Marius Bozga
email: marius.bozga@imag.fr

Jean-Claude Fernandez
email: jean-claude.fernandez@imag.fr

Lucian Ghirvu

Susanne Graf

Jean-Pierre Krimm

Laurent Mounier

IF: An Intermediate Representation and Validation Environment for Timed Asynchronous Systems

Keywords: asynchrony, timed systems, model-checking, static analysis, test generation

Formal Description Techniques (fdt), such as lotos or sdl are at the base of a technology for the speci cation and the validation of telecommunication systems. Due to the availability of commercial tools, these formalisms are now being widely used in the industrial community. Alternatively, a number of quite e cient veri cation tools have been developed by the research community. But, most of these tools are based on simple adhoc formalisms and the gap between them and real fdt restricts their use at industrial scale.

This context motivated the development of an intermediate representation called

if which is presented in the paper. if has a simple syntactic structure, but allows to express in a convenient way most useful concepts needed for the speci cation of timed asynchronous systems. The bene ts of using if are multiples. First, it is general enough to handle signi cant subsets of most fdt, and in particular a translation from sdl to if is already implemented. Being built upon a mathematically sound model (extended timed automata) it allows to properly evaluate di erent semantics for fdt, in particular with respect to time considerations. Finally, if can serve as a basis for interconnecting various tools into an uni ed validation framework. Several levels of if program representation are already available via well de ned api and allow to connect tools ranging from static analyzers to model-checkers.

Introduction

Formal Description Techniques, such as lotos ISO88] or sdl IT94c] and related formalisms such as msc and ttcn are at the base of a technology for the speci cation and the validation of telecommunication systems. Due to the availability of commercial tools, mainly for editing, code generation and testing, and the fact that these formalisms are promoted by itu and other international standardization bodies, these formalisms are now being widely used in the community of telecommunication systems. ? Work partially supported by R egion Rhône-Alpes, France ? ? ? Verimag is Research Laboratory of CNRS, Universit e Joseph Fourier and Institut National Polytechnique of Grenoble There are also increasing needs for description and validation tools covering as many aspects of system development as possible. This is the reason why the commercial editing tools contain also some veri cation facilities. Unfortunately, these veri cation facilities are often quite restricted and the tools are \closed" in the sense that there are only limited possibilities to interface them with others. On the other hand, a number of quite e cient veri cation tools have been developed by the research community, but they are in general based on adhoc input formalisms and the gap between them and real fdt restricts their use at an industrial scale. Even if these tools are in general less closed than commercial ones, they have rarely well-de ned interfaces. For example, a lot of developments were made around the Spin veri cation tool Hol91], but they are based on the availability of the source code and not on a priori de ned interfaces.

A di erent approach was followed within cadp FGK + 96], a toolbox for the verication of lotos speci cations. It was conceived right from the beginning as an open platform for interfacing di erent algorithms and provides several well-de ned and documented interfaces. The initial motivation for the work presented here was the fact that sdl becomes a more and more popular formalism in the telecommunication community, and that we wanted to adapt cadp to deal also with sdl speci cations. Since the intermediate program level formalisms used within cadp are not appropriated for sdl speci cations, we had to investigate alternative representations. For example cadp is based on a synchronous communication model (rendez-vous), whereas sdl communications are fully asynchronous (via queues).

Another motivation concerns time modeling. Finding a \reasonable" notion of time is a central problem which admits many possible solutions depending on choices of semantic models. This is certainly a non trivial question and this is re ected by the variety of the existing proposals for existing fdt. For instance, sdl syntax de nes a timer concept, but there is no consensus on its semantics for the moment and di erent sdl tools have adopted di erent choices. Similarly, in the original lotos de nition there was no particular notion of time, whereas di erent timed extensions are currently being proposed [START_REF] Lann | Distributed Systems { Towards a Formal Approach[END_REF]Que98]. Choosing an appropriate timed extension for an fdt should take into account not only technical considerations about the semantics of timed systems but also more pragmatic ones related to the appropriateness for use in a system engineering context. We believe that the di erent ideas about extensions of the language must be validated experimentally before being adopted to avoid phenomena of rejection by the users.

These problems motivated the development of if, a new intermediate representation for timed asynchronous systems. The requirements on this formalism were the following: it must be su ciently expressive to be used as an intermediate representation for the above mentioned speci cation formalisms, or at least for reasonably large subsets of them. it must have a formally de ned operational semantics, but exible enough to experiment di erent choices and extensions. it must be supported by a set of well de ned api, at di erent levels of program representation, allowing either to interface existing validation tools or to experiment new ones.

