N

N
N

HAL

open science

State Space Reduction based on Live Variables Analysis

Marius Bozga, Jean-Claude Fernandez, Constantin Lucian Ghirvu

» To cite this version:

Marius Bozga, Jean-Claude Fernandez, Constantin Lucian Ghirvu. State Space Reduction based on
Live Variables Analysis. Static Analysis 6th International Symposium, SAS’99, Sep 1999, Venice,

Ttaly. pp.164-178, 10.1007/3-540-48294-6_11 . hal-00369423

HAL Id: hal-00369423
https://hal.science/hal-00369423
Submitted on 19 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00369423
https://hal.archives-ouvertes.fr

State Space Reduction based on
Live Variables Analysis

Marius Bozgal!, Jean-Claude Fernandez?, and Lucian Ghirvu'*

! VERIMAG* * *, Centre Equation, 2 avenue de Vignate, F-38610 Giéres
Marius.Bozga@Qimag.fr, Lucian.Ghirvu@imag.fr
? LSR/IMAG, BP 82, F-38402 Saint Martin d’Heéres Cedex

Jean-Claude.Fernandez@imag.fr

Abstract. The intrinsic complexity of most protocol specifications in
particular, and of asynchronous systems in general, lead us to study
combinations of static analysis with classical model-checking techniques
as a way to enhance the performances of automated validation tools.
The goal of this paper is to point out that an equivalence on our model
derived from the information on live variables is stronger than the strong
bisimulation. This equivalence, further called live bisimulation, exploits
the unused dead values stored either in variables or in queue contents
and allow to simplify the state space with a rather important factor.
Furthermore, this reduction comes almost for free and is always possible
to directly generate the quotient model without generating the initial
one.

Keywords: model checking, state space reduction, bisimulation, asynchronous
communication, live variables analysis

1 Introduction

Formal Description Techniques such as LOTOS [16] or SDL [17] are now at the
base of a technology for the specification and the validation of telecommunication
systems. This is due not only to the fact that these formalisms are promoted by
ITU and other international standardization bodies but also to the availability
of mature commercial tools, mainly for editing, code generation and testing.

Alternatively, we have been developing for more than ten years a set of tools
dedicated to the design and validation of critical systems and based on the model
checking paradigm [22,8]. One of them is the model checker ALDEBARAN [7]
maintained and distributed in collaboration with the VASY team of INRTIA Rhone-
Alpes as part of the CADP toolset [11]. Another one is the test sequence generator
TGV [13], built upon ¢ADP and jointly developed with the PAMPA project of TRISA.

* This work was partially supported by Région Rhone Alpes
*** VERIMAG is a joint laboratory of CNRS, UJF and INPG Grenoble

The central problem arising in the context of model based validation and
implicitly for the above mentioned tools is the well known state explosion prob-
lem. To deal with it, we begin more recently to investigate alternative program
representations and more important, ways to adapt techniques issued from other
advanced domains such as compiler design and optimization in the context of
model checking. In this respect, we developed IF [5] which is an intermediate pro-
gram representation based on asynchronously communicating timed automata.
IF was designed on one hand to be able to represent significant subsets of SDL
and LOTOS and on the other hand to support the application of static analysis
techniques used in compiler optimization [2,21]. In particular, a translation from
SDL into IF is already implemented using the SDL/API interface provided by the
industrial tool ObjectGEODE to its SDL compiler.

In general, model checkers and in particular ALDEBARAN and TGV are based
on the central notion of bisimulation [20]. In fact, either in the verification process
or in the test generation process there is usually a step of minimization modulo
strong bisimulation. This lead us to consider static analysis techniques for IF
programs in the context of bisimulation equivalences.

The main goal of this paper is to point out that an equivalence on our model
derived from the information on live variables is stronger than the strong bisim-
ulation. This equivalence, further called live bisimulation, exploits the unused
dead values stored either in variables or in queue contents and allow to sim-
plify the state space with a rather important factor. Furthermore, this reduction
comes almost for free and is always possible to directly generate the quotient
model without generating the initial one.

