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NONLINEAR DIFFUSION OF DISLOCATION DENSITY
AND SELF-SIMILAR SOLUTIONS

PIOTR BILER, GRZEGORZ KARCH, AND RÉGIS MONNEAU

Abstract. We study a nonlinear pseudodifferential equation describing
the dynamics of dislocations in crystals. The long time asymptotics of
solutions is described by the self-similar profiles.

1. Introduction

Dislocation dynamics. Dislocations are line defects in crystals whose typ-
ical length is ∼ 10−6 m and their thickness is ∼ 10−9 m.

When the material is submitted to shear stresses, these lines can move in
the crystallographic planes and this dynamics can be observed using electron
microscopy. The elementary mechanisms at the origin of the deformation
of monocrystals are rather well understood, however, many questions con-
cerning the plastic behavior of materials containing a high density of defects
are still open. Hence, in recent years, new physical theories describing the
collective behavior of dislocations have been developed and numerical sim-
ulations of dislocations have been performed. We refer the reader to the
recent publications [1, 23] for the comprehensive references about modeling
of dislocation dynamics.

One possible (simplified) model of the dislocation dynamics is given by
the system of ODEs

(1.1) ẏi = F − V ′
0(yi)−

∑
j∈{1,...,N}\{i}

V ′(yi − yj) for i = 1, ..., N,

where F is a given constant force, V0 is a given potential and V is a potential
of two-body interactions. One can think of yi as the position of dislocation
straight lines. In this model, dislocations can be of two types, + or −,
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depending on the sign of their Burgers vector (see the book by Hirth and
Lothe [20] for a physical definition of the Burgers vector).

Self-similar solutions (i.e. solutions of the form yi(t) = g(t)Yi with con-
stant Yi) to system (1.1) with the particular potential V ′(z) = 1

z as well
as their role in the asymptotic behavior of other solutions of (1.1) were
studied by Head in [16, 17]. More recently, Forcadel et al. showed in [14,
Th. 8.1] that, under suitable assumptions on V0 and V in (1.1), the rescaled
“cumulative distribution function”

(1.2) ρε(x, t) = ε

(
−1

2
+

N∑
i=1

H

(
x− εyi

(
t

ε

)))
(where H is the Heaviside function) satisfies (as a discontinuous viscosity
solution) the following nonlocal eikonal equation

(1.3) ρε
t (x, t) =

(
c
(x
ε

)
+M ε

(
ρε(·, t)
ε

)
(x)
)
|ρε

x(x, t)|

for (x, t) ∈ R × (0,+∞), with c(y) = V ′
0(y) − F . Here, M ε is the nonlocal

operator defined by

(1.4) M ε(U)(x) =
∫

R
J(z)E

(
U(x+ εz)− U(x)

)
dz,

where J(z) = V ′′(z) on R \ {0} and E is the modification of the integer
part: E(r) = k + 1/2 if k ≤ r < k + 1. Note that the nonlocal operator M ε

describes the interactions between dislocation lines, hence, interactions are
completely characterized by the kernel J .

Next, under the assumption that the kernel J is a sufficiently smooth,
even, nonnegative function with the following behavior at infinity

(1.5) J(z) =
1
|z|2

for all |z| ≥ R0

and for some R0 > 0, the rescaled cumulative distribution function ρε,
defined in (1.2), is proved to converge (cf. [14, Th. 2.5]) towards the unique
solution of the corresponding initial value problem for nonlinear diffusion
equation

(1.6) ut = H̃(−Λu, ux),

where the Hamiltonian H̃ is a continuous function and Λ is a Lévy operator
of order 1. It is defined for any function U ∈ C2

b (R) and for r > 0 by the
formula

(1.7) −ΛU(x) = C(1)
∫

R

(
U(x+ z)− U(x)− zU ′(x)1{|z|≤r}

) 1
|z|2

dz

with a constant C(1) > 0. Finally, in the particular case of c ≡ 0 in (1.3), we
have H̃(L, p) = L|p| (cf. [14, Th. 2.6]) which allows us to rewrite equation
(1.6) in the form

(1.8) ut + |ux|Λu = 0.
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One can show that the definition of Λ is independent of r > 0, hence, we
fix r = 1. In fact, for suitably chosen C(1), Λ = Λ1 =

(
−∂2/∂x2

)1/2 is the

pseudodifferential operator defined in the Fourier variables by (̂Λ1w)(ξ) =
|ξ|ŵ(ξ) (cf. formulae (2.3) and (2.4) below). In this particular case, equation
(1.8) is an integrated form of a model studied by Head [18] for the self-
dynamics of a dislocation density represented by ux. Indeed, denoting v =
ux we may rewrite equation (1.8) as

(1.9) vt + (|v|Hv)x = 0,

where H is the Hilbert transform defined by

(1.10) (̂Hv)(ξ) = −i sgn(ξ) v̂(ξ).

Let us recall two well known properties of this transform (cf. [30])

(1.11) Hv(x) =
1
π
P.V.

∫
R

v(y)
x− y

dy and Λ1v = Hvx.

Head [18] called (1.9) the equation of motion of the dislocation contin-
uum and constructed an explicit self-similar solution. Numerical studies of
solutions to this equation were performed in [12].

Quasi-geostrophic equations. Let us recall completely different physical
motivations which also lead to equation (1.9). The 2D quasi-geostrophic
equations (QG), modeling the dynamics of the mixture of cold and hot air
in a thin layer and the fronts between them, are of the form

(1.12) θt + (u · ∇)θ = 0, u = ∇⊥ψ, θ = −(−∆)1/2ψ

for x ∈ R2 and t > 0, where ∇⊥ = (−∂x2 , ∂x1). Here, θ(x, t) represents
the air temperature. Pioneering studies concerning a finite time blow up
criterion of solutions to (1.12) are due to Constantin et al. [9].

Much earlier, Constantin et al. [8] proposed a one-dimensional version of
the QG model (1.12). To derive it, we first write system (1.12) in another
equivalent form. From the second and third equation in (1.12) we have the
representation

(1.13) u = −∇⊥(−∆)−1/2θ = −R⊥θ,

where we have used the notation R⊥θ = (−R2θ,R1θ), with the Riesz trans-
forms defined by (see e.g. [30])

Rj(θ)(x, t) =
1
2π
P.V.

∫
R2

(xj − yj)θ(y, t)
|x− y|3

dy.

Using equation (1.13), we find that (1.12) can be transformed into

(1.14) θt + div ((R⊥θ)θ) = 0,

because div (R⊥θ) = 0. To construct the 1D model, the authors of [8] con-
sidered the unknown function θ = θ(x, t) for x ∈ R and t > 0, and replaced
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the Riesz transform R⊥ in (1.14), by the Hilbert transform H (cf. (1.10)–
(1.11)). Then equation (1.14) is converted into the Constantin–Lax–Majda
model

(1.15) θt + (θHθ)x = 0

for x ∈ R and t > 0.
Obviously, for θ ≥ 0, both models (1.9) and (1.15) are identical. However,

in the case of equation (1.15), it is possible to show that the complex valued
function z(x, t) = Hθ(x, t) − iθ(x, t) satisfies the inviscid Burgers equation
zt + zzx = 0. This property of solutions has been systematically used in
[6, 7] to study the existence, the regularity and the blow up in finite time
of solutions to equation (1.15). We refer the reader to those publications
for additional references concerning equation (1.15). Below, see Remarks
2.6, 2.10 and 7.7, we explain how our results on equation (1.9) and its
generalizations contribute to the theory developed for model (1.15).

