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Abstract. Formal Description Techniques (FDT), such as LOTOS or SDL are at
the base of a technology for the specification and the validation of telecommu-
nication systems. Due to the availability of commercial tools, these formalisms
are now being widely used in the industrial community. Alternatively, a number
of quite efficient verification tools have been developed by the research commu-
nity. But, most of these tools are based on simple adhoc formalisms and the gap
between them and real FDT restricts their use at industrial scale.

This context motivated the development of an intermediate representation called
IF which is presented in the paper. IF has a simple syntactic structure, but allows
to express in a convenient way most useful concepts needed for the specification
of timed asynchronous systems. The benefits of using IF are multiples. First,
it is general enough to handle significant subsets of most FDT, and in partic-
ular a translation from SDL to IF is already implemented. Being built upon a
mathematically sound model (extended timed automata) it allows to properly
evaluate different semantics for FDT, in particular with respect to time consid-
erations. Finally, IF can serve as a basis for interconnecting various tools into
an unified validation framework. Several levels of IF program representation are
already available via well defined API and allow to connect tools ranging from
static analyzers to model-checkers.

keywords: asynchrony, timed systems, model-checking, static analysis, test generation

1 Introduction

Formal Description Techniques, such as LOTOS [ISO88] or spL [IT94c] and related
formalisms such as MSC and TTCN are at the base of a technology for the specification
and the validation of telecommunication systems. Due to the availability of commercial
tools, mainly for editing, code generation and testing, and the fact that these formalisms
are promoted by ITU and other international standardization bodies, these formalisms
are now being widely used in the community of telecommunication systems.

* Work partially supported by Région Rhone-Alpes, France
*** Verimag is Research Laboratory of CNRS, Université Joseph Fourier and Institut National
Polytechnique of Grenoble



There are also increasing needs for description and validation tools covering as many
aspects of system development as possible. This is the reason why the commercial
editing tools contain also some verification facilities. Unfortunately, these verification
facilities are often quite restricted and the tools are “closed” in the sense that there are
only limited possibilities to interface them with others. On the other hand, a number
of quite efficient verification tools have been developed by the research community, but
they are in general based on adhoc input formalisms and the gap between them and
real FDT restricts their use at an industrial scale. Even if these tools are in general less
closed than commercial ones, they have rarely well-defined interfaces. For example, a
lot of developments were made around the Spin verification tool [Hol91], but they are
based on the availability of the source code and not on a priori defined interfaces.

A different approach was followed within cApp [FGK196], a toolbox for the veri-
fication of LOTOS specifications. It was conceived right from the beginning as an open
platform for interfacing different algorithms and provides several well-defined and doc-
umented interfaces. The initial motivation for the work presented here was the fact
that SDL becomes a more and more popular formalism in the telecommunication com-
munity, and that we wanted to adapt CADP to deal also with SDL specifications. Since
the intermediate program level formalisms used within CADP are not appropriated for
SDL specifications, we had to investigate alternative representations. For example CADP
is based on a synchronous communication model (rendez-vous), whereas SDL commu-
nications are fully asynchronous (via queues).

Another motivation concerns time modeling. Finding a “reasonable” notion of time
is a central problem which admits many possible solutions depending on choices of
semantic models. This is certainly a non trivial question and this is reflected by the
variety of the existing proposals for existing FDT. For instance, SDL syntax defines a
timer concept, but there is no consensus on its semantics for the moment and different
SDL tools have adopted different choices. Similarly, in the original LOTOS definition
there was no particular notion of time, whereas different timed extensions are currently
being proposed [LL97,Que98]. Choosing an appropriate timed extension for an FDT
should take into account not only technical considerations about the semantics of timed
systems but also more pragmatic ones related to the appropriateness for use in a system
engineering context. We believe that the different ideas about extensions of the language
must be validated experimentally before being adopted to avoid phenomena of rejection
by the users.

These problems motivated the development of IF, a new intermediate representation
for timed asynchronous systems. The requirements on this formalism were the following:

e it must be sufficiently expressive to be used as an intermediate representation
for the above mentioned specification formalisms, or at least for reasonably large
subsets of them.

e it must have a formally defined operational semantics, but flexible enough to ex-
periment different choices and extensions.

e it must be supported by a set of well defined API, at different levels of program
representation, allowing either to interface existing validation tools or to experiment
new ones.



The paper is organized as follows. First, we define the 1F formalism, its main con-
cepts and its operational semantics. We also discuss its expressiveness with respect to
other models and specification formalisms, in particular regarding the timing aspects.
Then, we present a set of tools interconnected within an open validation environment
for 1F specifications. We further detail two specific components, based on static analysis
and compositional generation, working at the program level and experimented within
this environment. Finally, we illustrate the use of 1F on a small example, a distributed
leader election algorithm on which different kinds of validation are performed.

2 Presentation of IF

In the following sections, we give a brief overview of the main features of 1F, its oper-
ational semantics in terms of labeled transition systems. A more complete description
of 1F and of its semantics can be found in [BFGT98].

