
HAL Id: hal-00369423
https://hal.science/hal-00369423

Submitted on 19 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

State Space Reduction based on Live Variables Analysis
Marius Bozga, Jean-Claude Fernandez, Constantin Lucian Ghirvu

To cite this version:
Marius Bozga, Jean-Claude Fernandez, Constantin Lucian Ghirvu. State Space Reduction based on
Live Variables Analysis. Static Analysis 6th International Symposium, SAS’99, Sep 1999, Venice,
Italy. pp.164-178, �10.1007/3-540-48294-6_11�. �hal-00369423�

https://hal.science/hal-00369423
https://hal.archives-ouvertes.fr

State Space Reduction based onLive Variables AnalysisMarius Bozga1, Jean-Claude Fernandez2, and Lucian Ghirvu1?1 VERIMAG? ? ?, Centre Equation, 2 avenue de Vignate, F-38610 Gi�eresMarius.Bozga@imag.fr, Lucian.Ghirvu@imag.fr2 LSR/IMAG, BP 82, F-38402 Saint Martin d'H�eres CedexJean-Claude.Fernandez@imag.frAbstract. The intrinsic complexity of most protocol speci�cations inparticular, and of asynchronous systems in general, lead us to studycombinations of static analysis with classical model-checking techniquesas a way to enhance the performances of automated validation tools.The goal of this paper is to point out that an equivalence on our modelderived from the information on live variables is stronger than the strongbisimulation. This equivalence, further called live bisimulation, exploitsthe unused dead values stored either in variables or in queue contentsand allow to simplify the state space with a rather important factor.Furthermore, this reduction comes almost for free and is always possibleto directly generate the quotient model without generating the initialone.Keywords: model checking, state space reduction, bisimulation, asynchronouscommunication, live variables analysis1 IntroductionFormal Description Techniques such as lotos [16] or sdl [17] are now at thebase of a technology for the speci�cation and the validation of telecommunicationsystems. This is due not only to the fact that these formalisms are promoted byitu and other international standardization bodies but also to the availabilityof mature commercial tools, mainly for editing, code generation and testing.Alternatively, we have been developing for more than ten years a set of toolsdedicated to the design and validation of critical systems and based on the modelchecking paradigm [22, 8]. One of them is the model checker aldebaran [7]maintained and distributed in collaboration with the vasy team of inria Rhône-Alpes as part of the cadp toolset [11]. Another one is the test sequence generatortgv [13], built upon cadp and jointly developed with the pampa project of irisa.? This work was partially supported by R�egion Rhône Alpes? ? ? VERIMAG is a joint laboratory of CNRS, UJF and INPG Grenoble

The central problem arising in the context of model based validation andimplicitly for the above mentioned tools is the well known state explosion prob-lem. To deal with it, we begin more recently to investigate alternative programrepresentations and more important, ways to adapt techniques issued from otheradvanced domains such as compiler design and optimization in the context ofmodel checking. In this respect, we developed if [5] which is an intermediate pro-gram representation based on asynchronously communicating timed automata.if was designed on one hand to be able to represent signi�cant subsets of sdland lotos and on the other hand to support the application of static analysistechniques used in compiler optimization [2, 21]. In particular, a translation fromsdl into if is already implemented using the sdl/api interface provided by theindustrial tool Objectgeode to its sdl compiler.In general, model checkers and in particular aldebaran and tgv are basedon the central notion of bisimulation [20]. In fact, either in the veri�cation processor in the test generation process there is usually a step of minimization modulostrong bisimulation. This lead us to consider static analysis techniques for ifprograms in the context of bisimulation equivalences.The main goal of this paper is to point out that an equivalence on our modelderived from the information on live variables is stronger than the strong bisim-ulation. This equivalence, further called live bisimulation, exploits the unuseddead values stored either in variables or in queue contents and allow to sim-plify the state space with a rather important factor. Furthermore, this reductioncomes almost for free and is always possible to directly generate the quotientmodel without generating the initial one.The idea of using static analysis to improve model checking was already beinginvestigated in di�erent particular contexts. For instance, in [10] was proposeda method to reduce the number of clocks in timed automata using live clocksand clocks equality analysis. In [18] was given a method which combines partialorder reductions and static analysis of independent actions for sdl programs.An important work was done to �nd e�cient representations of possible in�-nite queue contents and to exploit the static control structure when performingreachability analysis [4, 1]. However, at the best of our knowledge we are the�rst to make use of live variables to simplify the state space, including queuecontents, of asynchronous systems with queue-based communication.The paper is structured as follows. Section 2 presents the underlying modelwhich is parallel processes asynchronous communicating via queues. Section 3brie
y remember the notion of live variables and some basic properties aboutthem. In section 4 we introduce the live equivalence relation on states and showthat is a bisimulation. An e�cient way to identify live equivalent states usinga canonical form is then presented in section 5. Finally, in section 6 we discussthe general utility of introduced equivalences in the context of model-checking.Some practical results obtained on a small example are given in section 7.