The idea of using static analysis to improve model checking was already being
investigated in different particular contexts. For instance, in [10] was proposed
a method to reduce the number of clocks in timed automata using live clocks
and clocks equality analysis. In [18] was given a method which combines partial
order reductions and static analysis of independent actions for SDL programs.
An important work was done to find efficient representations of possible infi-
nite queue contents and to exploit the static control structure when performing
reachability analysis [4,1]. However, at the best of our knowledge we are the
first to make use of live variables to simplify the state space, including queue
contents, of asynchronous systems with queue-based communication.

The paper is structured as follows. Section 2 presents the underlying model
which is parallel processes asynchronous communicating via queues. Section 3
briefly remember the notion of live variables and some basic properties about
them. In section 4 we introduce the live equivalence relation on states and show
that is a bisimulation. An efficient way to identify live equivalent states using
a canonical form is then presented in section 5. Finally, in section 6 we discuss
the general utility of introduced equivalences in the context of model-checking.
Some practical results obtained on a small example are given in section 7.

2 The model

2.1 Syntax

We consider systems consisting of asynchronous parallel composition of a number
of processes that communicate through parameterized signal passing via a set of
unbounded fifo queues and operate on a set of shared wvariables. Formally, a
system is a tuple:

P = (S,X,C,ﬁpi)
i=1

where S is the set of signals, X is the set of variables, C' is the set of queues
and {p;}i=1,n are processes. Processes perform actions on queues and variables.
They are described by terms of a simplified value-passing process algebra with
the following syntax:
p == nil|ap|p+p| Z(e)

This syntax contains the usual operators from process algebra: nil denotes the
empty process, a.p denotes p prefixed with action «, p; + po is the nondeter-
ministic choice between p; and po, and finally Z(e) stands for recursion with the

value passing of the expression e. To give a semantics for terms we assume also
the existence of a set of declarations:

Z(y) <def P
for each name Z which occurs in terms. Note that in our algebra such declaration
binds the occurrences of the variable y inside p to Z, therefore y is considered
a parameter of the definition of Z. The actions are simple guarded commands
defined by the following syntax:

a == [b]la
a; == x:=e]|cls(e) | c?s(x)
where [b] with b a boolean expression denotes the guard, z := e denotes an

assignment of the variable z to the expression e, cls(e) denotes the output to
the queue ¢ of the signal s with parameter the expression e and finally, ¢?s(z)
denotes the input from the queue c of the signal s and store of its parameter in
the variable z.

2.2 Semantics

We give the semantics of systems in terms of labeled transition systems. We pro-
ceed in two steps: we start with the interpretation of the control part only, then
we give the interpretation of control combined with data, i.e. queues contents
and variables.

The control semantics is described by the following rules which give a way to

build the control graph of the system, from the parallel composition of processes.
n

The states in this graph are tuples of terms [] p;, and the transitions are labeled

i=1
by actions, as follows:

« 1 o '
S _p—Pr _9—a
a.p—=5p p+q—>p p+q—q
p[e/y]ino’ Z(y) <def P Pjim} pi=piVi#j
Z(e) i>p/ n o n ,
i=1 i=1

Note that, in this paper we restrict our attention to systems where the control
graph is finite, that is if it contains only a finite number of states and transitions.

In order to interpret the data part we assume the existence of the universal
domain D which contains the values of variables and signal parameters. We
suppose that the boolean values {true, false} and also the special undefined —
value are contained in D. We define variable contexts as being total mappings
p : X — D which associate to each variable z a value v from the domain. We
extend these mappings to expressions in the usual way. We define queue contexts
as being also total mappings § : C — (S x D)* which associates to each queue
¢ a sequence (81,v1), ..., (Sk,vr) of messages, that is pairs (s,v) noted also by
s(v), where s is a signal and v is the carried parameter value. We assume also
the existence of some special undefined message o. The empty sequence is noted
with e.