2.1 Syntax

An 1F system is a set of processes communicating either asynchronously through a set
of buffers or synchronously through a set of gates. The timed behavior of a system can
be controlled through clocks (like in timed automata [ACD93,HNSY94]).

IF system definition: A system is a tuple Sys = (glob-def, PROCS, S) where

o glob-def = (type-def, sig-def, gate-def, var-def, buf-def) is a list of global definitions,
where type-def is a list of type definitions (enumerated types, arrays, records and
also abstract data types') sig-def defines a list of parameterized signals (as in SDL),
gate-def defines a list of parameterized gates (as in LOTOS), var-def is a list of
global variables, and finally, buf-def is a list of buffers through which the processes
communicate by asynchronous signal exchange (as in Promela[Hol91]). Notice that
we allow various types of buffers: FIFO queues, stacks or bags, which can chosen to
be unbounded or bounded and reliable or lossy.

e PROCS defines a set of processes described in section 2.1.

e S is a synchronization expression, as in LOTOS or CSP, telling how the processes
defined in PROCS synchronize. Such a synchronization expression is given by the
following grammar where C is a (possible empty) set of gates:

S n=PepPrOCS | S |C] S
Thus, a system S is either a process P or a parallel composition of two subsystems
S; and Sy with rendez-vous synchronization on the set of gates C. In a system of
the form S; |C] S. transitions concerning a gate in C are executed synchronously
in the two subsystems whereas all other transitions are interleaved.

! where we suppose that the user provides also implementations of the introduced functions,
otherwise expressions containing them are handled syntactically



IF process definition: Processes are defined by a set of local variables, a set of control
states and a set of control transitions. A process PEPROCS is a tuple P= (var-def, Q,
CTRANS), where:

e var-def is a set of local variable definitions including also clocks? (as in timed
automata)
e Q is a set of control states on which the following attributes are defined:

— stable(q) and init(q) are boolean attributes, where the attribute stable can be
used to control the level of atomicity: only stable states are visible on the
semantic level.

— the tpc(q) time progress condition attribute is a predicate depending on visible
variable of the process (global variables and local ones) which defines when time
can progress. Notice that, anyway, time cannot progress in non stable states.

— the attributes save(q), discard(q) are sets of filters of the form

signal-list in buf if cond.

which filter the buffers contents in this state. For example, discard(q) is used
to eliminate silently unexpected signals: when consuming the next signal in
the FIFO queue buf, all signals of signal-list preceding it are discarded in
the same atomic step, if the boolean expression cond evaluates to true. These
primitives are useful in practice and taken from SDL.

e CTRANS is a set of control transitions, between control states q,q’€Q, which

may be of the following types:

— input transitions which are triggered by some signal read from one of the com-

munication buffers (as in SDL):

g — input; body

(urg)

q
— synchronization transitions which are executed simultaneously with compatible
ones in other processes of the system (as in LOTOS):
— sync
g y q/
(urg)
— internal transitions depending not on communications:

1

g +— body
-
(urg)

Where in all three cases:

e g is a boolean guard of the transition which may depend on visible variables in the
process (including clocks) and predefined tests on buffers content (e.g., emptiness).

2 one can also define timers (as in SDL) which can be set to any positive value, which decrease
with progress of time and expire if they reach the value zero; however to simplify the
description we don’t mention them in this document



e urgc{eager, delayable, lazy} defines the urgency type of the transition. eager
transitions have absolute priority over progress of time, delayable transitions may
let time progress, but only as long as they remain enabled, whereas lazy transitions
cannot, prevent progress of time. These urgency types have been introduced in
[BST98], which shows that the use of urgency predicates on transitions (instead
of time progress conditions) facilitates the compositional specification of timed
systems.

e input is an input of the form “input sig(reference_list) from buf if cond” where

— sigis a signal,
— reference_list the list of variables® (excluding clocks) in which the received pa-
rameters are stored,
— buf is the name of the buffer from which the signal should be read
— cond is a “post guard” defining the condition under which the received signal
is accepted and it usually depends on received parameters.
Intuitively, an input transition is enabled if its guard is true, the first signal to
be consumed (according to the attributes save(q) and discard(q)) is of the form
sig(vy,...vx) and the post guard holds (after assigning the values vy, ...vx to the
variables of the reference_list)
e sync is a synchronization of the form “sync gate comm_list if cond” where
— gate is a synchronization gate defined at system level,
— commc_list is a list of communications offers:
* either an output communication offer of the form lexp, where the expression
exp represents the sent value
% or a input communication offer of the form 7ref, where ref is a local
variable® in which the received value is stored.
— cond is again a post guard usually depending on received values and which
restricts the values that the process is willing to accept.
The concept of synchronization is taken from LOTOS: the simultaneous execution
of synchronization transitions concerning the same gate allows a instantaneous
exchange of values between several processes. Notice that clock expressions cannot
appear as communication offers.

e body is a sequence of atomic actions of the following types:

— asynchronous outputs of the form “output sig(par_list) to buf” append a
signal of the form “sig(par_list)” to the buffer buf.

— usual assignments between discrete variables.