2 The model2.1 SyntaxWe consider systems consisting of asynchronous parallel composition of a numberof processes that communicate through parameterized signal passing via a set ofunbounded �fo queues and operate on a set of shared variables. Formally, asystem is a tuple:P ::= (S;X;C; nQi=1 pi)where S is the set of signals, X is the set of variables, C is the set of queuesand fpigi=1;n are processes. Processes perform actions on queues and variables.They are described by terms of a simpli�ed value-passing process algebra withthe following syntax:p ::= nil j �:p j p+ p j Z(e)This syntax contains the usual operators from process algebra: nil denotes theempty process, �:p denotes p pre�xed with action �, p1 + p2 is the nondeter-ministic choice between p1 and p2, and �nally Z(e) stands for recursion with thevalue passing of the expression e. To give a semantics for terms we assume alsothe existence of a set of declarations:Z(y) /def pfor each name Z which occurs in terms. Note that in our algebra such declarationbinds the occurrences of the variable y inside p to Z, therefore y is considereda parameter of the de�nition of Z. The actions are simple guarded commandsde�ned by the following syntax:� ::= [b] �1�1 ::= x := e j c!s(e) j c?s(x)where [b] with b a boolean expression denotes the guard, x := e denotes anassignment of the variable x to the expression e, c!s(e) denotes the output tothe queue c of the signal s with parameter the expression e and �nally, c?s(x)denotes the input from the queue c of the signal s and store of its parameter inthe variable x.2.2 SemanticsWe give the semantics of systems in terms of labeled transition systems. We pro-ceed in two steps: we start with the interpretation of the control part only, thenwe give the interpretation of control combined with data, i.e. queues contentsand variables.The control semantics is described by the following rules which give a way tobuild the control graph of the system, from the parallel composition of processes.The states in this graph are tuples of terms nQi=1 pi, and the transitions are labeledby actions, as follows:

��:p ��!p p ��!p0p+ q ��!p0 q ��!q0p+ q ��!q0p[e=y] ��!p0 Z(y) /def pZ(e) ��!p0 pj ��!p0j pi = p0i 8i 6= jnQi=1 pi ��! nQi=1 p0i
Note that, in this paper we restrict our attention to systems where the controlgraph is �nite, that is if it contains only a �nite number of states and transitions.In order to interpret the data part we assume the existence of the universaldomain D which contains the values of variables and signal parameters. Wesuppose that the boolean values ftrue; falseg and also the special unde�ned ?value are contained in D. We de�ne variable contexts as being total mappings� : X ! D which associate to each variable x a value v from the domain. Weextend these mappings to expressions in the usual way. We de�ne queue contextsas being also total mappings � : C ! (S �D)� which associates to each queuec a sequence (s1; v1); :::; (sk ; vk) of messages, that is pairs (s; v) noted also bys(v), where s is a signal and v is the carried parameter value. We assume alsothe existence of some special unde�ned message �. The empty sequence is notedwith �.The semantics of a system is now completed by the following rules which givea way to build a labeled transition system based on the control graph. Statesof this system are triples of the form (�; �; p), where � is a variable context, �is a queue context and p is a control state. Transitions are either internal andlabeled with � , when derived from assignments or signal inputs, either visibleand labeled with c!s(v) when derived from signal outputs:p[b] x:=e�! p0 �(b) = true �(e) = v(�; �; p) ��!(�[v=x]; �; p0)p[b] c!s(e)�! p0 �(b) = true �(e) = v �(c) = w(�; �; p)c!s(v)�! (�; �[w:s(v)=c]; p0)p[b] c?s(x)�! p0 �(b) = true �(c) = s(v):w(�; �; p) ��!(�[v=x]; �[w=c]; p0)