The paper is organized as follows. First, we de ne the if formalism, its main concepts and its operational semantics. We also discuss its expressiveness with respect to other models and speci cation formalisms, in particular regarding the timing aspects. Then, we present a set of tools interconnected within an open validation environment for if speci cations. We further detail two speci c components, based on static analysis and compositional generation, working at the program level and experimented within this environment. Finally, we illustrate the use of if on a small example, a distributed leader election algorithm on which di erent kinds of validation are performed.

Presentation of IF

In the following sections, we give a brief overview of the main features of if, its operational semantics in terms of labeled transition systems. A more complete description of if and of its semantics can be found in BFG + 98].

Syntax

An if system is a set of processes communicating either asynchronously through a set of bu ers or synchronously through a set of gates. The timed behavior of a system can be controlled through clocks (like in timed automata ACD93,HNSY94]).

IF system de nition: A system is a tuple Sys = (glob-def, procs, S) where glob-def = (type-def, sig-def, gate-def, var-def, buf-def) is a list of global de nitions, where type-def is a list of type de nitions (enumerated types, arrays, records and also abstract data types1) sig-def de nes a list of parameterized signals (as in sdl), gate-def de nes a list of parameterized gates (as in lotos), var-def is a list of global variables, and nally, buf-def is a list of bu ers through which the processes communicate by asynchronous signal exchange (as in Promela Hol91]). Notice that we allow various types of bu ers: fifo queues, stacks or bags, which can chosen to be unbounded or bounded and reliable or lossy. procs de nes a set of processes described in section 2.1. S is a synchronization expression, as in lotos or csp, telling how the processes de ned in procs synchronize. Such a synchronization expression is given by the following grammar where C is a (possible empty) set of gates: S ::= P2procs j S j C]j S Thus, a system S is either a process P or a parallel composition of two subsystems S 1 and S 2 with rendez-vous synchronization on the set of gates C. In a system of the form S 1 j C]j S 2 transitions concerning a gate in C are executed synchronously in the two subsystems whereas all other transitions are interleaved.

IF process de nition: Processes are de ned by a set of local variables, a set of control states and a set of control transitions. A process P2procs is a tuple P= (var-def, Q, cTrans), where: var-def is a set of local variable de nitions including also clocks 2 (as in timed automata)

Q is a set of control states on which the following attributes are de ned: { stable(q) and init(q) are boolean attributes, where the attribute stable can be used to control the level of atomicity: only stable states are visible on the semantic level.

{ the tpc(q) time progress condition attribute is a predicate depending on visible variable of the process (global variables and local ones) which de nes when time can progress. Notice that, anyway, time cannot progress in non stable states.

{ the attributes save(q), discard(q) are sets of filters of the form signal-list in buf if cond.

which lter the bu ers contents in this state. For example, discard(q) is used to eliminate silently unexpected signals: when consuming the next signal in the fifo queue buf, all signals of signal-list preceding it are discarded in the same atomic step, if the boolean expression cond evaluates to true. These primitives are useful in practice and taken from sdl.

cTrans is a set of control transitions, between control states q,q'2Q, which may be of the following types:

{ input transitions which are triggered by some signal read from one of the communication bu ers (as in sdl): q g 7 ! input ; body ???????????????! (urg) q 0

{ synchronization transitions which are executed simultaneously with compatible ones in other processes of the system (as in lotos): q g 7 ! sync ????????! (urg) q 0 { internal transitions depending not on communications: q g 7 ! body ????????! (urg) q 0

Where in all three cases: g is a boolean guard of the transition which may depend on visible variables in the process (including clocks) and prede ned tests on bu ers content (e.g., emptiness).

2 one can also de ne timers (as in sdl) which can be set to any positive value, which decrease with progress of time and expire if they reach the value zero; however to simplify the description we don't mention them in this document urg2feager, delayable, lazyg de nes the urgency type of the transition. eager transitions have absolute priority over progress of time, delayable transitions may let time progress, but only as long as they remain enabled, whereas lazy transitions cannot prevent progress of time. These urgency types have been introduced in BST98], which shows that the use of urgency predicates on transitions (instead of time progress conditions) facilitates the compositional speci cation of timed systems.

input is an input of the form \input sig(reference list) from buf if cond" where { sig is a signal, { reference list the list of variables3 (excluding clocks) in which the received parameters are stored, { buf is the name of the bu er from which the signal should be read { cond is a \post guard" de ning the condition under which the received signal is accepted and it usually depends on received parameters. Intuitively, an input transition is enabled if its guard is true, the rst signal to be consumed (according to the attributes save(q) and discard(q)) is of the form { cond is again a post guard usually depending on received values and which restricts the values that the process is willing to accept. The concept of synchronization is taken from lotos: the simultaneous execution of synchronization transitions concerning the same gate allows a instantaneous exchange of values between several processes. Notice that clock expressions cannot appear as communication o ers. body is a sequence of atomic actions of the following types: { asynchronous outputs of the form \output sig(par list) to buf" append a signal of the form \sig(par list)" to the bu er buf.