— resettings of clocks, which have the effect to assign the value zero to the corre-
sponding clock.

2.2 Semantics

The semantics of IF is based on concepts taken respectively from LOTOS, SDL and
timed automata. We define it by translating IF sytems into Timed Automata with
Urgency [BST98]. First, we show how to associate a timed automaton with a process,

% or “assignable” expressions such as elements of records or arrays



and then, how these timed automata can be composed into a single one*. The timed
automata can then be interpreted either using discrete or dense time depending on the
verification tools and properties considered. Notice that the discrete/dense interpreta-
tion of time does not influence the translation into a timed automaton.

Association of a Timed Automaton with a process: Let P= (var-def, @, CTRANS)
be a process definition in the system Sys and furthermore:

e Let BUF be a set of buffer environments B, representing possible contents of the
buffers of the system, on which — depending on the declared buffer type — all
necessary primitives are defined: e.g. “get the first signal of a given buffer, taking
into account the save and the discard attributes of the control state”, “append a
signal at the end of a buffer”,...

e Let ENV be a set of environments £ defining the set of valuations of all discrete
variables defined in the system Sys (the local and the global ones)

The semantics of the process P is the timed automaton [P] = (QXENVxBUF,TRANS)
where

e (XENV XBUF is the set of states, for which we extend the attributes of control states
in a natural manner, e.g. tpc((q,(€,B8))) is the partial evaluation of tpc(q) in ((€,8)).
Notice that the set of data environments ENV can be split into ENV;,. X ENV g0
where ENV,,. concerns only local variables of the process and ENV ., concerns the
global variables of the system.

e TRANS is the set of transitions of the timed automaton obtained from control
transitions by the following two rules:

1. For any input transition (and for internal ones)
g — (sig(z1...z,),buf, cond) ; body
(urg)
and for any (&,B),(£’,B’)EVAL, there exists a transition
(:g = body' .
(q: (S,B)) (urg) ’ (q }(5 :B )) €TRANS if

— g’ is the the partial evaluation of g in (£,8), which is an expression depend-

ing only on clocks.

— let B"” be the buffer environment obtained after consuming sig(v;...v,) in
buffer buf (and after elimination of appropriate signals of the discard(q)
attribute and saving of the signals of the save(q) attribute)
let £"=E[vy...vp/21...2,] is obtained by assigning v; to x;,

— the post guard cond evaluates to true in the environment (£", B")

— (&',B') is obtained from (£",B") by executing all the assignments of the

body, and by appending all signals required by outputs in the body.

body’ is the sequence of resettings of clocks which remain as such in the

timed automaton,

> q'€CTRANS

4 Notice that the semantics is compositional in the sense that, in order to associate a timed
automaton with a system one can also first compose the system into a unique process and
then associate a timed automaton with this process



— [ is an appropriate label used for tracing.
2. For each synchronization transition of the form

— ¢ :lexp, 7y, ... : cond
q g P Y, > q'€CTRANS
(urg)
and for any (£,B),(£’,B8’)EVAL, there exists a transition

. ! 3

(@ (€. B) —E 2N,
(urg)

g’ is the the partial evaluation of g in (£,B),

— the expression exp; evaluates to the value v; in (€,5),

E'=Ews...v;.../ys...y;...] for some v; belonging to the domain of y;,

the post guard cond evaluates to true in the environment &,

— the label £ is equal to c vy lvy ...

(q’,(&',B")) €TrANS if

Composition of models: The timed automaton associated with a system of the form
Sys = (glob-def,PROCS,S) is obtained by composing the timed automata of processes
according to the composition expression S. The composition rules correspond to the
and-parallel composition described in [BST98].

Let [P;] = (Q;X VAL, TRANS,);—1 2 be the timed automata associated with processes
or subsystems of Sys — where VAL concerns only all global variables and is of the form
ENV g1, X BUF and the valuations of local variables are integrated into the set of control
states — and C a set of gates.

Then, [P1[C]P2] = [P1] [c] [P2] = (Qx VAL, TRANS) where

nit((q1,92)) = init(q1) A init(q2)
e 0= Q1 xQ2 where stable((q1,92)) = stable(q1) A stable(q2)
tpe((q1,92)) = tpe(qu) A tpe(ae)
e TRANS is the smallest set of transitions obtained by the following two rules: the
first one applies to all transitions of TRANS; which are not synchronizations on
gates in C and there is also a symmetrical rule for transitions of TRANS,.

{: g — act
e

(a;,V) g (q},V') € TRANS, and —stable(q,) V stable(q,)
(: — body
(a1:9). V) —2——" ((d1.q,). V') € TRANS

(urg)

The requirement on stableness implies that there is no interleaving in non stable
states; they are transient states, such that a finite sequence of transitions between
to stable states can be considered as one atomic transition.

The second rule concerns the synchronizations on gates in c€C

£: g, — skip
_—

(a;,V) L) (a},V') € TrRANS; and
l: — ski
(qQaV) _% (qé,V') € TRANS2
{: g, Ngy — skip
((a1,92), V) —= » ((q},d}),V') € TRANS

(urg)




In this rule, the synchronization of two transitions with the same urgency attribute
result in a transition with the same attribute, the composition of an eager tran-
sition with any other transition results in an eager one, an in order to compose a
lazy with a delayable transition, one needs to decompose the delayable one into
two transitions, an eager and a lazy one, which under a reasonable restriction is
always possible [BST98].

