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IF: An Intermediate Representation and ValidationEnvironment for Timed Asynchronous SystemsMarius Bozga1, Jean-Claude Fernandez2, Lucian Ghirvu1?, Susanne Graf1,Jean-Pierre Krimm1, and Laurent Mounier11 VERIMAG? ? ? Centre Equation, 2 avenue de Vignate, F-38610 Gi�eresMarius.Bozga@imag.fr2 LSR/IMAG, BP 82, F-38402 Saint Martin d'H�eres CedexJean-Claude.Fernandez@imag.frAbstract. Formal Description Techniques (fdt), such as lotos or sdl are atthe base of a technology for the speci�cation and the validation of telecommu-nication systems. Due to the availability of commercial tools, these formalismsare now being widely used in the industrial community. Alternatively, a numberof quite e�cient veri�cation tools have been developed by the research commu-nity. But, most of these tools are based on simple adhoc formalisms and the gapbetween them and real fdt restricts their use at industrial scale.This context motivated the development of an intermediate representation calledif which is presented in the paper. if has a simple syntactic structure, but allowsto express in a convenient way most useful concepts needed for the speci�cationof timed asynchronous systems. The bene�ts of using if are multiples. First,it is general enough to handle signi�cant subsets of most fdt, and in partic-ular a translation from sdl to if is already implemented. Being built upon amathematically sound model (extended timed automata) it allows to properlyevaluate di�erent semantics for fdt, in particular with respect to time consid-erations. Finally, if can serve as a basis for interconnecting various tools intoan uni�ed validation framework. Several levels of if program representation arealready available via well de�ned api and allow to connect tools ranging fromstatic analyzers to model-checkers.keywords: asynchrony, timed systems, model-checking, static analysis, test generation1 IntroductionFormal Description Techniques, such as lotos [ISO88] or sdl [IT94c] and relatedformalisms such as msc and ttcn are at the base of a technology for the speci�cationand the validation of telecommunication systems. Due to the availability of commercialtools, mainly for editing, code generation and testing, and the fact that these formalismsare promoted by itu and other international standardization bodies, these formalismsare now being widely used in the community of telecommunication systems.? Work partially supported by R�egion Rhône-Alpes, France? ? ? Verimag is Research Laboratory of CNRS, Universit�e Joseph Fourier and Institut NationalPolytechnique of Grenoble



There are also increasing needs for description and validation tools covering as manyaspects of system development as possible. This is the reason why the commercialediting tools contain also some veri�cation facilities. Unfortunately, these veri�cationfacilities are often quite restricted and the tools are \closed" in the sense that there areonly limited possibilities to interface them with others. On the other hand, a numberof quite e�cient veri�cation tools have been developed by the research community, butthey are in general based on adhoc input formalisms and the gap between them andreal fdt restricts their use at an industrial scale. Even if these tools are in general lessclosed than commercial ones, they have rarely well-de�ned interfaces. For example, alot of developments were made around the Spin veri�cation tool [Hol91], but they arebased on the availability of the source code and not on a priori de�ned interfaces.A di�erent approach was followed within cadp [FGK+96], a toolbox for the veri-�cation of lotos speci�cations. It was conceived right from the beginning as an openplatform for interfacing di�erent algorithms and provides several well-de�ned and doc-umented interfaces. The initial motivation for the work presented here was the factthat sdl becomes a more and more popular formalism in the telecommunication com-munity, and that we wanted to adapt cadp to deal also with sdl speci�cations. Sincethe intermediate program level formalisms used within cadp are not appropriated forsdl speci�cations, we had to investigate alternative representations. For example cadpis based on a synchronous communication model (rendez-vous), whereas sdl commu-nications are fully asynchronous (via queues).Another motivation concerns time modeling. Finding a \reasonable" notion of timeis a central problem which admits many possible solutions depending on choices ofsemantic models. This is certainly a non trivial question and this is re
ected by thevariety of the existing proposals for existing fdt. For instance, sdl syntax de�nes atimer concept, but there is no consensus on its semantics for the moment and di�erentsdl tools have adopted di�erent choices. Similarly, in the original lotos de�nitionthere was no particular notion of time, whereas di�erent timed extensions are currentlybeing proposed [LL97,Que98]. Choosing an appropriate timed extension for an fdtshould take into account not only technical considerations about the semantics of timedsystems but also more pragmatic ones related to the appropriateness for use in a systemengineering context. We believe that the di�erent ideas about extensions of the languagemust be validated experimentally before being adopted to avoid phenomena of rejectionby the users.These problems motivated the development of if, a new intermediate representationfor timed asynchronous systems. The requirements on this formalism were the following:� it must be su�ciently expressive to be used as an intermediate representationfor the above mentioned speci�cation formalisms, or at least for reasonably largesubsets of them.� it must have a formally de�ned operational semantics, but 
exible enough to ex-periment di�erent choices and extensions.� it must be supported by a set of well de�ned api, at di�erent levels of programrepresentation, allowing either to interface existing validation tools or to experimentnew ones.