Organization of the paper. In the next section, we state the initial value
problem considered in this paper and we formulate our main results. In
Section 3, we construct explicitly the self-similar solution. In Section 4, we
recall the necessary material about viscosity solutions, which will be used
systematically in the remainder of the paper. In Section 5, we prove the
uniqueness of the self-similar solution. Under the additional assumption that
the solution is confined between its boundary values at infinity, we prove the
stability of the self-similar solution, namely Theorem 2.5. In Section 6, we
prove further decay properties of a solution with compact support. Applying
these estimates, we finish the proof of Theorem 2.5 in the general case. In
Section 7, we introduce an ε-regularized equation, for which we prove both
the global existence of a smooth solution and the corresponding gradient
estimates. Finally in Section 8, we deduce the gradient estimate in the limit
case ε = 0, namely Theorem 2.7, using the corresponding estimates for the
approximate ε-problem.

2. Main results

Motivated by physics described above, we study the following initial value
problem for the nonlinear and nonlocal equation involving u = u(x, t)

ut = −|ux| Λαu on R× (0,+∞),(2.1)

u(x, 0) = u0(x) for x ∈ R,(2.2)

where the assumptions on the initial datum u0 will be precised later. Here,
for α ∈ (0, 2), Λα =

(
−∂2/∂x2

)α/2 is the pseudodifferential operator defined
via the Fourier transform

(2.3) (̂Λαw)(ξ) = |ξ|αŵ(ξ).
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Recall that the operator Λα has the Lévy–Khintchine integral representation
for every α ∈ (0, 2)

(2.4) −Λαw(x) = C(α)
∫

R

(
w(x+ z)− w(x)− zw′(x)1{|z|≤1}

) dz
|z|1+α

,

where C(α) > 0 is a constant. This formula (discussed in, e.g., [13, Th. 1]
for functions w in the Schwartz space) allows us to extend the definition of
Λα to functions which are bounded and sufficiently smooth, however, not
necessarily decaying at infinity.

As we have already explained (cf. equation (1.8)), in the particular case
α = 1, equation (2.1) is a mean field model that has been derived rigorously
in [14] as the limit of a system of particles in interactions (cf. (1.1)) with
forces V ′(z) = 1

z . Here, the density ux means the positive density |ux| of
dislocations of type of the sign of ux. Moreover, the occurrence of the abso-
lute value |ux| in the equation allows the vanishing of dislocation particles of
the opposite sign. In the present paper, we study the general case α ∈ (0, 2)
that could be seen as a mean field model of particles modeled by system
(1.1) with repulsive interactions V ′(z) = 1

zα .
Here, we would like also to keep in mind that (2.1) is the simplest nonlin-

ear anomalous diffusion model (described by the Lévy operator Λα) which
degenerates for ux = 0.

First note that equation (2.1) is invariant under the scaling

(2.5) uλ(x, t) = u(λx, λα+1t)

for each λ > 0 which means that if u = u(x, t) is a solution to (2.1), then
uλ = uλ(x, t) is so. Hence, our first goal is to construct self-similar solutions
of equation (2.1), i.e. solutions which are invariant under the scaling (2.5).
By a standard argument, any self-similar solution should have the following
form

(2.6) uα(x, t) = Φα(y) with y =
x

t1/(α+1)
,

where the self-similar profile Φα has to satisfy the following equation

(2.7) −(α+ 1)−1 y Φ′
α(y) = −(ΛαΦα(y)) Φ′

α(y) for all y ∈ R.

In our first theorem, we construct solutions to equation (2.7).

Theorem 2.1 (Existence of self-similar profile). Let α ∈ (0, 2). There
exists a nondecreasing function Φα of the regularity C1+α/2 at each point
and analytic on the interval (−yα, yα) for some yα > 0, which satisfies

Φα =
{

0 on (−∞,−yα),
1 on (yα,+∞),

and
(ΛαΦα)(y) =

y

α+ 1
for all y ∈ (−yα, yα).
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Remark 2.2. We can obtain the self-similar solutions corresponding to dif-
ferent boundary values at infinity, simply considering for any γ > 0 and
b ∈ R the profiles γΦα

(
γ−1/(α+1)y

)
+ b which are also solutions of equation

(2.7).

Remark 2.3. The fact that ∂yΦα has compact support reveals a finite velocity
propagation of the support of the solution which is typical for solutions the
porous medium equation, cf. Remark 2.8 below.

At least formally, the function Φα is the solution of (2.7), and the self-
similar function uα given by (2.6) is a solution of equation (2.1) with the
initial datum being the Heaviside function

(2.8) u0(x) = H(x) =
{

0 if x < 0,
1 if x > 0.

In order to check that uα given by (2.6) solves (2.1), we introduce a suitable
notion of viscosity solutions to the initial value problem (2.1)–(2.2), see
Section 4. In this setting, we show in Theorem 4.7 the existence and the
uniqueness of a solution for any initial condition u0 in BUC(R), i.e. the
space of bounded and uniformly continuous functions on R. Although the
initial datum (2.8) is not continuous, we have the following result.

Theorem 2.4 (Uniqueness of self-similar solution). Let α ∈ (0, 2). Then
the function uα defined in (2.6) with the profile Φα constructed in Theorem
2.1 is the unique viscosity solution of equation (2.1) with the initial datum
(2.8).

In Theorem 2.4, the uniqueness holds in the sense that if u is another
viscosity solution to (2.1), (2.8), then u = uα on (R× [0,+∞)) \ {(0, 0)}.

The self-similar solutions are not only unique, but are also stable in this
framework of viscosity solutions, as the following result shows.

Theorem 2.5 (Stability of the self-similar solution). Let α ∈ (0, 2). For
any initial data u0 ∈ BUC(R) satisfying

(2.9) lim
x→−∞

u0(x) = 0 and lim
x→+∞

u0(x) = 1,

let us consider the unique viscosity solution u = u(x, t) of (2.1)–(2.2) and,
for each λ > 1, its rescaled version uλ = uλ(x, t) given by equation (2.5).
Then, for any compact set K ⊂ (R× [0,+∞)) \ {(0, 0)}, we have

(2.10) uλ(x, t) → Φα

( x

t1/(α+1)

)
in L∞(K) as λ→ +∞.

We stress on the fact that Theorem 2.5 contains a result on the long
time behaviour of solution because, first, choosing t = 1 in (2.10) and, next,
substituting λ = t1/(α+1) we obtain the convergence of u

(
xt1/(α+1), t

)
toward

the self-similar profile Φα(x).
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On the other hand, convergence (2.10) can be seen as a stability result
when we consider initial data which are perturbations of the Heaviside func-
tion. This is a nonstandard stability result in the framework of discontin-
uous viscosity solutions. It shows that the approach by viscosity solutions
is a good one in the sense of Hadamard, even if we consider here initial
conditions which are perturbations of the Heaviside function.

Remark 2.6. In the particular case of α = 1, the nonnegative function
U(x, t) = t−1/2Φ′

1(xt
−1/2), with Φ1 — the self-similar profile provided by

Theorem 2.1, is the compactly supported self-similar solution of the Con-
stantin–Lax–Majda equation (1.15). This function attracts other nonnega-
tive solutions to (1.15) in the sense stated in Theorem 2.5.

Finally, we have the following result of independent interest.

Theorem 2.7 (Optimal decay estimates). Let α ∈ (0, 1]. For any initial
condition u0 ∈ BUC(R) such that u0,x ∈ L1(R), the unique viscosity solution
u of (2.1)–(2.2) satisfies

‖u(·, t)‖∞ ≤ ‖u0‖∞ and ‖ux(·, t)‖∞ ≤ ‖u0,x‖∞ for any t > 0.