{ usual assignments between discrete variables. { resettings of clocks, which have the e ect to assign the value zero to the corresponding clock.

Semantics

The semantics of if is based on concepts taken respectively from lotos, sdl and timed automata. We de ne it by translating if sytems into Timed Automata with Urgency BST98]. First, we show how to associate a timed automaton with a process, and then, how these timed automata can be composed into a single one 4 . The timed automata can then be interpreted either using discrete or dense time depending on the veri cation tools and properties considered. Notice that the discrete/dense interpretation of time does not in uence the translation into a timed automaton.

Association of a Timed Automaton with a process: Let P= (var-def, Q, cTrans) be a process de nition in the system Sys and furthermore: Let buf be a set of bu er environments B, representing possible contents of the bu ers of the system, on which | depending on the declared bu er type | all necessary primitives are de ned: e.g. \get the rst signal of a given bu er, taking into account the save and the discard attributes of the control state", \append a signal at the end of a bu er",... Let env be a set of environments E de ning the set of valuations of all discrete variables de ned in the system Sys (the local and the global ones)

The semantics of the process P is the timed automaton P] = (Q env buf,Trans) where Q env buf is the set of states, for which we extend the attributes of control states in a natural manner, e.g. tpc((q,(E,B))) is the partial evaluation of tpc(q) in ((E,B)). Notice that the set of data environments env can be split into env loc env glob where env loc concerns only local variables of the process and env glob concerns the global variables of the system. Trans is the set of transitions of the timed automaton obtained from control transitions by the following two rules:

1. For any input transition (and for internal ones) q g 7 ! (sig(x 1 :::x n); buf; cond) ; body ??????????????????????????????! (urg) q 0 2cTrans and for any (E,B),(E',B')2val, there exists a transition (q; (E; B)) `: g 0 7 ! body 0 ????????????! (urg) (q'; (E 0 ; B 0)) 2Trans if { g' is the the partial evaluation of g in (E,B), which is an expression depending only on clocks.

{ let B 00 be the bu er environment obtained after consuming sig(v 1 :::v n) in bu er buf (and after elimination of appropriate signals of the discard(q) attribute and saving of the signals of the save(q) attribute)

{ let E 00 =E v 1 :::v n /x 1 :::x n] is obtained by assigning v i to x i , { the post guard cond evaluates to true in the environment (E 00 ; B 00) { (E 0 ; B 0) is obtained from (E 00 ; B 00) by executing all the assignments of the body, and by appending all signals required by outputs in the body.

{ body' is the sequence of resettings of clocks which remain as such in the timed automaton, 4 Notice that the semantics is compositional in the sense that, in order to associate a timed automaton with a system one can also rst compose the system into a unique process and then associate a timed automaton with this process { `is an appropriate label used for tracing.

2. For each synchronization transition of the form q g 7 ! c : !exp 1 ?y 2 ::: : cond ????????????????????????! (urg) q 0 2cTrans and for any (E,B),(E',B')2val, there exists a transition (q; (E; B)) `: g 0 7 ! skip ???????????! (urg) (q'; (E 0 ; B 0)) 2Trans if { g' is the the partial evaluation of g in (E,B), { the expression exp i evaluates to the value v i in (E,B), { E 0 =E v 2 :::v j :::=y 2 :::y j :::] for some v j belonging to the domain of y j , { the post guard cond evaluates to true in the environment E', { the label `is equal to c !v 1 !v 2 ...

Composition of models:

The timed automaton associated with a system of the form Sys = (glob-def,procs,S) is obtained by composing the timed automata of processes according to the composition expression S. The composition rules correspond to the and-parallel composition described in BST98].

Let P i] = (Q i val,Trans i) i=1
;2 be the timed automata associated with processes or subsystems of Sys | where val concerns only all global variables and is of the form env glob buf and the valuations of local variables are integrated into the set of control states | and C a set of gates.

Then, P 1 j C]jP 2] = P 1] j C]j P 2] = (Q val,Trans) where Q= Q 1 Q 2 where init((q 1 ,q 2)) = init(q 1) ^init(q 2) stable((q 1 ,q 2)) = stable(q 1) ^stable(q 2) tpc((q 1 ,q 2)) = tpc(q 1) ^tpc(q 2) Trans is the smallest set of transitions obtained by the following two rules: the rst one applies to all transitions of Trans 1 which are not synchronizations on gates in C and there is also a symmetrical rule for transitions of Trans 2 .