The paper is organized as follows. First, we de�ne the if formalism, its main con-cepts and its operational semantics. We also discuss its expressiveness with respect toother models and speci�cation formalisms, in particular regarding the timing aspects.Then, we present a set of tools interconnected within an open validation environmentfor if speci�cations. We further detail two speci�c components, based on static analysisand compositional generation, working at the program level and experimented withinthis environment. Finally, we illustrate the use of if on a small example, a distributedleader election algorithm on which di�erent kinds of validation are performed.2 Presentation of IFIn the following sections, we give a brief overview of the main features of if, its oper-ational semantics in terms of labeled transition systems. A more complete descriptionof if and of its semantics can be found in [BFG+98].2.1 SyntaxAn if system is a set of processes communicating either asynchronously through a setof bu�ers or synchronously through a set of gates. The timed behavior of a system canbe controlled through clocks (like in timed automata [ACD93,HNSY94]).IF system de�nition: A system is a tuple Sys = (glob-def, procs, S) where� glob-def = (type-def, sig-def, gate-def, var-def, buf-def) is a list of global de�nitions,where type-def is a list of type de�nitions (enumerated types, arrays, records andalso abstract data types1) sig-def de�nes a list of parameterized signals (as in sdl),gate-def de�nes a list of parameterized gates (as in lotos), var-def is a list ofglobal variables, and �nally, buf-def is a list of bu�ers through which the processescommunicate by asynchronous signal exchange (as in Promela[Hol91]). Notice thatwe allow various types of bu�ers: fifo queues, stacks or bags, which can chosen tobe unbounded or bounded and reliable or lossy.� procs de�nes a set of processes described in section 2.1.� S is a synchronization expression, as in lotos or csp, telling how the processesde�ned in procs synchronize. Such a synchronization expression is given by thefollowing grammar where C is a (possible empty) set of gates:S ::= P2procs j S j[C]j SThus, a system S is either a process P or a parallel composition of two subsystemsS1 and S2 with rendez-vous synchronization on the set of gates C. In a system ofthe form S1 j[C]j S2 transitions concerning a gate in C are executed synchronouslyin the two subsystems whereas all other transitions are interleaved.1 where we suppose that the user provides also implementations of the introduced functions,otherwise expressions containing them are handled syntactically



IF process de�nition: Processes are de�ned by a set of local variables, a set of controlstates and a set of control transitions. A process P2procs is a tuple P= (var-def, Q,cTrans), where:� var-def is a set of local variable de�nitions including also clocks2 (as in timedautomata)� Q is a set of control states on which the following attributes are de�ned:{ stable(q) and init(q) are boolean attributes, where the attribute stable can beused to control the level of atomicity: only stable states are visible on thesemantic level.{ the tpc(q) time progress condition attribute is a predicate depending on visiblevariable of the process (global variables and local ones) which de�nes when timecan progress. Notice that, anyway, time cannot progress in non stable states.{ the attributes save(q), discard(q) are sets of filters of the formsignal-list in buf if cond.which �lter the bu�ers contents in this state. For example, discard(q) is usedto eliminate silently unexpected signals: when consuming the next signal inthe fifo queue buf, all signals of signal-list preceding it are discarded inthe same atomic step, if the boolean expression cond evaluates to true. Theseprimitives are useful in practice and taken from sdl.� cTrans is a set of control transitions, between control states q,q'2Q, whichmay be of the following types:{ input transitions which are triggered by some signal read from one of the com-munication bu�ers (as in sdl):q g 7! input ; body���������������!(urg) q0{ synchronization transitions which are executed simultaneously with compatibleones in other processes of the system (as in lotos):q g 7! sync��������!(urg) q0{ internal transitions depending not on communications:q g 7! body��������!(urg) q0Where in all three cases:� g is a boolean guard of the transition which may depend on visible variables in theprocess (including clocks) and prede�ned tests on bu�ers content (e.g., emptiness).2 one can also de�ne timers (as in sdl) which can be set to any positive value, which decreasewith progress of time and expire if they reach the value zero; however to simplify thedescription we don't mention them in this document



� urg2feager, delayable, lazyg de�nes the urgency type of the transition. eagertransitions have absolute priority over progress of time, delayable transitions maylet time progress, but only as long as they remain enabled, whereas lazy transitionscannot prevent progress of time. These urgency types have been introduced in[BST98], which shows that the use of urgency predicates on transitions (insteadof time progress conditions) facilitates the compositional speci�cation of timedsystems.� input is an input of the form \input sig(reference list) from buf if cond" where{ sig is a signal,{ reference list the list of variables3 (excluding clocks) in which the received pa-rameters are stored,{ buf is the name of the bu�er from which the signal should be read{ cond is a \post guard" de�ning the condition under which the received signalis accepted and it usually depends on received parameters.Intuitively, an input transition is enabled if its guard is true, the �rst signal tobe consumed (according to the attributes save(q) and discard(q)) is of the formsig(v1; :::vk) and the post guard holds (after assigning the values v1; :::vk to thevariables of the reference list)� sync is a synchronization of the form \sync gate comm list if cond" where{ gate is a synchronization gate de�ned at system level,{ comm list is a list of communications o�ers:� either an output communication o�er of the form !exp, where the expressionexp represents the sent value� or a input communication o�er of the form ?ref, where ref is a localvariable3 in which the received value is stored.{ cond is again a post guard usually depending on received values and whichrestricts the values that the process is willing to accept.The concept of synchronization is taken from lotos: the simultaneous executionof synchronization transitions concerning the same gate allows a instantaneousexchange of values between several processes. Notice that clock expressions cannotappear as communication o�ers.� body is a sequence of atomic actions of the following types:{ asynchronous outputs of the form \output sig(par list) to buf" append asignal of the form \sig(par list)" to the bu�er buf.{ usual assignments between discrete variables.{ resettings of clocks, which have the e�ect to assign the value zero to the corre-sponding clock.2.2 SemanticsThe semantics of if is based on concepts taken respectively from lotos, sdl andtimed automata. We de�ne it by translating if sytems into Timed Automata withUrgency [BST98]. First, we show how to associate a timed automaton with a process,3 or \assignable" expressions such as elements of records or arrays