Moreover, for every p ∈ [1,+∞) we have

(2.11) ‖ux(·, t)‖p ≤ Cp,α‖u0,x‖
pα+1

p(α+1)

1 t
− (p−1)

p(α+1) for any t > 0,

with some constant Cp,α > 0 depending only on p and α.

The decay given in (2.11) is optimal in the sense that the self-similar

solution satisfies ‖(uα)x(·, t)‖p = ‖(Φα)y(·)‖p t
− (p−1)

p(α+1) .

Remark 2.8. The equation satisfied by v = ux

(2.12) vt = −(|v|Λα−1Hv)x

(with the Hilbert transform H defined in (1.10)) can be treated as a nonlocal
counterpart of the porous medium equation. Indeed, for α = 2 and for
nonnegative v, equation (2.12) reduces to vt = (vvx)x =

(
v2/2

)
xx
. As in

the case of the porous medium equation (see e.g. [32] and the references
therein), estimates (2.11) show a regularizing effect created by the equation,
even for the anomalous diffusion: if v0 ∈ L1(R) then v ∈ Lp(R) for each p >
1. Observe also that equation (2.12) has compactly supported self-similar
solution v(x, t) = t−

1
α+1 Φ′

α

(
x/t

1
α+1

)
, where the profile Φα was constructed

in Theorem 2.1. This function for α = 2 corresponds to the well known
Barenblatt–Prattle solution of the porous medium equation.

Remark 2.9. As we have already mentioned, see Theorem 4.7 below, the
initial value problem (2.1)–(2.2) has the unique global-in-time viscosity so-
lution for any initial datum u0 ∈ BUC(R). Under the additional assump-
tion u0,x ∈ Lp(R), the corresponding solution satisfies ux(·, t) ∈ Lp(R) for
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all t > 0. Indeed, this is an immediate consequence of the Lp-inequalities
stated in Remark 7.7 and of a limit argument analogous to that in Step 6
of the proof of Theorem 2.7.

Remark 2.10. For any positive, sufficiently regular and vanishing at infinity
initial condition v0 ∈ L2(R), the corresponding solution v = v(x, t) of the
Constantin–Lax–Majda equation (1.15) is global-in-time and analytic, see
[6, Th. 2.1]. Since v = ux ≥ 0, this result holds true for solutions of problem
(2.1)–(2.2) with α = 1. On the other hand, the blow up of ‖vx(·, t)‖∞ of
nonpositive solutions to (1.15) was shown in [10] (caution: one should replace
θ by −θ in order to transform the model considered in [10] into equation
(1.15)). Moreover, the nonexistence of global-in-time solutions to the initial
value problem for equation (1.15) has been always proved assuming that the
initial datum is negative at some point, see [7, Th. 2.1 and Remark 2.3] and
[6, Th. 3.1 and 4.8]. Those arguments cannot be applied to equation (2.1)
with α = 1 due to the factor |v| (= |ux|) in the nonlinearity.

Remark 2.11. For α ∈ (1, 2), we do not know how to define the product
|ux| (Λαu) in the sense of distributions, which is an obstacle for us to prove
the result of Theorem 2.7 in this case, see Section 7. Note, however, that
the inequalities from Theorem 2.7 are valid for α ∈ (1, 2] as well, provided
the solution u = u(x, t) is sufficiently regular.

3. Construction of self-similar solutions

Proof of Theorem 2.1. The crucial role in the construction of the self-similar
profile Φα is played by the function

(3.1) v(x) =
{
K(α)

(
1− |x|2

)α/2 for |x| < 1,
0 for |x| ≥ 1,

with K(α) = Γ(1/2) [2αΓ(1 + α/2)Γ((1 + α)/2)]−1. This function (together
with its multidimensional counterparts) has an important probabilistic in-
terpretation. Indeed, if {X(t)}t≥0 denotes the symmetric α-stable process
in R of order α ∈ (0, 2] and if T = inf{t : |X(t)| > 1} is the first passage
time of the process to the exterior of the segment {x : |x| ≤ 1}, Getoor
[15] proved that Ex(T ) = v(x), where Ex denotes the expectation under the
condition X(0) = x.

In particular, it was computed in [15, Th. 5.2] using a purely analyti-
cal argument (based on definition (2.3) and on properties of the Fourier
transform) that Λαv ∈ L1(R) and

(3.2) Λαv(x) = 1 for |x| < 1.

Now, for the function v, we define the bounded, nondecreasing, C1+α/2-
function

u(x) =
∫ x

0
v(y) dy
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which obviously satisfies u(x) = M(α) for all x ≥ 1 and u(x) = −M(α) for
x ≤ −1 with

M(α) = K(α)
∫ 1

0

(
1− |y|2

)α/2 dy =
π

2α(α+ 1)Γ
(

1+α
2

)2 .
Then, for any ϕ ∈ C∞c (R), we can introduce the following duality

〈Λαu, ϕ〉 =
∫

R
u(y)(Λαϕ)(y) dy.

This defines Λαu as a distribution, because we can check (using the Lévy–
Khintchine formula (2.4)) that there exists a constant C > 0 such that

|(Λαϕ)(x)| ≤
C‖ϕ‖W 2,∞(R)

1 + |x|1+α
.

If, moreover, suppϕ ⊂ (−1, 1), it is easy to check using the properties of the
function v = v(x) that

〈∂x(Λαu), ϕ〉 = −〈u,Λα(∂xϕ)〉 = −〈u, ∂x(Λαϕ)〉 = 〈Λα(∂xu), ϕ〉 = 〈1, ϕ〉,

where the last inequality is a consequence of (3.2). From the symmetry of
v, we deduce the antisymmetry of u, and then (Λαu)(−x) = −(Λαu)(x).
Therefore, we get the equality (Λαu)(x) = x in D′(−1, 1), and thus by [21,
Cor. 3.1.5], in the classical sense for each y ∈ (−1, 1), too.

Finally, we define the nonnegative function

Φα(y) =
γ

α+ 1

{
u
(
γ−1/(α+1)y

)
+M(α)

}
with γ−1 =

2M(α)
α+ 1

.

Now, for yα = γ1/(α+1) = [2M(α)]−1/(α+1), we can check easily that Φα is
exactly as stated in Theorem 2.1, which ends the proof. �

Let us note that we will not use in the sequel the explicit form of the
function Φα, but only its properties listed in Theorem 2.1.

Remark 3.1. It has been known since the work of Head and Louat [19] (see
also [18]) that the function v(x) = K

(
1− |x|2

)1/2 (with a suitably chosen
constant K = K(1) > 0) is the solution of the equation (Λ1v)(x) = 1
on (−1, 1). This result is a consequence of an inversion theorem due to
Muskhelishvili, see either [28, p. 251] or [31, Sec. 4.3].

4. Notion of viscosity solutions

Here, we consider equation (2.1) and its vanishing viscosity approxima-
tion, i.e. the following initial value problem for α ∈ (0, 2) and η ≥ 0

ut = ηuxx − |ux| Λαu on R× (0,+∞),(4.1)

u(x, 0) = u0(x) for x ∈ R.(4.2)

In this section, we present the framework of viscosity solutions to problem
(4.1)–(4.2). To this end, we recall briefly the necessary material, which can
be either found in the literature or is essentially a standard adaptation of
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those results. We also refer the reader to Crandall et al. [11] for a classical
text on viscosity solutions to local (i.e. partial differential) equations.

Let us first recall the definition of relaxed lower semi-continuous (lsc,
for short) and upper semi-continuous (usc, for short) limits of a family of
functions uε which is locally bounded uniformly with respect to ε

lim sup
ε→0

eq∗uε(x, t) = lim sup
ε→0

y→x,s→t

uε(y, s) and lim inf
ε→0

∗u
ε(x, t) = lim inf

ε→0
y→x,s→t

uε(y, s).