(q 1 ; V) `: g 7 ! act ??????????! (urg) (q 0 1 ; V 0) 2 Trans 1 and :stable(q 1) _ stable(q 2) ((q 1 ; q 2); V) `: g 7 ! body ???????????! (urg) ((q 0 1 ; q 2); V 0) 2 Trans

The requirement on stableness implies that there is no interleaving in non stable states; they are transient states, such that a nite sequence of transitions between to stable states can be considered as one atomic transition.

The second rule concerns the synchronizations on gates in c2C (q 1 ; V) `: g1 7 ! skip ???????????! (u1) (q 0

In this rule, the synchronization of two transitions with the same urgency attribute result in a transition with the same attribute, the composition of an eager transition with any other transition results in an eager one, an in order to compose a lazy with a delayable transition, one needs to decompose the delayable one into two transitions, an eager and a lazy one, which under a reasonable restriction is

always possible BST98].
The semantics of Timed Automata The semantics of A is de ned by the labeled transition system (Q time; !) where the transition relation ! consists of two types of transitions, discrete ones and time progress transitions:

For any transition q 1 `: g 7 ! body ???????????! (urg) q 2 of Trans and T 2time, there exists a discrete transition of the form (q 1 ; T) ? ! (q 2 ; T 0) if { the guard g evaluates to true in T , { and T ' is obtained from T by executing all assignments to clocks (resettings) of body. in any state (q,T), time can progress by the amount , that is (q; T) time:

?????! (q; T) if time can progress in the state (q,T) and continuously until T 0 : whenever time has progressed by an amount 0 where 0 0 < , time can still progress in the reached state (q,T 0).

Time can progress in a state (q,T) if and only if the following conditions hold:

{ stable(q), that means time can progress only in stable, never in transient states { the time progress attribute tpc(q) evaluates to true in T { no eager transition is enabled in (q,T) { for each delayable transition tr enabled in (q,T), there exists a positive amount of time , such that tr remains enabled when time progresses by . That means enabled delayable transitions allow time to progress, but only as long as they remain enabled.

IF and other formalisms

if is a formalism for the description of asynchronous systems at a programming language level. However, it has not been designed with the aim to replace speci cation languages such as lotos, sdl and Promela. if has been designed as an intermediate representation for sdl but it can also be used for other speci cation formalisms. Thus, the expressiveness of if and its adaptedness as an intermediate representation from sdl, lotos and Promela are discussed below.

SDL

The de nition of sdl (Speci cation and Description Language) started in 1974 and it has been standardized by CCITT in 1988 IT94c]. sdl is based on extended nite state machines communicating asynchronously via queues. There exists a formal semantics of the language de ned in IT94a,IT94b], various authors have criticized it and proposed alternative ones Bro91,BMU98,God91] to name only a few of them. Currently, sdl is widely accepted by the industrial community. This is due mainly to the fact that sdl development is supported by methodologies OFMP + 94] and tools Ver96,AB93] in all phases from requirement analysis, design and validation to implementation. However, the validation capabilities of the industrial tools are rather limited with respect to the ones existing in the academic community.

There is no standard semantics of time de ned for sdl. For example, Objectgeode uses a very \synchronous" time concept in which time can only progress when the system is blocked (that means all transitions are eager), whereas others consider that time can always progress (that means that all transitions are lazy). This shows that the currently used notions of time in sdl are extreme ones | which is often considered as problem by the users | and many intermediate solutions are possible using if as discussed in previous section.

We have identi ed a static subset of sdl which we are able to translate into if. That is, with the exception of dynamic creation of processes and some mobility aspects of communication, we can de ne a syntactic level translation between these two formalisms. A prototype translator has been implemented using the sdl/API Interface provided by ObjectGeode Ver96]. More detailed information about it can be found in BFG + 99].

3.2 LOTOS lotos (Language Of Temporal Ordering Speci cations) BB88] has been developed and standardized by ISO in 1989. It is a process-algebra based on ccs Mil80] and csp Hoa84]. In lotos, the communication is synchronous using rendez-vous. lotos has a well-de ned operational semantics and there exist tools supporting it.

The right approach to model and validate lotos speci cations is recognized to be the use of Petri nets, rather than communicating extended automata GS90] as intermediate representation. However, our experience with lotos has shown that often the speci cations have the form of a parallel composition of sequential components (processes). This observation motivated also the use of compositional generation methods, which gives good results for this kind of lotos speci cations KM97].