and then, how these timed automata can be composed into a single one4. The timedautomata can then be interpreted either using discrete or dense time depending on theveri�cation tools and properties considered. Notice that the discrete/dense interpreta-tion of time does not in
uence the translation into a timed automaton.Association of a Timed Automaton with a process: Let P= (var-def, Q, cTrans)be a process de�nition in the system Sys and furthermore:� Let buf be a set of bu�er environments B, representing possible contents of thebu�ers of the system, on which | depending on the declared bu�er type | allnecessary primitives are de�ned: e.g. \get the �rst signal of a given bu�er, takinginto account the save and the discard attributes of the control state", \append asignal at the end of a bu�er",...� Let env be a set of environments E de�ning the set of valuations of all discretevariables de�ned in the system Sys (the local and the global ones)The semantics of the process P is the timed automaton [P] = (Q�env�buf,Trans)where� Q�env�buf is the set of states, for which we extend the attributes of control statesin a natural manner, e.g. tpc((q,(E ,B))) is the partial evaluation of tpc(q) in ((E ,B)).Notice that the set of data environments env can be split into envloc � envglobwhere envloc concerns only local variables of the process and envglob concerns theglobal variables of the system.� Trans is the set of transitions of the timed automaton obtained from controltransitions by the following two rules:1. For any input transition (and for internal ones)q g 7! (sig(x1:::xn); buf; cond) ; body������������������������������!(urg) q02cTransand for any (E ,B),(E ',B')2val, there exists a transition(q; (E ;B)) ` : g0 7! body0������������!(urg) (q'; (E 0;B0)) 2Trans if{ g' is the the partial evaluation of g in (E ,B), which is an expression depend-ing only on clocks.{ let B00 be the bu�er environment obtained after consuming sig(v1:::vn) inbu�er buf (and after elimination of appropriate signals of the discard(q)attribute and saving of the signals of the save(q) attribute){ let E 00=E [v1:::vn/x1:::xn] is obtained by assigning vi to xi,{ the post guard cond evaluates to true in the environment (E 00;B00){ (E 0;B0) is obtained from (E 00;B00) by executing all the assignments of thebody, and by appending all signals required by outputs in the body.{ body' is the sequence of resettings of clocks which remain as such in thetimed automaton,4 Notice that the semantics is compositional in the sense that, in order to associate a timedautomaton with a system one can also �rst compose the system into a unique process andthen associate a timed automaton with this process



{ ` is an appropriate label used for tracing.2. For each synchronization transition of the formq g 7! c : !exp1 ?y2 ::: : cond������������������������!(urg) q02cTransand for any (E ,B),(E ',B')2val, there exists a transition(q; (E ;B)) ` : g0 7! skip�����������!(urg) (q'; (E 0;B0)) 2Trans if{ g' is the the partial evaluation of g in (E ,B),{ the expression expi evaluates to the value vi in (E ,B),{ E 0=E [v2:::vj :::=y2:::yj :::] for some vj belonging to the domain of yj ,{ the post guard cond evaluates to true in the environment E ',{ the label ` is equal to c !v1 !v2 ...Composition of models: The timed automaton associated with a system of the formSys = (glob-def,procs,S) is obtained by composing the timed automata of processesaccording to the composition expression S. The composition rules correspond to theand-parallel composition described in [BST98].Let [Pi] = (Qi�val,Transi)i=1;2 be the timed automata associated with processesor subsystems of Sys | where val concerns only all global variables and is of the formenvglob�buf and the valuations of local variables are integrated into the set of controlstates | and C a set of gates.Then, [P1j[C]jP2] = [P1] j[C]j [P2] = (Q�val,Trans) where� Q= Q1�Q2 where init((q1,q2)) = init(q1) ^ init(q2)stable((q1,q2)) = stable(q1) ^ stable(q2)tpc((q1,q2)) = tpc(q1) ^ tpc(q2)� Trans is the smallest set of transitions obtained by the following two rules: the�rst one applies to all transitions of Trans1 which are not synchronizations ongates in C and there is also a symmetrical rule for transitions of Trans2.(q1;V) ` : g 7! act����������!(urg) (q01;V 0) 2 Trans1 and :stable(q1) _ stable(q2)((q1; q2);V) ` : g 7! body�����������!(urg) ((q01; q2);V 0) 2 TransThe requirement on stableness implies that there is no interleaving in non stablestates; they are transient states, such that a �nite sequence of transitions betweento stable states can be considered as one atomic transition.The second rule concerns the synchronizations on gates in c2C(q1;V) ` : g1 7! skip�����������!(u1) (q01;V 0) 2 Trans1 and(q2;V) ` : g2 7! skip�����������!(u2) (q02;V 0) 2 Trans2((q1; q2);V) ` : g1 ^ g2 7! skip���������������!(urg) ((q01; q02);V 0) 2 Trans