If the family consists of a single element, we recognize the usc envelope and
the lsc envelope of a locally bounded function u

u∗(x, t) = lim sup
y→x,s→t

u(y, s) and u∗(x, t) = lim inf
y→x,s→t

u(y, s).

Now, we recall the definition of a viscosity solution for (4.1)–(4.2). Here,
the difficulty is caused by the measure |z|−1−α dz appearing in the Lévy–
Khintchine formula (2.4) which is singular at the origin and, consequently,
the function has to be at least C1,1 in space in order that Λαu(·, t) makes
sense (especially for α close to 2). We refer the reader, for instance, to
[29, 4, 25] for the stationary case, and to [24, 23] for the evolution equation
where this question is discussed in detail.

Now, we are in a position to define viscosity solutions.

Definition 4.1 (Viscosity solution/subsolution/supersolution). A bounded
usc (resp. lsc) function u : R×R+ → R is a viscosity subsolution (resp. super-
solution) of equation (4.1) on R×(0,+∞) if for any point (x0, t0) with t0 > 0,
any τ ∈ (0, t0), and any test function φ belonging to C2(R × (0,+∞)) ∩
L∞(R× (0,+∞)) such that (u−φ) attains a maximum (resp. minimum) at
the point (x0, t0) on the cylinder

Qτ (x0, t0) := R× (t0 − τ, t0 + τ),

we have

∂tφ(x0, t0)− ηφxx(x0, t0) + |φx(x0, t0)| (Λαφ(·, t0))(x0) ≤ 0 (resp. ≥ 0),

where (Λαφ(·, t0))(x0) is given by the Lévy–Khintchine formula (2.4).
We say that u is a viscosity subsolution (resp. supersolution) of problem

(4.1)–(4.2) on R× [0,+∞), if it satisfies moreover at time t = 0

u(·, 0) ≤ u∗0 (resp. u(·, 0) ≥ (u0)∗) .

A function u : R×R+ → R is a viscosity solution of (4.1) on R× (0,+∞)
(resp. R × [0,+∞)) if u∗ is a viscosity subsolution and u∗ is a viscosity
supersolution of the equation on R× (0,+∞) (resp. R× [0,+∞)).

Other equivalent definitions are also natural, see for instance [4].
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Remark 4.2. Any bounded function u ∈ C1+β (with some β > max{0, α −
1}) which satisfies pointwisely (using the Lévy–Khintchine formula (2.4))
equation (4.1) with η = 0, is indeed a viscosity solution.

Theorem 4.3 (Comparison principle). Consider a bounded usc subsolution
u and a bounded lsc supersolution v of (4.1)–(4.2). If u(x, 0) ≤ u0(x) ≤
v(x, 0) for some u0 ∈ BUC(R), then u ≤ v on R× [0,+∞).

Proof. Recall that in [23, Th. 5], the comparison principle is proved for
α = 1 and η = 0 under the additional assumption that u0 ∈ W 1,∞(R).
Looking at the proof of that result, the regularity of the initial data u0 is
only used to show that

(4.3) sup
x∈R

((u0)ε(x)− (u0)ε(x)) → 0 as ε→ 0,

where (u0)ε and (u0)ε are respectively sup and inf-convolutions. It is easy
(and classical) to check that (4.3) is still true for u0 ∈ BUC(R). The general
case can be done either considering a variation of the proof of [23] taking
into account the additional Laplace operator, or applying the “maximum
principle” from [25], or following, for instance, the lines of [4]. We skip here
the detail of this adaptation. This finishes the proof. �

Theorem 4.4 (Stability). Let {uε}ε>0 be a sequence of viscosity subso-
lutions (resp. supersolutions) of equation (4.1) which are locally bounded,
uniformly in ε. Then u = lim sup∗ uε (resp. u = lim inf∗ uε) is a subsolution
(resp. supersolution) of (4.1) on R× (0,+∞).

Proof. A counterpart of Theorem 4.4 is proved in [4, Th.1]. Here, the re-
sult for the time dependent problem is again a classical adaptation of that
argument, so we skip details. �

Remark 4.5. One can generalize directly Theorem 4.4 assuming that {uε}ε>0

are solutions to the sequence of equations (4.1) with η = ε. Then, in the
limit ε → 0+, we obtain viscosity subsolutions (resp. supersolutions) of
equation (2.1). We use this property in the proof of Theorem 2.7.

Remark 4.6. In Theorem 4.4, we only claim that the limit u is a superso-
lution on R× (0,+∞), but not on R× [0,+∞). In other words, we do not
claim that u satisfies the initial condition. Without further properties of the
initial data u0, it may happen that u(·, 0) ≤ u∗0 is not true.

Theorem 4.7 (Existence). Consider u0 ∈ BUC(R). Then there exists the
unique bounded continuous viscosity solution u of (4.1)–(4.2).

Proof. Applying the argument of [22] (already adapted from the classical
arguments), we can construct a solution by the Perron method, if we are
able to construct suitable barriers.
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Case 1: First, assume that u0 ∈W 2,∞(R). Then the following functions

(4.4) u±(x, t) = u0(x)± Ct

are barriers for C > 0 large enough (depending on the norm ‖u0‖W 2,∞(R)),
and we get the existence of solutions by the Perron method.

Case 2: Let u0 ∈ BUC(R). For any ε > 0, we can regularize u0 by
a convolution, and get a function uε

0 ∈W 2,∞(R) which satisfies, moreover,

(4.5) |uε
0 − u0| ≤ ε.

Let us call uε the solution of (4.1)–(4.2) with the initial condition uε
0 instead

of u0. Then, from the fact that the equation does not see the constants and
from the comparison principle Theorem 4.3, we have for any ε, δ > 0

|uε − uδ| ≤ ε+ δ.

Therefore, {uε}ε>0 is the Cauchy sequence which converges in L∞(R ×
[0,+∞)) to some continuous function u (because all the functions uε are
continuous). By the stability result Theorem 4.4, we see that u is a viscos-
ity solution of equation (4.1) on R×(0,+∞). To recover the initial boundary
condition, we simply remark that uε(x, 0) = uε

0(x) satisfies (4.5), and then
passing to the limit, we get u(x, 0) = u0(x). This shows that u is a viscosity
solution of problem (4.1)–(4.2) on R × [0,+∞), and concludes the proof of
Theorem 4.7. �

5. Uniqueness and stability of the self-similar solution

Lemma 5.1 (Comparison with the self-similar solution). Let v be a sub-
solution (resp. a supersolution) of equation (2.1) with the Heaviside initial
datum given in (2.8). Then we have v∗ ≤ (uα)∗ (resp. (uα)∗ ≤ v∗).

Proof. Using Remark 4.2 and properties of Φα gathered in Theorem 2.1, it is
straightforward to check that the self-similar solution uα(x, t) given in (2.6)
is a viscosity solution of equation (4.1)–(4.2) with the initial condition (2.8).

Now, we show the inequality (uα)∗ ≤ v∗. Let v be a viscosity supersolution
of (4.1)–(4.2) with the Heaviside initial datum (2.8). Given a > 0 and
va(x, t) = v(a+ x, t), we have

(uα)∗(x, 0) ≤ (u0)∗(x) ≤ (u0)∗(a+ x) ≤ va(x, 0).

Because of the translation invariance of the equation (2.1), we see that va is
still a supersolution. Moreover, for any a > 0, we can always find an initial
condition ua ∈ BUC(R) such that

uα(x, 0) ≤ ua(x) ≤ va(x, 0).

