q3

0.55: d→q2 0.30: g(q2,q3,q1)→q4

0.45: e→q2 0.20: f(q1,q3,q2)→q3

0.20: g(q2,q4,q1)→q4 Final State r(q4)=1

(a) Automaton ofArt1.

0.40: a→q1 0.60: f(q1,q1,q2)→q3

0.30: b→q1 0.60: g(q2,q2,q1)→q4

0.30: c→q1 0.40: f(q1,q4,q2)→q3

0.55: d→q2 0.40: g(q2,q3,q1)→q4

0.45: e→q2 Final State r(q4)=1

(b) Automaton ofArt2.

Figure 6. DatabasesArt1 andArt2.

The other experiments concern samples for which we do not know the target model. Then we mea-
sure the quality of the learned models by the perplexity measure. In this context, we re-use the five
previous samples and we also evaluate our approach on 3 real datasets.

• The databaseLoan of the UCI Irvine [5]. This dataset corresponds to structured data in 1st order
logic and is converted into trees according to the principlepresented in [4]. This sample has 1000
examples composed of 143 different leaves.

• The databaseTacrine comes from a dataset on the toxicity of the tacrine molecule presented in
[24]. This dataset is also structured in 1st order logic and is also converted into trees with the
principle proposed in [4]. This dataset has 1000 examples with 42 different leaves, but has larger
trees than the previous one.

• We also use a sample proposed for the PKDD’02 discovery challenge1 (dataset on hepatitis); the
transformation of data into trees is described in [19]. Thisdataset has 4000 examples with 253
leaves.

Our experimental setup consists in adding noise in each dataset, as previously described in Section 4,
with a levelγ from 0 to 25%. For experiments with an unknown target, we use a5 fold cross-validation,
where only the learning sample is noisy. Then we preprocess each corrupted sample with our approach
using a Type I errorα between 0.25 and 0.01. For each level of noise, we keep theα value which
minimizes the quality measure. In order to show the efficiency of our pruning technique, we compare it
with a Monte-Carlo sampling which randomly removesα% of the subtrees.

In our experiments, we study two variants of our pruning method. In the first one (calledM1), the
removed subtree is replaced by a special symbol that does notappear in the dataset. This way to proceed
looks like to the one used in classic data reduction techniques. The other one (calledM2) consists in

1http://lisp.vse.cz/challenge/ecmlpkdd2002/
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replacing a deleted subtree by the most probable one of the partition, in order not to lose a part of the
information. In the Monte-Carlo approach, this subtree is chosen randomly among the other subtrees.

We use two statistical measures to evaluate the results: themean and the standard deviation of the
quality criterion (distance or perplexity) for the different levels of noise.

The results are presented in Tables 1, 2 and 3. In each of them,we indicate the pruning rate according
to the number of nodes removed in columnRed. The global size (in the total number of nodes) of
the datasets is indicated byIS. The results obtained without a preprocessing are stored ina column
with a suffix N (the prefix corresponds to the mean for the criteriaDa andPerp), those obtained by
our approach withCI. The columnMC corresponds to the Monte-Carlo sampling method previously
mentioned. Finally, the columnSig indicates the significance of the results betweenN andCI using a
Student paired t-test over the means with a critical risk of 5%. The columnSig2 indicates the significance
of the results betweenCI andMC using the same comparison test.

5.4.1. Experimentations Knowing the Target Automaton

Before detailing the behavior of our pruning method, we present in Figure 7, the evolution of the mean
of variances, before the preprocessing, for each dataset. The interest of this experiment is to empirically
show the effect of the Theorem 4.2. Actually, the databaseBool, which presents a steady variance, is the
one having the smallest alphabet size. It confirms that the probabilistic distribution has not been changed
a lot in the presence of noise, that has a direct impact on the pruning method. On the other hand, the
databasesStacks andCond, which have a higher alphabet size, present a more disturbedvariance.
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Figure 7. Mean of variances of probabilities for the 5 artificial datasets.

Table 1 synthesizes results for the variantM1 which replaces, as we said before, the deleted subtree
by a special symbol. The results for the variantM2, which replaces the deleted subtree by the most
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probable one, are presented in Table 2. We give the average distanceDa observed between the target
automaton and the inferred automaton± the standard deviation.