In this rule, the synchronization of two transitions with the same urgency attributeresult in a transition with the same attribute, the composition of an eager tran-sition with any other transition results in an eager one, an in order to compose alazy with a delayable transition, one needs to decompose the delayable one intotwo transitions, an eager and a lazy one, which under a reasonable restriction isalways possible [BST98].The semantics of Timed Automata The model of time of if is that of Communicat-ing Timed Automata with urgency introduced in [BST98]. Each process has a numberof clocks which increase with progress of time (either in a discrete or continuous way).Clocks can be \tested" in the guards and \reset" in the bodies of the transitions. In thismodel, time is considered global, that is, it progresses synchronously in all processesof the system. The main problem is \when can time progress?". In timed automata[ACD93], time progress is de�ned by means of \invariants" associated with each state,such that time is allowed to progress as long the invariant expression evaluates totrue. The problem with this model is that the composition of timed automata leads totime deadlocks. A time model avoiding this problem is obtained by associating withevery transition a deadline (a predicate implying the guard), meaning that, wheneverthe deadline predicate evaluates to true, the transition has priority over progress oftime. In [BST98], it has been shown that a much simpler model using three possibleurgency attributes instead of deadlines is su�cient: eager transitions have always pri-ority over time, delayable transitions may let time progress, but only as long as theyremain enabled, and lazy transitions cannot prevent time from progressing. In if thetime progress condition in each state is de�ned depending on the urgency of enabledtransitions and, in order to include the model of timed automata, one can associate anexplicit tpc attribute with control states, with the potential risk of introducing timedeadlocks by composition.The semantics of Timed Automata with Urgency is de�ned in [BST98]. Let A =(Q;Trans) be a Timed Automaton. Let time be a set of environments for clocks,where T 2time de�nes for every clock a value in a time domain T (positive integersor reals). Resetting a clock a�ects T by changing the value of the reset clock to zero.Progress of time by an amount � transforms the valuation T into the valuation T � �in which the values of all clocks are increased by �.The semantics of A is de�ned by the labeled transition system (Q�time;!) wherethe transition relation ! consists of two types of transitions, discrete ones and timeprogress transitions:� For any transition q1 ` : g 7! body�����������!(urg) q2 of Trans and T 2time, there exists adiscrete transition of the form (q1; T ) �̀! (q2; T 0) if{ the guard g evaluates to true in T ,{ and T ' is obtained from T by executing all assignments to clocks (resettings)of body.� in any state (q,T ), time can progress by the amount �, that is



(q; T ) time: ������! (q; T � �)if time can progress in the state (q,T ) and continuously until T � �0: whenevertime has progressed by an amount �0 where 0 � �0 < �, time can still progress inthe reached state (q,T � �0).Time can progress in a state (q,T ) if and only if the following conditions hold:{ stable(q), that means time can progress only in stable, never in transient states{ the time progress attribute tpc(q) evaluates to true in T{ no eager transition is enabled in (q,T ){ for each delayable transition tr enabled in (q,T ), there exists a positiveamount of time �, such that tr remains enabled when time progresses by �.That means enabled delayable transitions allow time to progress, but only aslong as they remain enabled.3 IF and other formalismsif is a formalism for the description of asynchronous systems at a programming lan-guage level. However, it has not been designed with the aim to replace speci�cationlanguages such as lotos, sdl and Promela. if has been designed as an intermediaterepresentation for sdl but it can also be used for other speci�cation formalisms. Thus,the expressiveness of if and its adaptedness as an intermediate representation fromsdl, lotos and Promela are discussed below.3.1 SDLThe de�nition of sdl (Speci�cation and Description Language) started in 1974 and ithas been standardized by CCITT in 1988 [IT94c]. sdl is based on extended �nite statemachines communicating asynchronously via queues. There exists a formal semantics ofthe language de�ned in [IT94a,IT94b], various authors have criticized it and proposedalternative ones [Bro91,BMU98,God91] to name only a few of them. Currently, sdl iswidely accepted by the industrial community. This is due mainly to the fact that sdldevelopment is supported by methodologies [OFMP+94] and tools [Ver96,AB93] in allphases from requirement analysis, design and validation to implementation. However,the validation capabilities of the industrial tools are rather limited with respect to theones existing in the academic community.There is no standard semantics of time de�ned for sdl. For example, Objectgeodeuses a very \synchronous" time concept in which time can only progress when thesystem is blocked (that means all transitions are eager), whereas others consider thattime can always progress (that means that all transitions are lazy). This shows thatthe currently used notions of time in sdl are extreme ones | which is often consideredas problem by the users | and many intermediate solutions are possible using if asdiscussed in previous section.We have identi�ed a static subset of sdl which we are able to translate into if.That is, with the exception of dynamic creation of processes and some mobility aspects