Therefore, applying the comparison principle (Theorem 4.3), we deduce that

uα ≤ va.
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Because this is true for any a > 0, we can take the limit as a → 0 and get
(uα)∗ ≤ v∗.

For a subsolution v, we proceed similarly to obtain v∗ ≤ (uα)∗. This
finishes the proof of Lemma 5.1. �

Proof of Theorem 2.4. We consider a viscosity solution v of equation (2.1)
with the Heaviside initial datum (2.8). Using the both inequalities of Lemma
5.1, and the fact that (uα)∗ = (uα)∗ on (R × [0,+∞))\ {(0, 0)}, we deduce
the equality v = uα on (R × [0,+∞)) \ {(0, 0)} , which ends the proof of
Theorem 2.4. �

We will now prove the following weaker version of Theorem 2.5.

Theorem 5.2 (Convergence for suitable initial data). The convergence in
Theorem 2.5 holds true under the following additional assumption

(5.1) lim
y→−∞

u0(y) = 0 ≤ u0(x) ≤ 1 = lim
y→+∞

u0(y).

Proof. Step 1: Limits after rescaling of the solution. Consider a solution u

of (2.1)–(2.2) with an initial condition u0 satisfying (5.1). Recall that for
any λ > 0, the rescaled solution is given by uλ(x, t) = u(λx, λα+1t). Let us
define

u = lim sup
λ→+∞

∗uλ and u = lim inf
λ→+∞

∗u
λ.

From the stability result Theorem 4.4, we know that u (resp. u) is a subso-
lution (resp. supersolution) of (2.1) on R× (0,+∞).

Step 2: The initial condition. We now want to prove that

(5.2) u(x, 0) = u(x, 0) = H(x) for x ∈ R\ {0} ,

where H is the Heaviside function. To this end, we remark that u0 satisfies
for some γ > 0 the inequality |u0(x)| ≤ γ (note that γ = 1 under assumption
(5.1)), and for each ε > 0, there exists M > 0 such that |u0(x)| < ε for
x ≤ −M .

In particular, we get

u0(x) < ε+ γH(x+M),

and then from the comparison principle, we deduce

(5.3) u(x, t) ≤ ε+ (uγ
α)∗ (x+M, t)

with

(5.4) uγ
α(x, t) = Φγ

α

( x

t1/(α+1)

)
and Φγ

α(y) = γΦα

(
γ−1/(α+1)y

)
.

Here Φγ
α is the self-similar profile solution of (2.7) with the boundary condi-

tions 0 and γ at infinity. Moreover, because uγ
α is continuous off the origin,
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we can simply drop the star ∗ , when we are interested in points different
from the origin. This implies

uλ(x, t) ≤ ε+ Φγ
α

(
x+Mλ−1

t1/(α+1)

)
,

and then
u(x, t) ≤ ε+ Φγ

α

( x

t1/(α+1)

)
.

Therefore, for every x < 0 we have

u(x, 0) ≤ ε+ Φγ
α(−∞) = ε.

Because this is true for every ε > 0, we get u(x, 0) ≤ 0 for every x < 0.
We get the other inequalities similarly, and finally conclude that (5.2) is
valid.

Step 3: Initial condition at the origin, using assumption (5.1). We now
make use of (5.1) to identify the initial values of the limits u and u. We
deduce from the comparison principle that

0 ≤ u(x, 0) ≤ u(x, 0) ≤ 1,

and then for every x ∈ R we have

u(x, 0) ≤ H∗(x) and u(x, 0) ≥ H∗(x).

Step 4: Identification of the limits after rescaling. From Lemma 5.1, we
obtain

u ≤ (uα)∗ = (uα)∗ ≤ u on (R× [0,+∞))\ {(0, 0)} .
We have by the construction u ≤ u, hence we infer

u = u = uα on (R× [0,+∞))\ {(0, 0)} .

Step 5: Conclusion for the convergence. Then for any compact K ⊂
(R× [0,+∞))\ {(0, 0)}, we can easily deduce that

sup
(x,t)∈K

|uλ(x, t)− uα(x, t)| → 0 as λ→ +∞,

which finishes the proof of Theorem 5.2. �

6. Further decay properties and

the end of the proof of Theorem 2.5

Theorem 6.1 (Decay of a solution with compact support). Let u be the
solution to (2.1)–(2.2) with the initial datum u0 ∈ BUC(R) satisfying for
some A > 0

(6.1) u0(x) ≤ 0 for |x| ≥ A,

and u0(x) ≤ γ for some γ > 0 and all x ∈ R. Then, there exist β, β′ > 0
(depending on α, but independent of A, γ) such that

u(x, t) ≤ Ct−β ,
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and
u(x, t) ≤ 0 for |x| ≥ C ′tβ

′

with some constants C = C(α,A, γ) and C ′ = C ′(α,A, γ).

First, we need the following

Lemma 6.2 (Decay after the first interaction). Consider Φα and yα defined
in Theorem 2.1. Let ν ∈ (1/2, 1) and ξν ∈ (0, yα) be such that Φα(ξν) = ν.
Let T > 0 be defined by

(6.2)
A

γ1/(α+1)T 1/(α+1)
= ξν .

Then, under the assumptions of Theorem 6.1, we have

(6.3) u(x, t) ≤ νγ for all t ≥ T, x ∈ R,

and

(6.4) u(x, t) ≤ 0 for all 0 ≤ t ≤ T and |x| ≥ A

(
1 +

yα

ξν

)
.

Proof. Let us denote Φγ
α(y) = γΦα

(
γ−1/(α+1)y

)
. Then we have

γH(x+A) ≥ u0(x) for x ∈ R,

where

γH(x+A) = lim
t→0+

Φγ
α

(
x+A

t1/(α+1)

)
for x+A 6= 0.

Now, we apply the comparison principle to deduce that

Φγ
α

(
x+A

t1/(α+1)

)
≥ u(x, t) for (x, t) ∈ R× (0,+∞).

This argument can be made rigorous by simply replacing the function γH(x+
A) by Φγ

α

(
(x+A+ δ)/(t1/(α+1)

ε )
)

with δ > 0 and some sequence tε → 0+,

and then taking the limit δ → 0+.
Therefore we have

γΦα

(
x+A

γ1/(α+1)t1/(α+1)

)
≥ u(x, t) for (x, t) ∈ R× (0,+∞).

From the properties of the support of Φα, we also deduce that

u(x, t) ≤ 0 for x ≤ −
(
A+ yα(γt)1/(α+1)

)
,

and then, by symmetry,

u(x, t) ≤ 0 for |x| ≥ A+ yα(γt)1/(α+1).

Moreover, it follows from the monotonicity of Φα that

γΦα

(
A

(γt)1/(α+1)

)
≥ u(x, t)

for x ≤ 0, and by symmetry we can prove the same property for x ≥ 0.
Then for T > 0 defined in (6.2) we easily deduce (6.3) and (6.4). This ends
the proof of Lemma (6.2). �
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Proof of Theorem 6.1. We apply recurrently Lemma 6.2. Define A0 = A,
γ0 = γ, and

An+1 = An

(
1 +

yα

ξν

)
, γn+1 = νγn, and

An

(γnTn)1/(α+1)
= ξν .

This gives

An = A0

(
1 +

yα

ξν

)n

, γn = νnγ0, Tn = Kµn,

with

K =
1
γ0

(
A0

ξν

)α+1

, 1 < µ =
1
ν

(
1 +

yα

ξν

)α+1

,

and therefore

u(x, t) ≤ γn for t ≥ T0 + ...+ Tn−1 = K
µn − 1
µ− 1

.