3 Live variables analysisIn this section we brie
y remember the de�nition of live variables and somegeneral properties about them. We consider the sets of variables used and re-spectively de�ned by some action �. Intuitively, a variable is used either in theguards, in the right hand side of assignments or in outputs. A variable is de�nedeither in the left hand side of assignments or in inputs. Formally, the sets Use(�)and Def(�) are de�ned as follows:� Use(�) Def(�)[b] x := e vars(b) [vars(e) fxg[b] c!s(e) vars(b) [vars(e) ;[b] c?s(x) vars(b) fxgWe consider now the set of live variables for some term p. Intuitively it is thesmallest set of variables which might be used before they are rede�ned wheninterpreting the term. Formally, the sets Live(p) are de�ned as the least �xpointsolution of the following equation system over sets of variables:8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
Live(nil) =� ;Live(�:p) =� Use(�) [Live(p) nDef(�)Live(p+ q) =� Live(p) [Live(q)Live(Z(e)) =� Live(p[e=x]) where Z(y) /def pLive(nQi=1 pi) =� nSi=1Live(pi)An equivalent characterization for the sets of live variables based on the controlgraph transitions and some basic properties are given by the following lemma.Lemma 1.1. Live(p) = Sp ��!p0 Use(�) [Live(p0) nDef(�).2. p ��!p0) Use(�) � Live(p)Live(p0) nDef(�) � Live(p):Proof. 1. Structural induction over term structure. 2. Immediate from 1.

4 Live equivalenceFirst, we consider the variable context equivalence relation induced by the setof live variables: two variable contexts are equivalent if and only if the valuesassigned to each one of the live variables are pairwise identical. Formally, foreach state p we de�ne the variable context equivalence �livep as follows:�1 �livep �2 , 8x 2 Live(p) �1(x) = �2(x)We consider similar equivalence relations de�ned for queue contexts. Intuitivelytwo queue contexts are equivalent if and only if they enable the same sequencesof transitions and if for each enabled input the parameter values are identicalif the receiving variable is live at the next state. Formally, we de�ne the queuecontext equivalences �livep to be the greatest �xpoint solution of the followingequation system where for each state p we have:
�1 �p �2 ,�

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

Vp[b] x:=e�! p0 �1 �p0 �2Vp[b] c!s(e)�! p0 �1 �p0 �2
Vp[b] c?s(x)�! p0

8>>>>>>>>>>>><>>>>>>>>>>>>:
�1(c) = � ^ �2(c) = � ^�1 �p0 �2_�1(c) = s(v1):w1 ^ �2(c) = s(v2):w2 ^(x 2 Live(p0)) v1 = v2) ^�1[w1=c] �p0 �2[w2=c]_�1(c) = s1(v1):w1 ^ �2(c) = s2(v2):w2 ^s1 6= s ^ s2 6= sIf the control graph is �nite, the existence of the greatest �xpoint satisfying theequations above is ensured by the Tarski's �xpoint theorem given the mono-tonicity with respect to the relation inclusion at each state.We de�ne now the live equivalence �live relation over global states: two statesare equivalent if the control states are identical and both the variable contextand the queue context are equivalent:(�1; �1; p) �live (�2; �2; p) , �1 �livep �2 ^ �1 �livep �2The next theorem gives the central result of the paper, that is, the live equiva-lence is also a bisimulation relation over the global states.Theorem 1. The live equivalence �live is a bisimulation.Proof. By de�nition, �live is a bisimulation if and only if for all pairs(�1; �1; p) �live (�2; �2; p) we have:8(�1; �1; p) a�!(�01; �01; p0)) 9(�2; �2; p) a�!(�02; �02; p0) ^ (�01; �01; p) �live (�02; �02; p)