The timed extensions introduced in E-Lotos Que98], ET-Lotos LL97] and Lotos-NT Sig99] are similar to that of if, only that the urgency of an action is de ned implicitly by its type: \exceptions" and internal actions are urgent, whereas observable actions are not. This is due to the fact, that they want to achieve a much stronger form of compositionality, where with each process can be associated a directly labeled transition system (and not a timed automaton) which then can be composed into a system model.

We plan to investigate the translation of decomposable lotos speci cations into if, as parallel composition with synchronization between processes can be handled in if. Furthermore, a reasonably small Petri Net (corresponding to a non-decomposable lotos part) can be modeled by an if process.

PROMELA

Another language we have considered is Promela, the native language of the Spin model-checker Hol91]. It was designed as an intermediate representation language for protocols, mainly for validation purposes. It is based on extended nite-state machines communicating asynchronously or synchronously via queues.

Promela has not really been designed as a speci cation language but it has a relatively important visibility as well in the academic community as in the industrial one. Its success is due to the high availability of Spin, which provides powerful modelchecking algorithms based on partial-order reductions.

There exist timed extensions of Promela. The one proposed in CT96] is based on Timed Automata, whereas BD98] is very similar to the notion of time used in Objectgeode: all set timers decrease synchronously until one of them expires; then time is blocked until the corresponding timeouts are consumed, where these timeout consumptions take place when no other transition is possible in the system.

A translator from if to Promela is currently developed in the framework of the vires Esprit-ltr project at Eindhoven University. We plan to study also a backward translation from Promela to if. However, as for sdl, there are some limitations due to dynamic process creation feature of Promela.

A validation environment based on IF

One of the main motivation for developing the if intermediate representation is to provide an \open" validation environment, able to make heterogeneous tools cooperate within a single framework. Especially for sdl, solid industrial tools for editing and code generation have been built which are used by a large community of users. On the other hand, there exist many veri cation tools built upon diverse formalisms | such as the Spin tool Hol91] based on Promela, the cadp tool FGK + 96] based on lotos, the smv tool Mac93] based on extended automata, tools for the veri cation of Timed systems such as kronos Yov97] and Uppaal LPY97] based on di erent representations of Timed Automata, to name only a few of them.

Therefore, an integrated validation environment should ful ll the following requirements:

First of all, it is able to support several validation techniques, from symbolic interactive simulation to automatic property checking, together with test case generation and executable code generation. Indeed, all these functionalities cannot be embodied in a single tool and only tool integration facilities can provide all of them. Moreover, for a sake of e ciency, this environment also has to support several level of program representations. For instance it is well-known that model-checking veri cation of real life case studies usually needs to combine several optimization techniques to overcome the state explosion problem. In particular, some of these techniques rely on a program level representation, like static analysis and computations of abstractions (for which it may be necessary to cooperate with decision procedures or theorem-prover). Other techniques operate on a representation of the underlying model, such as on-the-y analysis, bisimulation based model reduction or model-checking. These representations can be either implicit, enumerative or symbolic and are explained below. Another important feature is to keep this environment open and evolutive. Therefore, tool connections are performed only by means of le sharing or program representation access. For this purpose several well-de ned interfaces are o ered.

In the remainder of the section we present the overall architecture of the existing environment and some of its related components. Then, we describe in a more detailed manner two speci c modules concerning static analysis (section 4.2) and compositional generation (section 4.3).

Overall architecture

The if validation environment is built upon two levels of program representation, each of them being accessed through well-de ned Api.

The syntactic level allows to consult and modify the abstract tree on an if program. Since all the variables, timers, bu ers and the communication structure are still explicit, high-level transformations based on static analysis (such as live variable computation, see below) or abstraction computations can be applied. Moreover, this Api is also well suited to implement translators from if to other speci cation formalisms (like Promela or invest).

The execution model level gives access to the underlying lts of the if program. In practice three distinct Api are o ered, depending on the representation used. [START_REF] Fernandez | Symbolic Equivalence Checking[END_REF] philosophy. It consists in a set of C functions and data structures allowing to compute on demand the successors of a given state. This piece of C code is generated by the if compiler, and it can be linked with a \generic" exploration program performing on the y analysis (deadlock detection, model-checking, test-case generation, ...).

The implicit enumerative representation is based on the open-caesar

In the symbolic representation (called smi Boz97]) set of states and transitions of the lts are expressed by their characteristic functions over a set of nite variables. These functions are implemented in terms of decision diagrams(bdds Bry86] andmdds). Existing applications based on this Api are symbolic model-checking and minimal model generation.