The semantics of Timed Automata The model of time of IF is that of Communicat-
ing Timed Automata with urgency introduced in [BST98]. Each process has a number
of clocks which increase with progress of time (either in a discrete or continuous way).
Clocks can be “tested” in the guards and “reset” in the bodies of the transitions. In this
model, time is considered global, that is, it progresses synchronously in all processes
of the system. The main problem is “when can time progress?”. In timed automata
[ACD93], time progress is defined by means of “invariants” associated with each state,
such that time is allowed to progress as long the invariant expression evaluates to
true. The problem with this model is that the composition of timed automata leads to
time deadlocks. A time model avoiding this problem is obtained by associating with
every transition a deadline (a predicate implying the guard), meaning that, whenever
the deadline predicate evaluates to true, the transition has priority over progress of
time. In [BST98], it has been shown that a much simpler model using three possible
urgency attributes instead of deadlines is sufficient: eager transitions have always pri-
ority over time, delayable transitions may let time progress, but only as long as they
remain enabled, and lazy transitions cannot prevent time from progressing. In 1F the
time progress condition in each state is defined depending on the urgency of enabled
transitions and, in order to include the model of timed automata, one can associate an
explicit ¢pc attribute with control states, with the potential risk of introducing time
deadlocks by composition.

The semantics of Timed Automata with Urgency is defined in [BST98]. Let A =
(Q, TrANS) be a Timed Automaton. Let TIME be a set of environments for clocks,
where T €TIME defines for every clock a value in a time domain T (positive integers
or reals). Resetting a clock affects 7 by changing the value of the reset clock to zero.
Progress of time by an amount § transforms the valuation 7 into the valuation 7 H 4
in which the values of all clocks are increased by 9.

The semantics of A is defined by the labeled transition system (Q x TIME, —) where
the transition relation — consists of two types of transitions, discrete ones and time
progress transitions:

{: g — body
_—
(urg)

discrete transition of the form (q1,7) £> (92, 7" if
— the guard g evaluates to true in T,
— and 7"’ is obtained from 7 by executing all assignments to clocks (resettings)
of body.
e in any state (q,7), time can progress by the amount §, that is

e For any transition q; q2 of TRANS and T €TIME, there exists a



(q.7) S0 (o 7m0

if time can progress in the state (q,7) and continuously until 7 B §': whenever

time has progressed by an amount §' where 0 < §' < 4, time can still progress in
the reached state (q,7 B ¢').

Time can progress in a state (q,7) if and only if the following conditions hold:

— stable(q), that means time can progress only in stable, never in transient states

— the time progress attribute tpc(q) evaluates to true in T

— no eager transition is enabled in (q,7)

— for each delayable transition tr enabled in (q,7), there exists a positive
amount of time €, such that tr remains enabled when time progresses by e.
That means enabled delayable transitions allow time to progress, but only as
long as they remain enabled.

3 IF and other formalisms

IF is a formalism for the description of asynchronous systems at a programming lan-
guage level. However, it has not been designed with the aim to replace specification
languages such as LOTOS, SDL and Promela. 1F has been designed as an intermediate
representation for SDL but it can also be used for other specification formalisms. Thus,
the expressiveness of IF and its adaptedness as an intermediate representation from
SDL, LOTOS and Promela are discussed below.

3.1 SDL

The definition of sDL (Specification and Description Language) started in 1974 and it
has been standardized by CCITT in 1988 [IT94c]. sDL is based on extended finite state
machines communicating asynchronously via queues. There exists a formal semantics of
the language defined in [IT94a,IT94b], various authors have criticized it and proposed
alternative ones [Bro91,BMU98,God91] to name only a few of them. Currently, SDL is
widely accepted by the industrial community. This is due mainly to the fact that SDL
development is supported by methodologies [OFMP*94] and tools [Ver96,AB93] in all
phases from requirement analysis, design and validation to implementation. However,
the validation capabilities of the industrial tools are rather limited with respect to the
ones existing in the academic community.

There is no standard semantics of time defined for sDL. For example, ObjectGEODE
uses a very “synchronous” time concept in which time can only progress when the
system is blocked (that means all transitions are eager), whereas others consider that
time can always progress (that means that all transitions are lazy). This shows that
the currently used notions of time in SDL are extreme ones — which is often considered
as problem by the users — and many intermediate solutions are possible using IF as
discussed in previous section.

We have identified a static subset of SDL which we are able to translate into IF.
That is, with the exception of dynamic creation of processes and some mobility aspects



of communication, we can define a syntactic level translation between these two for-
malisms. A prototype translator has been implemented using the spr/API Interface
provided by ObjectGeode [Ver96]. More detailed information about it can be found in
[BFGT99].