8(�2; �2; p) a�!(�02; �02; p0)) 9(�1; �1; p) a�!(�01; �01; p0) ^ (�01; �01; p) �live (�02; �02; p)Let (�1; �1; p) �live (�2; �2; p) and let p ��!p0. We distinguish three di�erent cases,depending on the type of �.1. � = [b] x := e8i = 1; 2 �i(e) = vi; �i(b) = true)(�i; �i; p) ��!(�0i; �i; p0); �0i = �i[vi=x]�1 �livep �2) �1(b) = �2(b); �1(e) = �2(e); �1[v1=x] �livep0 �2[v2=x]�1 �livep �2) �1 �livep0 �22. � = [b] c!s(e)8i = 1; 2 �i(c) = wi; �i(e) = vi; �i(b) = true)(�i; �i; p)c!s(vi)�! (�i; �0i; p0); �0i = �i[wi:s(vi)=c]�1 �livep �2) �1(b) = �2(b); �1(e) = �2(e); �1 �livep0 rho2�1 �livep �2) �1 �livep0 �2) �1[w1:s(v1)=c] �livep0 �2[w2:s(v2)=c]Note that the second implication comes from the more general property ofqueue content equivalence to be closed under output operations. That is, itcan be proven inductively that, two equivalent queue contents at some statep, are still equivalent after adding the same message to the same queue inboth of them.3. � = [b] c?s(x)8i = 1; 2 �i(c) = s(vi):wi; �i(b) = true)(�i; �i; p) ��!(�0i; �0i; p0); �0i = �i[vi=x]; �0i = �i[wi=c]�1 �livep �2) v1 = v2 if x 2 Live(p0); �1[w1=c] �livep0 �2[w2=c]�1 �livep �2) �1(b) = �2(b); �1[v1=x] �livep0 �2[v2=x]An immediate consequence of the previous theorem is the following one, statingthat the live equivalence is stronger than the strong bisimulation.Theorem 2. �live � �strong.5 Reset equivalenceWe would like to have a more e�cient way to check that two contexts are liveequivalent than to directly check the de�nition. Here we investigate the possi-bility to transform contexts into some canonical form preserving the live equiv-alence. One way to do this is using the family of Reset functions, de�ned below.The Resetv function on variable contexts � basically sets the value of thedead variables to the �xed unde�ned ? value, depending on the current controlstate p. A reset equivalence can be de�ned over variable contexts as follows: twocontexts are reset equivalent if they give the same result when reseted. Formally,we have:

Resetv(p; �) = �� ��(x) = ��(x) if x 2 Live(p)? otherwise�1 �resetp �2 , Resetv(p; �1) = Resetv(p; �2)It is straightforward to prove that the live equivalence and the reset equivalenceon variable contexts are identical, that is, the following lemma holds.Lemma 2. 8p �resetp = �livep .In order to de�ne a similar Resetq function for queue contexts we start by intro-ducing some auxiliary notations.Let consider some �xed queue c. We de�ne the relation �c?�! over control states toinclude all the control transitions, except the ones labeled with inputs from thequeue c. We note with ��c?=) its transitive and re
exive closure and with Post ��c?=)the post image function de�ned over sets of control states, formally:p �c?�!p0 , 9� 6= [b] c?s(x) p ��!p0Post ��c?=)(Q) = f p0 j 9p 2 Q p ��c?=)p0 gLet consider � = [b] c?s(x) to be some input action of signal s from queue c.We note p �=)p0 if it is possible to reach p0 from p by a sequence ending with �and which does not contain any other input from the queue c. We de�ne also thepost image function Post c?s=) over sets of control states, that is, it gives all thestates which can be reached after consuming an s from the queue c. Formally,we have:p[b] c?s(x)=) p0 , 9p00 p ��c?=)p00 ^ p00[b] c?s(x)�! p0Post c?s=)(Q) = f p0 j 9p 2 Q p[b] c?s(x)=) p0gWe de�ne now the local reset function for the queue c given an initial non-empty set of control states Q. That is, given the content w of the queue c, thisfunction basically rewrite it and forgot the signal parameters which statically aredetected to be unused, when execution starts somewhere in Q. With � denotingthe unde�ned message, the function is recursively de�ned as follows:reset(Q; c; �) = 8<:� if 8s Post c?s=)(Q) = ;� otherwise
reset(Q; c; s(v):w) = 8>>>>>>>>>><>>>>>>>>>>:

� if Post c?s=)(Q) = ;s(v):reset(Post c?s=)(Q); c; w)if 9p 2 Q; p[b] c?s(x)=) p0 ^ x 2 Live(p0)s(?):reset(Post c?s=)(Q); c; w)if 8p 2 Q; p[b] c?s(x)=) p0) x 62 Live(p0)

Some interesting properties about the local reset function are given by the fol-lowing lemma.Lemma 3. For any Q, c, w, w1, w2 holds1. reset(Q; c; w) = reset(Post ��c?=)(Q); c; w).2. reset(Q; c; w1) = reset(Q; c; w2))8Q0 � Q reset(Q0; c; w1) = reset(Q0; c; w2).Proof. 1. The proof is immediate from the fact that for any set of control statesQ, channel c and signal s we have:Q � Post ��c?=)(Q) Post c?s=)(Q) = Post c?s=)(Post ��c?=)(Q))2. The proof can be done by induction on the maximal size of the sequences w1and w2.We de�ne the Resetq function and the reset equivalence on queue contexts usinglocal reset functions de�ned before, that is, for a given control state p we consider:Resetq(p; �) = �� ��(c) = reset(fpg; c; �(c))�1 �resetp �2 , Resetq(p; �1) = Resetq(p; �2)The following lemma gives the relation between the live equivalence and the resetequivalence on queue contexts. In general, the reset equivalence is stronger thanthe live equivalence. This is explained by the fact that local resets are based ona conservative assumption about other queues: the inputs from other queues arealways considered enabled. However, in the special case when the input actionsfrom a queue do not enable input actions from other queues, the live equivalenceand the reset equivalence become identical. This can be formalized as follows.For � an input action, we note p �=)�p0 if p0 is reachable from p by a sequenceending with � and which does not contain other inputs. We de�ne now queue cto be reset-independent from queue c0 if and only if :8p; q; q0 p[b0]c0?s0(x0)=)� q; q[b]c?s(x)=)� q0)9p0 p[b]c?s(x)=)� p0; p0[b0]c0?s0(x0)=)� q0; x 2 Live(p0), x 2 Live(q0)Lemma 4.1. 8p �resetp � �livep .2. if the queues are reset-independent then8p �resetp = �livep .Proof. 1. The proof consist to check that the reset equivalences �resetp satis�esthe �xpoint equations de�ning the live equivalence. This can be easily done giventhe results established by the previous lemma. Then because the live equivalencesare the greatest �xpoint is clear that �resetp ��livep for all control states p.2. Let �1 �livep �2 and the queue c �xed. We will prove inductively thatreset(fpg; c; �1(c)) = reset(fpg; c; �2(c)). We distinguish the following cases:

1. �1(c) = �; �2(c) = �) reset(fpg; c; �1(c)) = reset(fpg; c; �2(c))2. �1(c) = �; �2(c) = s2(v2):w2(a) 8s Post c?s=)(fpg) = ;) reset(fpg; c; �1(c)) = reset(fpg; c; �2(c)) = �(b) 9s Post c?s=)(fpg) 6= ;) 9p = p0 �c?s�!p1 �c?s�!:::�c?s�!pn[b] c?s(x)�! p0and because the inputs are independent we can choose this sequence suchthat it doesn't contain inputs from other queues) we obtain a contradiction with the de�nition of the live equivalencehypothesis, that is �1 6�livep �23. �1(c) = s1(v1):w1; �2(c) = s2(v2):w2(a) Postc?s1=)(fpg) = ;; Postc?s2=)(fpg) = ;) reset(fpg; c; �1(c)) = reset(fpg; c; �2(c)) = �(b) Postc?s1=)(fpg) 6= ;; Postc?s2=)(fpg) = ;) contradiction with the live equivalence, as before.(c) Postc?s1=)(fpg) 6= ;; Postc?s2=)(fpg) 6= ;i. s1 6= s2) contradiction with the live equivalence, as before.ii. s1 = s2 = s and v1 6= v2 and 9p[b] c?s(x)=) p0 x 2 Live(p0)) contradiction with the live equivalence, as before.iii. s1 = s2 = s and v1 = v2 = v or 8p[b] c?s(x)=) p0 x 62 Live(p0)) reset(fpg; c; s1(v1):w1) = s(v):reset(Post c?s=)(fpg); c; w1)reset(fpg; c; s2(v2):w2) = s(v):reset(Post c?s=)(fpg); c; w2)and from the live equivalence hypothesis we have also that8p0 2 Post c?s=)(fpg) �1[w1=c] �livep0 �2[w2=c]so we can inductively infer that either contradiction orreset(fpg; c; s1(v1):w1) = reset(fpg; c; s2(v2):w2)Finally, we de�ne the reset equivalence over global states as follows:(�1; �1; p) �reset (�2; �2; p) , �1 �resetp �2 ^ �1 �resetp �2The link between the live and reset equivalence over global states is establishedby the following theorem.Theorem 3.1. �reset � �live2. if the queues are reset-independent then:�reset = �liveFinally, note that sdl systems satisfy the independence hypothesis as they arecomposed from parallel processes, each one having its own unique input queue.Thus, performing a signal input in a process does not interfere with other possibleinputs in other processes.

6 Live analysis and model checkingThe reductions based on live or reset equivalence can be obtained with almostno cost and are fully orthogonal to other techniques applied in the context ofmodel-checking validation to deal with the state-explosion problem.The weak cost of the live equivalence reduction is due to the static analy-sis approach: live variables need to be computed once in the beginning with analgorithm operating on the control graph and then are used by primitives suchas Reset which operate on states content and which have a linear complexitywith respect to the size of the state (the number of variables plus the number ofmessages in the queues). In fact, in the context of exhaustive state space explo-ration algorithms such primitives can be viewed as having constant operationtime, similar to operations like state copying or state comparison.Live equivalence reduction can be combined with techniques ranging fromthe simplest model generation, with standard on the
y veri�cation methodsand even with more sophisticated partial order or symbolic techniques.Enumerative simulation is at the basis of most of the veri�cation algorithms.It is always possible to directly generate the quotient graph with respect tolive or reset equivalences, thus preserving all the observable behaviors, withoutconstructing the initial one. This can be easily done for instance by consideringevery time a new state is generated its canonical form given by Reset. Resetequivalent states will be automatically identi�ed as equals and explored once bythe generation algorithm.On the
y veri�cation techniques such as [12] rely on enumerative depth �rsttraversals of the model state space and the meantime evaluation of the property(e.g, temporal logic formula, observer automaton, test purpose). In this case too,the property can be directly evaluated on the reduced graph, if it is not explicitlydependent on state variables or queue contents but only on the observable actionsof the system (e.g, outputs). Note that, if such dependencies exist, they can benormally removed by introducing auxiliary observable actions and by modifyingthe property accordingly.Partial order techniques [15] reduce the state space by avoiding to exploreinterleaving of independent actions. Clearly, the live equivalence reduction canbe further considered when new states are encountered, as before.In the symbolic model checking context [19] the information on live variablescan be used to simplify the BDDs representing the transition relation and thesets of states. In fact, dead variables for a given control state provide non-trivialdon't care conditions which can be exploited either directly to simplify any �nalor intermediate result, or even better, to improve primitives like successors orpredecessor computation on symbolic representations.In particular, live equivalence reduction can also be applied at each step ofthe minimal model generation algorithm [14] which involves the (backward) com-putation of predecessor states. This must be very important as the predecessor