In particular, we get for any n ∈ N

u(x, t) ≤ γ0ν
n for t ≥ K0µ

n

with K0 = K/(µ− 1). This implies

u(x, t) ≤ γ0K
β
0 t
−β for any t > 0, x ∈ R,

with

β = − log ν
logµ

> 0.

Similarly, we have

u(x, t) ≤ 0 for |x| ≥ An if t ≤ T0 + ...+ Tn−1 = K
µn − 1
µ− 1

.

In particular, we get for any n ∈ N\ {0}

u(x, t) ≤ 0 for |x| ≥ A0

(
1 +

yα

ξν

)n

, if t ≤ K ′
0µ

n

with K ′
0 = K/µ. This implies

u(x, t) ≤ 0 for |x| ≥ A0(K ′
0)
−β′tβ

′
for t ≥ 0,

with

β′ =
log
(
1 + yα

ξν

)
logµ

> 0.

This ends the proof of Theorem 6.1. �

As a corollary, we can now remove assumption (5.1) in Theorem 5.2 and
complete the proof of Theorem 2.5.
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Proof of Theorem 2.5. We simply repeat Step 3 of the proof of Theorem 5.2,
but here without assuming (5.1). Then, for any ε > 0 there exists A > 0
such that

u0(x) ≤ 1 + ε for |x| ≥ A.

By Theorem 6.1 applied to the solution u(x, t)−1−ε, this implies that there
exists a constant C > 0 (depending on ε) such that

u(x, t) ≤ 1 + ε+ Ct−β .

Therefore, for any for λ > 0 the following inequality

uλ(x, t) ≤ 1 + ε+ Ct−βλ−β

holds true, which implies that u = lim sup
λ→+∞

∗uλ satisfies

u(x, t) ≤ 1 + ε for (x, t) ∈ R× (0,+∞).

Since this is true for any ε > 0, we deduce that

u(x, t) ≤ 1 for (x, t) ∈ R× (0,+∞).

Let us now define ũ = min (1, u) . By the construction,

ũ(x, t) = u(x, t) for (x, t) ∈ R× [0,+∞)\ {(0, 0)} ,

and, by (5.2), we have ũ(x, 0) ≤ H∗(x) for all x ∈ R. Therefore, ũ is a sub-
solution of (2.1)–(2.2) on R × [0,+∞) with the initial datum being the
Heaviside function.

Similarly, we can show that u = lim sup
λ→+∞

∗u
λ satisfies

u ≥ 0 for (x, t) ∈ R× (0,+∞).

Hence, the function ũ = max (0, u) , which is a supersolution of (2.1)–(2.2)
on R× [0,+∞) with the Heaviside initial datum.

Finally, the conclusion of the proof is the same as in the proof of Theorem
5.2 where u (resp. u) is replaced by ũ (resp. ũ). This finishes the proof of
Theorem 2.5. �

7. Approximate equation and gradient estimates

In this section, in order to prove our gradient estimates for viscosity so-
lutions stated in Theorem 2.7, we replace equation (2.1) by an approximate
equation for which smooth solutions do exist. Indeed, with ε > 0, we con-
sider the following initial value problem

ut = εuxx − |ux|Λαu on R× (0,+∞),(7.1)

u(x, 0) = u0(x) for x ∈ R.(7.2)

We have added to equation (2.1) an auxiliary viscosity term which is stronger
than Λαu and ux. In the case α ∈ (0, 1], we will see later (in Section 8) that
it is possible to pass to the limit ε → 0+ in L∞(R), which is the required
convergence for the framework of viscosity solutions. The difficulty in the
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case α ∈ (1, 2) comes from the fact that, for the limit equation with ε = 0,
we are not able to give a meaning to the product |ux| (Λαu) in the sense of
distributions, while it is possible when α ∈ (0, 1].

Our results on qualitative properties of solutions to the regularized prob-
lem (7.1)–(7.2) are stated in the following two theorems.

Theorem 7.1 (Approximate equation – existence of solutions). Let α ∈
(0, 1] and ε > 0. Given any initial datum u0 ∈ C2(R) such that u0,x ∈
L1(R)∩L∞(R), there exists a unique solution u ∈ C(R×[0,+∞))∩C2,1(R×
(0,+∞)) of (7.1)–(7.2). This solution satisfies

(7.3) ux ∈ C([0, T ], Lp(R)) ∩ C((0, T ]; W 1,p(R)) ∩ C1((0, T ], Lp(R))

for every p ∈ (1,∞) and each T > 0.

Theorem 7.2 (Approximate equation – decay estimates). Under the as-
sumptions of Theorem 7.1, the solution u = u(x, t) of (7.1)–(7.2) satisfies

(7.4) ‖u(·, t)‖∞ ≤ ‖u0‖∞, ‖ux(·, t)‖∞ ≤ ‖u0,x‖∞,

and

(7.5) ‖ux(·, t)‖p ≤ Cp,α‖u0,x‖
pα+1

p(α+1)

1 t
− 1

α+1

(
1− 1

p

)
,

for every p ∈ [1,∞), all t > 0, and constants Cp,α > 0, see (7.20) below),
independent of ε > 0, t > 0 and u0.

Existence theory. First, we construct solutions to the initial value prob-
lem for the regularized equation.

Proof of Theorem 7.1. Note first that

(7.6) Λαu = Λα−1Hux,

whereH denotes the Hilbert transform, see (1.10). We recall that the Hilbert
transform is bounded on the Lp-space for any p ∈ (1,+∞) (see [30, Ch. 2,
Th. 1]), i.e. it satisfies for any function v ∈ Lp(R) the following inequality

(7.7) ‖Hv‖p ≤ Cp‖v‖p

with a constant Cp independent of v.
For α ∈ (0, 1), the operator Λα−1 defined analogously as in (2.3) corre-

sponds to the convolution with the Riesz potential Λα−1v = Cα| · |−α ∗ v.
Hence, by [30, Ch. 5, Th. 1], for any p > 1/α with α ∈ (0, 1] and any function
v ∈ Lq(R), we have

(7.8) ‖Λα−1v‖p ≤ Cp,α‖v‖q with
1
q

=
1
p

+ 1− α.

Now, if u = u(x, t) is a solution to (7.1)–(7.2), using identity (7.6), we
write the initial value problem for v = ux

vt = εvxx − (|v|Λα−1Hv)x on R× (0,+∞),(7.9)

v(·, 0) = v0 = u0,x ∈ L1(R) ∩ L∞(R)(7.10)
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as well as its equivalent integral formulation

(7.11) v(t) = G(εt) ∗ v0 −
∫ t

0
∂xG(ε(t− τ)) ∗ (|v|Λα−1Hv) dτ,

with the Gauss–Weierstrass kernel G(x, t) = (4πt)−1/2 exp(−x2/(4t)).
The next step is completely standard and consists in applying the Banach

contraction principle to equation (7.11) in a ball in the Banach space

XT = C([0, T ]; L1(R) ∩ L∞(R))

endowed with the usual norm ‖v‖T = supt∈[0,T ](‖v(t)‖1 + ‖v(t)‖∞). Us-
ing well known estimates of the heat semigroup and inequalities (7.7)–(7.8)
combined with the imbedding L1(R) ∩ L∞(R) ⊂ Lp(R) for each p ∈ [1,∞],
we obtain a solution v = v(x, t) to equation (7.11) in the space XT provided
T > 0 is sufficiently small. We refer the reader to, e.g., [2, 5] for examples
of such a reasoning.

This solution satisfies (7.3) for every p ∈ (1,∞) and each T > 0, by
standard regularity estimates of solutions to parabolic equations. Moreover,
following the reasoning in [2], one can show that the solution is regular.