The semantics of a system is now completed by the following rules which give
a way to build a labeled transition system based on the control graph. States
of this system are triples of the form (p,d,p), where p is a variable context, §
is a queue context and p is a control state. Transitions are either internal and
labeled with 7, when derived from assignments or signal inputs, either wvisible
and labeled with c!s(v) when derived from signal outputs:

P p(b) = true ple) = v

(p,0,p)—(p[v/x],0,p")

p[b]ﬂe)p’ p(b) =true ple) =v §(c) =w

cls(v)

(p,d,p) — (p, 6[w.s(v)/c],p")

P) = true 8(c) = s(v).w

(p.0,p)—(plv/], 6[w/c], p')

3 Live variables analysis

In this section we briefly remember the definition of live variables and some
general properties about them. We consider the sets of variables used and re-
spectively defined by some action a. Intuitively, a variable is used either in the
guards, in the right hand side of assignments or in outputs. A variable is defined
either in the left hand side of assignments or in inputs. Formally, the sets Use(«)
and Def(a) are defined as follows:

a Use(a) Def(a)

[b]x:=e wars(b) Uvars(e) {z}

[b]cls(e) wars(b) U vars(e) 0

[b] c?s(x) vars(b) {z}
We consider now the set of live variables for some term p. Intuitively it is the
smallest set of variables which might be used before they are redefined when

interpreting the term. Formally, the sets Live(p) are defined as the least fixpoint
solution of the following equation system over sets of variables:

(Live(nil) =, 0
Live(a.p) =, Use(a) U Live(p) \ Def(a)
Live(p + q) =, Live(p) U Live(q)

Live(Z(e)) =, Live(p[e/x]) where Z(y) 4ges p

n

Live([] pi) =p ‘91 Live(p;)

\ i=1 i

An equivalent characterization for the sets of live variables based on the control
graph transitions and some basic properties are given by the following lemma.

Lemma 1.

1. Live(p) = EJ Use(a)) U Live(p') \ Def(a).
2 p—=p' = Use(a) C Live(p)
’ Live(p') \ Def(a)) C Live(p).

Proof. 1. Structural induction over term structure. 2. Immediate from 1.

4 Live equivalence

First, we consider the variable context equivalence relation induced by the set
of live variables: two variable contexts are equivalent if and only if the values
assigned to each one of the live variables are pairwise identical. Formally, for
each state p we define the variable context equivalence Néf”e as follows:

p1~p py & Va € Live(p) pi(z) = p2(x)
We consider similar equivalence relations defined for queue contexts. Intuitively
two queue contexts are equivalent if and only if they enable the same sequences
of transitions and if for each enabled input the parameter values are identical
if the receiving variable is live at the next state. Formally, we define the queue
context equivalences zé"”e to be the greatest fixpoint solution of the following
equation system where for each state p we have:

(/\ 61 %pr 62
p[b]_z_=>:f5p,
/\ (51 %pr (52
OO
(51(0) =€ A (52(0) =€ A
61 Rp 52 < 51 Ry 52
Vv
01(c) = s(v1)wr A da(c) = s(va).wa A
A (x € Live(p') = v1 = v2) A
p My 61w /c] =y bawa/c|
Vv
61 (C) = S1 (vl).wl N 52(6) = SQ(UQ).’U}Q N
L | s1#s A sa#s

If the control graph is finite, the existence of the greatest fixpoint satisfying the
equations above is ensured by the Tarski’s fixpoint theorem given the mono-
tonicity with respect to the relation inclusion at each state.

We define now the live equivalence ~'¢ relation over global states: two states
are equivalent if the control states are identical and both the variable context
and the queue context are equivalent:

(p1,01,p) &1 (pa,02,p) & p1 ~J py A Gy =UV Sy

The next theorem gives the central result of the paper, that is, the live equiva-
lence is also a bisimulation relation over the global states.