3.2 LOTOS

LoTOS (Language Of Temporal Ordering Specifications) [BB88] has been developed
and standardized by ISO in 1989. It is a process-algebra based on ccs[Mil80] and
csp[Hoa84]. In LOTOS, the communication is synchronous using rendez-vous. LOTOS
has a well-defined operational semantics and there exist tools supporting it.

The right approach to model and validate LOTOS specifications is recognized to be
the use of Petri nets, rather than communicating extended automata [GS90] as inter-
mediate representation. However, our experience with LOTOS has shown that often the
specifications have the form of a parallel composition of sequential components (pro-
cesses). This observation motivated also the use of compositional generation methods,
which gives good results for this kind of LOTOS specifications [KM97].

The timed extensions introduced in E-Lotos[Que98], ET-Lotos[LL97] and Lotos-
NTI[Sig99] are similar to that of IF, only that the urgency of an action is defined
implicitly by its type: “exceptions” and internal actions are urgent, whereas observable
actions are not. This is due to the fact, that they want to achieve a much stronger
form of compositionality, where with each process can be associated a directly labeled
transition system (and not a timed automaton) which then can be composed into a
system model.

We plan to investigate the translation of decomposable LOTOS specifications into
IF, as parallel composition with synchronization between processes can be handled in
IF. Furthermore, a reasonably small Petri Net (corresponding to a non-decomposable
LOTOS part) can be modeled by an IF process.

3.3 PROMELA

Another language we have considered is Promela, the native language of the Spin
model-checker [Hol91]. It was designed as an intermediate representation language for
protocols, mainly for validation purposes. It is based on extended finite-state machines
communicating asynchronously or synchronously via queues.

Promela has not really been designed as a specification language but it has a rel-
atively important visibility as well in the academic community as in the industrial
one. Its success is due to the high availability of Spin, which provides powerful model-
checking algorithms based on partial-order reductions.

There exist timed extensions of Promela. The one proposed in [CT96] is based
on Timed Automata, whereas [BD98] is very similar to the notion of time used in
ObjectGEODE: all set timers decrease synchronously until one of them expires; then
time is blocked until the corresponding timeouts are consumed, where these timeout
consumptions take place when no other transition is possible in the system.

A translator from IF to Promela is currently developed in the framework of the
VIRES Esprit-LTR project at Eindhoven University. We plan to study also a backward



translation from Promela to 1F. However, as for SDL, there are some limitations due to
dynamic process creation feature of Promela.

4 A validation environment based on IF

One of the main motivation for developing the IF intermediate representation is to
provide an “open” validation environment, able to make heterogeneous tools cooperate
within a single framework. Especially for spL, solid industrial tools for editing and
code generation have been built which are used by a large community of users. On the
other hand, there exist many verification tools built upon diverse formalisms — such
as the Spin tool [Hol91] based on Promela, the cADP tool[FGK*96] based on LOTOS,
the SMV tool [Mac93] based on extended automata, tools for the verification of Timed
systems such as KRONOS[Yov97] and Uppaal [LPY97] based on different representations
of Timed Automata, to name only a few of them.

Therefore, an integrated validation environment should fulfill the following require-
ments:

e First of all, it is able to support several validation techniques, from symbolic in-
teractive simulation to automatic property checking, together with test case gen-
eration and executable code generation. Indeed, all these functionalities cannot be
embodied in a single tool and only tool integration facilities can provide all of them.

e Moreover, for a sake of efficiency, this environment also has to support several

level of program representations. For instance it is well-known that model-checking
verification of real life case studies usually needs to combine several optimization
techniques to overcome the state explosion problem.
In particular, some of these techniques rely on a program level representation, like
static analysis and computations of abstractions (for which it may be necessary to
cooperate with decision procedures or theorem-prover). Other techniques operate
on a representation of the underlying model, such as on-the-fly analysis, bisimula-
tion based model reduction or model-checking. These representations can be either
implicit, enumerative or symbolic and are explained below.

e Another important feature is to keep this environment open and evolutive. There-
fore, tool connections are performed only by means of file sharing or program
representation access. For this purpose several well-defined interfaces are offered.

In the remainder of the section we present the overall architecture of the existing
environment and some of its related components. Then, we describe in a more detailed
manner two specific modules concerning static analysis (section 4.2) and compositional
generation (section 4.3).

4.1 Overall architecture

The 1F validation environment is built upon two levels of program representation, each
of them being accessed through well-defined APp1.



The syntactic level allows to consult and modify the abstract tree on an IF program.
Since all the variables, timers, buffers and the communication structure are still explicit,
high-level transformations based on static analysis (such as live variable computation,
see below) or abstraction computations can be applied. Moreover, this API is also well
suited to implement translators from IF to other specification formalisms (like Promela
or INVEST).

The execution model level gives access to the underlying LTS of the IF program. In
practice three distinct APr are offered, depending on the representation used.