Finally, this local-in-time solution can be extended to global-in-time (i.e.
for all T > 0) because of the estimates ‖v(t)‖p ≤ ‖v0‖p for every p ∈ [1,∞]
being the immediate consequence of inequalities (7.17), (7.18), and (7.21)
below. �

Gradient estimates. In the proof of the decay estimates of ux, we shall
require several properties of the operator Λα. First, we recall the Nash
inequality for the operator Λα.

Lemma 7.3 (Nash inequality). Let α > 0. There exists a constant CN > 0
such that

(7.12) ‖w‖2(1+α)
2 ≤ CN‖Λα/2w‖2

2‖w‖2α
1

for all functions w satisfying w ∈ L1(R) and Λα/2w ∈ L2(R).

The proof of inequality (7.12) is given, e.g., in [26, Lemma 2.2].

Our next tool is the, so called, Stroock–Varopoulos inequality.

Lemma 7.4 (Stroock–Varopoulos inequality). Let 0 ≤ α ≤ 2. For every
p > 1, we have

(7.13)
∫

R
(Λαw)|w|p−2w dx ≥ 4(p− 1)

p2

∫
R

(
Λ

α
2 |w|

p
2

)2
dx

for all w ∈ Lp(R) such that Λαw ∈ Lp(R). If Λαw ∈ L1(R), we obtain

(7.14)
∫

R
(Λαw) sgnw dx ≥ 0.
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Moreover, if w, Λαw ∈ L2(R), it follows that

(7.15)
∫

R
(Λαw)w+ dx ≥ 0 and

∫
R
(Λαw)w− dx ≥ 0,

where w+ = max{0, w} and w− = max{0,−w}.

Inequality (7.13) is well known in the theory of sub-Markovian operators
and its statement and the proof is given, e.g., in [27, Th. 2.1 combined with
the Beurling–Deny condition (1.7)]. Inequality (7.14), called the (general-
ized) Kato inequality, is used, e.g., in [13] to construct entropy solutions of
conservation laws with a Lévy diffusion. It can be easily deduced from [13,
Lemma 1] by an approximation argument. The proof of (7.15) can be found,
for example, in [27, Prop. 1.6].

Remark 7.5. Remark that inequality (7.14) appears to be a limit case of
(7.13) for p = 1. Inequality (7.15) for w+ follows easily from (7.14) by
a comparison argument if, for instance, w ∈ C∞c (R). Finally, remark that
the constant appearing in (7.13) is the same as for the Laplace operator
∂2/∂x2 = −Λ2.

Our proof of the decay of v(t) = ux(t) is based on the following Gagliardo–
Nirenberg type inequality

Lemma 7.6 (Gagliardo–Nirenberg type inequality). Assume that p ∈ (1,∞)
and α > 0 are fixed and arbitrary. For all v ∈ L1(R) such that Λα/2|v|(p+1)/2 ∈
L2(R), the following inequality is valid

(7.16) ‖v‖a
p ≤ CN

∥∥∥Λα/2|v|(p+1)/2
∥∥∥2

2
‖v‖b

1,

where

a =
p(p+ α)
p− 1

, b =
pα+ 1
p− 1

,

and CN is the constant from the Nash inequality (7.12).

Proof. Without loss of generality, we can assume that ‖v‖1 6= 0. Substitut-
ing w = |v|(p+1)/2 in the Nash inequality (7.12) we obtain

‖v‖(p+1)(1+α)
p+1 ≤ CN

∥∥∥Λα/2|v|(p+1)/2
∥∥∥2

2
‖v‖α(p+1)

(p+1)/2.

Next, it suffices to apply two particular cases of the Hölder inequality(
‖v‖p

‖v‖1/p2

1

)p2/(p2−1)

≤ ‖v‖p+1 as well as ‖v‖(p+1)/2 ≤ ‖v‖p/(p+1)
p ‖v‖1/(p+1)

1 ,

and compute carefully all the exponents which appear on the both sides of
the resulting inequality. �

Proof of Theorem 7.2. The first inequality in (7.4) is an immediate conse-
quence of the comparison principle from Theorem 4.3, because classical so-
lutions are viscosity solutions, as well. The maximum principle and an
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argument based on inequalities (7.15) (cf. [26] for more detail) lead to the
second inequality in (7.4). We also discuss this inequality in Remark 7.7
below.

For the proof of the L1-estimate

(7.17) ‖ux(t)‖1 ≤ ‖u0,x‖1

(i.e. (7.5) with p = 1 and Cp,α = 1), we multiply equation (7.9) by sgn v =
sgnux and we integrate with respect to x to obtain

d
dt

∫
R
|v|dx = ε

∫
R
vxxsgn v dx−

∫
R

(
(Λα−1Hv)|v|

)
x
sgn v dx.

The first term on the right hand side is nonpositive by the Kato inequality
(i.e. (7.14) with α = 2) hence we skip it. Remark that (formally)∫

R

(
(Λα−1Hv)|v|

)
x
sgn v dx =

∫
R
(Λα−1Hv)vx(sgn v)2 + (Λα−1Hvx)v dx

=
∫

R

(
(Λα−1Hv)v

)
x

dx = 0.

Now, approximating the sign function in a standard way by sgnδ(z) =
z/
√
z2 + δ, integrating by parts, and passing to the limit δ → 0+, one can

show rigorously that the second term on right hand side of the above in-
equality is nonpositive. This completes the proof of (7.17) with p = 1.

Next, we multiply equation in (7.9) by |v|p−2v with p > 1 to get
1
p

d
dt

∫
R
|v|p dx = ε

∫
R
vxx|v|p−2v dx−

∫
R

(
(Λα−1Hv)|v|

)
x
|v|p−2v dx.

We drop the first term on the right hand side, because it is nonpositive by
(7.13) with α = 2. Integrating by parts and using the elementary identity

|v|
(
|v|p−2v

)
x

=
p− 1
p

(
|v|p−1v

)
x
,

we transform the second quantity on the right hand side as follows

−
∫

R

(
(Λα−1Hv)|v|

)
x
|v|p−2v dx = −p− 1

p

∫
R
(Λαv)|v|p−1v dx.

Consequently, by the Stroock–Varopoulos inequality (7.13) (with the expo-
nent p replaced by p+ 1), we obtain

(7.18)
d
dt
‖v(t)‖p

p ≤ −4p(p− 1)
(p+ 1)2

∥∥∥Λα/2|v|(p+1)/2
∥∥∥2

2
.

Hence, the interpolation inequality (7.16) combined with (7.17) lead to the
following inequality for ‖v(t)‖p

p

(7.19)
d
dt
‖v(t)‖p

p ≤ −4p(p− 1)
(p+ 1)2

(
CN‖v0‖(pα+1)/(p−1)

1

)−1 (
‖v(t)‖p

p

)(p+α)/(p−1)
.

Recall now that if a nonnegative (sufficiently smooth function) f = f(t)
satisfies, for all t > 0, the inequality f ′(t) ≤ −Kf(t)β with constants K > 0
and β > 1, then f(t) ≤ (K(β − 1)t)−1/(β−1). Applying this simple result
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to the differential inequality (7.19), we complete the proof of the Lp-decay
estimate (7.5) with the constant

(7.20) Cp,α =
(
C−1

N

4p(α+ 1)
(p+ 1)2

)− 1
α+1

(
1− 1

p

)
,

where CN is the constant from the Nash inequality (7.12). �

Remark 7.7. Note that, for every fixed α, we have limp→∞Cp,α = +∞. By
this reason, we are not allowed to pass directly to the limit p → +∞ in
inequalities (7.5) (as was done in, e.g., [26, Th. 2.3]) in order to obtain
a decay estimate of v(t) in the L∞-norm. Nevertheless, using (7.19) we
immediately deduce the inequality ‖v(·, t)‖p ≤ ‖v0(·)‖p valid for every p ∈
(1,∞). Hence, passing to the limit p→ +∞ we get

(7.21) ‖v(·, t)‖∞ ≤ ‖v0(·)‖∞.

