
IF: A Validation Environment forTimed Asynchronous Systems
Marius Bozga1, Jean-Claude Fernandez2, Lucian Ghirvu1?, Susanne Graf1,Jean-Pierre Krimm1, and Laurent Mounier11 VERIMAG, Centre Equation, 2 avenue de Vignate, F-38610 Gi�eres2 LSR/IMAG, BP 82, F-38402 Saint Martin d'H�eres Cedex

1 IntroductionFormal validation of distributed systems relies on several speci�cation formalisms(such as the international standards lotos [15] or sdl [16]), and it requires di�erentkinds of tools to cover the whole development process. Presently, a wide range oftools are available, either commercial or academic ones, but none of them ful�lls initself all the practical needs.Commercial tools (like Objectgeode [20], sdt [1], statemate [14],etc.) provideseveral development facilities, like editing, code generation and testing. However,they are usually restricted to basic veri�cation techniques (exhaustive simulation,deadlock detection, etc) and are \closed" in the sense that there are only limitedpossibilities to interface them with others. On the other hand, there exist manyacademic tools (like smv [19], hytech [12], kronos [22], uppaal [18], spin [13],invest [2], etc.) o�ering a broad spectrum of quite e�cient veri�cation facilities(symbolic veri�cation, on-the-y veri�cation, abstraction techniques, etc.), but of-ten supporting only low-level input languages. This may restrict their use at anindustrial scale.This situation motivated the development of if, an intermediate representation fortimed asynchronous systems together with an open validation environment. Thisenvironment ful�lls several requirements. First of all, it is able to support di�erentvalidation techniques, from interactive simulation to automatic property checking,together with test case and executable code generation. Indeed, all these function-alities cannot be embodied in a single tool and only tool integration facilities canprovide all of them. For a sake of e�ciency, this environment supports several lev-els of program representations. For instance it is well-known that model-checkingveri�cation of real life case studies usually needs to combine di�erent optimiza-tion techniques to overcome the state explosion problem. In particular, some ofthese techniques rely on a syntactic level representation (like static analysis andcomputations of abstractions) whereas others techniques operate on the underlyingsemantic level. Another important feature is to keep this environment open andevolutive. Therefore, tool connections are performed by sharing either input/outputformats, or libraries of components. For this purpose several well-de�ned applicationprogramming interfaces (apis) are provided.? Work partially supported by R�egion Rhône-Alpes, France



2 ArchitectureThe if validation environment relies on three levels of program representation: thespeci�cation level, the if intermediate level, and the lts semantic model level. Fig-ure 1 describes the overall architecture and the connections between the toolboxcomponents.
CADP

PROMELA
IF2PML

SDL2IF
LIVE

IF2C
KRONOS

TGV

ObjectGEODEspeci�cationdesign
translation to IF

static analysis
simulation

model checking

test generationtranslation from IF
SDL IF LTS

Fig. 1. An open validation environment for if
The speci�cation level is the initial program description, expressed for instanceusing an existing language. To be processed, this description is (automatically)translated into its if representation. Currently the main input speci�cation formal-ism we consider is sdl, but connections with other languages such as lotos orpromela could also be possible.The intermediate level corresponds to the if representation [7]. In if, a systemis expressed by a set of parallel processes communicating either asynchronouslythrough a set of bu�ers, or synchronously through a set of gates. Processes are basedon timed automata with deadlines [3], extended with discrete variables. Processtransitions are guarded commands consisting of synchronous/asynchronous inputsand outputs, variable assignments, and clock settings. Bu�ers have various queuingpolicies (�fo, stack, bag, etc.), can be bounded or unbounded, and reliable or lossy.A well-de�ned api allows to consult and modify the abstract tree of the if represen-tation. Since all the variables, clocks, bu�ers and the communication structure arestill explicit, high-level transformations based on static analysis (such as live vari-ables computation) or program abstraction can be applied. Moreover, this api isalso well suited to implement translators from if to other speci�cation formalisms.