Finally, the explicit enumerative representation simply consists in an lts le format with the associated access library. Although this explicit representation is not suitable for handling a large system globally, it is still useful in practice to minimize some of its abstractions with respect to bisimulation based relations (like in compositional generation, see below). Figure 4.1 describes the existing connections in this environment (plain arrows) and the planned ones (dashed arrows). Most of the tools mentioned are presented below: cadp FGK + 96,BFKM97] is a tool set for the veri cation of lotos speci cations. It has been developed and by Verimag and the Vasy team of Inria Rhône-Alpes. We brie y present here two veri ers integrated in this tool set which have already been connected to the new if environment: { aldebaran compares and minimizes nite ltss with respect to various simulation or bisimulation relations. This allows the comparison of the observable behavior of a speci cation with its expected one, described at a more abstract level.

{ evaluator is a \on-the-y" model-checker for formulas of the alternating-free -calculus Koz83]. As for the if environment, an important feature of cadp is to o er several lts representations and in particular the open-caesar Api which is fully compatible with the if implicit enumerative representation. purposes characterize some abstract properties that the system should have and one wants to test, given trees of labels, decorated with verdicts \ok" and \fail". mmg FKM93] is a minimization tool based on a partition re nement algorithm combined with a reachable state space computation BFH90]. This tools works on the symbolic smi interface. Objectgeode is a tool set developed by Verilog supporting sdl, msc and omt. It includes graphical editors and compilers for each of these formalisms. It also provides a C code generator and a simulator to help the user to interactively debug an sdl speci cation.

Objectgeode also provides an Api o ering a set of functions and data structures to access the abstract tree generated from an sdl speci cation. A translation tool (sdl2if) uses this abstract tree to generate an operationally equivalent if specication. Kronos Yov97] is a Tctl model-checker for communicating timed automata. The current connection with the if environment is as follows: control states and discrete variables are expressed using the if implicit enumerative representation whereas clocks are expressed using an appropriate symbolic representation (particular polyhedra).

invest BLO98] is a tool computing abstractions and invariants on a set of guarded command processes communicating through shared variables. We are actually implementing the translation between this formalism and if, which will allow to compute abstract systems.

Static analysis and abstraction

Considering the expressiveness of if, static analysis and abstraction techniques can be applied in order to improve the veri cation and the test generation process. The expected bene ts of such techniques are mainly the reduction of the state space and the reduction of the complexity of the if program.

We have already experimented very simple analysis, used classically in the context of data-ow analysis which can be divided into two classes: property independent analysis: without regarding any particular property or test purpose (such as live variable analysis or constant propagation), property dependent analysis: takes into account some information of the property and propagate them over the static control structure of the program (such as irrelevant variables abstraction) We brie y describe two techniques currently implemented for if.

\Live variables" analysis: A variable is live in a control state if there is a path from this state along which its value can be used before it is rede ned. An important reduction of the state space of the model can be obtained by taking into account in each state only the values of the live variables.

The reduction considered is based on the relation live de ned on the state space of the model: two states are related if and only if all live variables have the same value. It can easily be proved that live is a bisimulation on the model. This result can be exploited in several ways. Due to the local nature of live it is possible to directly generate the quotient model w.r.t. live instead of the whole model without any extra computation. Exactly the same reduction is obtained by \resetting"(that is assigning some prede ned value) in the initial program systematically all non-live variables. The second approach is implemented for if. \Irrelevant variables" abstraction: Given a subset X of irrelevant variables (which in general depend on the considered property), an upper approximation for this program can be computed syntactically and iteratively as follows: the assignments of variables belonging to X are removed the expressions containing variables from X are replaced by a special any value (denoting any element of its domain) the guards which evaluate to any are removed (i.e., replaced by the true value) Clearly the resulting program contains all executions of the initial one and does not depend anymore on variables in X. Any safety property valid on the resulting abstract program is also valid on the initial one, but the converse does not necessarily hold.

In practice, the set of irrelevant variables can be chosen in di erent manners. Either, the user can directly supply it based on his knowledge about the speci cation and the given veri cation context. Another possibility is to derive this set automatically from the considered property (or the test purpose). Finally, irrelevant variables can also be taken among the variables provided by the environment and the ones depending on them: such variables are uncontrolled since their values are nondeterministically chosen by the environment. This latter choice has been considered in CGJ98].

We are also investigating more general abstraction techniques. For instance, through the connection with invest we will be able to compute abstract if programs using more general and powerful abstraction techniques.

Compositional generation

As shown in the previous section, e cient reductions are obtained by replacing a model M by its quotient w.r.t an equivalence relation like live . Much weaker equivalences (that is smaller quotients) can be obtained by taking into account the properties under veri cation. In particular, it is interesting to consider a weaker equivalence R | which should be a congruence for parallel composition |, able to abstract away non observable actions. The main di culty is to obtain (an approximation of) the quotient M=R without generating M as a whole.