¢ The implicit enumerative representation is based on the OPEN-CAESAR [Gar98]
philosophy. It consists in a set of C functions and data structures allowing to com-
pute on demand the successors of a given state. This piece of C code is generated by
the 1F compiler, and it can be linked with a “generic” exploration program perform-
ing on the fly analysis (deadlock detection, model-checking, test-case generation,

e In the symbolic representation (called sm1 [Boz97]) set of states and transitions
of the LTS are expressed by their characteristic functions over a set of finite vari-
ables. These functions are implemented in terms of decision diagrams(BDDs[Bry86]
andMmDDs). Existing applications based on this API are symbolic model-checking
and minimal model generation.

e Finally, the explicit enumerative representation simply consists in an LTS file
format with the associated access library. Although this explicit representation is
not suitable for handling a large system globally, it is still useful in practice to
minimize some of its abstractions with respect to bisimulation based relations (like
in compositional generation, see below).

Figure 4.1 describes the existing connections in this environment (plain arrows) and
the planned ones (dashed arrows). Most of the tools mentioned are presented below:

e cADP [FGK196,BFKM97] is a tool set for the verification of LOTOS specifications.
It has been developed and by VERIMAG and the VASY team of INRIA Rhéne-Alpes.
We briefly present here two verifiers integrated in this tool set which have already
been connected to the new IF environment:

— ALDEBARAN compares and minimizes finite LTSs with respect to various simu-
lation or bisimulation relations. This allows the comparison of the observable
behavior of a specification with its expected one, described at a more abstract
level.

— EVALUATOR is a “on-the-fly” model-checker for formulas of the alternating-free
p-calculus [Koz83].

As for the IF environment, an important feature of CADP is to offer several LTS
representations and in particular the OPEN-CAESAR API which is fully compatible
with the IF implicit enumerative representation.

e Tav [FJJV97] is a test sequence generator built upon CADP jointly by VERIMAG
and the PAMPA project of IRISA. TGV aims to automatically generate test cases
for conformance testing of distributed systems. Test cases are computed during
the exploration of the model and they are selected by means of test purposes. Test
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Fig. 1. An open validation environment for 1F

purposes characterize some abstract properties that the system should have and
one wants to test, given trees of labels, decorated with verdicts “ok” and “fail”.
MMG [FKM93] is a minimization tool based on a partition refinement algorithm
combined with a reachable state space computation [BFH90]. This tools works on
the symbolic SMI interface.

ObjectGEODE is a tool set developed by VERILOG supporting SDL, MSC and OMT.
It includes graphical editors and compilers for each of these formalisms. It also
provides a C code generator and a simulator to help the user to interactively debug
an SDL specification.

ObjectGEODE also provides an AP1 offering a set of functions and data structures
to access the abstract tree generated from an SDL specification. A translation tool
(SDL2IF) uses this abstract tree to generate an operationally equivalent IF specifi-
cation.

KRrONOS [Yov97] is a TcTL model-checker for communicating timed automata. The
current connection with the IF environment is as follows: control states and discrete
variables are expressed using the IF implicit enumerative representation whereas
clocks are expressed using an appropriate symbolic representation (particular poly-
hedra).

INVEST [BLO98] is a tool computing abstractions and invariants on a set of guarded
command processes communicating through shared variables. We are actually im-
plementing the translation between this formalism and 1F, which will allow to com-
pute abstract systems.



4.2 Static analysis and abstraction

Considering the expressiveness of IF, static analysis and abstraction techniques can
be applied in order to improve the verification and the test generation process. The
expected benefits of such techniques are mainly the reduction of the state space and
the reduction of the complexity of the IF program.

We have already experimented very simple analysis, used classically in the context
of data-flow analysis which can be divided into two classes:

e property independent analysis: without regarding any particular property or test
purpose (such as live variable analysis or constant propagation),

e property dependent analysis: takes into account some information of the property
and propagate them over the static control structure of the program (such as ir-
relevant variables abstraction)

We briefly describe two techniques currently implemented for 1F.

“Live variables” analysis: A variable is live in a control state if there is a path from this
state along which its value can be used before it is redefined. An important reduction
of the state space of the model can be obtained by taking into account in each state
only the values of the live variables.

The reduction considered is based on the relation ~;,. defined on the state space
of the model: two states are related if and only if all live variables have the same value.
It can easily be proved that ~y;,. is a bisimulation on the model. This result can be
exploited in several ways. Due to the local nature of ~;,. it is possible to directly
generate the quotient model w.r.t. ~y;,. instead of the whole model without any extra
computation. Exactly the same reduction is obtained by “resetting” (that is assigning
some predefined value) in the initial program systematically all non-live variables. The
second approach is implemented for IF.

“Irrelevant variables” abstraction: Given a subset X of irrelevant variables (which in
general depend on the considered property), an upper approximation for this program
can be computed syntactically and iteratively as follows:

e the assignments of variables belonging to X are removed

e the expressions containing variables from X are replaced by a special any value
(denoting any element of its domain)

e the guards which evaluate to any are removed (i.e., replaced by the true value)

Clearly the resulting program contains all executions of the initial one and does not
depend anymore on variables in X. Any safety property valid on the resulting abstract
program is also valid on the initial one, but the converse does not necessarily hold.