The semantic model level gives access to the lts representing the behaviour ofthe if program. Depending on the application considered, three kinds of api areproposed:� The implicit enumerative representation consists in a set of C functions anddata structures allowing to compute on demand the successors of a given state(following the open-caesar [11] philosophy). This piece of C code is generatedby the if2c compiler, and it can be linked with a \generic" exploration programperforming on-the-y analysis.� In the symbolic representation sets of states and transitions of the lts are ex-pressed by their characteristic predicates over a set of �nite variables. Thesepredicates are implemented using decision diagrams (bdds). Existing applica-tions based on this api are symbolic model-checking and minimal model gener-ation.� Finally, the explicit enumerative representation simply consists in an lts �lewith an associated access library. Although such an explicit representation isnot suitable for handling large systems globally, it is still useful in practice tominimize some of its abstractions with respect to bisimulation based relations.
3 Components descriptionWe briey present here the main components of the environment, together withsome external tools for which a strong connection exists.The speci�cation level components. Objectgeode [20] is a commercial toolsetdeveloped by TTT supporting sdl, msc and omt. In particular, this toolset pro-vides an api to access the abstract tree generated from an sdl speci�cation. Wehave used this api to implement the sdl2if translator, which generates opera-tionally equivalent if speci�cations from sdl ones. Given the static nature of if,this translation does not cover the dynamical features of sdl (e.g., process instancescreation).The intermediate level components. live [5] implements several algorithmsbased on static analysis to transform an if speci�cation. A �rst transformationconcerns dead variable resetting (a variable is dead at some control point if its valueis not used before being rede�ned). This optimisation can be also applied to bu�ercontents (a message parameter is dead if its value is not used when the message isconsumed). Although very simple, such optimisation is particularly e�cient for statespace generation (reductions up to a factor 100 were frequently observed), whilepreserving the exact behaviour of the original speci�cation. A second transformationis based on the slicing technique [21]. It allows to automatically abstract a givenspeci�cation by eliminating some irrelevant parts w.r.t. a given property or testpurpose [6].if2pml [4] is a tool developed at Eindhoven TU to translate if speci�cations intopromela.The semantic model level components. cadp [9] is a toolset for the veri�cationof lotos speci�cations. It is developed by the vasy team of Inria Rhône-Alpes



and verimag. Two of its model-checkers are connected to the if environment:aldebaran (bisimulation based), and evaluator (alternating-free �-calculus).For both tools, diagnostic sequences are computed on the lts level and they can betranslated back into msc to be observed at the speci�cation level.kronos [22] is a model-checker for symbolic veri�cation of tctl formulae on com-municating timed automata. The current connection with the if environment is asfollows: control states and discrete variables are expressed using the implicit enumer-ative representation, whereas clocks are expressed using a symbolic representation(particular polyhedra).tgv [10] is a test sequence generator for conformance testing of distributed systems(joint work between verimag and the pampa project of irisa). Test cases arecomputed during the exploration of the model and they are selected by means oftest purposes.
4 Results and perspectivesThe if environment has already been used to analyze some representative sdl speci-�cations, like sscop, an Atm signalisation layer protocol [8], and mascara, an Atmwireless transport protocol. It is currently used in several on going industrial case-studies, including the real-time multicast protocol pgm, and the control part of theAriane 5 launcher ight sequencer. The bene�ts of combining several techniques,working at di�erent program level, were clearly demonstrated. In particular, tradi-tional model-checking techniques (as provided by Objectgeode) were not su�cientto complete on these large size examples.Several directions can be investigated to improve this environment.First of all, other formalisms than sdl could be connected to if. In particular, thetranslation from a subset of uml is envisaged. To this purpose new features will beadded to handle dynamic process creation and parametrized network speci�cations.From the veri�cation point of view, the results obtained using the currently imple-mented static analysis techniques are very encouraging. We now plan to experimentsome more sophisticated algorithms implemented in the invest tool [2], such asstructural invariant generation and general abstraction computation techniques forin�nite space systems.Another promising approach to verify large systems consists in generating theirunderlying model in a compositional way: each sub-system is generated in isolation,and the resulting ltss are minimized before being composed with each other. The ifenvironment o�ers all the required components to experiment it in an asynchronousframework [17].The if package can be downloaded at http://www-verimag.imag.fr/DIST SYS/IF.
References1. Telelogic AB. SDT Reference Manual. http://www.telelogic.se.