of communication, we can de�ne a syntactic level translation between these two for-malisms. A prototype translator has been implemented using the sdl/API Interfaceprovided by ObjectGeode [Ver96]. More detailed information about it can be found in[BFG+99].3.2 LOTOSlotos (Language Of Temporal Ordering Speci�cations) [BB88] has been developedand standardized by ISO in 1989. It is a process-algebra based on ccs[Mil80] andcsp[Hoa84]. In lotos, the communication is synchronous using rendez-vous. lotoshas a well-de�ned operational semantics and there exist tools supporting it.The right approach to model and validate lotos speci�cations is recognized to bethe use of Petri nets, rather than communicating extended automata [GS90] as inter-mediate representation. However, our experience with lotos has shown that often thespeci�cations have the form of a parallel composition of sequential components (pro-cesses). This observation motivated also the use of compositional generation methods,which gives good results for this kind of lotos speci�cations [KM97].The timed extensions introduced in E-Lotos[Que98], ET-Lotos[LL97] and Lotos-NT[Sig99] are similar to that of if, only that the urgency of an action is de�nedimplicitly by its type: \exceptions" and internal actions are urgent, whereas observableactions are not. This is due to the fact, that they want to achieve a much strongerform of compositionality, where with each process can be associated a directly labeledtransition system (and not a timed automaton) which then can be composed into asystem model.We plan to investigate the translation of decomposable lotos speci�cations intoif, as parallel composition with synchronization between processes can be handled inif. Furthermore, a reasonably small Petri Net (corresponding to a non-decomposablelotos part) can be modeled by an if process.3.3 PROMELAAnother language we have considered is Promela, the native language of the Spinmodel-checker [Hol91]. It was designed as an intermediate representation language forprotocols, mainly for validation purposes. It is based on extended �nite-state machinescommunicating asynchronously or synchronously via queues.Promela has not really been designed as a speci�cation language but it has a rel-atively important visibility as well in the academic community as in the industrialone. Its success is due to the high availability of Spin, which provides powerful model-checking algorithms based on partial-order reductions.There exist timed extensions of Promela. The one proposed in [CT96] is basedon Timed Automata, whereas [BD98] is very similar to the notion of time used inObjectgeode: all set timers decrease synchronously until one of them expires; thentime is blocked until the corresponding timeouts are consumed, where these timeoutconsumptions take place when no other transition is possible in the system.A translator from if to Promela is currently developed in the framework of thevires Esprit-ltr project at Eindhoven University. We plan to study also a backward



translation from Promela to if. However, as for sdl, there are some limitations due todynamic process creation feature of Promela.4 A validation environment based on IFOne of the main motivation for developing the if intermediate representation is toprovide an \open" validation environment, able to make heterogeneous tools cooperatewithin a single framework. Especially for sdl, solid industrial tools for editing andcode generation have been built which are used by a large community of users. On theother hand, there exist many veri�cation tools built upon diverse formalisms | suchas the Spin tool [Hol91] based on Promela, the cadp tool[FGK+96] based on lotos,the smv tool [Mac93] based on extended automata, tools for the veri�cation of Timedsystems such as kronos[Yov97] and Uppaal [LPY97] based on di�erent representationsof Timed Automata, to name only a few of them.Therefore, an integrated validation environment should ful�ll the following require-ments:� First of all, it is able to support several validation techniques, from symbolic in-teractive simulation to automatic property checking, together with test case gen-eration and executable code generation. Indeed, all these functionalities cannot beembodied in a single tool and only tool integration facilities can provide all of them.� Moreover, for a sake of e�ciency, this environment also has to support severallevel of program representations. For instance it is well-known that model-checkingveri�cation of real life case studies usually needs to combine several optimizationtechniques to overcome the state explosion problem.In particular, some of these techniques rely on a program level representation, likestatic analysis and computations of abstractions (for which it may be necessary tocooperate with decision procedures or theorem-prover). Other techniques operateon a representation of the underlying model, such as on-the-
y analysis, bisimula-tion based model reduction or model-checking. These representations can be eitherimplicit, enumerative or symbolic and are explained below.� Another important feature is to keep this environment open and evolutive. There-fore, tool connections are performed only by means of �le sharing or programrepresentation access. For this purpose several well-de�ned interfaces are o�ered.In the remainder of the section we present the overall architecture of the existingenvironment and some of its related components. Then, we describe in a more detailedmanner two speci�c modules concerning static analysis (section 4.2) and compositionalgeneration (section 4.3).4.1 Overall architectureThe if validation environment is built upon two levels of program representation, eachof them being accessed through well-de�ned Api.