Theorem 1. The live equivalence ~"¢ is a bisimulation.

Proof. By definition, ~!"¢ is a bisimulation if and only if for all pairs
(p1,01,p) =1 (pa, 65, p) We have:

Y(p1.01,p)—(p}, 61, p") = I(p2, 62.0)——(ph, 85, 1') A (p}, 81, p) ~'™¢ (ph, 85, p)

V(,DQ, 527p)i>(pl2) 6,2’pl) = 3(,017 615p)i>(plla 61,]3,) A (plla 61,]3) zlive (pl2) 5,2’p)
Let (p1,61,p) =€ (pa, 62, p) and let p—=+p'. We distinguish three different cases,
depending on the type of a.

l.a=[blz:=e
Vi=1,2 p;(e) =wv;, pi(b) = true =
(pza(sla) (,0276; ,) p;: Z[’Ul/w]
p1 ~p py = p1(b) = pa(b), pre) = pa(e), prlvi/x] ~L¢ palva/a]
61 Né)we 52 = 51 NZ,ve 62

2. a=[b]cls(e)
Vi=1,2 5()—101, pi(e) = v, pi(b) = true =

(p1:55,0) 25 (01, 81, 91), 81 = 6,[wi.s(v:) /]
p1 ~ pa = pi(b) = pa(D), pile) = pa(e), pr ~p* Thos
61 zé}z’ve 52 = 51 %Zve 62 = 51 [wl.s(vl)/c] éwe 62[102.8(1)2)/0]
Note that the second implication comes from the more general property of
queue content equivalence to be closed under output operations. That is, it
can be proven inductively that, two equivalent queue contents at some state
p, are still equivalent after adding the same message to the same queue in
both of them.

3.a=[b]c?s(x)
Vi=1,2 §;(c) = s(v;).w;, pi(b) =true =
(pi, 01, 0) = (P} 01, 1), P = pilvi/a], & = di[wi/c]
by~ 6, = vy =y if © € Live(p'), & [wl/c] l“’e da[wa /]

p1 é“’e p2 = p1(b) = pa(b), pilor/a] ~Lve PQ[”Q/C”]

An immediate consequence of the previous theorem is the following one, stating
that the live equivalence is stronger than the strong bisimulation.

Theorem 2. ~!ive C xstrong,

5 Reset equivalence

We would like to have a more efficient way to check that two contexts are live
equivalent than to directly check the definition. Here we investigate the possi-
bility to transform contexts into some canonical form preserving the live equiv-
alence. One way to do this is using the family of Reset functions, defined below.

The Reset’ function on variable contexts p basically sets the value of the
dead variables to the fixed undefined — value, depending on the current control
state p. A reset equivalence can be defined over variable contexts as follows: two
contexts are reset equivalent if they give the same result when reseted. Formally,
we have:

v %
Reset'(p,p) = p — otherwise

. x)if x € Live
p*(z) = {p() (p)
pr oot py & Reset'(p.pr) = Reset! (p,po)

It is straightforward to prove that the live equivalence and the reset equivalence
on variable contexts are identical, that is, the following lemma holds.

reset _ _live
Lemma 2. Vp ~] =~

In order to define a similar Reset? function for queue contexts we start by intro-
ducing some auxiliary notations.