A possible approach is based on the \divide and conquer" paradigm: splitting the program description into several pieces (i.e., processes or process sets), generate the model M i associated with each of them, and then compose the quotients M i =R. The hope is that the generated intermediate models can be kept small. This compositional generation method has already been applied for speci cation formalisms based on rendez-vous communication between processes, and has been shown e cient in practice GLS96,Val96,KM97]. To our knowledge it has not been investigated for systems based on communication via bu ers, may be, because bu ers raise several di culties or due to the lack of suitable representations and tools.

The potential bene t of this compositional approach will be illustrated on an example in the next section.

An illustrating example

We present a simple example to illustrate the if formalism and related veri cation tools. We consider a token ring, that is a system of n stations (processes) S 1 , : : : S n , connected in a circular network, in which a station is allowed to access some shared resource R only when it \owns" a particular message, the token. If the network is unreliable it is necessary to recover from token loss. This can be done using a leader election algorithm Lan77,CR79] to designate a station responsible for generating a new token.

Table 1 shows the global de nitions of the if speci cation corresponding to the particular protocol considered [START_REF] Graf | Compositional Minimisation of Finite State Systems using Interface Speci cations[END_REF]. The signals open and close denote the access and the release of the shared resource (here a part of the environment). The signals token and claim are the messages circulating on the ring.

All stations S i are identical up to their identity and described by an if process as the one of Figure 2. The timer worried is set when the station waits for the token and reset when it receives it. On expiration of the timer worried token loss is assumed and an election phaes is started. The \alternating bit" round is used to distinguish between valid claims (emitted during the current election phase) and old ones (The most spectacular reduction is obtained by the live reduction: the reduced model is about 100 times smaller than the one obtained by simultaneous generation, while preserving all properties (models 1 and 2 are strongly bisimilar). This is explained by the fact that only a few variables are live in each state: in the idle state the live variables are round and worried, in the critical state only round is live, while variables adr and rnd are never live.

More reduction is achieved by the following compositional generation strategy:

1. We split the if description into two parts, the rst one contains processes S 1 and S 2 and the second one processes S 3 and S 4 . For each one of these descriptions, the internal bu er between the two processes is a priori bounded to two places. Note that, when a bounded bu er over ows during simulation, a special over ow transition occurs in the corresponding execution sequence. 2. The lts associated with each of these two descriptions are generated considering the \most general" environment providing any potential input. As claim and token can be transmitted at any time, over ow transitions appear in the corresponding ltss.

3. In each lts the input and output transitions relative to the internal bu ers (Q 2 and Q 4) are hidden (i.e., renamed to the special action); then they are reduced w.r.t an equivalence relation preserving the properties under veri cation. For the sake of e ciency we have chosen the branching bisimulation vGW89] preserving all the safety properties (e.g. mutual exclusion). 4. Each reduced lts is translated back into an if process (without variables), and the resulting processes are combined into a single if description, including the two remaining bu ers (Q 1 and Q 3). It turns out that the lts generated from this new description contains no over ow transitions (they have been cut o during the second composition, which con rms the hypothesis on the maximal size of the internal bu ers). The nal lts is branching bisimilar to the one obtained from the initial if description.

Veri cation: We are interested in checking that the shared resource is accessed in mutual exclusion. For this, we consider as visible only the open and close actions.

Mutual exclusion property can be rephrased as follows: every open i (station i access the resource) can only be followed by close i (station i releases the resource) possibly after some internal moves . This property can be expressed in the -calculus (see below) and veri ed with evaluator, on any of the generated models. î =1

X: (open i] : Y: (hfclose i ; giT _ h iY) ^]X) Another approach to verify mutual exclusion is to compare the model of the speci cation with an abstract one expressing the desired behavior. For instance, all three models are branching bisimilar to the one shown in Figure 3. The reductions and comparisons are carried out using aldebaran. Test Generation: We illustrate the use of the tgv to extract test cases for the token ring protocol. We want to test the property stating that a station lters a received claim with a smaller address than its own and transmits it unchanged otherwise. We chose a test purpose expressing that after S 4 has sent its claim, it will be transmitted unchanged by station S 1 , then by S 2 and nally by S 3 . The generated test case is shown in gure 4.