In practice, the set of irrelevant variables can be chosen in different manners. Either,
the user can directly supply it based on his knowledge about the specification and the
given verification context. Another possibility is to derive this set automatically from
the considered property (or the test purpose). Finally, irrelevant variables can also be
taken among the variables provided by the environment and the ones depending on



them: such variables are uncontrolled since their values are nondeterministically chosen
by the environment. This latter choice has been considered in [CGJ98].

We are also investigating more general abstraction techniques. For instance, through
the connection with INVEST we will be able to compute abstract IF programs using more
general and powerful abstraction techniques.

4.3 Compositional generation

As shown in the previous section, efficient reductions are obtained by replacing a model
M Dby its quotient w.r.t an equivalence relation like ~y;,.. Much weaker equivalences
(that is smaller quotients) can be obtained by taking into account the properties un-
der verification. In particular, it is interesting to consider a weaker equivalence R —
which should be a congruence for parallel composition —, able to abstract away non
observable actions. The main difficulty is to obtain (an approximation of) the quotient
M /R without generating M as a whole.

A possible approach is based on the “divide and conquer” paradigm: splitting the
program description into several pieces (i.e., processes or process sets), generate the
model M; associated with each of them, and then compose the quotients M;/R. The
hope is that the generated intermediate models can be kept small.

This compositional generation method has already been applied for specification for-
malisms based on rendez-vous communication between processes, and has been shown
efficient in practice [GLS96,Val96,KM97]. To our knowledge it has not been investi-
gated for systems based on communication via buffers, may be, because buffers raise
several difficulties or due to the lack of suitable representations and tools.

The potential benefit of this compositional approach will be illustrated on an ex-
ample in the next section.

5 An illustrating example

We present a simple example to illustrate the 1F formalism and related verification
tools. We consider a token ring, that is a system of n stations (processes) Si, ... Sn,
connected in a circular network, in which a station is allowed to access some shared
resource R only when it “owns” a particular message, the token. If the network is
unreliable it is necessary to recover from token loss. This can be done using a leader
election algorithm [Lan77,CR79] to designate a station responsible for generating a
new token.

Table 1 shows the global definitions of the IF specification corresponding to the
particular protocol considered in [GM96]. The signals open and close denote the access
and the release of the shared resource (here a part of the environment). The signals
token and claim are the messages circulating on the ring.

All stations S; are identical up to their identity and described by an IF process as
the one of Figure 2. The timer worried is set when the station waits for the token and
reset when it receives it. On expiration of the timer worried token loss is assumed and
an election phaes is started. The “alternating bit” round is used to distinguish between
valid claims (emitted during the current election phase) and old ones (cancelled by a



signal

close; sync
open; S1 ]| S2 || S3 ||| S4
claim(pid, bool); end;
token; process S1;
buffer var
Q1 : queue :lossy of claim, token; worried : timer;
Q2 : queue :lossy of claim, token; round, rnd: bool;
Q3 : queue :lossy of claim, token; adr: pid;

Q4 : queue :lossy of claim, token;

Table 1. 1F global definitions

token reception). In the idle state, a station may either receive the token from its
neighbour (then it reaches the critical state and can access the resource) or receive
the timer expiration signal (then it emits a claim stamped with its address and the
current value of round) or receive a claim. A received claim is “filtered” if its associated
address is smaller than its own address and transmitted unchanged if it is greater. If
its own valid claim is received, this station becomes elected and generates a new token.

if worried=0 if adr > S1
output claim(S1,round) to Q2 output claim(adr,rnd) to Q2
set worried:=1

if adr < S1

round:=true
‘ set worried:= 1

output close to env
round:=not round

set worried:=1
output token to Q2

input claim(adr,rnd)
from Q1

if rnd<>round

-  token - /
resetworried . ./ ifrnd=round ~__ L
output open to env o

Fig. 2. The behavior of station S;

Model generation: We summarize in Table 2 the size of the models obtained from
the token-ring protocol using three generation methods: directly from the initial 1F
program (global generation), using the live variable reduction (global + live) and using
a compositional generation strategy (compositional + live).



model generation method  states  transitions

1. global 537891 2298348
2. global + live 4943 19664
3. compositional + live 1184 4788

Table 2. Models obtained for the token ring example

The most spectacular reduction is obtained by the live reduction: the reduced model
is about 100 times smaller than the one obtained by simultaneous generation, while
preserving all properties (models 1 and 2 are strongly bisimilar). This is explained by
the fact that only a few variables are live in each state: in the idle state the live vari-
ables are round and worried, in the critical state only round is live, while variables
adr and rnd are never live.

More reduction is achieved by the following compositional generation strategy:

1. We split the IF description into two parts, the first one contains processes S; and
So and the second one processes S; and Sy. For each one of these descriptions,
the internal buffer between the two processes is a priori bounded to two places.
Note that, when a bounded buffer overflows during simulation, a special overflow
transition occurs in the corresponding execution sequence.

2. The LTS associated with each of these two descriptions are generated considering
the “most general” environment providing any potential input. As claim and token
can be transmitted at any time, overflow transitions appear in the corresponding
LTSs.