Let consider some fixed queue ¢. We define the relation —% over control states to
include all the control transitions, except the ones labeled with inputs from the

queue c. We note with =% its transitive and reflexive closure and with Post ..
the post image function defined over sets of control states, formally:
p~=Sp & 3a#[b]c?s(z) p—p'

Post.., (Q)={p' | Ip€Q p==p' }

Let consider @ = [b] ¢?s(z) to be some input action of signal s from queue c.
We note p==p' if it is possible to reach p' from p by a sequence ending with a
and which does not contain any other input from the queue c. We define also the
post image function Postg over sets of control states, that is, it gives all the
states which can be reached after consuming an s from the queue c¢. Formally,
we have:

] c?s(z) ,

b o b] ¢?
p[=2y & E|p” p%p" A pll[]g;z)pl

[b] c?s(z)
Postg(Q) ={p |Ipe@ p ="'}

We define now the local reset function for the queue ¢ given an initial non-
empty set of control states Q). That is, given the content w of the queue ¢, this
function basically rewrite it and forgot the signal parameters which statically are
detected to be unused, when execution starts somewhere in (). With ¢ denoting
the undefined message, the function is recursively defined as follows:

o if Vs Postg(Q) =
reset(Q, c,e) =
e otherwise

(o if Postg(Q) =
s(v).reset(Postg(Q),c,w)
reset(Q, ¢, s(v).w) = if JpeqQ, p[b]c:?%(x)p’ A x € Live(p')

s(—).reset(Postg(Q), c,w)

L if VpeQ, p[b]c:?%(x)p’ = x & Live(p')

Some interesting properties about the local reset function are given by the fol-
lowing lemma.

Lemma 3. For any @, ¢, w, wy, ws holds

1. reset(Q, c,w) = reset(Post.. (Q),c,w).

=
2. reset(Q,c,wr) = reset(Q, c, w2) =
VQ' CQ reset(Q',c,wy) = reset(Q’, c,ws).

Proof. 1. The proof is immediate from the fact that for any set of control states
@, channel ¢ and signal s we have:

Q C Post,= (Q) Poste, (Q) = Post.., (Post. (Q))
= e = =

2. The proof can be done by induction on the maximal size of the sequences w;
and ws.

We define the Reset? function and the reset equivalence on queue contexts using
local reset functions defined before, that is, for a given control state p we consider:

Reset?(p,d) = 6* 6*(c) = reset({p},c, (c))
01 z;es” ds < Reset!(p,01) = Reset!(p, d2)

The following lemma gives the relation between the live equivalence and the reset
equivalence on queue contexts. In general, the reset equivalence is stronger than
the live equivalence. This is explained by the fact that local resets are based on
a conservative assumption about other queues: the inputs from other queues are
always considered enabled. However, in the special case when the input actions
from a queue do not enable input actions from other queues, the live equivalence
and the reset equivalence become identical. This can be formalized as follows.
For o an input action, we note p==,p' if p' is reachable from p by a sequence
ending with o and which does not contain other inputs. We define now queue ¢
to be reset-independent from queue ¢’ if and only if :

b'1c’ 78" (2’ ble?
Voo q U =g Sy o

Jp’ p[b]cz?i(f)p’, p'[b]éi,f“”)q’, x € Live(p') & x € Live(q')

Lemma 4.

PR
2. if the queues are reset-independent then
Vp ~reset — zlive
2 p

1. vp z;’)eset C zlwe

Proof. 1. The proof consist to check that the reset equivalences z;eset satisfies
the fixpoint equations defining the live equivalence. This can be easily done given
the results established by the previous lemma. Then because the live equivalences
are the greatest fixpoint is clear that zgesetgz;}'ve for all control states p.

2. Let 6, z;}'”e 02 and the queue ¢ fixed. We will prove inductively that
reset({p}, ¢, 01(c)) = reset({p},c, 62(c)). We distinguish the following cases:

1. 61(c) =€, da(c) = ¢
= reset({p}, ¢, 01(c)) = reset({p}, c, 5 (c)
2. (51(6) = €, (52(6) = 52(1)2).’11}2
(a) Vs Post, ({p}) =0
= reset({p},c,01(c)) = reset({p},c,d2(c)) = o
(b) 35 Post.s, ({p}) # 0