It is natural to expect that, under the assumptions of Theorem 7.2, the
quantity ‖v(·, t)‖∞ should decay at the rate t−1/(α+1). For a proof, one might
follow an idea from [6, Lemma 4.7] where the decay estimates of vx(·, t) were
obtained for solutions of a certain regularization of equation (1.15). Here,
however, we did not try to go this way, because our main goal was to study
decay estimates for the problem (2.1)–(2.2) whose viscosity solutions are not
regular enough a priori to handle decay properties of uxx(x, t) = vx(x, t).

8. Passage to the limit and the proof of Theorem 2.7

Now, we are in a position to complete the proof of the gradient esti-
mates (2.11). First, we show that form the sequence {uε}ε>0 of solutions to
the approximate problem (7.1)–(7.2) one can extract, via the Ascoli–Arzelà
theorem, a subsequence converging uniformly. Theorem 4.4 on the stabil-
ity and Remark 4.5 imply that the limit function is a viscosity solution to
(2.1)–(2.2). Passing to the limit ε → 0+ in inequalities (7.4) and (7.5) we
complete our reasoning.

Proof of Theorem 2.7. First, let us suppose that u0 ∈ C∞(R) ∩ W 2,∞(R)
with u0,x ∈ L1(R) ∩ L∞(R). Denote by uε = uε(x, t) the corresponding
solution to the approximate problem with ε > 0.

Step 1: Modulus of continuity in space. Under this additional assumption,
we have

(8.1) ‖uε
x(·, t)‖p ≤ Cpt

−γp

with Cp = Cp,α‖u0,x‖
pα+1

p(α+1)

1 and γp = 1
α+1

(
1− 1

p

)
. The Sobolev imbedding

theorem implies that there exist some β ∈ (0, 1) and C0 > 0 such that

(8.2) |uε(x+ h, t)− uε(x, t)| ≤ |h|βC0Cpt
−γp .
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Step 2: Modulus of continuity in time. Let us consider a nonnegative
function ϕ ∈ C∞(R) with suppϕ ⊂ [−1, 1] such that

∫
R ϕ(x) dx = 1, and

for any δ > 0 set ϕδ(x) = δ−1ϕ(δ−1x). Then, multiplying (7.1) by ϕδ and
integrating in space, we get

d
dt

(∫
R
uε(x, t)ϕδ(x) dx

)
= ε〈uε(·, t), (ϕδ)xx〉

−
∫

R
ϕδ(x) |uε

x(x, t)|(H Λα−1 uε
x(x, t)) dx,

and then with 1/p+ 1/p′ = 1∣∣∣∣ d
dt

(∫
R
uε(x, t)ϕδ(x) dx

)∣∣∣∣ ≤ ε‖uε(·, t)‖∞‖(ϕδ)xx‖1

+ ‖ϕδ‖∞‖uε
x(·, t)‖p‖‖H Λα−1 uε

x(·, t)‖p′ .

(8.3)

Here, we have used relation (7.6). Combining inequalities (7.7) and (7.8)
with estimate (8.1), we get for p′ > 1/α

‖H Λα−1 uε
x(·, t)‖p′ ≤ Cp′Cp′,αCqt

−γq .

Then for any bounded time interval I ⊂ (0,+∞) there exists a constant CI,δ

such that for all t ∈ I, we have for any ε ∈ (0, 1]∣∣∣∣ d
dt

(∫
R
uε(x, t)ϕδ(x) dx

)∣∣∣∣ ≤ CI,δ.

Now, for any t, t+ s ∈ I, we get∣∣∣∣∫
R
uε(x, t+ s)ϕδ(x) dx−

∫
R
uε(x, t)ϕδ(x) dx

∣∣∣∣ ≤ |s|CI,δ.

Therefore, the following estimate

|uε(0, t+ s)− uε(0, t)|

≤ |s|CI,δ +
∫

R
ϕδ(x) dx

× sup
x∈[−δ,δ]

(
|uε(x, t+ s)− uε(0, t+ s)|+ |uε(x, t)− uε(0, t)|

)
holds true. Using the Hölder inequality (8.2), we deduce that there exists
a constant CI depending on I, but independent of δ and of ε ∈ (0, 1], such
that

|uε(0, t+ s)− uε(0, t)| ≤ |s|CI,δ + CIδ
β.

Since the above inequality is true for any δ, this shows the existence of
a modulus of continuity ωI satisfying

|uε(0, t+ s)− uε(0, t)| ≤ ωI(|s|) for any t, t+ s ∈ I.

By the translation invariance of the problem, this estimate is indeed true
for any x ∈ R, i.e.

(8.4) |uε(x, t+ s)− uε(x, t)| ≤ ωI(|s|) for any t, t+ s ∈ I, x ∈ R.
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Step 3: Convergence as ε→ 0+. From estimates (8.2) and (8.4), and using
the Ascoli–Arzelà theorem and the Cantor diagonal argument, we deduce
that there exists a subsequence (still denoted {uε}ε) which converges to
a limit u ∈ C(R× (0,+∞)). By the stability result in Theorem 4.4 (see also
Remark 4.5), we have that u is a viscosity solution of (2.1) on R× (0,+∞).

Step 4: Checking the initial conditions for u0 smooth. Remark that for
u0 ∈W 2,∞ we can use the barriers given in (4.4) with some constant C > 0
uniform in ε ∈ (0, 1]. This ensures that u is continuous up to t = 0 and
satisfies u(·, 0) = u0, so this proves the result under additional assumptions.

Step 5: General case. The proof in the case of less regular initial condi-
tions simply follows by an approximation argument as was in the proof of
Theorem 4.7.

Step 6: Gradient estimates. To pass to the limit ε → 0+ in estimates
(7.5), we use the inequality

(8.5) h−1‖uε(·+ h, t)− uε(·, t)‖p ≤ ‖uε
x(·, t)‖p

with fixed h > 0. Hence, by the Fatou lemma combined with the pointwise
convergence of uε toward u, we deduce from (8.5) and (7.5) that

h−1‖u(·+ h, t)− u(·, t)‖p ≤ Cp,α‖u0,x‖
pα+1

p(α+1)

1 t
− 1

α+1

(
1− 1

p

)
for all h > 0. For every fixed t > 0, the sequence {h−1(u(·+h, t)−u(·, t))}h>0

is bounded in Lp(R) and converges (up to a subsequence) weakly in Lp(R)
toward ux(·, t) (see, e.g., [30, Ch. V, Prop. 3]). Using the well known prop-
erty of a weak convergence in Banach spaces we conclude

‖ux(·, t)‖p ≤ lim inf
h→0+

h−1‖u(·+h, t)−u(·, t)‖p ≤ Cp,α‖u0,x‖
pα+1

p(α+1)

1 t
− 1

α+1

(
1− 1

p

)
.

This finishes the proof of Theorem 2.7. �
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Partial Diff. Eq. 16 (1991), 1057–1093.

30. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton
Mathematical Series 30, Princeton University Press, Princeton, N.J., 1970.

31. F. G. Tricomi, Integral Equations, Interscience Publ., New York, London, 1957.
32. J.L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations.

Equations of Porous Medium Type, Oxford Lecture Series in Mathematics and its
Applications 33, Oxford University Press, Oxford, 2006.



26 PIOTR BILER, GRZEGORZ KARCH, AND RÉGIS MONNEAU
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