3. In each LTS the input and output transitions relative to the internal buffers (Q2
and @4) are hidden (i.e., renamed to the special 7 action); then they are reduced
w.r.t an equivalence relation preserving the properties under verification. For the
sake of efficiency we have chosen the branching bisimulation [vGW89] preserving
all the safety properties (e.g. mutual exclusion).

4. Each reduced LTS is translated back into an IF process (without variables), and
the resulting processes are combined into a single 1F description, including the
two remaining buffers (@1 and @3). It turns out that the LTS generated from this
new description contains no overflow transitions (they have been cut off during
the second composition, which confirms the hypothesis on the maximal size of the
internal buffers).

The final LTS is branching bisimilar to the one obtained from the initial 1F descrip-
tion.

Verification: We are interested in checking that the shared resource is accessed in
mutual exclusion. For this, we consider as visible only the open and close actions.
Mutual exclusion property can be rephrased as follows: every open; (station i access
the resource) can only be followed by close; (station i releases the resource) possibly
after some internal moves 7. This property can be expressed in the u-calculus (see



below) and verified with EVALUATOR, on any of the generated models.
4 —_—
/\ vX. (Jopen;] ~pY. ({({close;, 7})T V (1)Y) A [¥]X)
i=1

Another approach to verify mutual exclusion is to compare the model of the specifica-
tion with an abstract one expressing the desired behavior. For instance, all three models
are branching bisimilar to the one shown in Figure 3. The reductions and comparisons
are carried out using ALDEBARAN.

open3

closed close2

close2

open2

closel

Fig. 3. The reduced behavior of the token ring.

Test Generation: We illustrate the use of the TGV to extract test cases for the token
ring protocol. We want to test the property stating that a station filters a received
claim with a smaller address than its own and transmits it unchanged otherwise. We
chose a test purpose expressing that after Sy has sent its claim, it will be transmitted
unchanged by station Si, then by S; and finally by Ss. The generated test case is
shown in figure 4.

6 Conclusion and perspectives

We have presented the formalism 1F which has been designed as an intermediate repre-
sentation for SDL, but it can be used as a target language for other FDT as it contains
most of the concepts used in these formalisms. The use of IF offers several advantages:

e IF has a formal semantics based on the framework of communicating timed au-
tomata. It has powerful concepts interesting for specification purposes, such as
different urgency types of transitions, synchronous communication, asynchronous
communication through various buffer types (bounded, unbounded, lossy, ... ).



| Test Case Dynam ¢ Behavi our

T N N N . +

Test Case Nane . castest

Group :

Pur pose

Def aul t

Comment s :
B o F S — S R
| Nr | Label | Behaviour Description | Cs Ref | Verdict | C|
B e — e B — B R

1 s3? claim clainB | NCONC

2 s2? claim cl ai n2 | NCONC

3 s1l? claim clainl | NCONC

4 s4? claim clainmd

5 sll claim St tclaim clainmd

6 s3? claim d tclaim clainB | NCONC

7 s2? claim d tclaim clain2 | NCONC

8 s1? claim d tclaim claint | NCONC

9 s1? claim d tclaim clainmt

10 s2! claim St tclaim claimd

11 s3? claim d tclaim clainB | NCONC

12 s2? claim d tclaim clain2 I NCONC

13 sl? claim d tclaim clainl | NCONC

14 s2? claim d tclaim clai nb

15 s3! claim St tclaim cl ai nb

16 s3? claim d tclaim clainB | NCONC

17 s2? claim d tclaim clai n2 | NCONC

18 sl? claim d tclaim clainml |

19 s3? claim d tclaim cl ai nb ( PASS)

20 ? tclaim FAI L

21 ? tclaim FAI L

22 ? tclaim FAI L
R o B LR Fommme Fommmm e +---t

Fig. 4. TTCN test case

e IF programs can be accessed at different levels through a set of well defined APIs.
These include not only several low-level model representations (symbolic, enumer-
ative, ...) but also higher level program representation, where data and communi-
cation structures are still explicit. Using these API several tools have been already
interconnected within an open environment able to cover a wide spectrum of vali-
dation methods.

The 1F package is available at http://www-verimag.imag.fr/DIST_SYS/IF. In par-
ticular, a translation tool from SDL to IF has been implemented and allows both to ex-
periment different semantics of time for SDL and to analyze real-life SDL specifications
with cADP.

A concept which is not provided in 1F is dynamic creation of new process instances
of processes and parameterization of processes; this is due to the fact that in the frame-
work of algorithmic verification, we consider only static (or dynamic bounded) config-
urations. However, it is foreseen in the future to handle some kinds of parameterized
specifications.

The results obtained using the currently implemented static analysis and abstrac-
tions methods are very encouraging. For each type of analysis, it was possible to build
a module which takes an IF specification as input and which generates an reduced one.
This architecture allows to chain several modules to benefit from multiple reductions
applied to the same initial specification. We envisage to experiment more sophisticated
analysis, such as constraints propagation, and more general abstraction techniques.
This will be achieved either by developing dedicated components or through the con-
nections with tools like INVEST.
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