= Ip=po—Bpy ﬂ...ﬂpn[b]ﬂx)p’
and because the inputs are independent we can choose this sequence such
that it doesn’t contain inputs from other queues
= we obtain a contradiction with the definition of the live equivalence
hypothesis, that is &; %€ 4,
3. 61 (C) = S1 (’1}1).’[1}1, 62(6) = SQ(’UQ).’U}Q

(2) Posts, ({p}) = 0, Postusy({p}) =0
= reset({p},c,d1(c)) = reset({p},c,d2(c)) = o

(b) Post, ({p}) # 0, Postysu, ({p}) = 0
= contradiction with the live equivalence, as before.

(€) Post.y ({p)) # 0, Postery () # 0

1. S1 ;é S92

= contradiction with the live equivalence, as before.

ii. 51 = sy =s and v; # v2 and Elp[b]gz)p’ x € Live(p')

= contradiction with the live equivalence, as before.
b c?

iii. s =sy =sand vy =vy = v or Vp[]gx)p’ x & Live(p')

= reset({p},c, s1(v1).w1) = s(v).reset(Postg({p}),c, wi)
reset({p}, ¢, sa(va).we) = s(v).reset(Postg({p}), ¢, wo)

and from the live equivalence hypothesis we have also that
vp' € Postg({p}) 1 [w /] zéf,"e do[wa /¢
so we can inductively infer that either contradiction or
reset({p},c, s1(v1).wy1) = reset({p}, ¢, s2(va).w2)

Finally, we define the reset equivalence over global states as follows:
(p1,01,p) =" (pa,02,p) & p1~pTpy A0y RSy

The link between the live and reset equivalence over global states is established
by the following theorem.

Theorem 3.

1 z7“eset C %live

2. if the queues are reset-independent then:
~reset — zlz've

Finally, note that SDL systems satisfy the independence hypothesis as they are
composed from parallel processes, each one having its own unique input queue.
Thus, performing a signal input in a process does not interfere with other possible
inputs in other processes.

6 Live analysis and model checking

The reductions based on live or reset equivalence can be obtained with almost
no cost and are fully orthogonal to other techniques applied in the context of
model-checking validation to deal with the state-explosion problem.

The weak cost of the live equivalence reduction is due to the static analy-
sis approach: live variables need to be computed once in the beginning with an
algorithm operating on the control graph and then are used by primitives such
as Reset which operate on states content and which have a linear complexity
with respect to the size of the state (the number of variables plus the number of
messages in the queues). In fact, in the context of exhaustive state space explo-
ration algorithms such primitives can be viewed as having constant operation
time, similar to operations like state copying or state comparison.

Live equivalence reduction can be combined with techniques ranging from
the simplest model generation, with standard on the fly verification methods
and even with more sophisticated partial order or symbolic techniques.

Enumerative simulation is at the basis of most of the verification algorithms.
It is always possible to directly generate the quotient graph with respect to
live or reset equivalences, thus preserving all the observable behaviors, without
constructing the initial one. This can be easily done for instance by considering
every time a new state is generated its canonical form given by Reset. Reset
equivalent states will be automatically identified as equals and explored once by
the generation algorithm.

On the fly verification techniques such as [12] rely on enumerative depth first
traversals of the model state space and the meantime evaluation of the property
(e.g, temporal logic formula, observer automaton, test purpose). In this case too,
the property can be directly evaluated on the reduced graph, if it is not explicitly
dependent on state variables or queue contents but only on the observable actions
of the system (e.g, outputs). Note that, if such dependencies exist, they can be
normally removed by introducing auxiliary observable actions and by modifying
the property accordingly.

Partial order techniques [15] reduce the state space by avoiding to explore
interleaving of independent actions. Clearly, the live equivalence reduction can
be further considered when new states are encountered, as before.