2. S. Bensalem, Y. Lakhnech, and S. Owre. Computing Abstractions of In�nite StateSystems Compositionally and Automatically. In Proceedings of CAV'98 , vol. 1427 ofLNCS, p. 319{331. Springer, June 1998.3. S. Bornot, J. Sifakis, and S. Tripakis. Modeling Urgency in Timed Systems. InInternational Symposium: Compositionality - The Signi�cant Di�erence, vol. 1536 ofLNCS. Springer, September 1997.4. D. Bo�sna�cki, D. Dams, L. Holenderski, and N. Sidorova. Model Checking SDL withSpin. In Proceedings of TACAS'2000, vol. 1785 of LNCS, p. 363{377. March 2000.5. M. Bozga, J.Cl. Fernandez, and L. Ghirvu. State Space Reduction based on LiveVariables Analysis. In Proceedings of SAS'99 , vol. 1694 of LNCS, p. 164{178. Springer,September 1999.6. M. Bozga, J.Cl. Fernandez, and L. Ghirvu. Using Static Analysis to Improve Auto-matic Test Generation. In Proceedings of TACAS'00 , vol. 1785 in LNCS, p. 235{250.March 2000.7. M. Bozga, J.Cl. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, and L. Mounier. IF: AnIntermediate Representation and Validation Environment for Timed AsynchronousSystems. In Proceedings of FM'99, vol. 1708 of LNCS, p. 307{327. September 1999.8. M. Bozga, J.Cl. Fernandez, L. Ghirvu, C. Jard, T. J�eron, A. Kerbrat, P. Morel, andL. Mounier. Veri�cation and Test Generation for the SSCOP Protocol. Journal ofScience of Computer Programming, Special Isssue on Formal Methods in Industry,36(1):27{52, January 2000.9. J.Cl. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighireanu.CADP: A Protocol Validation and Veri�cation Toolbox. In Proceedings of CAV'96 ,vol. 1102 of LNCS, p. 437{440. Springer, August 1996.10. J.Cl. Fernandez, C. Jard, T. J�eron, and C. Viho. An Experiment in Automatic Gener-ation of Test Suites for Protocols with Veri�cation Technology. Science of ComputerProgramming, 29, 1997.11. H. Garavel. OPEN/C�SAR: An Open Software Architecture for Veri�cation, Simula-tion, and Testing. In Proceedings of TACAS'98 , vol. 1384 of LNCS, p. 68{84. March1998.12. T.H. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech : A Model Checker for HybridSystems. In Proceedings of CAV'97, vol. 1254 of LNCS, p. 460{463. June 1997.13. Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice HallSoftware Series, 1991.14. I-Logix. StateMate. http://www.ilogix.com/.15. ISO/IEC. LOTOS | A Formal Description Technique Based on the Temporal Or-dering of Observational Behaviour. Technical Report 8807, ISO/OSI, 1988.16. ITU-T. Recommendation Z.100. Speci�cation and Description Language (SDL). Tech-nical Report Z-100, International Telecommunication Union { Standardization Sector,Gen�eve, 1994.17. J.P. Krimm and L. Mounier. Compositional State Space Generation with PartialOrder Reductions for Asynchronous Communicating Systems. In Proceedings ofTACAS'2000, vol. 1785 of LNCS, p. 266{282. March 2000.18. K.G. Larsen, P. Petterson, and W. Yi. UPPAAL: Status & Developments. In Pro-ceedings of CAV'97, vol. 1254 of LNCS, p. 456{459. June 1997.19. K.L. McMillan. Symbolic Model Checking: an Approach to the State Explosion Prob-lem. Kluwer Academic Publisher, 1993.20. Verilog. ObjectGEODE Reference Manual. http://www.verilogusa.com/.21. M. Weiser. Program Slicing. IEEE Transactions on Software Engineering, SE-10(4),July 1984.22. S. Yovine. KRONOS: A Veri�cation Tool for Real-Time Systems. Software Tools forTechnology Transfer, 1(1+2):123{133, December 1997.