Conclusion and perspectives

We have presented the formalism if which has been designed as an intermediate representation for sdl, but it can be used as a target language for other fdt as it contains most of the concepts used in these formalisms. The use of if o ers several advantages:

if has a formal semantics based on the framework of communicating timed automata. It has powerful concepts interesting for speci cation purposes, such as di erent urgency types of transitions, synchronous communication, asynchronous communication through various bu er types (bounded, unbounded, lossy, : : :).

Fig. 4. ttcn test case

if programs can be accessed at di erent levels through a set of well de ned apis. These include not only several low-level model representations (symbolic, enumerative, ...) but also higher level program representation, where data and communication structures are still explicit. Using these api several tools have been already

interconnected within an open environment able to cover a wide spectrum of validation methods.

The if package is available at http://www-verimag.imag.fr/DIST SYS/IF. In particular, a translation tool from sdl to if has been implemented and allows both to experiment di erent semantics of time for sdl and to analyze real-life sdl speci cations with cadp.

A concept which is not provided in if is dynamic creation of new process instances of processes and parameterization of processes; this is due to the fact that in the framework of algorithmic veri cation, we consider only static (or dynamic bounded) con gurations. However, it is foreseen in the future to handle some kinds of parameterized speci cations.

The results obtained using the currently implemented static analysis and abstractions methods are very encouraging. For each type of analysis, it was possible to build a module which takes an if speci cation as input and which generates an reduced one. This architecture allows to chain several modules to bene t from multiple reductions applied to the same initial speci cation. We envisage to experiment more sophisticated analysis, such as constraints propagation, and more general abstraction techniques. This will be achieved either by developing dedicated components or through the connections with tools like invest.

Fig. 1 .

 1 Fig. 1. An open validation environment for if

Fig. 3 .

 3 Fig. 3. The reduced behavior of the token ring.

 The model of time of if is that of Communicating Timed Automata with urgency introduced[START_REF] Bryant | Graph based algorithms for boolean function manipulation[END_REF]. Each process has a number of clocks which increase with progress of time (either in a discrete or continuous way). Clocks can be \tested" in the guards and \reset" in the bodies of the transitions. In this model, time is considered global, that is, it progresses synchronously in all processes of the system. The main problem is \when can time progress?". In timed automata ACD93], time progress is de ned by means of \invariants" associated with each state, such that time is allowed to progress as long the invariant expression evaluates to true. The problem with this model is that the composition of timed automata leads to time deadlocks. A time model avoiding this problem is obtained by associating with every transition a deadline (a predicate implying the guard), meaning that, whenever the deadline predicate evaluates to true, the transition has priority over progress of time.

[START_REF] Bryant | Graph based algorithms for boolean function manipulation[END_REF]

, it has been shown that a much simpler model using three possible urgency attributes instead of deadlines is su cient: eager transitions have always priority over time, delayable transitions may let time progress, but only as long as they remain enabled, and lazy transitions cannot prevent time from progressing. In if the time progress condition in each state is de ned depending on the urgency of enabled transitions and, in order to include the model of timed automata, one can associate an explicit tpc attribute with control states, with the potential risk of introducing time deadlocks by composition.

The semantics of Timed Automata with Urgency is de ned in BST98]. Let A = (Q; Trans) be a Timed Automaton. Let time be a set of environments for clocks, where T 2time de nes for every clock a value in a time domain T (positive integers or reals). Resetting a clock a ects T by changing the value of the reset clock to zero. Progress of time by an amount transforms the valuation T into the valuation T in which the values of all clocks are increased by .

Table 1 .

 1 if global de nitions token reception). In the idle state, a station may either receive the token from its neighbour (then it reaches the critical state and can access the resource) or receive the timer expiration signal (then it emits a claim stamped with its address and the current value of round) or receive a claim. A received claim is \ ltered" if its associated address is smaller than its own address and transmitted unchanged if it is greater. If its own valid claim is received, this station becomes elected and generates a new token. We summarize in Table2the size of the models obtained from the token-ring protocol using three generation methods: directly from the initial if program (global generation), using the live variable reduction (global + live) and using a compositional generation strategy (compositional + live).

	cancelled by a

Table 2 .

 2 Models obtained for the token ring example

where we suppose that the user provides also implementations of the introduced functions, otherwise expressions containing them are handled syntactically

or \assignable" expressions such as elements of records or arrays

; V 0)

Trans 1 and (q 2 ; V) `: g 2 7 ! skip ???????????! (u2) (q 0 2 ; V 0) 2 Trans 2 ((q 1 ; q 2); V) `: g 1 ^g2 7 ! skip ???????????????! (urg) ((q 0 1 ; q 0 2); V 0) 2 Trans

 ------+-----------------------------------+---------+------------+--- ------+-----------------------------------+---------+------------+--- ---+-------+-----------------------------------+---------+------------+---+