In the symbolic model checking context [19] the information on live variables
can be used to simplify the BDDs representing the transition relation and the
sets of states. In fact, dead variables for a given control state provide non-trivial
don’t care conditions which can be exploited either directly to simplify any final
or intermediate result, or even better, to improve primitives like successors or
predecessor computation on symbolic representations.

In particular, live equivalence reduction can also be applied at each step of
the minimal model generation algorithm [14] which involves the (backward) com-
putation of predecessor states. This must be very important as the predecessor

computation usually gives a lot of spurious unreachable states and which might
be equivalent w.r.t. the live equivalence.

7 Example

We illustrate the potential reduction obtained using the live equivalence on
a small example. We consider two simple processes communicating through a
queue as shown in figure 1. The first process only send arbitrarily request and
switch messages. It is described by Zgummy and the following equation:

Zgummy def (in!switch + inlrequest(x)).Zaummy

The second process is more interesting. It has two functioning modes, a normal
one and a fault one. Basically, it inputs requests from the in queue and delivers
them, when normal, and looses them otherwise. The mode changes from normal
to fault (and backward) when input a switch signal. Formally, we consider this
process described by Z,ormar and the following equations:

Znormal def in?request(x). Zqeiiver + in?switch.Z qut
Zdeliver <]def OUt!request(x)-Znormal

Zfault e f in?r@queSt(w)-Zfault + in?switch.Znormal

in?request(x)

e
u

' in?switch out!request(x)

in out
:) 1
in?switch

inlrequest(*)

inlswitch .
in?request(x)

~—

Fig. 1. The example

We can easily check that the variable x is live only at the deliver state. Thus,
the value of must not be used to distinguish between states when somewhere
else that deliver. Furthermore, it can be seen that when at the fault state, the

parameters of the incoming requests are not live too. That is, request signals
are only consumed, without using the carried values. It can be seen also that
signals of the out queue are never consumed so we don’t distinguish states which
differs on the out content. Such cases are all captured by the live equivalence as
defined in section 4.

Figure 2 shows the reduction obtained for this example with respect to two
parameters: m, the size of the domain of x and n, the maximal allowed size of
queue in. The continuous lines give the real number of states and the dotted lines
give the number of states obtained after considering live equivalence reduction
and please notice that an logarithmic scale was used for the number-of-states
axis. Also, to better illustrate the reduction obtained, note that for instance
when m = 6 and n = 5 the initial number of states is 352944 and it is reduced
at 89824, so with a factor up to 75%.

10000000 4
1000000 10000 4
100000
8
g ﬁ
¥ 10000 1000
10004
100 100
T T T T T
0 2 4 6 8 10
n=3 n=1:10 m=1:10 n=3

Fig. 2. Live equivalence reduction

8 Conclusion and future work

The essence of this work is to show that the live variable analysis define an
equivalence stronger than bisimulation equivalence. This allow to simplify the
state space exploiting the information on unused dead values stored either in the
variables or in the queue contents. This idea was already experimented to the
industrial case study SSCOP [6] where we have obtained impressive reductions
of the state space up to 200 times.

In the context of model-based validation, the main interest of static analysis
is to reduce the state space, which is crucial in practice to deal with complex
specifications. Model checking and automatic test generation for conformance

testing are based on the same algorithmic techniques: given a specification and
a property, they compute, in the first case the validity of the property and, in
the second case, the test case with respect to either the specification and the
property. We are currently developing IF [5], a toolbox for a high level represen-
tation of programs, especially for telecommunication specification languages. In
this toolbox, static analysis is intensively used in the earlier stages of validation
in order to reduce the memory costs of the next ones.

This lead us to consider two classes of analysis: property independent analysis:
(such as live variable analysis or constant propagation) without regarding any
particular property, the analysis is implemented by a module which takes as input
and output a intermediate program, property dependent analysis: the analysis
takes into account some information extracted from the property or from the
environment and propagate them over the static control structure of the program
(such as uncontrollable variables abstraction [9]).