The syntactic level allows to consult and modify the abstract tree on an if program.Since all the variables, timers, bu�ers and the communication structure are still explicit,high-level transformations based on static analysis (such as live variable computation,see below) or abstraction computations can be applied. Moreover, this Api is also wellsuited to implement translators from if to other speci�cation formalisms (like Promelaor invest).The execution model level gives access to the underlying lts of the if program. Inpractice three distinct Api are o�ered, depending on the representation used.� The implicit enumerative representation is based on the open-caesar [Gar98]philosophy. It consists in a set of C functions and data structures allowing to com-pute on demand the successors of a given state. This piece of C code is generated bythe if compiler, and it can be linked with a \generic" exploration program perform-ing on the 
y analysis (deadlock detection, model-checking, test-case generation,...).� In the symbolic representation (called smi [Boz97]) set of states and transitionsof the lts are expressed by their characteristic functions over a set of �nite vari-ables. These functions are implemented in terms of decision diagrams(bdds[Bry86]andmdds). Existing applications based on this Api are symbolic model-checkingand minimal model generation.� Finally, the explicit enumerative representation simply consists in an lts �leformat with the associated access library. Although this explicit representation isnot suitable for handling a large system globally, it is still useful in practice tominimize some of its abstractions with respect to bisimulation based relations (likein compositional generation, see below).Figure 4.1 describes the existing connections in this environment (plain arrows) andthe planned ones (dashed arrows). Most of the tools mentioned are presented below:� cadp [FGK+96,BFKM97] is a tool set for the veri�cation of lotos speci�cations.It has been developed and by Verimag and the Vasy team of Inria Rhône-Alpes.We brie
y present here two veri�ers integrated in this tool set which have alreadybeen connected to the new if environment:{ aldebaran compares and minimizes �nite ltss with respect to various simu-lation or bisimulation relations. This allows the comparison of the observablebehavior of a speci�cation with its expected one, described at a more abstractlevel.{ evaluator is a \on-the-
y" model-checker for formulas of the alternating-free�-calculus [Koz83].As for the if environment, an important feature of cadp is to o�er several ltsrepresentations and in particular the open-caesar Api which is fully compatiblewith the if implicit enumerative representation.� tgv [FJJV97] is a test sequence generator built upon cadp jointly by Verimagand the Pampa project of Irisa. tgv aims to automatically generate test casesfor conformance testing of distributed systems. Test cases are computed duringthe exploration of the model and they are selected by means of test purposes. Test



Model

Symbolic
Model

Implicit
Model

IF

PROMELA

SDL

LOTOS

INVEST

EVALUATOR

STATIC ANALYSIS
ABSTRACTION

OPEN/CAESAR

LCS

KRONOS
TGV

ObjectGEODE
CADP SPIN

MMG

BCG

ALDEBARANFig. 1. An open validation environment for ifpurposes characterize some abstract properties that the system should have andone wants to test, given trees of labels, decorated with verdicts \ok" and \fail".� mmg [FKM93] is a minimization tool based on a partition re�nement algorithmcombined with a reachable state space computation [BFH90]. This tools works onthe symbolic smi interface.� Objectgeode is a tool set developed by Verilog supporting sdl, msc and omt.It includes graphical editors and compilers for each of these formalisms. It alsoprovides a C code generator and a simulator to help the user to interactively debugan sdl speci�cation.Objectgeode also provides an Api o�ering a set of functions and data structuresto access the abstract tree generated from an sdl speci�cation. A translation tool(sdl2if) uses this abstract tree to generate an operationally equivalent if speci�-cation.� Kronos [Yov97] is a Tctl model-checker for communicating timed automata. Thecurrent connection with the if environment is as follows: control states and discretevariables are expressed using the if implicit enumerative representation whereasclocks are expressed using an appropriate symbolic representation (particular poly-hedra).� invest [BLO98] is a tool computing abstractions and invariants on a set of guardedcommand processes communicating through shared variables. We are actually im-plementing the translation between this formalism and if, which will allow to com-pute abstract systems.



4.2 Static analysis and abstractionConsidering the expressiveness of if, static analysis and abstraction techniques canbe applied in order to improve the veri�cation and the test generation process. Theexpected bene�ts of such techniques are mainly the reduction of the state space andthe reduction of the complexity of the if program.We have already experimented very simple analysis, used classically in the contextof data-
ow analysis which can be divided into two classes:� property independent analysis: without regarding any particular property or testpurpose (such as live variable analysis or constant propagation),� property dependent analysis: takes into account some information of the propertyand propagate them over the static control structure of the program (such as ir-relevant variables abstraction)We brie
y describe two techniques currently implemented for if.\Live variables" analysis: A variable is live in a control state if there is a path from thisstate along which its value can be used before it is rede�ned. An important reductionof the state space of the model can be obtained by taking into account in each stateonly the values of the live variables.The reduction considered is based on the relation �live de�ned on the state spaceof the model: two states are related if and only if all live variables have the same value.It can easily be proved that �live is a bisimulation on the model. This result can beexploited in several ways. Due to the local nature of �live it is possible to directlygenerate the quotient model w.r.t. �live instead of the whole model without any extracomputation. Exactly the same reduction is obtained by \resetting"(that is assigningsome prede�ned value) in the initial program systematically all non-live variables. Thesecond approach is implemented for if.\Irrelevant variables" abstraction: Given a subset X of irrelevant variables (which ingeneral depend on the considered property), an upper approximation for this programcan be computed syntactically and iteratively as follows:� the assignments of variables belonging to X are removed� the expressions containing variables from X are replaced by a special any value(denoting any element of its domain)� the guards which evaluate to any are removed (i.e., replaced by the true value)Clearly the resulting program contains all executions of the initial one and does notdepend anymore on variables in X . Any safety property valid on the resulting abstractprogram is also valid on the initial one, but the converse does not necessarily hold.In practice, the set of irrelevant variables can be chosen in di�erent manners. Either,the user can directly supply it based on his knowledge about the speci�cation and thegiven veri�cation context. Another possibility is to derive this set automatically fromthe considered property (or the test purpose). Finally, irrelevant variables can also betaken among the variables provided by the environment and the ones depending on