Base IS Red Da.N Da.CI Da.MC Sig Sig2

Stacks 35724 3.5% 0.30±0.11 0.23±0.15 0.60±0.45 yes yes

Cond 71683 14% 0.60±0.22 0.44±0.12 1.00±0.18 yes yes

Bool 43185 76% 0.22±0.08 0.16±0.09 0.17±0.10 yes yes

Art1 33137 8.6% 1.26±0.28 0.51±0.20 0.56±0.21 yes yes

Art2 30113 1.3% 0.19±0.15 0.16±0.15 0.18±0.15 yes yes

Average 42678 27% 0.51±0.16 0.30±0.14 0.35±0.22 yes yes

Table 1. DistancesDa to the target automaton with the variantM1.

Base IS Red Da.N Da.CI Da.MC Sig Sig2

Stacks 35724 1.4% 0.30±0.11 0.11±0.10 0.13±0.08 yes yes

Cond 71683 6% 0.60±0.22 0.59±0.23 0.57±0.07 yes yes

Bool 43185 61% 0.22±0.08 0.10±0.04 0.17±0.09 yes yes

Art1 33137 1.7% 1.26±0.28 0.38±0.06 0.39±0.07 yes no

Art2 30113 1.1% 0.19±0.15 0.17±0.15 0.18±0.15 yes yes

Average 42678 14% 0.51±0.11 0.27±0.12 0.29±0.09 yes yes

Table 2. DistancesDa to the target automaton with the variantM2.

The first point to note is the fact that our approach is useful for inferring better models in presence
of noise, than an approach without preprocessing. Actually, this behavior is true forM1 andM2, but
the latter seems to have better results. We can easily explain this behavior by the fact that our learning
algorithm (here a stochastic automata learning algorithm)is based on the statistical information con-
tained in the dataset. Then, it requires a lot of examples to refine the estimations. This remark is very
important because it expresses a particularity of the data reduction techniques that can be used for im-
proving stochastic automata learning algorithms. In the context of probability distribution estimation,
our experiments show that a radical deletion is not the optimal way to proceed, and that the replacement
by a relevant tree (the most probable one) is more performing. This phenomenon is not surprising, and
this kind of approach has already shown its efficiency in DataMining for dealing with missing attributes.
Actually, in the specific field of grammatical inference, a minimal number of examples is needed in or-
der to infer the correct structure of the automaton [14]. Consequently, the suppression of the structure
of some examples can affect the quality of the learned automaton and then the quality of the probability
distribution inferred.

We can finally notice that the significance tests betweenN andCI are all in favor of our approach
that confirms its interest for preprocessing noisy data. Moreover, those betweenCI andMC are in favor
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Figure 8. Behavior on theBool database.

of our approach, except for the baseArt1 with the methodM2.
Since Tables 1 and 2 are synthetic, we also present the behavior of our method for the specific base

Bool in Figure 8. We can make the following remarks. For both of thealternative variantsM1 andM2,
CI allows to infer automata that are always significantly better than the ones learned from noisy data
without preprocessing. Moreover,CI is always better than the Monte-Carlo approach that justifies the
claim that we are able to detect and remove noisy subtrees.

The baseBool is an example of a correct behavior of our approach. However this is not always
so significant. For example, let consider the behavior of ourapproach on the baseArt1, represented
in Figure 9. Our two alternative procedures give good results until a level of noise of7.5%. Beyond
this point,MC has a behavior similar and sometimes better, which shows that our approach has some
difficulties to deal with high levels of noise.

An explanation of this phenomenon is that the presence of noise tends to smooth the repartition of
the data. Actually, we noticed that when the level of noise increases, the average number of subtrees in
a partition tends to decrease. In fact, there are more partitions and less examples in each partition. For
example, in the case of theArt1 database, there is an average of5.37 subtrees in a partition with1%
of noise and only2.36 subtrees when the noise level is at10%. In this context, when the noise level
is increasing, the estimations of the bounds of the confidence interval are sharpness, resulting in larger
intervals. Thus, it is more difficult to detect and remove irrelevant instances. On the other hand,MC

always removes a given proportion of trees, whatever the level of noise is. Then, when this level is high,
the probability thatMC removes a corrupted subtree increases and allows this approach to have a better
behavior.