We envisage to experiment more sophisticated analysis, such as constraints
propagation in the context of symbolic test generation. We also want to exploit a
connection with the tool INVEST [3], which computes abstractions and invariants
on a set of guarded commands.

References

1. P. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly Analysis of Systems with
Unbounded, Lossy Fifo Channels. In Proceedings of CAV’98, Vancouver, Canada,
volume 1427 of LNCS, 1998.

2. A. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, Readings, MA, 1986.

3. S. Bensalem, Y. Lakhnech, and S. Owre. Computing Abstractions of Infinite State
Systems Compositionally and Automatically. In Proceedings of CAV’98 (Vancou-
ver, Canada), volume 1427 of LNCS, 1998.

4. B. Boigelot and P. Godefroid. Symbolic Verification of Communication Protocols
with Infinite State Spaces using QDDs. In Proceedings of CAV’96, New Brunswick,
USA, volume 1102 of LNCS, 1996.

5. M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, L. Mounier, and
J. Sifakis. IF: An Intermediate Representation for SDL and its Applications. In
Proceedings of SDL-FORUM’99, Montreal, Canada, 1999.

6. M. Bozga, J.-C. Fernandez, L. Ghirvu, C. Jard, T. Jéron, A. Kerbrat, P. Morel,
and L. Mounier. Verification and Test Generation for the SSCOP Protocol. SCP,
1998. to appear.

7. M. Bozga, J.-C. Fernandez, A. Kerbrat, and L. Mounier. Protocol Verification
with the Aldebaran Toolset. Springer International Journal on Software Tools for
Technology Transfer, 1(142):166-183, December 1997.

8. E.M. Clarke, E.A. Emerson, and E. Sistla. Automatic Verification of Finite State
Concurrent Systems Using Temporal Logic Specifications: A Practical Approach.
In Proceedings of 10th ACM Symposium on Programming Languages, 1983.

9. C. Colby, P. Godefroid, and L.J. Jagadeesan. Automatically Closing Open Reactive
Systems. In Proceedings of ACM SIGPLAN on PLDI, June 1998.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

C. Daws and S. Yovine. Reducing the Number of Clock Variables of Timed Au-
tomata. In Proceedings of RTSS’96, 1996.

J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighire-
anu. CADP: A Protocol Validation and Verification Toolbox. In Proceedings of
CAV’96, New Brunswick, USA, volume 1102 of LNCS, 1996.

J.-C. Fernandez, C. Jard, T. Jéron, and L. Mounier. “On the Fly” Verification of
Finite Transition Systems. Formal Methods in System Design, 1992.

J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho. An Experiment in Automatic
Generation of Test Suites for Protocols with Verification Technology. SCP, 29,
1997.

J.-C. Fernandez, A. Kerbrat, and L. Mounier. Symbolic Equivalence Checking. In
Proceedings of CAV’98, Heraklion, Greece, volume 697 of LNCS, 1993.

P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems -
An Approach to the State Explosion Problem. volume 1032 of LNCS, 1996.
ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. Technical Report 8807, International Orga-
nization for Standardization — Information Processing Systems — Open Systems
Interconnection, 1988.

ITU-T. Recommendation Z-100. Specification and Description Language (SDL).
1994.

R. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenigiin. Static Partial Order
Reduction. In Proceedings of TACAS’98, Lisbon, Portugal, volume 1384 of LNCS,
1998.

K.L. McMillan. Symbolic Model Checking: an Approach to the State Explosion
Problem. Kluwer Academic Publisher, 1993.

R. Milner. A Calculus of Communication Systems. In LNCS, number 92. 1980.
S. Muchnick. Advanced Compiler Design Implementation. Morgan Kaufmann
Publishers, San Francisco, CA, 1997.

J.P. Queille and J. Sifakis. Specification and Verification of Concurrent Programs
in CESAR. In International Symposium on Programming, volume 137 of LNCS,
1982.