them: such variables are uncontrolled since their values are nondeterministically chosenby the environment. This latter choice has been considered in [CGJ98].We are also investigating more general abstraction techniques. For instance, throughthe connection with invest we will be able to compute abstract if programs using moregeneral and powerful abstraction techniques.4.3 Compositional generationAs shown in the previous section, e�cient reductions are obtained by replacing a modelM by its quotient w.r.t an equivalence relation like �live. Much weaker equivalences(that is smaller quotients) can be obtained by taking into account the properties un-der veri�cation. In particular, it is interesting to consider a weaker equivalence R |which should be a congruence for parallel composition |, able to abstract away nonobservable actions. The main di�culty is to obtain (an approximation of) the quotientM=R without generating M as a whole.A possible approach is based on the \divide and conquer" paradigm: splitting theprogram description into several pieces (i.e., processes or process sets), generate themodel Mi associated with each of them, and then compose the quotients Mi=R. Thehope is that the generated intermediate models can be kept small.This compositional generation method has already been applied for speci�cation for-malisms based on rendez-vous communication between processes, and has been showne�cient in practice [GLS96,Val96,KM97]. To our knowledge it has not been investi-gated for systems based on communication via bu�ers, may be, because bu�ers raiseseveral di�culties or due to the lack of suitable representations and tools.The potential bene�t of this compositional approach will be illustrated on an ex-ample in the next section.5 An illustrating exampleWe present a simple example to illustrate the if formalism and related veri�cationtools. We consider a token ring, that is a system of n stations (processes) S1, : : : Sn,connected in a circular network, in which a station is allowed to access some sharedresource R only when it \owns" a particular message, the token. If the network isunreliable it is necessary to recover from token loss. This can be done using a leaderelection algorithm [Lan77,CR79] to designate a station responsible for generating anew token.Table 1 shows the global de�nitions of the if speci�cation corresponding to theparticular protocol considered in [GM96]. The signals open and close denote the accessand the release of the shared resource (here a part of the environment). The signalstoken and claim are the messages circulating on the ring.All stations Si are identical up to their identity and described by an if process asthe one of Figure 2. The timer worried is set when the station waits for the token andreset when it receives it. On expiration of the timer worried token loss is assumed andan election phaes is started. The \alternating bit" round is used to distinguish betweenvalid claims (emitted during the current election phase) and old ones (cancelled by a



signalclose;open;claim(pid, bool);token;bu�erQ1 : queue :lossy of claim, token;Q2 : queue :lossy of claim, token;Q3 : queue :lossy of claim, token;Q4 : queue :lossy of claim, token;
syncS1 jjj S2 jjj S3 jjj S4end;process S1;varworried : timer;round, rnd: bool;adr: pid;...Table 1. if global de�nitionstoken reception). In the idle state, a station may either receive the token from itsneighbour (then it reaches the critical state and can access the resource) or receivethe timer expiration signal (then it emits a claim stamped with its address and thecurrent value of round) or receive a claim. A received claim is \�ltered" if its associatedaddress is smaller than its own address and transmitted unchanged if it is greater. Ifits own valid claim is received, this station becomes elected and generates a new token.
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Fig. 2. The behavior of station S1Model generation: We summarize in Table 2 the size of the models obtained fromthe token-ring protocol using three generation methods: directly from the initial ifprogram (global generation), using the live variable reduction (global + live) and usinga compositional generation strategy (compositional + live).



model generation method states transitions1. global 537891 22983482. global + live 4943 196643. compositional + live 1184 4788Table 2. Models obtained for the token ring exampleThe most spectacular reduction is obtained by the live reduction: the reduced modelis about 100 times smaller than the one obtained by simultaneous generation, whilepreserving all properties (models 1 and 2 are strongly bisimilar). This is explained bythe fact that only a few variables are live in each state: in the idle state the live vari-ables are round and worried, in the critical state only round is live, while variablesadr and rnd are never live.More reduction is achieved by the following compositional generation strategy:1. We split the if description into two parts, the �rst one contains processes S1 andS2 and the second one processes S3 and S4. For each one of these descriptions,the internal bu�er between the two processes is a priori bounded to two places.Note that, when a bounded bu�er over
ows during simulation, a special over
owtransition occurs in the corresponding execution sequence.2. The lts associated with each of these two descriptions are generated consideringthe \most general" environment providing any potential input. As claim and tokencan be transmitted at any time, over
ow transitions appear in the correspondingltss.3. In each lts the input and output transitions relative to the internal bu�ers (Q2and Q4) are hidden (i.e., renamed to the special � action); then they are reducedw.r.t an equivalence relation preserving the properties under veri�cation. For thesake of e�ciency we have chosen the branching bisimulation [vGW89] preservingall the safety properties (e.g. mutual exclusion).4. Each reduced lts is translated back into an if process (without variables), andthe resulting processes are combined into a single if description, including thetwo remaining bu�ers (Q1 and Q3). It turns out that the lts generated from thisnew description contains no over
ow transitions (they have been cut o� duringthe second composition, which con�rms the hypothesis on the maximal size of theinternal bu�ers).The �nal lts is branching bisimilar to the one obtained from the initial if descrip-tion.Veri�cation: We are interested in checking that the shared resource is accessed inmutual exclusion. For this, we consider as visible only the open and close actions.Mutual exclusion property can be rephrased as follows: every openi (station i accessthe resource) can only be followed by closei (station i releases the resource) possiblyafter some internal moves � . This property can be expressed in the �-calculus (see