5.4.2. Experimentations without Knowing the Target Automaton

In this context, we divide the sample of trees in two sets: a training set and a test set. Since we want to
evaluate our approach in the context of noise, we only add noise to the training set. From this one, we
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Figure 9. Behavior on theArt1 database.

infer two automata: the first one is learned without preprocessing, the second one is inferred after the
pruning process. The noise-free test set is then parsed by the two automata resulting in the computation
of two perplexity measures. Note that all the experiments are achieved using a 5 fold cross-validation.

Base IS Red Perp.N Perp.CI Perp.MC Sig Sig2

Stacks 35724 2% 1.93±0.15 1.83±0.07 1.86±0.08 yes yes

Cond 71683 3.9% 1.47±0.21 1.33±0.07 1.42±0.10 yes yes

Bool 43185 3.8% 3.41±0.16 3.56±0.09 3.95±0.21 yes yes

Art1 33137 2.5% 3.68±0.43 2.50±0.12 2.57±0.15 yes yes

Art2 30113 1.8% 1.33±0.12 1.30±0.10 1.32±0.11 yes no

Loan 14117 1% 9.02±2.63 5.10±1.30 5.75±0.49 yes yes

Tacrine 41130 2.6% 4.60±2.84 3.14±0.77 3.21±0.80 yes yes

PKDD’02 115173 20% 12.2±4.60 8.75±2.50 9.00±2.00 yes no

Average 47999 4.7% 4.71±1.39 3.44±0.63 3.64±0.49 yes yes

Table 3. Perplexity results obtained with the variantM2.

Since the variantM2 consisting in replacing a noisy subtree by the most probablehas already shown
its efficiency with theDa criterion, we only test this approach for the second series of experiments.
The results are presented in Table 3. From a general point of view, these results confirm the behavior
already seen in the previous experiments. Our pruning method CI permits to efficiently preprocess all
the databases except the baseBool. Moreover, an interesting remark is that our approach has a smaller
standard deviation than the one computed from the unpreprocessed sets, that denotes a better robustness.
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One of the interest of this series of experiments is also to observe the behavior ofCI on real datasets.
The results are always in favor of our method, but the most interesting effect is certainly obtained for the
basePKDD’02, with a high reduction rate and a large decrease of the perplexity. As for the previous
criterion Da, let us study the behavior ofCI on a single database (here the baseLoan, see Figure 10).
Whatever the level of noise,CI dramatically decreases the perplexity in comparison with the unpre-
processed dataset. Moreover, the level of the deviation between the curvesN andCI is kept with the
increase of the noise. In comparison with the Monte-Carlo sampling, CI provides better results until
10% of noise. Beyond this rate, it begins to have some difficulties to remain performing, which confirms
the fact our approach is not very suited for dealing with highlevels of noise.
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In order to compare the two measures we used for evaluating the performances, we summarize all
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our results, obtained with the variantM2, in Figure 11. Each dot represents a database. A dot under the
bisecting line expresses the fact that our pruning approachCI is better than the one without pruning.

6. Conclusion

In this paper we have presented an original approach allowing to deal with irrelevant and noisy subtrees
in a set of trees. This approach is a data reduction techniquethat can be considered as a hybrid approach.
It can actually delete either a whole irrelevant tree or onlysome of its subtrees. Our pruning method is
based on the use of confidence intervals computed from a probability distribution on subtrees appearing
in a same context. Our experiments have shown that our approach is efficient and robust resulting in the
inference of automata closer to the target concept in the presence of noisy data.

Despite this interesting general behavior, we have experimentally noted that our pruning method has
some difficulties to deal with datasets with a small alphabetlike the one of boolean expressions or parity
functions. Moreover, our approach is based on confidence intervals which depend on the size of the
learning set. Then, its efficiency is only ensured with largedatabases, that is not a too strong hypothesis
considering the size of the modern databases. Finally, our method depends on the partitioning technique
for which we propose a first solution based on the notion of context. We think that this solution requires
a relatively strong constraint on the trees. Indeed, when there is a too small number of elements in
a partition, the computation of the confidence intervals is inaccurate and our approach becomes less
efficient, especially for high levels of noise. We are working on other relaxing partitioning approaches
which deserve further investigations. Finally, we think that an interesting improvement of our method
would concern its adaptation to unordered trees, which are for example suited for dealing with XML
data.
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