computation usually gives a lot of spurious unreachable states and which mightbe equivalent w.r.t. the live equivalence.7 ExampleWe illustrate the potential reduction obtained using the live equivalence ona small example. We consider two simple processes communicating through aqueue as shown in �gure 1. The �rst process only send arbitrarily request andswitch messages. It is described by Zdummy and the following equation:Zdummy /def (in!switch+ in!request(�)):ZdummyThe second process is more interesting. It has two functioning modes, a normalone and a fault one. Basically, it inputs requests from the in queue and deliversthem, when normal, and looses them otherwise. The mode changes from normalto fault (and backward) when input a switch signal. Formally, we consider thisprocess described by Znormal and the following equations:Znormal /def in?request(x):Zdeliver + in?switch:ZfaultZdeliver /def out!request(x):ZnormalZfault /def in?request(x):Zfault + in?switch:Znormal
dummy

deliver

fault

normal

in out

in!switch

in!request(*)

in?request(x)

out!request(x)

in?switch

in?switch

in?request(x)Fig. 1. The exampleWe can easily check that the variable x is live only at the deliver state. Thus,the value of x must not be used to distinguish between states when somewhereelse that deliver. Furthermore, it can be seen that when at the fault state, the

parameters of the incoming requests are not live too. That is, request signalsare only consumed, without using the carried values. It can be seen also thatsignals of the out queue are never consumed so we don't distinguish states whichdi�ers on the out content. Such cases are all captured by the live equivalence asde�ned in section 4.Figure 2 shows the reduction obtained for this example with respect to twoparameters: m, the size of the domain of x and n, the maximal allowed size ofqueue in. The continuous lines give the real number of states and the dotted linesgive the number of states obtained after considering live equivalence reductionand please notice that an logarithmic scale was used for the number-of-statesaxis. Also, to better illustrate the reduction obtained, note that for instancewhen m = 6 and n = 5 the initial number of states is 352944 and it is reducedat 89824, so with a factor up to 75%.

0 2 4 6 8 10

m=3 n=1:10

100

1000

10000

100000

1000000

10000000

st
at

es

0 2 4 6 8 10

m=1:10 n=3

100

1000

10000

st
at

es

Fig. 2. Live equivalence reduction8 Conclusion and future workThe essence of this work is to show that the live variable analysis de�ne anequivalence stronger than bisimulation equivalence. This allow to simplify thestate space exploiting the information on unused dead values stored either in thevariables or in the queue contents. This idea was already experimented to theindustrial case study SSCOP [6] where we have obtained impressive reductionsof the state space up to 200 times.In the context of model-based validation, the main interest of static analysisis to reduce the state space, which is crucial in practice to deal with complexspeci�cations. Model checking and automatic test generation for conformance