below) and veri�ed with evaluator, on any of the generated models.4̂i=1 �X: ([openi] :�Y: (hfclosei; �giT _ h�iY ) ^ [�]X)Another approach to verify mutual exclusion is to compare the model of the speci�ca-tion with an abstract one expressing the desired behavior. For instance, all three modelsare branching bisimilar to the one shown in Figure 3. The reductions and comparisonsare carried out using aldebaran.
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Fig. 3. The reduced behavior of the token ring.
Test Generation: We illustrate the use of the tgv to extract test cases for the tokenring protocol. We want to test the property stating that a station �lters a receivedclaim with a smaller address than its own and transmits it unchanged otherwise. Wechose a test purpose expressing that after S4 has sent its claim, it will be transmittedunchanged by station S1, then by S2 and �nally by S3. The generated test case isshown in �gure 4.6 Conclusion and perspectivesWe have presented the formalism if which has been designed as an intermediate repre-sentation for sdl, but it can be used as a target language for other fdt as it containsmost of the concepts used in these formalisms. The use of if o�ers several advantages:� if has a formal semantics based on the framework of communicating timed au-tomata. It has powerful concepts interesting for speci�cation purposes, such asdi�erent urgency types of transitions, synchronous communication, asynchronouscommunication through various bu�er types (bounded, unbounded, lossy, : : : ).



+���������������������������������������������������������������������������+
 |                         Test Case Dynamic Behaviour                       |
 +---------------------------------------------------------------------------+
 | Test Case Name   : castest                                                |
 | Group            :                                                        |
 | Purpose          :                                                        |
 | Default          :                                                        |
 | Comments         :                                                        |
 +----+-------+-----------------------------------+---------+------------+---+
 | Nr | Label | Behaviour Description             | Cts Ref | Verdict    | C |
 +----+-------+-----------------------------------+---------+------------+---+
 |  1 |       | s3? claim                         | claim3  | INCONC     |   |
 |  2 |       | s2? claim                         | claim2  | INCONC     |   |
 |  3 |       | s1? claim                         | claim1  | INCONC     |   |
 |  4 |       | s4? claim                         | claim0  |            |   |
 |  5 |       |   s1! claim, St tclaim            | claim0  |            |   |
 |  6 |       |     s3? claim, Cl tclaim          | claim3  | INCONC     |   |
 |  7 |       |     s2? claim, Cl tclaim          | claim2  | INCONC     |   |
 |  8 |       |     s1? claim, Cl tclaim          | claim1  | INCONC     |   |
 |  9 |       |     s1? claim, Cl tclaim          | claim4  |            |   |
 | 10 |       |       s2! claim, St tclaim        | claim4  |            |   |
 | 11 |       |         s3? claim, Cl tclaim      | claim3  | INCONC     |   |
 | 12 |       |         s2? claim, Cl tclaim      | claim2  | INCONC     |   |
 | 13 |       |         s1? claim, Cl tclaim      | claim1  | INCONC     |   |
 | 14 |       |         s2? claim, Cl tclaim      | claim5  |            |   |
 | 15 |       |           s3! claim, St tclaim    | claim5  |            |   |
 | 16 |       |             s3? claim, Cl tclaim  | claim3  | INCONC     |   |
 | 17 |       |             s2? claim, Cl tclaim  | claim2  | INCONC     |   |
 | 18 |       |             s1? claim, Cl tclaim  | claim1  | INCONC     |   |
 | 19 |       |             s3? claim, Cl tclaim  | claim6  | (PASS)     |   |
 | 20 |       |             ? tclaim              |         | FAIL       |   |
 | 21 |       |         ? tclaim                  |         | FAIL       |   |
 | 22 |       |     ? tclaim                      |         | FAIL       |   |
 +----+-------+-----------------------------------+---------+------------+---+Fig. 4. ttcn test case� if programs can be accessed at di�erent levels through a set of well de�ned apis.These include not only several low-level model representations (symbolic, enumer-ative, ...) but also higher level program representation, where data and communi-cation structures are still explicit. Using these api several tools have been alreadyinterconnected within an open environment able to cover a wide spectrum of vali-dation methods.The if package is available at http://www-verimag.imag.fr/DIST SYS/IF. In par-ticular, a translation tool from sdl to if has been implemented and allows both to ex-periment di�erent semantics of time for sdl and to analyze real-life sdl speci�cationswith cadp.A concept which is not provided in if is dynamic creation of new process instancesof processes and parameterization of processes; this is due to the fact that in the frame-work of algorithmic veri�cation, we consider only static (or dynamic bounded) con�g-urations. However, it is foreseen in the future to handle some kinds of parameterizedspeci�cations.The results obtained using the currently implemented static analysis and abstrac-tions methods are very encouraging. For each type of analysis, it was possible to builda module which takes an if speci�cation as input and which generates an reduced one.This architecture allows to chain several modules to bene�t from multiple reductionsapplied to the same initial speci�cation. We envisage to experiment more sophisticatedanalysis, such as constraints propagation, and more general abstraction techniques.This will be achieved either by developing dedicated components or through the con-nections with tools like invest.
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