testing are based on the same algorithmic techniques: given a speci�cation anda property, they compute, in the �rst case the validity of the property and, inthe second case, the test case with respect to either the speci�cation and theproperty. We are currently developing if [5], a toolbox for a high level represen-tation of programs, especially for telecommunication speci�cation languages. Inthis toolbox, static analysis is intensively used in the earlier stages of validationin order to reduce the memory costs of the next ones.This lead us to consider two classes of analysis: property independent analysis:(such as live variable analysis or constant propagation) without regarding anyparticular property, the analysis is implemented by a module which takes as inputand output a intermediate program, property dependent analysis: the analysistakes into account some information extracted from the property or from theenvironment and propagate them over the static control structure of the program(such as uncontrollable variables abstraction [9]).We envisage to experiment more sophisticated analysis, such as constraintspropagation in the context of symbolic test generation. We also want to exploit aconnection with the tool invest [3], which computes abstractions and invariantson a set of guarded commands.References1. P. Abdulla, A. Bouajjani, and B. Jonsson. On-the-
y Analysis of Systems withUnbounded, Lossy Fifo Channels. In Proceedings of CAV'98, Vancouver, Canada,volume 1427 of LNCS, 1998.2. A. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and Tools.Addison-Wesley, Readings, MA, 1986.3. S. Bensalem, Y. Lakhnech, and S. Owre. Computing Abstractions of In�nite StateSystems Compositionally and Automatically. In Proceedings of CAV'98 (Vancou-ver, Canada), volume 1427 of LNCS, 1998.4. B. Boigelot and P. Godefroid. Symbolic Veri�cation of Communication Protocolswith In�nite State Spaces using QDDs. In Proceedings of CAV'96, New Brunswick,USA, volume 1102 of LNCS, 1996.5. M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, L. Mounier, andJ. Sifakis. IF: An Intermediate Representation for SDL and its Applications. InProceedings of SDL-FORUM'99, Montreal, Canada, 1999.6. M. Bozga, J.-C. Fernandez, L. Ghirvu, C. Jard, T. J�eron, A. Kerbrat, P. Morel,and L. Mounier. Veri�cation and Test Generation for the SSCOP Protocol. SCP,1998. to appear.7. M. Bozga, J.-C. Fernandez, A. Kerbrat, and L. Mounier. Protocol Veri�cationwith the Aldebaran Toolset. Springer International Journal on Software Tools forTechnology Transfer, 1(1+2):166{183, December 1997.8. E.M. Clarke, E.A. Emerson, and E. Sistla. Automatic Veri�cation of Finite StateConcurrent Systems Using Temporal Logic Speci�cations: A Practical Approach.In Proceedings of 10th ACM Symposium on Programming Languages, 1983.9. C. Colby, P. Godefroid, and L.J. Jagadeesan. Automatically Closing Open ReactiveSystems. In Proceedings of ACM SIGPLAN on PLDI, June 1998.

10. C. Daws and S. Yovine. Reducing the Number of Clock Variables of Timed Au-tomata. In Proceedings of RTSS'96, 1996.11. J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighire-anu. CADP: A Protocol Validation and Veri�cation Toolbox. In Proceedings ofCAV'96, New Brunswick, USA, volume 1102 of LNCS, 1996.12. J.-C. Fernandez, C. Jard, T. J�eron, and L. Mounier. \On the Fly" Veri�cation ofFinite Transition Systems. Formal Methods in System Design, 1992.13. J.-C. Fernandez, C. Jard, T. J�eron, and C. Viho. An Experiment in AutomaticGeneration of Test Suites for Protocols with Veri�cation Technology. SCP, 29,1997.14. J.-C. Fernandez, A. Kerbrat, and L. Mounier. Symbolic Equivalence Checking. InProceedings of CAV'93, Heraklion, Greece, volume 697 of LNCS, 1993.15. P. Godefroid. Partial-Order Methods for the Veri�cation of Concurrent Systems -An Approach to the State Explosion Problem. volume 1032 of LNCS, 1996.16. ISO/IEC. LOTOS | A Formal Description Technique Based on the TemporalOrdering of Observational Behaviour. Technical Report 8807, International Orga-nization for Standardization | Information Processing Systems | Open SystemsInterconnection, 1988.17. ITU-T. Recommendation Z-100. Speci�cation and Description Language (SDL).1994.18. R. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenig�un. Static Partial OrderReduction. In Proceedings of TACAS'98, Lisbon, Portugal, volume 1384 of LNCS,1998.19. K.L. McMillan. Symbolic Model Checking: an Approach to the State ExplosionProblem. Kluwer Academic Publisher, 1993.20. R. Milner. A Calculus of Communication Systems. In LNCS, number 92. 1980.21. S. Muchnick. Advanced Compiler Design Implementation. Morgan KaufmannPublishers, San Francisco, CA, 1997.22. J.P. Queille and J. Sifakis. Speci�cation and Veri�cation of Concurrent Programsin CESAR. In International Symposium on Programming, volume 137 of LNCS,1982.

